LM3648TTYFFR [TI]

具有 1.5A 高侧电流源的 LM3648 同步升压 LED 闪光灯驱动器 | YFF | 12 | -40 to 85;
LM3648TTYFFR
型号: LM3648TTYFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.5A 高侧电流源的 LM3648 同步升压 LED 闪光灯驱动器 | YFF | 12 | -40 to 85

驱动 闪光灯 接口集成电路 驱动器
文件: 总35页 (文件大小:1036K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3648  
ZHCSD27 OCTOBER 2014  
LM3648 具有 1.5A 高侧电流源的同步升压 LED 闪光灯驱动器  
1 特性  
3 说明  
1
1.5A LED 电流源可编程性  
精确的可编程 LED 电流范围为 1.954mA 1.5A  
LM3648 是一款 LED 闪光灯驱动器,其采用小型解决  
方案尺寸,并且具备更强的适应能力。 LM3648 采用  
2MHz 4MHz 固定频率的同步升压转换器为 1.5A  
LED 恒流源供电。 自适应调节方法确保电流源保持可  
调节状态,并且最大限度地提高效率。  
优化了低电池电压条件下的闪存 LED 电流(输入  
电压闪存监控器 (IVFM))  
在火炬模式 (@ 100mA) 和闪存模式(@1A 至  
1.5A)下效率超过 85%  
LM3648 的功能通过 I2C 兼容接口进行控制。 其功能  
包括:硬件闪光灯和硬件手电筒引脚(STROBE 和  
TORCH/TEMP)、TX 中断以及 NTC 热敏电阻监视  
器。 该器件在闪光灯模式下可提供 64 种电流,在摄  
像模式(手电筒)下可提供 128 种电流。  
支持阴极接地 LED 操作,改进了热管理  
小型解决方案尺寸:< 16mm2  
硬件选通使能 (STROBE)  
射频功率放大器脉冲事件的同步输入 (TX)  
硬件火炬使能 (TORCH/TEMP)  
远程 NTC 监控 (TORCH/TEMP)  
400kHz I2C 兼容接口  
而且还提供有 2MHz 4MHz 开关频率选项、过压保  
(OVP) 功能以及可调限流功能,允许使用微型、超  
薄的电感器和 (10μF) 陶瓷电容。 该器件的工作环境温  
度范围为 -40°C 85°C。  
LM3648I2C 地址 = 0x63)  
2 应用  
器件信息(1)  
可拍照手机白色 LED 闪光灯  
器件型号  
LM3648  
封装  
封装尺寸(最大值)  
芯片级球状引脚  
栅格阵列  
1.69mm x 1.31mm  
(DSBGA) (12)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
L1  
1 PH  
LM3648  
IN  
SW  
VIN  
2.5V t 5.5V  
C1  
10 PF  
HWEN  
SDA  
OUT  
C2  
10 PF  
SCL  
PP/PC  
STROBE  
LED  
D1  
TORCH/  
TEMP  
TX  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVSA68  
 
 
 
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
目录  
7.4 Device Functioning Modes...................................... 13  
7.5 Programming........................................................... 16  
7.6 Register Descriptions.............................................. 18  
Applications and Implementation ...................... 22  
8.1 Application Information............................................ 22  
8.2 Typical Application ................................................. 22  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings ...................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements ............................................... 5  
6.7 Switching Characteristics.......................................... 5  
6.8 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ...................................... 11  
7.3 Feature Description ................................................ 11  
8
9
10 Layout................................................................... 27  
10.1 Layout Guidelines ................................................. 27  
10.2 Layout Example ................................................... 28  
11 器件和文档支持 ..................................................... 29  
11.1 器件支持................................................................ 29  
11.2 文档支持................................................................ 29  
11.3 ....................................................................... 29  
11.4 静电放电警告......................................................... 29  
11.5 术语表 ................................................................... 29  
12 机械封装和可订购信息 .......................................... 29  
7
4 修订历史记录  
日期  
修订版本  
注释  
2014 10 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
5 Pin Configuration and Functions  
DSBGA (YFF)  
12 Pins  
Top View  
Top View  
A1  
B1  
A2  
B2  
A3  
B3  
Pin A1  
C2  
D2  
C1  
D1  
C3  
D3  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NUMBER  
NAME  
A1  
GND  
G
P
Ground  
Input voltage connection. Connect IN to the input supply and bypass to GND with a  
10-µF or larger ceramic capacitor.  
A2  
IN  
A3  
B1  
SDA  
SW  
I/O  
P
Serial data input/output in the I2C Mode on LM3648.  
Drain Connection for Internal NMOS and Synchronous PMOS Switches.  
Active high hardware flash enable. Drive STROBE high to turn on Flash pulse.  
Internal pulldown resistor of 300 kbetween STROBE and GND.  
B2  
B3  
C1  
STROBE  
SCL  
I
I
Serial clock input for LM3648.  
Step-up DC/DC CONVERTER Output. Connect a 10-µF ceramic capacitor between  
this terminal and GND.  
OUT  
P
Active high enable pin. High = Standby, Low = Shutdown/Reset. Internal pulldown  
resistor of 300 kbetween HWEN and GND.  
C2  
HWEN  
I
Torch terminal input or threshold detector for NTC temperature sensing and current  
scale back.  
C3  
D1  
D2  
D3  
TORCH/TEMP  
I/P  
P
I
LED  
TX  
High-side current source output for flash LED. Connect pin D1 to D3 externally.  
Configurable dual polarity power amplifier synchronization input. Internal pulldown  
resistor of 300 kbetween TX and GND.  
LED  
P
High-side current source output for flash LED. Connect pin D1 to D3 externally.  
(1) A: Analog Pin, G: Ground Pin, P: Power Pin, I: Digital Input Pin  
Copyright © 2014, Texas Instruments Incorporated  
3
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
IN, SW, OUT, LED  
0.3  
6
V
SDA, SCL, TX, TORCH/TEMP, HWEN, STROBE  
0.3 to the lesser of  
(VIN+0.3) w/ 6 V max  
Continuous power dissipation(3)  
Internally limited  
150  
Junction temperature (TJ-MAX  
)
°C  
Maximum lead temperature (soldering)  
See(4)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND terminal.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typ.) and  
disengages at TJ = 135°C (typ.). Thermal shutdown is ensured by design.  
(4) For detailed soldering specifications and information, please refer to Texas Instruments Application Note 1112: DSBGA Wafer Level  
Chip Scale Package (SNVA009).  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
65  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2500  
1500  
2500  
1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
5.5  
UNIT  
VIN  
2.5  
40  
40  
V
Junction temperature (TJ)  
Ambient temperature (TA)  
125  
85  
°C  
(3)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND terminal.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
6.4 Thermal Information  
LM3648  
THERMAL METRIC(1)  
DSBGA (YFF)  
12 PINS  
90.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.5  
40.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.0  
ΨJB  
39.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
6.5 Electrical Characteristics  
Typical limits tested at TA = 25°C. Minimum and maximum limits apply over the full operating ambient temperature range  
(40°C TA 85°C). Unless otherwise specified, VIN = 3.6 V, HWEN = VIN.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SOURCE SPECIFICATIONS  
VOUT = 4 V, flash code = 0x3F = 1.5 A  
flash  
–7%  
1.5  
7%  
A
ILED  
Current source accuracy  
VOUT = 4 V, torch code = 0x3F = 178.6 mA  
torch  
–10%  
178.6  
10%  
mA  
ILED = 1.5 A  
Flash  
Torch  
290  
158  
5
LED current source regulation  
voltage  
VHR  
mV  
V
ILED = 178.6 mA  
ON threshold  
OFF threshold  
4.86  
4.75  
5.1  
VOVP  
4.88  
4.99  
STEP-UP DC/DC CONVERTER SPECIFICATIONS  
RPMOS  
RNMOS  
PMOS switch on-resistance  
NMOS switch on-resistance  
86  
65  
mΩ  
Reg 0x07, bit[0] = 0  
Reg 0x07, bit[0] = 1  
Falling VIN  
–12%  
–12%  
–2%  
1.9  
2.8  
2.5  
0.6  
50  
12%  
12%  
2%  
ICL  
Switch current limit  
A
VUVLO  
VTRIP  
INTC  
Undervoltage lockout threshold  
NTC comparator trip threshold  
NTC current  
V
V
Reg 0x09, bits[3:1] = '100'  
–5%  
5%  
–6%  
6%  
µA  
Input voltage flash monitor trip  
threshold  
VIVFM  
IQ  
Reg 0x02, bits[5:3] = '000'  
–3%  
2.9  
0.3  
0.1  
3%  
0.75  
4
V
Quiescent supply current  
Device not switching pass mode  
mA  
µA  
Device disabled, HWEN = 0 V  
2.5 V VIN 5.5 V  
ISD  
Shutdown supply current  
Device disabled, HWEN = 1.8 V  
2.5 V VIN 5.5 V  
ISB  
Standby supply current  
2.5  
10  
µA  
HWEN, TORCH/TEMP, STROBE, TX VOLTAGE SPECIFICATIONS  
VIL  
VIH  
Input logic low  
Input logic high  
0
0.4  
VIN  
2.5 V VIN 5.5 V  
V
1.2  
I2C-COMPATIBLE INTERFACE SPECIFICATIONS (SCL, SDA)  
VIL  
Input logic low  
Input logic high  
Output logic low  
0
0.4  
VIN  
2.5 V VIN 4.2 V  
V
VIH  
VOL  
1.2  
ILOAD = 3 mA  
400  
mV  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (typ.) numbers are not verified, but  
do represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VIN = 3.6 V and TA = 25°C.  
6.6 Timing Requirements  
MIN  
2.4  
100  
0
NOM  
MAX  
UNIT  
t1  
t2  
t3  
t4  
t5  
SCL clock period  
µs  
Data in set-up time to SCL high  
Data out stable After SCL low  
SDA low set-up time to SCL low (start)  
SDA high hold time after SCL high (stop)  
ns  
100  
100  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
2.5 V VIN 5.5 V  
MIN  
–6%  
TYP  
MAX  
6%  
UNIT  
ƒSW  
Switching frequency  
4
MHz  
Copyright © 2014, Texas Instruments Incorporated  
5
 
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
t
1
SCL  
SDA_IN  
t
t
5
4
t
2
SDA_OUT  
t
3
Figure 1. I2C-Compatible Interface Specifications  
6.8 Typical Characteristics  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = COUT = 2 × 10 µF and L = 1 µH, unless otherwise  
noted.  
1.6  
1.4  
1.2  
1
0.4  
0.36  
0.32  
0.28  
0.24  
0.2  
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = -40°C  
TA = +25°C  
TA = +85°C  
0.8  
0.6  
0.4  
0.2  
0
0.16  
0.12  
0.08  
0.04  
0
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
LED Code (dec#)  
LED Code (dec#)  
D015  
D001  
Figure 3. LED Torch Current vs Brightness Code  
Figure 2. LED Flash Current vs Brightness Code  
1.62  
1.6  
1.62  
1.6  
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
1.58  
1.56  
1.54  
1.52  
1.5  
1.58  
1.56  
1.54  
1.52  
1.5  
1.48  
1.46  
1.44  
1.42  
1.4  
1.48  
1.46  
1.44  
1.42  
1.4  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D022  
D021  
ƒSW = 4 MHz  
Flash  
ƒSW = 2 MHz  
Brightness Code = 0x3F  
Flash  
Brightness Code = 0x3F  
Figure 5. LED Current vs Input Voltage  
Figure 4. LED Current vs Input Voltage  
6
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = COUT = 2 × 10 µF and L = 1 µH, unless otherwise  
noted.  
0.4  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1
TA = -40qC  
TA = -+25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D025  
D023  
ƒSW = 2 MHz  
Brightness Code = 0x7F  
Torch  
ƒSW = 2 MHz  
Brightness Code = 0x2B  
Flash  
Figure 7. LED Current vs Input Voltage  
Figure 6. LED Current vs Input Voltage  
0.4  
0.39  
0.38  
0.37  
0.36  
0.35  
0.34  
0.33  
0.32  
1.2  
1
TA = -40qC  
TA = -+25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
0.8  
0.6  
0.4  
0.2  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D026  
D007  
ƒSW = 4 MHz  
Brightness Code = 0x7F  
Torch  
HWEN = 0 V  
I2C = 0 V  
Figure 8. LED Current vs Input Voltage  
Figure 9. Shutdown Current vs Input Voltage  
3
2.5  
2
7
6
5
4
3
2
1
0
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D009  
D008  
HWEN = VIN  
I2C = VIN  
HWEN = 1.8 V  
I2C = 0 V  
Figure 10. Standby Current vs Input Voltage  
Figure 11. Standby Current vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
7
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = COUT = 2 × 10 µF and L = 1 µH, unless otherwise  
noted.  
2.2  
2.16  
2.12  
2.08  
2.04  
2
1.96  
1.92  
1.88  
1.84  
1.8  
1.76  
1.72  
1.68  
1.64  
1.6  
7
6
5
4
3
2
1
0
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
VIN (V)  
VIN (V)  
D010  
D011  
HWEN = 1.8 V  
I2C = 1.8 V  
ƒSW = 2 MHz  
Brightness Code = 0x3F  
Flash  
VLED = 4.5 V  
ICL = 1.9 A  
Figure 12. Standby Current vs Input Voltage  
Figure 13. Inductor Current Limit vs Input Voltage  
2.2  
2.16  
2.12  
2.08  
2.04  
2
1.96  
1.92  
1.88  
1.84  
1.8  
3
2.8  
2.6  
2.4  
2.2  
2
1.76  
1.72  
1.68  
1.64  
1.6  
1.8  
1.6  
1.4  
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
2.5  
2.7  
2.9  
3.1  
3.3  
VIN (V)  
3.5  
3.7  
3.9  
4.1  
4.3  
2.5 2.75  
3
3.25 3.5 3.75  
VIN (V)  
4
4.25 4.5 4.75  
5
D012  
D013  
ƒSW = 4 MHz  
Brightness Code = 0x3F  
Flash  
VLED = 4.5 V  
ICL = 1.9 A  
ƒSW = 2 MHz  
Brightness Code = 0x3F  
Flash  
VLED = 4.5 V  
ICL = 2.8 A  
Figure 14. Inductor Current Limit vs Input Voltage  
Figure 15. Inductor Current Limit vs Input Voltage  
3
2.8  
2.6  
2.4  
2.2  
2
2.125  
2.1  
TA = +25qC  
TA = +85qC  
TA = -40qC  
2.075  
2.05  
2.025  
2
1.975  
1.95  
1.925  
1.9  
1.8  
1.6  
1.4  
TA = -40qC  
TA = +25qC  
TA = +85qC  
1.875  
2.5 2.75  
3
3.25 3.5 3.75  
VIN (V)  
4
4.25 4.5 4.75  
5
2.5 2.75  
3
3.25 3.5 3.75  
VIN (V)  
4
4.25 4.5 4.75  
5
D014  
D017  
ƒSW = 4 MHz  
Brightness Code = 0x3F  
Flash  
VLED = 4.5 V  
ICL = 2.8 A  
Figure 16. Inductor Current Limit vs Input Voltage  
Figure 17. 2-MHz Switching Frequency vs Input Voltage  
8
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
Typical Characteristics (continued)  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = COUT = 2 × 10 µF and L = 1 µH, unless otherwise  
noted.  
4.25  
TA = +25qC  
4.2  
TA = +85qC  
TA = -40qC  
4.15  
4.1  
4.05  
4
3.95  
3.9  
3.85  
3.8  
3.75  
2.5 2.75  
3
3.25 3.5 3.75  
VIN (V)  
4
4.25 4.5 4.75  
5
D0178  
Figure 18. 4-MHz Switching Frequency vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
9
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM3648 is a high-power white LED flash driver capable of delivering up to 1.5 A to the LED. The device  
incorporates a 2-MHz or 4-MHz constant frequency-synchronous current-mode PWM boost converter and a high-  
side current source to regulate the LED current over the 2.5-V to 5.5-V input voltage range.  
The LM3648 PWM DC/DC boost converter switches and boosts the output to maintain at least VHR across the  
current source. This minimum headroom voltage ensures that the current source remains in regulation. If the  
input voltage is above the LED voltage + current source headroom voltage the device does not switch, but turns  
the PFET on continuously (Pass mode). In Pass mode the difference between (VIN ILED x RPMOS) and the  
voltage across the LED is dropped across the current source.  
The LM3648 has three logic inputs including a hardware Flash Enable (STROBE), a hardware Torch Enable  
(TORCH/TEMP, TORCH = default), and a Flash Interrupt input (TX) designed to interrupt the flash pulse during  
high battery-current conditions. These logic inputs have internal 300-k(typ.) pulldown resistors to GND.  
Additional features of the LM3648 include an internal comparator for LED thermal sensing via an external NTC  
thermistor and an input voltage monitor that can reduce the Flash current during low VIN conditions. It also has a  
Hardware Enable (HWEN) pin that can be used to reset the state of the device and the registers by pulling the  
HWEN pin to ground.  
Control is done via an I2C-compatible interface. This includes adjustment of the Flash and Torch current levels,  
changing the Flash Timeout Duration, and changing the switch current limit. Additionally, there are flag and  
status bits that indicate flash current time-out, LED overtemperature condition, LED failure (open/short), device  
thermal shutdown, TX interrupt, and VIN undervoltage conditions.  
10  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
7.2 Functional Block Diagram  
SW  
Over Voltage  
Comparator  
IN  
2/4 MHz  
Oscillator  
-
+
V
REF  
V
OVP  
86 m:  
Input Voltage  
Flash Monitor  
OUT  
UVLO  
I
LED  
PWM  
Control  
65 m:  
TORCH/  
TEMP  
I
NTC  
Thermal  
Shutdown  
+150oC  
LED  
Error  
Amplifier  
+
-
OUT-VHR  
Current Sense/  
Current Limit  
NTC V  
TRIP  
Slope  
Compensation  
Soft-Start  
SDA  
Control  
Logic/  
Registers  
2
I C  
Interface  
SCL  
ENABLE  
GND  
TX  
STROBE  
7.3 Feature Description  
7.3.1 Flash Mode  
In Flash Mode, the LED current source (LED) provides 64 target current levels from 21.8 mA to 1500 mA. Once  
the Flash sequence is activated the current source (LED) ramps up to the programmed Flash current by stepping  
through all current steps until the programmed current is reached. The headroom in the current source can be  
regulated to provide 21.8 mA to 1.5 A.  
When the device is enabled in Flash Mode through the Enable Register, all mode bits in the Enable Register are  
cleared after a flash time-out event.  
Copyright © 2014, Texas Instruments Incorporated  
11  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Torch Mode  
In Torch mode, the LED current source (LED) provide 128 target current levels from 1.954 mA to 358 mA. The  
Torch current is adjusted via the LED Torch Brightness Register. Torch mode is activated by the Enable Register  
(setting M1, M0 to '10'), or by pulling the TORCH/TEMP pin HIGH when the pin is enabled (Enable Register) and  
set to Torch Mode. Once the TORCH sequence is activated the active current source (LED) ramps up to the  
programmed Torch current by stepping through all current steps until the programmed current is reached. The  
rate at which the current ramps is determined by the value chosen in the Timing Register.  
Torch Mode is not affected by Flash Timeout or by a TX Interrupt event.  
7.3.3 IR Mode  
In IR Mode, the target LED current is equal to the value stored in the LED Flash Brightness Registers. When IR  
mode is enabled (setting M1, M0 to '01'), the boost converter turns on and sets the output equal to the input  
(pass-mode). At this point, toggling the STROBE pin enables and disables the LED current source (if enabled).  
The STROBE pin can only be set to be Level sensitive, meaning all timing of the IR pulse is externally controlled.  
In IR Mode, the current source does not ramp the LED output to the target. The current transitions immediately  
from off to on and then on to off.  
BOOST  
PASS  
OFF  
VOUT  
STROBE  
ILED  
Figure 19. IR Mode with Boost  
VOUT  
STROBE  
ILED  
Figure 20. IR Mode Pass Only  
12  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
Feature Description (continued)  
VOUT  
STROBE  
ILED  
Figure 21. IR Mode Timeout  
7.4 Device Functioning Modes  
7.4.1 Start-Up (Enabling The Device)  
Turnon of the LM3648 Torch and Flash modes can be done through the Enable Register. On start-up, when  
VOUT is less than VIN the internal synchronous PFET turns on as a current source and delivers 200 mA (typ.) to  
the output capacitor. During this time the current source (LED) is off. When the voltage across the output  
capacitor reaches 2.2 V (typ.), the current source turns on. At turnon the current source steps through each  
FLASH or TORCH level until the target LED current is reached. This gives the device a controlled turnon and  
limits inrush current from the VIN supply.  
7.4.2 Pass Mode  
The LM3648 starts up in Pass Mode and stays there until Boost Mode is needed to maintain regulation. If the  
voltage difference between VOUT and VLED falls below VHR, the device switches to Boost Mode. In Pass Mode the  
boost converter does not switch, and the synchronous PFET turns fully on bringing VOUT up to VIN ILED  
x
RPMOS. In Pass Mode the inductor current is not limited by the peak current limit.  
7.4.3 Power Amplifier Synchronization (TX)  
The TX pin is a Power Amplifier Synchronization input. This is designed to reduce the flash LED current and thus  
limit the battery current during high battery current conditions such as PA transmit events. When the LM3648 is  
engaged in a Flash event, and the TX pin is pulled high, the LED current is forced into Torch Mode at the  
programmed Torch current setting. If the TX pin is then pulled low before the Flash pulse terminates, the LED  
current returns to the previous Flash current level. At the end of the Flash time-out, whether the TX pin is high or  
low, the LED current turns off.  
7.4.4 Input Voltage Flash Monitor (IVFM)  
The LM3648 has the ability to adjust the flash current based upon the voltage level present at the IN pin utilizing  
the Input Voltage Flash Monitor (IVFM). The adjustable threshold IVFM-D ranges from 2.9 V to 3.6 V in 100-mV  
steps, with three different usage modes (Stop and Hold, Adjust Down Only, Adjust Up and Down). The Flags2  
Register has the IVFM flag bit set when the input voltage crosses the IVFM-D value. Additionally, the IVFM-D  
threshold sets the input voltage boundary that forces the LM3648 to either stop ramping the flash current during  
start-up (Stop and Hold Mode) or to start decreasing the LED current during the flash (Down Adjust Only and Up  
and Down Adjust). In Adjust Up and Down mode, the IVFM-D value plus the hysteresis voltage threshold set the  
input voltage boundary that forces the LM3648 to start ramping the flash current back up towards the target.  
Copyright © 2014, Texas Instruments Incorporated  
13  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
Device Functioning Modes (continued)  
IVFM ENABLE  
LEVEL STROBE  
VIN PROFILE for Stop and Hold Mode  
IVFM-D  
Set Target Flash Current  
Dotted line shows O/P Current  
Profile with IVFM Disabled  
O/P Current  
Profile in Stop  
and Hold Mode  
SET RAMP FROM  
THE RAMP  
REGISTER USED  
VIN PROFILE for Down Mode  
Hysteresis  
IVFM-D  
O/P Current Profile  
in Down Mode  
VIN PROFILE for Up/ Down Mode  
Hysteresis  
IVFM-D  
O/P Current Profile  
in Up and Down  
Mode  
Figure 22. IVFM Modes  
14  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
Device Functioning Modes (continued)  
7.4.5 Fault/Protections  
7.4.5.1 Fault Operation  
If the LM3648 enters a fault condition, the device sets the appropriate flag in the Flags1 and Flags2 Registers  
(0x0A and 0x0B), and places the device into standby by clearing the Mode Bits ([1],[0]) in the Enable Register.  
The LM3648 remains in standby until an I2C read of the Flags1 and Flags2 Registers are completed. Upon  
clearing the flags/faults, the device can be restarted (Flash, Torch, IR, etc.). If the fault is still present, the  
LM3648 re-enters the fault state and enters standby again.  
7.4.5.2 Flash Time-Out  
The Flash Time-Out period sets the amount of time that the Flash Current is being sourced from the current  
source (LED). The LM3648 has 16 timeout levels ranging from 10 ms to 400 ms (see Timing Configuration  
Register (0x08) for more detail).  
7.4.5.3 Overvoltage Protection (OVP)  
The output voltage is limited to typically 5 V (see VOVP spec in the Electrical Characteristics). In situations such  
as an open LED, the LM3648 raises the output voltage in order to keep the LED current at its target value. When  
VOUT reaches 5 V (typ.), the overvoltage comparator trips and turns off the internal NFET. When VOUT falls below  
the “VOVP Off Threshold”, the LM3648 begins switching again. The mode bits are cleared, and the OVP flag is  
set, when an OVP condition is present for three rising OVP edges. This prevents momentary OVP events from  
forcing the device to shut down.  
7.4.5.4 Current Limit  
The LM3648 features two selectable inductor current limits that are programmable through the I2C-compatible  
interface. When the inductor current limit is reached, the LM3648 terminates the charging phase of the switching  
cycle. Switching resumes at the start of the next switching period. If the overcurrent condition persists, the device  
operates continuously in current limit.  
Since the current limit is sensed in the NMOS switch, there is no mechanism to limit the current when the device  
operates in Pass Mode (current does not flow through the NMOS in pass mode). In Boost mode or Pass mode if  
VOUT falls below 2.3 V, the device stops switching, and the PFET operates as a current source limiting the  
current to 200 mA. This prevents damage to the LM3648 and excessive current draw from the battery during  
output short-circuit conditions. The mode bits are not cleared upon a Current Limit event, but a flag is set.  
7.4.5.5 NTC Thermistor Input (Torch/Temp)  
The TORCH/TEMP pin, when set to TEMP mode, serves as a threshold detector and bias source for negative  
temperature coefficient (NTC) thermistors. When the voltage at TEMP goes below the programmed threshold,  
the LM3648 is placed into standby mode. The NTC threshold voltage is adjustable from 200 mV to 900 mV in  
100-mV steps. The NTC bias current is set to 50 µA. The NTC detection circuitry can be enabled or disabled via  
the Enable Register. If enabled, the NTC block turns on and off during the start and stop of a Flash/Torch event.  
Additionally, the NTC input looks for an open NTC connection and a shorted NTC connection. If the NTC input  
falls below 100 mV, the NTC short flag is set, and the device is disabled. If the NTC input rises above 2.3 V, the  
NTC Open flag is set, and the device is disabled. These fault detections can be individually disabled/enabled via  
the NTC Open Fault Enable bit and the NTC Short Fault Enable bit.  
V
IN  
NTC Control Block  
I
NTC  
TEMP  
-
+
Control  
Logic  
V
TRIP  
NTC  
Figure 23. Temp Detection Diagram  
Copyright © 2014, Texas Instruments Incorporated  
15  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
Device Functioning Modes (continued)  
7.4.5.6 Undervoltage Lockout (UVLO)  
The LM3648 has an internal comparator that monitors the voltage at IN and forces the LM3648 into standby if  
the input voltage drops to 2.5 V. If the UVLO monitor threshold is tripped, the UVLO flag bit is set in the Flags1  
Register (0x0A). If the input voltage rises above 2.5 V, the LM3648 is not available for operation until there is an  
I2C read of the Flags1 Register (0x0A). Upon a read, the Flags1 register is cleared, and normal operation can  
resume if the input voltage is greater than 2.5 V.  
7.4.5.7 Thermal Shutdown (TSD)  
When the LM3648 die temperature reaches 150°C, the thermal shutdown detection circuit trips, forcing the  
LM3648 into standby and writing a '1' to the corresponding bit of the Flags1 Register (0x0A) (Thermal Shutdown  
bit). The LM3648 is only allowed to restart after the Flags1 Register (0x0A) is read, clearing the fault flag. Upon  
restart, if the die temperature is still above 150°C, the LM3648 resets the Fault flag and re-enters standby.  
7.4.5.8 LED and/or VOUT Short Fault  
The LED Fault flags read back a '1' if the device is active in Flash or Torch mode and the LED output  
experiences a short condition. The Output Short Fault flag reads back a '1' if the device is active in Flash or  
Torch mode and the boost output experiences a short condition. An LED short condition is determined if the  
voltage at LED goes below 500 mV (typ.) while the device is in Torch or Flash mode. There is a deglitch time of  
256 μs before the LED Short flag is valid, and a deglitch time of 2.048 ms before the VOUT Short flag is valid.  
The LED Short Faults can be reset to '0' by removing power to the LM3648, setting HWEN to '0', setting the SW  
RESET bit to a '1', or by reading back the Flags1 Register (0x0A on LM3648). The mode bits are cleared upon  
an LED and/or VOUT short fault.  
7.5 Programming  
7.5.1 Control Truth Table  
MODE1  
MODE0  
STROBE EN  
TORCH EN  
STROBE PIN  
TORCH PIN  
ACTION  
Standby  
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
X
X
0
1
1
0
1
0
1
1
1
X
X
X
X
X
X
X
X
pos edge  
Ext Torch  
pos edge  
X
Ext Flash  
0
pos edge  
Standalone Torch  
Standalone Flash  
Standalone Flash  
Int Torch  
pos edge  
0
pos edge  
pos edge  
X
X
X
X
X
X
X
Int Flash  
X
0
IRLED Standby  
IRLED Standby  
IRLED enabled  
pos edge  
7.5.2 I2C-Compatible Interface  
7.5.2.1 Data Validity  
The data on SDA must be stable during the HIGH period of the clock signal (SCL). In other words, the state of  
the data line can only be changed when SCL is LOW.  
16  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
Figure 24. Data Validity Data  
A pullup resistor between the controller's VIO line and SDA must be greater than [(VIO-VOL) / 3mA] to meet the  
VOL requirement on SDA. Using a larger pullup resistor results in lower switching current with slower edges, while  
using a smaller pullup results in higher switching currents with faster edges.  
7.5.2.2 Start and Stop Conditions  
START and STOP conditions classify the beginning and the end of the I2C session. A START condition is  
defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined  
as the SDA transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and  
STOP conditions. The I2C bus is considered busy after a START condition and free after a STOP condition.  
During data transmission, the I2C master can generate repeated START conditions. First START and repeated  
START conditions are equivalent, function-wise.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 25. Start and Stop Conditions  
7.5.2.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) transferred first. Each  
byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the  
master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LM3648 pulls down  
the SDA line during the 9th clock pulse, signifying an acknowledge. The LM3648 generates an acknowledge  
after each byte is received. There is no acknowledge created after data is read from the device.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W). The LM3648 7-bit address is 0x63. For the eighth bit, a '0' indicates  
a WRITE and a '1' indicates a READ. The second byte selects the register to which the data is written. The third  
byte contains data to write to the selected register.  
ack from slave  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack  
msb Register Add lsb  
ack  
msb DATA lsb ack stop  
SCL  
SDA  
start  
Id = 63h  
w
ack  
addr = 0Ah  
ack  
Data = 03h  
ack stop  
Figure 26. Write Cycle W = Write (SDA = "0") R = Read (SDA = "1") Ack = Acknowledge  
(SDA Pulled Down by Either Master or Slave) ID = Chip Address, 63h for LM3648  
Copyright © 2014, Texas Instruments Incorporated  
17  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
7.5.2.4 I2C-Compatible Chip Address  
The device address for the LM3648 is 1100011 (0x63). After the START condition, the I2C-compatible master  
sends the 7-bit address followed by an eighth read or write bit (R/W). R/W = 0 indicates a WRITE and R/W = 1  
indicates a READ. The second byte following the device address selects the register address to which the data is  
written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
1
Bit 2  
1
Bit 1  
R/W  
Bit 0  
2
I C Slave Address (chip address)  
Figure 27. I2C-Compatible Chip Address  
7.6 Register Descriptions  
POWER ON/RESET VALUE  
REGISTER NAME  
INTERNAL HEX ADDRESS  
LM3648  
0x80  
0x01  
0xBF  
0xBF  
0x09  
0x1A  
0x08  
0x00  
0x00  
0x00  
0x00  
Enable Register  
0x01  
0x02  
0x03  
0x05  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
IVFM Register  
LED Flash Brightness Register  
LED Torch Brightness Register  
Boost Configuration Register  
Timing Configuration Register  
TEMP Register  
Flags1 Register  
Flags2 Register  
Device ID Register  
Last Flash Register  
18  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
7.6.1 Enable Register (0x01)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TX Pin Enable Strobe Type  
Strobe Enable TORCH/TEMP  
Mode Bits: M1, M0  
'00' = Standby (Default)  
'01' = IR Drive  
'10' = Torch  
'11' = Flash  
LED Enable  
00 = OFF (Default )  
11 = ON  
0 = Disabled  
1 = Enabled  
(Default )  
0 = Level  
Triggered  
(Default)  
1 = Edge  
Triggered  
0 = Disabled  
(Default )  
1 = Enabled  
Pin Enable  
0 = Disabled  
(Default )  
01 and 10 are not valid settings  
1 = Enabled  
NOTE  
Edge Strobe Mode is not valid in IR MODE. Switching between Level and Edge Strobe  
Types while the device is enabled is not recommended.  
In Edge or Level Strobe Mode, it is recommended that the trigger pulse width be set  
greater than 1 ms to ensure proper turn-on of the device.  
7.6.2 IVFM Register (0x02)  
Bit 7  
Bit 6  
UVLO  
Circuitry  
(Default)  
0 = Disabled  
(Default)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
IVFM  
Hysteresis  
0 = 0 mV  
(Default)  
Bit 1  
Bit 0  
IVFM Levels  
000 = 2.9 V (Default)  
001 = 3 V  
010 = 3.1 V  
011 = 3.2 V  
100 = 3.3 V  
101 = 3.4 V  
110 = 3.5 V  
111 = 3.6 V  
IVFM Selection  
00 = Disabled  
01 = Stop and Hold Mode (Default)  
10 = Down Mode  
11 = Up and Down Mode  
RFU  
1 = 50 mV  
1 = Enabled  
NOTE  
IVFM Mode Bits are static once the LM3648 is enabled in Torch, Flash or IR modes. If the  
IVFM mode needs to be updated, disable the device and then change the mode bits to the  
desired state.  
7.6.3 LED Flash Brightness Register (0x03)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MUST BE SET TO '10' FOR  
PROPER OPERATION  
LED Flash Brightness Level  
IFLASH (mA) (Brightness Code × 23.45 mA) + 21.8 mA  
000000 = 21.8 mA  
.......................  
011111 = 748.75 mA (Default)  
.......................  
111111 = 1.5 A  
7.6.4 LED Torch Brightness Register (0x05)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
MUST BE SET LED Torch Brightness Levels  
TO '1' FOR  
PROPER  
ITORCH (mA) (Brightness Code × 2.8 mA) + 1.954 mA  
0000000 = 1.954 mA  
OPERATION  
.......................  
0111111 = 178.35 mA (Default)  
.......................  
1111111 = 357.6mA  
Copyright © 2014, Texas Instruments Incorporated  
19  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
7.6.5 Boost Configuration Register (0x07)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Boost  
Frequency  
Select  
Bit 0  
LED Pin Short  
Fault Detect  
0 = Disabled  
1 = Enabled  
(Default)  
Boost Mode  
0 = Normal  
(Default)  
Boost Current  
Limit Setting  
0 = 1.9 A  
1 = 2.8 A  
(Default)  
Software  
Reset Bit  
0 = Not Reset  
(Default)  
RFU  
RFU  
RFU  
1 = Pass Mode 0 = 2 MHz  
Only  
(Default)  
1 = 4 MHz  
1 = Reset  
7.6.6 Timing Configuration Register (0x08)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Torch Current Ramp Time  
000 = No Ramp  
001 = 1 ms (Default)  
010 = 32 ms  
Flash Time-Out Duration  
0000 = 10 ms  
0001 = 20 ms  
0010 = 30 ms  
011 = 64 ms  
0011 = 40 ms  
100 = 128 ms  
0100 = 50 ms  
101 = 256 ms  
0101 = 60 ms  
110 = 512 ms  
0110 = 70 ms  
RFU  
111 = 1024 ms  
0111 = 80 ms  
1000 = 90 ms  
1001 = 100 ms  
1010 = 150 ms (Default)  
1011 = 200 ms  
1100 = 250 ms  
1101 = 300 ms  
1110 = 350 ms  
1111 = 400 ms  
7.6.7 TEMP Register (0x09)  
Bit 7  
Bit 6  
TORCH  
Polarity  
0 = Active  
High (Default) (Default)  
(Pulldown  
Resistor  
Enabled)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NTC Open  
Fault Enable  
0 = Disabled  
NTC Short  
Fault Enable  
0 = Disabled  
(Default)  
TEMP Detect Voltage Threshold  
000 = 0.2 V  
001 = 0.3 V  
010 = 0.4 V  
011 = 0.5 V  
TORCH/TEMP  
Function  
Select  
0 = TORCH  
(Default)  
1 =Enable  
1 =Enable  
RFU  
100 = 0.6 V (Default)  
101 = 0.7 V  
1 = TEMP  
1 = Active Low  
(Pulldown  
Resistor  
110 = 0.8 V  
111 = 0.9 V  
Disabled)  
NOTE  
The Torch Polarity bit is static once the LM3648 is enabled in Torch, Flash, or IR modes.  
If the Torch Polarity bit needs to be updated, disable the device and then change the  
Torch Polarity bit to the desired state.  
7.6.8 Flags1 Register (0x0A)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Thermal  
Shutdown  
(TSD) Fault  
VOUT Short  
Fault  
VLED Short  
Fault  
VLED Short  
Fault  
Current Limit  
Flag  
Flash Time-Out  
Flag  
TX Flag  
UVLO Fault  
20  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
7.6.9 Flags2 Register (0x0B)  
Bit 7  
RFU  
Bit 6  
RFU  
Bit 5  
RFU  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
OVP Fault  
Bit 0  
NTC Short  
Fault  
IVFM Trip  
Flag  
TEMP Trip  
Fault  
NTC Open Fault  
7.6.10 Device ID Register (0x0C)  
Bit 7  
RFU  
Bit 6  
RFU  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Device ID  
Silicon Revision Bit  
'011'  
'010'  
7.6.11 Last Flash Register (0x0D)  
Bit 7  
RFU  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
The value stored is always the last current value the IVFM detection block set. ILED = IFLASH-TARGET × ((Code + 1) / 128)  
Copyright © 2014, Texas Instruments Incorporated  
21  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM3648 can drive a flash LED at currents up to 1.5 A. The 2-MHz/4-MHz DC/DC boost regulator allows for  
the use of small value discrete external components.  
8.2 Typical Application  
L1  
1 PH  
LM3648  
IN  
SW  
VIN  
2.5V t 5.5V  
C1  
10 PF  
HWEN  
SDA  
OUT  
C2  
10 PF  
SCL  
LED  
PP/PC  
STROBE  
TORCH/  
TEMP  
TX  
GND  
Figure 28. LM3648 Typical Application  
8.2.1 Design Requirements  
Example requirements based on default register values:  
DESIGN PARAMETER  
Input Voltage Range  
Brightness Control  
EXAMPLE VALUE  
2.5 V to 5.5 V  
I2C Register  
LED Configuration  
1 Flash LED  
Boost Switching Frequency  
Flash Brightness  
2 MHz (4 MHz selectable)  
1.5-A Max Current  
22  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Capacitor Selection  
The LM3648 is designed to operate with a 10-µF ceramic output capacitor. When the boost converter is running,  
the output capacitor supplies the load current during the boost converter on-time. When the NMOS switch turns  
off, the inductor energy is discharged through the internal PMOS switch, supplying power to the load and  
restoring charge to the output capacitor. This causes a sag in the output voltage during the on-time and a rise in  
the output voltage during the off-time. The output capacitor is therefore chosen to limit the output ripple to an  
acceptable level depending on load current and input/output voltage differentials and also to ensure the converter  
remains stable.  
Larger capacitors such as a 22-µF or capacitors in parallel can be used if lower output voltage ripple is desired.  
To estimate the output voltage ripple considering the ripple due to capacitor discharge (ΔVQ) and the ripple due  
to the capacitors ESR (ΔVESR) use the following equations:  
For continuous conduction mode, the output voltage ripple due to the capacitor discharge is:  
(
)
ILED x VOUT - V  
IN  
'VQ =  
fSW x VOUT x COUT  
(1)  
The output voltage ripple due to the output capacitors ESR is found by:  
ILED x VOUT  
§
©
·
¹
+'IL  
'VESR = RESR  
x
VIN  
where  
(
)
x VOUT - V  
IN  
V
IN  
'IL =  
2x fSW x L x VOUT  
(2)  
In ceramic capacitors the ESR is very low so the assumption is that 80% of the output voltage ripple is due to  
capacitor discharge and 20% from ESR. Table 1 lists different manufacturers for various output capacitors and  
their case sizes suitable for use with the LM3648.  
8.2.2.2 Input Capacitor Selection  
Choosing the correct size and type of input capacitor helps minimize the voltage ripple caused by the switching  
of the LM3648 boost converter and reduce noise on the boost converter's input pin that can feed through and  
disrupt internal analog signals. In the typical application circuit a 10-µF ceramic input capacitor works well. It is  
important to place the input capacitor as close as possible to the LM3648 input (IN) pin. This reduces the series  
resistance and inductance that can inject noise into the device due to the input switching currents. Table 1 lists  
various input capacitors recommended for use with the LM3648.  
Table 1. Recommended Input/Output Capacitors (X5R/X7R Dielectric)  
MANUFACTURER  
TDK Corporation  
TDK Corporation  
Murata  
PART NUMBER  
C1608JB0J106M  
VALUE  
10 µF  
10 µF  
10 µF  
10 µF  
CASE SIZE  
VOLTAGE RATING  
0603 (1.6 mm × 0.8 mm × 0.8 mm)  
0805 (2.0 mm × 1.25 mm × 1.25 mm)  
0603 (1.6 mm x 0.8 mm x 0.8 mm)  
0805 (2.0 mm × 1.25 mm × 1.25 mm)  
6.3 V  
10 V  
6.3 V  
10 V  
C2012JB1A106M  
GRM188R60J106M  
GRM21BR61A106KE19  
Murata  
8.2.2.3 Inductor Selection  
The LM3648 is designed to use a 0.47-µH or 1-µH inductor. Table 2 lists various inductors and their  
manufacturers that work well with the LM3648. When the device is boosting (VOUT > VIN) the inductor is typically  
the largest area of efficiency loss in the circuit. Therefore, choosing an inductor with the lowest possible series  
resistance is important. Additionally, the saturation rating of the inductor should be greater than the maximum  
operating peak current of the LM3648. This prevents excess efficiency loss that can occur with inductors that  
operate in saturation. For proper inductor operation and circuit performance, ensure that the inductor saturation  
and the peak current limit setting of the LM3648 are greater than IPEAK in the following calculation:  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
( )  
IN x VOUT - V  
IN  
ILOAD VOUT  
V
IPEAK  
=
x
+'IL  
where  
'IL =  
K
V
2 x fSW x L x VOUT  
IN  
where  
ƒSW = 2 or 4 MHz  
(3)  
Efficiency details can be found in the Application Curves .  
Table 2. Recommended Inductors  
MANUFACTURER  
TOKO  
L
PART NUMBER  
DFE201610P-R470M  
DFE201610P-1R0M  
DIMENSIONS (L×W×H)  
2.0 mm x 1.6 mm x 1.0 mm  
2.0 mm x 1.6 mm x 1.0 mm  
ISAT  
4.1 A  
3.7 A  
RDC  
0.47 µH  
1 µH  
32 mΩ  
58 mΩ  
TOKO  
8.2.3 Application Curves  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = 2 × 10 µF, COUT = 2 × 10 µF and L = 1 µH, unless  
otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VLED = 3.0V  
VLED = 3.2V  
VLED = 3.5V  
VLED = 3.8V  
VLED = 4.1V  
VLED = 4.4V  
VLED = 3.0V  
VLED = 3.2V  
VLED = 3.5V  
VLED = 3.8V  
VLED = 4.1V  
VLED = 4.4V  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D019  
D020  
ƒSW = 2 MHz  
Brightness Code = 0x3F  
Flash  
ƒSW = 4 MHz  
Brightness Code = 0x3F  
Flash  
Figure 29. 2-MHz LED Efficiency vs Input Voltage  
Figure 30. 4-MHz LED Efficiency vs Input Voltage  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D028  
D029  
ƒSW = 2 MHz  
Brightness Code = 0x3F  
Flash  
VLED = 3.55 V  
ƒSW = 4 MHz  
Brightness Code = 0x3F  
Flash  
VLED = 3.55 V  
Figure 31. LED Efficiency vs Input Voltage  
Figure 32. LED Efficiency vs Input Voltage  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = 2 × 10 µF, COUT = 2 × 10 µF and L = 1 µH, unless  
otherwise noted.  
100  
96  
92  
88  
84  
80  
76  
72  
68  
64  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D030  
D033  
ƒSW = 2 MHz  
Brightness Code = 0x2B  
Flash  
VLED = 3.32 V  
ƒSW = 2 MHz  
Brightness Code = 0x3F  
Torch  
VLED = 2.83 V  
Figure 33. LED Efficiency vs Input Voltage  
Figure 34. LED Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = +25qC  
TA = +85qC  
TA = -40qC  
TA = +25qC  
TA = +85qC  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
D034  
D035  
ƒSW = 4 MHz  
Brightness Code = 0x3F  
Torch  
VLED = 2.83 V  
ƒSW = 2 MHz  
Brightness Code = 0x7F  
Torch  
VLED = 2.83 V  
Figure 35. LED Efficiency vs Input Voltage  
Figure 36. LED Efficiency vs Input Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
TA = -40qC  
TA = +25qC  
TA = +85qC  
VOUT (2 V/DIV)  
ILED (500 mA/DIV)  
IIN (500 mA/DIV)  
Time (400 Ps / DIV)  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
D036  
ƒSW = 4 MHz  
Brightness Code = 0x7F  
Torch  
VLED = 2.83 V  
ƒSW = 2 MHz  
VLED = 3.18 V  
Brightness Code = 0x7F  
Figure 37. LED Efficiency vs Input Voltage  
Figure 38. Start-Up  
Copyright © 2014, Texas Instruments Incorporated  
25  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
Ambient temperature is 25°C, input voltage is 3.6 V, HWEN = VIN, CIN = 2 × 10 µF, COUT = 2 × 10 µF and L = 1 µH, unless  
otherwise noted.  
Tx Signal  
VOUT (2 V/DIV)  
VOUT (2 V/DIV)  
ILED (500 mA/DIV)  
ILED (500 mA/DIV)  
IIN (500 mA/DIV)  
IIN (1 A/DIV)  
Time (400 Ps / DIV)  
Time (2 ms / DIV)  
ƒSW = 2 MHz  
VLED = 3.18 V  
ƒSW = 2 MHz  
VLED = 3.18 V  
Brightness Code = 0x7F  
Brightness Code = 0x7F  
Figure 39. Ramp Down  
Figure 40. TX Interrupt  
VOUT (50 mV/DIV)  
VOUT (50 mV/DIV)  
ILED (20 mA/DIV)  
IL (100 mA/DIV)  
ILED (20 mA/DIV)  
IL (100 mA/DIV)  
Time (400 ns / DIV)  
Time (400 ns / DIV)  
ƒSW = 2 MHz  
VLED = 3.18 V  
ƒSW = 4 MHz  
VLED = 3.18 V  
Brightness Code = 0x7F  
Brightness Code = 0x7F  
Figure 41. Ripple @ 2 MHz  
Figure 42. Ripple @ 4 MHz  
26  
Copyright © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
9 Power Supply Recommendations  
The LM3648 is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input  
supply must be well regulated and capable to supply the required input current. If the input supply is located far  
from the LM3648 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high switching frequency and large switching currents of the LM3648 make the choice of layout important.  
The following steps should be used as a reference to ensure the device is stable and maintains proper LED  
current regulation across its intended operating voltage and current range.  
1. Place CIN on the top layer (same layer as the LM3648) and as close to the device as possible. The input  
capacitor conducts the driver currents during the low-side MOSFET turnon and turnoff and can detect current  
spikes over 1 A in amplitude. Connecting the input capacitor through short, wide traces to both the IN and  
GND pins reduces the inductive voltage spikes that occur during switching which can corrupt the VIN line.  
2. Place COUT on the top layer (same layer as the LM3648) and as close as possible to the OUT and GND pins.  
The returns for both CIN and COUT should come together at one point, as close to the GND pin as possible.  
Connecting COUT through short, wide traces reduce the series inductance on the OUT and GND pins that can  
corrupt the VOUT and GND lines and cause excessive noise in the device and surrounding circuitry.  
3. Connect the inductor on the top layer close to the SW pin. There should be a low-impedance connection  
from the inductor to SW due to the large DC inductor current, and at the same time the area occupied by the  
SW node should be small so as to reduce the capacitive coupling of the high dV/dT present at SW that can  
couple into nearby traces.  
4. Avoid routing logic traces near the SW node so as to avoid any capacitively coupled voltages from SW onto  
any high-impedance logic lines such as TORCH/TEMP, STROBE, HWEN, SDA, and SCL. A good approach  
is to insert an inner layer GND plane underneath the SW node and between any nearby routed traces. This  
creates a shield from the electric field generated at SW.  
5. Terminate the Flash LED cathode directly to the GND pin of the LM3648. If possible, route the LED return  
with a dedicated path so as to keep the high amplitude LED current out of the GND plane. For a Flash LED  
that is routed relatively far away from the LM3648, a good approach is to sandwich the forward and return  
current paths over the top of each other on two layers. This helps reduce the inductance of the LED current  
path.  
版权 © 2014, Texas Instruments Incorporated  
27  
LM3648  
ZHCSD27 OCTOBER 2014  
www.ti.com.cn  
10.2 Layout Example  
IN  
10 PF  
VIAs to GND  
Plane  
GND  
IN  
SDA  
SCL  
SDA  
SCL  
1 P+  
10 PF  
SW  
STROBE  
SW  
TORCH/  
TEMP  
TORCH/  
TEMP  
HWEN  
OUT  
LED  
OUT  
LED  
TX  
TX  
LED  
LED  
Figure 43. LM3648 Layout Example  
28  
版权 © 2014, Texas Instruments Incorporated  
LM3648  
www.ti.com.cn  
ZHCSD27 OCTOBER 2014  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
德州仪器 (TI) 应用手册 1112DSBGA 晶圆级芯片规模封装》(文献编号:SNVA009)。  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3648TTYFFR  
LM3648YFFR  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
12  
12  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
3648TT  
3648  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YFF0012  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
0.8 TYP  
0.4 TYP  
D
C
B
SYMM  
1.2  
TYP  
D: Max = 1.69 mm, Min = 1.63 mm  
E: Max = 1.31 mm, Min = 1.25 mm  
A
0.4 TYP  
1
2
3
0.3  
12X  
0.015  
0.2  
SYMM  
C A  
B
4222191/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0012  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
12X ( 0.23)  
(0.4) TYP  
1
2
A
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222191/A 07/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0012  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
12X ( 0.25)  
1
2
3
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222191/A 07/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY