LM36922YFFR [TI]

高效双串 30V 同步白光 LED 驱动器 | YFF | 12 | -40 to 85;
LM36922YFFR
型号: LM36922YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高效双串 30V 同步白光 LED 驱动器 | YFF | 12 | -40 to 85

驱动 接口集成电路 驱动器
文件: 总44页 (文件大小:1427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM36922  
ZHCSDT6 MAY 2015  
LM36922 高效双串白色 LED 驱动器  
1 特性  
3 说明  
1
拉电流匹配度 1%(整个过程、电压、温度范围  
内)  
LM36922 是一款针对 LCD 显示器背光照明而设计的  
超紧凑型、高效双串白色 LED 驱动器。 该器件可为多  
8 个串联的 LED 供电,每个灯串的电流高达  
25mA。 该器件采用自适应电流调节方法,可在保持电  
流稳定的同时为每个灯串提供不同的 LED 电压。  
灌电流匹配度 3%(整个过程、电压、温度范围  
内)  
11 位调光分辨率  
解决方案效率高达 91.6%  
在高达 28V 的电压下可驱动 1 2 个并行 LED 串  
脉宽调制 (PWM) 调光输入  
I2C 可编程  
LED 电流通过 I2C 接口或逻辑电平 PWM 输入进行调  
节。 PWM 占空比在内部进行感测并映射到一个 11 位  
电流,从而提供宽范围的 PWM 频率并实现无噪声运  
行。  
可选择 500kHz 1MHz 开关频率,可选偏移为 -  
12%  
该器件的工作输入电压范围为 2.5V 5.5V,工作温  
度范围为 -40°C 85°C。  
自动切换频率模式(250kHz500kHz1MHz)  
四个可配置过压保护阈值(17V21V25V、  
29V)  
器件信息(1)  
器件型号  
LM36922  
封装  
封装尺寸(最大值)  
四个可配置过流保护阈值(750mA1000mA、  
1250mA1500mA)  
DSBGA (12)  
1.755mm x 1.355mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
热关断保护  
空白  
空白  
空白  
空白  
空白  
空白  
2 应用  
针对智能手机和平板电脑背光照明的电源  
简化电路原理图  
灯串间匹配与 LED 电流间的典型关系  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA29  
 
 
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 16  
7.5 Programming........................................................... 25  
7.6 Register Maps ........................................................ 26  
Applications and Implementation ...................... 29  
8.1 Application Information............................................ 29  
8.2 Typical Application .................................................. 29  
Power Supply Recommendations...................... 35  
9.1 Input Supply Bypassing .......................................... 35  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 I2C Timing Requirements.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 35  
10.1 Layout Guidelines ................................................. 35  
10.2 Layout Example .................................................... 38  
11 器件和文档支持 ..................................................... 39  
11.1 器件支持................................................................ 39  
11.2 ....................................................................... 39  
11.3 静电放电警告......................................................... 39  
11.4 Glossary................................................................ 39  
12 机械、封装和可订购信息....................................... 39  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 5 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
5 Pin Configuration and Functions  
YFF Package  
12-Pin DSBGA  
Top View  
LED1  
BL_ADJ  
SDA  
GND  
SW  
A
B
C
D
LED2  
NC  
SCL  
VOUT  
PWM  
HWEN  
IN  
1
2
3
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
Input to current sink 1. The boost converter regulates the minimum voltage between  
LED1, LED2 to VHR.  
A1  
LED1  
Input  
LED current adjust input. When BL_ADJ is driven to a logic high voltage the LED current  
steps down to the programmed low current value.  
A2  
A3  
B1  
B2  
B3  
BL_ADJ  
GND  
LED2  
SDA  
Input  
Input  
Input  
I/O  
Ground  
Input pin to current sink 2. The boost converter regulates the minimum voltage between  
LED1, LED2 to VHR.  
Data I/O for I2C-Compatible Interface.  
Drain Connection for internal low side NFET, and anode connection for external Schottky  
diode.  
SW  
Output  
C1  
C2  
NC  
Input  
Input  
Unused Pin. Connect externally to GND.  
Clock Input for I2C-compatible interface.  
SCL  
OUT serves as the sense point for overvoltage protection. Connect OUT to the positive  
pin of the output capacitor.  
C3  
D1  
D2  
D3  
OUT  
PWM  
HWEN  
IN  
Input  
Input  
Input  
Input  
Logic level input for PWM current control.  
Hardware enable input. Drive HWEN high to bring the device out of shutdown and allow  
I2C writes or PWM control.  
Input voltage connection. Bypass IN to GND with a minimum 2.2-µF ceramic capacitor.  
Copyright © 2015, Texas Instruments Incorporated  
3
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
6
UNIT  
IN  
Input voltage  
V
V
V
V
OUT  
Output overvoltage sense input  
Inductor connection  
30  
30  
30  
SW  
LED1, LED2  
LED string cathode connection  
HWEN, PWM, SDA,  
SCL, BL_ADJ  
Logic I/Os  
–0.3  
6
V
Maximum junction temperature, TJ_MAX  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0
MAX  
5.5  
UNIT  
IN  
Input voltage  
V
V
V
V
OUT  
Overvoltage sense input  
Inductor connection  
29.5  
29.5  
29.5  
SW  
0
LED1, LED2  
LED string cathode connection  
0
HWEN, PWM, SDA,  
SCL, BL_ADJ  
Logic I/Os  
0
5.5  
V
6.4 Thermal Information  
YFQ (DSBGA)  
12 PINS  
88.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.7  
43.9  
°C/W  
ΨθJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.9  
ΨθJB  
43.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
6.5 Electrical Characteristics  
Limits apply over the full operating ambient temperature range (40°C TA 85°C) and VIN = 3.6 V, typical values are at TA =  
25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
–1%  
–3%  
TYP  
MAX  
1%  
UNIT  
BOOST  
(1)  
IMATCH  
LED current matching ILED1 to 50 µA ILED 25 mA, 2.7 V VIN 5 V  
ILED2  
0.1%  
(linear or exponential mode)  
Absolute Accuracy (ILED1  
,
50 µA ILED 25 mA, 2.7 V VIN 5 V  
(linear or exponential mode)  
Accuracy  
ILED_MIN  
0.1%  
3%  
ILED2  
)
Minimum LED current (per  
string)  
50  
25  
µA  
PWM or I2C current control (linear or  
exponential mode)  
ILED_MAX  
Maximum LED current (per  
string)  
mA  
exponential mode only  
1/3  
(0.3%)  
RDNL  
IDAC ratio-metric DNL  
LSB  
mV  
mV  
ILED = 25 mA  
210  
100  
35  
Regulated current sink  
headroom voltage  
VHR  
ILED = 5 mA  
Current sink minimum  
headroom voltage  
ILED = 95% of nominal, ILED = 5 mA  
50  
VHR_MIN  
VIN = 3.7 V, ILED = 5 mA/string, typical  
application circuit (2x8 LEDs), POUT/PIN  
Efficiency  
RNMOS  
Typical efficiency  
86%  
)
NMOS switch on resistance  
ISW = 250 mA  
0.25  
750  
1000  
1250  
1500  
17  
Ω
OCP = 00  
575  
860  
1100  
1350  
16  
875  
1110  
1400  
1650  
17.5  
21.5  
25.5  
29.5  
OCP = 01  
2.7 V VIN 5 V  
ICL  
NMOS switch current limit  
mA  
OCP = 10  
OCP = 11  
OVP = 00  
OVP = 01  
OVP = 10  
OVP = 11  
20  
21  
ON threshold, 2.7 V VIN  
5 V  
VOVP  
Output overvoltage protection  
V
24  
25  
28  
29  
OVP  
Hysteresis  
0.5  
V
Boost frequency  
select = 0  
475  
950  
500  
525  
2.7 V VIN 5 V, boost  
frequency  
shift = 0  
ƒSW  
Switching frequency  
kHz  
Boost frequency  
select = 1  
1000  
1050  
DMAX  
ISHDN  
Maximum boost duty cycle  
Shutdown current  
92%  
94%  
1.2  
Chip enable bit = 0, SDA = SCL = IN or GND,  
2.7 V VIN 5 V  
5
µA  
°C  
Thermal shutdown  
Hysteresis  
135  
15  
TSD  
PWM INPUT  
Min ƒPWM  
50  
Hz  
Max ƒPWM  
Sample rate = 24 MHz  
Sample rate = 24 MHz  
Sample rate = 4 MHz  
Sample rate = 800 kHz  
Sample rate = 24 MHz  
Sample rate = 4 MHz  
Sample rate = 800 kHz  
50  
kHz  
183.3  
1100  
5500  
183.3  
1100  
5500  
tMIN_ON  
Minimum pulse ON time  
Minimum pulse OFF time  
ns  
ns  
tMIN_OFF  
(1) LED Current Matching between strings is given as the worst case matching between any two strings. Matching is calculated as ((ILEDX  
ILEDY)/(ILEDX + ILEDY) × 100.  
Copyright © 2015, Texas Instruments Incorporated  
5
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
Limits apply over the full operating ambient temperature range (40°C TA 85°C) and VIN = 3.6 V, typical values are at TA =  
25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWM input active, PWM = logic high,HWEN  
input from low to high, ƒPWM = 10 kHz (50%  
duty cycle)  
Turn-on delay from shutdown  
to backlight on  
tSTART-UP  
3.5  
5
ms  
1.6 kHz ƒPWM 12 kHz, PWM hysteresis =  
00, PWM sample rate = 11  
PWMRES  
PWM input resolution  
11  
bits  
V
VIH  
VIL  
Input logic high  
Input logic low  
HWEN, BL_ADJ, SCL, SDA, PWM inputs  
HWEN, BL_ADJ, SCL, SDA, PWM inputs  
PWM pulse filter = 00  
1.25  
0
VIN  
0.4  
0
100  
150  
200  
0.6  
3
15  
PWM pulse filter = 01  
60  
90  
140  
210  
280  
0.66  
3.3  
tGLITCH  
PWM input glitch rejection  
PWM shutdown period  
ns  
PWM pulse filter = 10  
PWM pulse filter = 11  
120  
0.54  
2.7  
Sample rate = 24 MHz  
tPWM_STBY  
Sample rate = 4 MHz  
ms  
Sample rate = 800 kHz  
22.5  
25  
27.5  
6.6 I2C Timing Requirements  
MIN  
2.5  
100  
0
TYP  
MAX  
UNIT  
t1  
t2  
t3  
t4  
t5  
SCL clock period  
µs  
ns  
ns  
ns  
ns  
Data in setup time to SCL high  
Data out stable after SCL low  
SDA low Setup Time to SCL low (start)  
SDA high hold time after SCL high (stop)  
100  
100  
t1  
SCL  
t5  
t4  
SDA_IN  
SDA_OUT  
t2  
t3  
1. I2C Timing  
6
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
6.7 Typical Characteristics  
0.54  
0.535  
0.53  
17.2  
17.1  
17.0  
16.9  
16.8  
16.7  
16.6  
16.5  
16.4  
16.3  
16.2  
MAX -40 degC  
MAX 30 degC  
MAX 125 degC  
MIN -40 degC  
MIN 30 degC  
MIN 125 degC  
0.525  
0.52  
-40 degC  
30 degC  
125 degC  
0.515  
VIN (V)  
VIN (V)  
C001  
C001  
3. 17-V OVP Threshold  
2. OVP Hysteresis  
21.2  
21.1  
21.0  
20.9  
20.8  
20.7  
20.6  
20.5  
20.4  
20.3  
20.2  
25.1  
25.0  
24.9  
24.8  
24.7  
24.6  
24.5  
24.4  
24.3  
24.2  
24.1  
MAX -40 degC  
MAX 30 degC  
MAX 125 degC  
MIN -40 degC  
MIN 30 degC  
MIN 125 degC  
MAX -40 degC  
MAX 30 degC  
MAX 125 degC  
MIN -40 degC  
MIN 30 degC  
MIN 125 degC  
VIN (V)  
VIN (V)  
C001  
C001  
4. 21-V OVP Threshold  
5. 25-V OVP Threshold  
29.1  
29.0  
28.9  
28.8  
28.7  
28.6  
28.5  
28.4  
28.3  
28.2  
28.1  
0.5  
0.45  
0.4  
MAX -40 degC  
MAX 30 degC  
MAX 125 degC  
MIN -40 degC  
MIN 30 degC  
MIN 125 degC  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
125 degC  
30 degC  
-40 degC  
0.05  
0
VIN (V)  
VIN (V)  
C001  
C001  
7. RDSON  
6. 29-V OVP Threshold  
版权 © 2015, Texas Instruments Incorporated  
7
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
-40 degC  
30 degC  
125 degC  
-40 degC  
30 degC  
125 degC  
0.5  
0
VIN (V)  
VIN (V)  
C001  
C001  
C001  
C001  
C001  
C001  
HWEN = GND  
fSW= 1 Mhz  
No Load  
9. IQ Current (Switching)  
8. Shutdown Current  
216  
214  
212  
210  
208  
206  
204  
202  
200  
0.78  
0.77  
0.76  
0.75  
0.74  
0.73  
0.72  
0.71  
0.70  
-40 degC  
30 degC  
125 degC  
125 degC  
30 degC  
-40 degC  
VIN (V)  
VIN (V)  
ILED = 25 mA  
Open Loop  
10. VHR MIN  
11. 750-mA OCP Current  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
-40 degC  
30 degC  
125 degC  
-40 degC  
30 degC  
125 degC  
VIN (V)  
VIN (V)  
Open Loop  
Open Loop  
12. 1000-mA OCP Current  
13. 1250-mA OCP Current  
8
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
Typical Characteristics (接下页)  
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
-40 degC  
30 degC  
125 degC  
VIN (V)  
C001  
Open Loop  
14. 1500-mA OCP Current  
版权 © 2015, Texas Instruments Incorporated  
9
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM36922 is an inductive boost plus 2 current sink white-LED driver designed for powering from one to two  
strings of white LEDs used in display backlighting. The device operates over the 2.5-V to 5.5-V input voltage  
range. The 11-bit LED current is set via an I2C interface, via a logic level PWM input, or a combination of both.  
7.2 Functional Block Diagram  
SW  
Overvoltage  
Protection  
17 V  
21 V  
25 V  
29 V  
OUT  
IN  
HWEN  
OVP  
0.25 W  
Fault Detection  
Overvoltage  
LED String Short  
LED String Open  
Current Limit  
Thermal  
Boost Control  
Thermal  
Shutdown  
135oC  
TSD  
Boost Switching  
Frequency  
1 MHz  
887 kHz  
500 kHz  
443 kHz  
250 kHz  
220 kHz  
Shutdown  
OCP  
LED  
Fault  
Auto  
Frequency  
Mode  
BL_ADJ  
Force Low  
Current Target  
Boost Current  
Limit  
750 mA  
1500 mA  
SDA  
SCL  
I2C Interface  
Min Headroom  
Select  
Adaptive  
Headroom  
Current Sinks  
LED1  
LED2  
PWM Sample  
Rate  
800 kHz  
4 MHz  
11-Bit  
Brightness  
Code  
LED Current  
Mapping  
Exponential  
Linear  
24 MHz  
LED Current Ramping  
No ramp  
0.125 ms/step  
0.25 ms/step  
0.5 ms/step  
1 ms/step  
PWM  
PWM Sampler  
LED String  
Enables  
2 ms/step  
4 ms/step  
8 ms/step  
16 ms/step  
GND  
10  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
7.3 Feature Description  
7.3.1 Enabling the LM36922  
The LM36922 has a logic level input HWEN which serves as the master enable/disable for the device. When  
HWEN is low the device is disabled, the registers are reset to their default state, the I2C bus is inactive, and the  
device is placed in a low-power shutdown mode. When HWEN is forced high the device is enabled, and I2C  
writes are allowed to the device.  
7.3.1.1 Current Sink Enable  
Each current sink in the device has a separate enable input. This allows for a 1-string or 2-string application. The  
default is with two strings enabled. Once the correct LED string configuration is programmed, the device can be  
enabled by writing the chip enable bit high (register 0x10 bit[0]), and then either enabling PWM and driving PWM  
high, or writing a non-zero code to the brightness registers.  
The default setting for the device is with the chip enable bit set to 1, PWM input enabled, and the device in linear  
mapped mode. Therefore, on power up once HWEN is driven high, the device enters the standby state and  
actively monitors the PWM input. After a non-zero PWM duty cycle is detected the LM36922 converts the duty  
cycle information to the linearly weighted 11-bit brightness code. This allows for operation of the device in a  
stand-alone configuration without the need for any I2C writes. 15 and 16 describe the start-up timing for  
operation with both PWM controlled current and with I2C controlled current.  
VIN  
HWEN  
PWM  
ILED  
tHWEN_PWM  
tPWM_DAC  
tDAC_LED  
tDD_LED  
tPWM_STBY  
15. Enabling the LM36922 via PWM  
VIN  
HWEN  
I2C  
I2C Registers In  
Reset  
I2C Brightness  
Data Sent  
I2C Data Valid  
ILED  
tHWEN_I2C  
tBRT_DAC  
tDAC_LED  
16. Enabling the LM36922 via I2C  
版权 © 2015, Texas Instruments Incorporated  
11  
 
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 LM36922 Start-Up  
The LM36922 can be enabled or disabled in various ways. When disabled, the device is considered shutdown,  
and the quiescent current drops to ISHDN. When the device is in standby, it returns to the ISHDN current level  
retaining all programmed register values. 1 describes the different operating states for the LM36922.  
1. LM36922 Operating Modes  
I2C  
LED CURRENT  
LED STRING  
ENABLES  
0x10 bits[2:1]  
BRIGHTNESS BRIGHTNESS  
DEVICE  
ENABLE  
PWM INPUT  
REGISTERS  
MODE  
(EXP MAPPING)  
0x11 bit[7] = 1  
(LIN MAPPING)  
0x11 bit[7] = 0  
0x18 bits[2:0] 0x11 bits[6:5] 0x10 bit[0]  
0x19 bits[7:0]  
XXX  
0
X
X
X
XXX  
XXX  
0
XX  
XX  
00  
0
1
1
Off, device disabled  
Off, device standby  
At least one  
enabled  
Off, device in standby  
.'& = 50J# × 1.003040572%K@A  
+
.'& =37.806ä# +12.195ä#×%K@A  
At least one  
enabled  
X
Code > 000  
00  
1
+
See(1)  
See(1)  
At least one  
enabled  
0
XXX  
XXX  
01  
01  
1
1
Off, device in standby  
+
.'& =37.806ä# +12.195ä#×%K@A  
At least one  
enabled  
PWM Signal  
+
.'& = 50J# × 1.003040572%K@A  
See(1)  
See(1)  
At least one  
enabled  
0
X
XXX  
0
10 or 11  
10 or 11  
10 or 11  
1
1
1
Off, device in standby  
At least one  
enabled  
Off, device in standby  
+.'& =37.806ä# +12.195ä#×%K@A  
At least one  
enabled  
PWM Signal  
Code > 000  
+
.'& = 50J# × 1.003040572%K@A  
See(1)  
See(1)  
(1) Code is the 11-bit code output from the ramper (see 21, 23, 25, 27). This can be the I2C brightness code, the converted  
PWM duty cycle or the 11-bit product of both.  
7.3.3 Brightness Mapping  
There are two different ways to map the brightness code (or PWM duty cycle) to the LED current: linear and  
exponential mapping.  
7.3.3.1 Linear Mapping  
For linear mapped mode the LED current increases proportionally to the 11-bit brightness code and follows the  
relationship:  
+.'& =37.806ä# +12.195ä#×%K@A  
(1)  
This is valid from codes 1 to 2047. Code 0 programs 0 current. Code is an 11-bit code that can be the I2C  
brightness code, the digitized PWM duty cycle, or the product of the two.  
7.3.3.2 Exponential Mapping  
In exponential mapped mode the LED current follows the relationship:  
+
.'& = 50J# × 1.003040572%K@A  
(2)  
This results in an LED current step size of approximately 0.304% per code. This is valid for codes from 1 to  
2047. Code 0 programs 0 current. Code is an 11-bit code that can be the I2C brightness code, the digitized PWM  
duty cycle, or the product of the two. 17 details the LED current exponential response.  
The 11-bit (0.304%) per code step is small enough such that the transition from one code to the next in terms of  
LED brightness is not distinguishable to the eye. This therefore gives a perfectly smooth brightness increase  
between adjacent codes.  
12  
版权 © 2015, Texas Instruments Incorporated  
 
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
25  
2.5  
0.25  
0.025  
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
C006  
11 Bit Brightness Code  
17. LED Current vs Brightness Code (Exponential Mapping)  
7.3.4 PWM Input  
The PWM input is a sampled input which converts the input duty cycle information into an 11-bit brightness code.  
The use of a sampled input eliminates any noise and current ripple that traditional PWM controlled LED drivers  
are susceptible to.  
The PWM input uses logic level thresholds with VIH_MIN = 1.25 V and VIL_MAX = 0.4 V. Since this is a sampled  
input, there are limits on the max PWM input frequency as well as the resolution that can be achieved.  
7.3.4.1 PWM Sample Frequency  
There are four selectable sample rates for the PWM input. The choice of sample rate depends on three factors:  
1. Required PWM Resolution (input duty cycle to brightness code, with 11 bits max)  
2. PWM Input Frequency  
3. Efficiency  
7.3.4.1.1 PWM Resolution and Input Frequency Range  
The PWM input frequency range is 50 Hz to 50 kHz. To achieve the full 11-bit maximum resolution of PWM duty  
cycle to the LED brightness code (BRT), the input PWM duty cycle must be 11 bits, and the PWM sample  
period (1/ƒSAMPLE) must be smaller than the minimum PWM input pulse width. 18 shows the possible  
brightness code resolutions based on the input PWM frequency. The minimum PWM frequency for each PWM  
sample rate is described in PWM Timeout.  
12  
24MHz  
4MHz  
800kHz  
11  
10  
9
8
7
6
0.1kHz  
1.0kHz  
10.0kHz  
Input PWM Frequency  
C001  
18. PWM Sample Rate, Resolution, and PWM Input Frequency  
版权 © 2015, Texas Instruments Incorporated  
13  
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
7.3.4.1.2 PWM Sample Rate and Efficiency  
Efficiency is maximized when the lowest ƒSAMPLE is chosen since this lowers the quiescent operating current of  
the device. 2 describes the typical efficiency tradeoffs for the different sample clock settings.  
2. PWM Sample Rate Trade-Offs  
PWM SAMPLE RATE  
SAMPLE  
TYPICAL INPUT CURRENT, DEVICE ENABLED  
ILED = 10 mA/string, 2 x 7 LEDs  
TYPICAL EFFICIENCY  
)
(0x12 Bits[7:6])  
ƒSW = 1 MHz  
1.03 mA  
VIN = 3.7 V  
90.7%  
0
1
1.05 mA  
90.6%  
1X  
1.35 mA  
90.4%  
7.3.4.1.2.1 PWM Sample Rate Example  
The number of bits of resolution on the PWM input varies according to the PWM Sample rate and PWM input  
frequency.  
3. PWM Resolution vs PWM Sample Rate  
PWM  
FREQUENCY  
(kHz)  
RESOLUTION  
(PWM SAMPLE RATE = 800 kHz)  
RESOLUTION  
(PWM SAMPLE RATE = 4 MHz)  
RESOLUTION  
(PWM SAMPLE RATE = 24 MHz)  
0.4  
2
11  
8.6  
6.1  
11  
11  
11  
11  
11  
12  
8.4  
7.3.4.2 PWM Hysteresis  
To prevent jitter at the input PWM signal from feeding through the PWM path and causing oscillations in the LED  
current, the LM36922 offers 7 selectable hysteresis settings. The hysteresis works by forcing a specific number  
of 11-bit LSB code transitions to occur in the input duty cycle before the LED current changes. 4 describes the  
hysteresis. The hysteresis only applies during the change in direction of brightness currents. Once the change in  
direction has taken place, the PWM input must over come the required LSB(s) of the hysteresis setting before  
the brightness change takes effect. Once the initial hysteresis has been overcome and the direction in brightness  
change remains the same, the PWM to current response changes with no hysteresis.  
4. PWM Input Hysteresis  
MIN CHANGE IN PWM  
MIN CHANGE IN PWM  
MIN (ΔILED), INCREASE FOR INITIAL CODE  
PULSE WIDTH (Δt)  
DUTY CYCLE (ΔD)  
CHANGE  
HYSTERESIS SETTING REQUIRED TO CHANGE REQUIRED TO CHANGE  
(0x12 Bits[4:2])  
LED CURRENT, AFTER  
DIRECTION CHANGE  
(for fPWM < 11.7 kHz)  
LED CURRENT AFTER  
DIRECTION CHANGE  
EXPONENTIAL MODE  
LINEAR MODE  
000 (0 LSB)  
001 (1 LSB)  
010 (2 LSBs)  
011 (3 LSBs)  
100 (4 LSBs)  
101 (5 LSBs)  
110 (6 LSBs)  
1/(fPWM × 2047)  
1/(fPWM × 1023)  
1/(fPWM × 511)  
1/(fPWM × 255)  
1/(fPWM × 127)  
1/(fPWM × 63)  
1/(fPWM × 31)  
0.05%  
0.10%  
0.20%  
0.39%  
0.78%  
1.56%  
3.12%  
0.30%  
0.61%  
1.21%  
2.40%  
4.74%  
9.26%  
17.66%  
0.05%  
0.10%  
0.20%  
0.39%  
0.78%  
1.56%  
3.12%  
14  
版权 © 2015, Texas Instruments Incorporated  
 
 
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
tJITTER  
tJITTER  
D/fPWM  
1/fPWM  
xꢀ D is tJITTER x fPWM or equal to #/6%¶Vꢀ= ¨'ꢀ[ꢀ2048 codes.  
xꢀ For 11-bit resolution, #LSBs is equal to a hysteresis setting of LN(#/6%¶V)/LN(2).  
xꢀ For example, with a tJITTER of 1 µs and a fPWM of 5 kHz, the hysteresis setting should be:  
LN(1 µ s x 5 kHz x 2048)/LN(2) = 3.35 (4 LSBs).  
19. PWM Hysteresis Example  
7.3.4.3 PWM Step Response  
The LED current response due to a step change in the PWM input is approximately 2 ms to go from minimum  
LED current to maximum LED current.  
7.3.4.4 PWM Timeout  
The LM36922 PWM timeout feature turns off the boost output when the PWM is enabled and there is no PWM  
pulse detected. The timeout duration changes based on the PWM Sample Rate selected which results in a  
minimum supported PWM input frequency. The sample rate, timeout, and minimum supported PWM frequency  
are summarized in 5.  
5. PWM Timeout and Minimum Supported PWM Frequency vs PWM Sample Rate  
MINIMUM SUPPORTED PWM  
SAMPLE RATE  
TIMEOUT  
FREQUENCY  
0.8 MHz  
4 MHz  
25 msec  
3 msec  
48 Hz  
400 Hz  
24 MHz  
0.6 msec  
2000 Hz  
7.3.5 LED Current Ramping  
There are 8 programmable ramp rates available in the LM36922. These ramp rates are programmable as a time  
per step. Therefore, the ramp time from one current set-point to the next, depends on the number of code steps  
between currents and the programmed time per step. This ramp time to change from one brightness set-point  
(Code A) to the next brightness set-point (Code B) is given by:  
:
;
¿P = 4=IL_N=PA× %K@A$F%K@A#F1  
(3)  
For example, assume the ramp is enabled and set to 1 ms per step. Additionally, the brightness code is set to  
0x444 (1092d). Then the brightness code is adjusted to 0x7FF (2047d). The time the current takes to ramp from  
the initial set-point to max brightness is:  
(4)  
1IO  
OPAL  
: ;  
× 0T7(( F 0T444 F 1 = 954IO  
¿P =  
(5)  
15  
版权 © 2015, Texas Instruments Incorporated  
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
7.3.6 Regulated Headroom Voltage  
In order to optimize efficiency, current accuracy, and string-to-string matching the LED current sink regulated  
headroom voltage (VHR) varies with the target LED current. 20 details the typical variation of VHR with LED  
current. This allows for increased solution efficiency as the dropout voltage of the LED driver changes.  
Furthermore, in order to ensure that both current sinks remain in regulation whenever there is a mismatch in  
string voltages, the minimum headroom voltage between VLED1, VLED2 becomes the regulation point for the  
boost converter. For example, if the LEDs connected to LED1 require 12 V, the LEDs connected to LED2 require  
12.5 V at the programmed current, then the voltage at LED1 is VHR + 0.5 V and the voltage at LED2 is VHR. In  
other words, the boost makes the cathode of the highest voltage LED string the regulation point.  
240  
220  
200  
180  
160  
140  
120  
100  
80  
LED Current (mA)  
C001  
20. LM36922 Typical Exponential Regulated Headroom Voltage vs Programmed LED Current  
7.4 Device Functional Modes  
Device Functional Modes describes the different operating modes and features available within the LM36922.  
7.4.1 Brightness Control Modes  
The LM36922 has 4 brightness control modes:  
1. I2C Only (brightness mode 00)  
2. PWM Only (brightness mode 01)  
3. I2C × PWM with ramping only between I2C codes (brightness mode 10)  
4. I2C × PWM with ramping between I2C × PWM changes (brightness mode 11)  
7.4.1.1 I2C Only (Brightness Mode 00)  
In brightness control mode 00 the I2C Brightness registers are in control of the LED current, and the PWM input  
is disabled. The brightness data (BRT) is the concatenation of the two brightness registers (3 LSBs) and (8  
MSBs) (registers 0x18 and 0x19, respectively). The LED current only changes when the MSBs are written,  
meaning that to do a full 11-bit current change via I2C, first the 3 LSBs are written and then the 8 MSBs are  
written. In this mode the ramper only controls the time from one I2C brightness set-point to the next 21.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
 
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
Device Functional Modes (接下页)  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
RAMP_RATE Bits  
ILED1  
ILED2  
Driver_1  
Driver_2  
BRT Code = I2C  
Code  
DACi  
Ramper  
Mapper  
DAC  
I2C Brightness Reg  
MAP_MODE  
RAMP_EN  
21. Brightness Control 00 (I2C Only)  
ILED_t1  
Ramp Rate  
tRAMP  
ILED_t0  
t0  
t1  
1. At time t0 the I2C Brightness Code is changed from 0x444 (1092d) to 0x7FF (2047d)  
2. Ramp Rate programmed to 1ms/step  
3. Mapping Mode set to Linear  
4. ILED_t0 = 1092 × 12.213 µA = 13.337 mA  
5. ILED_t1 = 2047 × 12.213 µA = 25 mA  
6. tRAMP = (t1 – t0) = 1ms/step × (2047 – 1092 – 1) = 954 ms  
22. I2C Brightness Mode 00 Example (Ramp Between I2C Code Changes)  
7.4.1.2 PWM Only (Brightness Mode 01)  
In brightness mode 01, only the PWM input sets the brightness. The I2C code is ignored. The LM36922 samples  
the PWM input, determines the duty cycle and this measured duty cycle is translated into an 11-bit digital code.  
The resultant code is then applied to the internal ramper (see 23).  
版权 © 2015, Texas Instruments Incorporated  
17  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
Device Functional Modes (接下页)  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
RAMP_RATE Bits  
ILED1  
ILED2  
Driver_1  
Driver_2  
BRT Code =  
2047 × Duty Cycle  
DACi  
PWM Input  
Ramper  
Mapper  
DAC  
PWM Detector  
MAP_MODE  
RAMP_EN  
23. Brightness Control 01 (PWM Only)  
ILED_t1  
Ramp Rate  
tRAMP  
ILED_t0  
t0  
t1  
1. At time t0 the PWM duty cycle changed from 25% to 100%  
2. Ramp Rate programmed to 1 ms/step  
3. Mapping Mode set to Linear  
4. ILED_t0 = 25 mA × 0.25 = 6.25 mA  
5. ILED_t1 = 25 mA × 1 = 25 mA  
6. tRAMP = (t1 – t0) = 1ms/step × (2047 × 1 – 2047 × 0.25 – 1) = 1534 ms  
24. Brightness Control Mode 01 Example (Ramp Between Duty Cycle Changes)  
7.4.1.3 I2C + PWM Brightness Control (Multiply Then Ramp) Brightness Mode 10  
In brightness control mode 10 the I2C Brightness register and the PWM input are both in control of the LED  
current. In this case the I2C brightness code is multiplied with the PWM duty cycle to produce an 11-bit code  
which is then sent to the ramper. In this mode ramping is achieved between I2C x PWM currents (see 25).  
18  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
Device Functional Modes (接下页)  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
ILED1  
ILED2  
RAMP_RATE Bits  
Driver_1  
Driver_2  
BRT Code =  
I2C × Duty Cycle  
DACi  
I2C Brightness Reg  
Ramper  
Mapper  
DAC  
MAP_MODE  
RAMP_EN  
PWM  
PWM Input  
Detector  
25. Brightness Control 10 (I2C + PWM)  
ILED_t1  
Ramp Rate  
tRAMP  
ILED_t0  
t0  
t1  
1. At time t0 the I2C Brightness code changed from 0x444 (1092d) to 0x7FF (2047d)  
2. At time t0 the PWM duty cycle changed from 50% to 75%  
3. Ramp Rate programmed to 1ms/step  
4. Mapping Mode set to Linear  
5. ILED_t0 = 1092 × 12.213 µA × 0.5 = 6.668 mA  
6. ILED_t1 = 2047 × 12.213 µA × 0.75 = 18.75 mA  
7. tRAMP = (t1 – t0) = 1ms/step × (2047 × 0.75 – 1092 × 0.5 – 1) = 988 ms  
26. Brightness Control Mode 10 Example (Multiply Duty Cycle then Ramp)  
7.4.1.4 I2C + PWM Brightness Control (Ramp Then Multiply) Brightness Mode 11  
In brightness control mode 11 both the I2C brightness code and the PWM duty cycle control the LED current. In  
this case the ramper only changes the time from one I2C brightness code to the next. The PWM duty cycle is  
multiplied with the I2C brightness code at the output of the ramper (see 27).  
版权 © 2015, Texas Instruments Incorporated  
19  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
Device Functional Modes (接下页)  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min  
VHR  
ILED1  
ILED2  
RAMP_RATE Bits  
Ramper  
Driver_1  
BRT Code =  
I2C × Duty Cycle  
DACi  
Driver_2  
I2C Brightness Reg  
Mapper  
DAC  
MAP_MODE  
RAMP_EN  
PWM Input  
PWM Detector  
27. Brightness Control 11 (I2C + PWM)  
ILED_t1  
ILED_t0+  
Ramp  
Rate  
ILED_t0-  
tRAMP  
t0  
t1  
1. At time t0 the I2C Brightness code changed from 0x444 (1092d) to 0x7FF (2047d)  
2. At time t0 the PWM duty cycle changed from 50% to 75%  
3. Ramp Rate programmed to 1 ms/step  
4. Mapping Mode set to Linear  
5. ILED_t0– = 1092 × 12.213 µA × 0.5 = 6.668 mA  
6. ILED_t0+ = 1092 × 12.213 µA × 0.75 = 10.002 mA  
7. tRAMP = (t1 – t0) = 1 ms/step × (2047 – 1092 – 1) = 954 ms  
28. Brightness Control Mode 11 Example (Ramp Current Then Multiply Duty Cycle)  
7.4.2 Boost Switching Frequency  
The LM36922 has two programmable switching frequencies: 500 kHz and 1 MHz. These are set via the Boost  
Control 1 register 0x13 bit [5]. Once the switching frequency is set, this nominal value can be shifted down by  
12% via the boost switching frequency shift bit (register 0x13 bit[6]). Operation at 500 kHz is better suited for  
configurations which use a 22-µH inductor. Operation at 1 MHz is primarily beneficial when using a 10-µH  
inductor and where efficiency at maximum load current is more important. For maximum efficiency across the  
entire load current range the device incorporates an automatic frequency shift mode (see Auto Switching  
Frequency).  
20  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
Device Functional Modes (接下页)  
7.4.2.1 Minimum Inductor Select  
The LM36922 can use inductors in the range of 10 µH to 22 µH. In order to optimize the converter response to  
changes in VIN and load, the Min Inductor Select bit (register 0x13 bit[4]) should be selected depending on which  
value of inductance is chosen. For 22-µH inductors this bit should be set to 1. For less than 22 µH, this bit should  
be set to 0.  
7.4.3 Auto Switching Frequency  
To take advantage of frequency vs load dependent losses, the LM36922 has the ability to automatically change  
the boost switching frequency based on the magnitude of the load current. In addition to the register  
programmable switching frequencies of 500 kHz and 1 MHz, the auto-frequency mode also incorporates a low  
frequency selection of 250 kHz. It is important to note that the 250-kHz frequency is only accessible in auto-  
frequency mode and has a maximum boost duty cycle (DMAX) of 50%.  
Auto-frequency mode operates by using 2 programmable registers (Auto Frequency High Threshold (register  
0x15) and Auto Frequency Low Threshold (0x16)). The high threshold determines the switchover from 1 MHz to  
500 kHz. The low threshold determines the switchover from 500 kHz to 250 kHz. Both the High and Low  
Threshold registers take an 8-bit code which is compared against the 8 MSB of the brightness register (register  
0x19). 6 details the boundaries for this mode.  
6. Auto Switching Frequency Operation  
BRIGHTNESS CODE MSBs (Register 0x19 bits[7:0])  
BOOST SWITCHING FREQUENCY  
250 kHz (DMAX = 50%)  
500 kHz  
< Auto Frequency Low Threshold (register 15 Bits[7:0])  
> Auto Frequency Low Threshold (Register 15 Bits[7:0]) or < Auto  
Frequency High Threshold (Register 14 Bits[7:0])  
Auto Frequency High Threshold (register 14 Bits[7:0])  
1 MHz  
Automatic-frequency mode is enabled whenever there is a non-zero code in either the Auto-Frequency High or  
Auto-Frequency Low registers. To disable the auto-frequency shift mode, set both registers to 0x00. When  
automatic-frequency select mode is disabled, the switching frequency operates at the programmed frequency  
(Register 0x13 bit[5]) across the entire LED current range. provides a guideline for selecting the auto frequency  
250-kHz threshold setting, the actual setting needs to be verified in the application.  
7. Auto Frequency 250-kHz Threshold Settings  
RECOMMENDED AUTO FREQUENCY  
LOW THRESHOLD MAXIMUM VALUE  
(NO SHIFT)  
OUTPUT POWER AT AUTO  
FREQUENCY SWITCHOVER  
(W)  
CONDITION  
(Vf = 3.2 V, ILED = 25 mA)  
INDUCTOR  
(µH)  
2 × 4 LEDs  
2 × 5 LEDs  
2 × 6 LEDs  
2 × 7 LEDs  
2 × 8 LEDs  
10  
10  
10  
10  
10  
0x2f  
0x27  
0x21  
0x1f  
0.173  
0.168  
0.178  
0.210  
0.189  
0x1b  
7.4.4 Backlight Adjust Input (BL_ADJ)  
Driving BL_ADJ to a logic high voltage provides a way to quickly reduce the LED current during system high-  
power conditions such as camera flash, PA transmit, or other high battery-current conditions. The adjusted  
current target is programmable via register 0x17 bits[7:0]. Only the MSBs of the brightness code are adjustable.  
Additionally, the BL_ADJ input only decreases the current from the initial target. If the initial target is > the  
adjusted current then nothing happens — the LED current remains at its current value. 30 details the BL_ADJ  
operation.  
版权 © 2015, Texas Instruments Incorporated  
21  
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
VOUT  
Boost  
Digital Domain  
Analog Domain  
Min VHR  
ILED1  
ILED2  
Driver_1  
Driver_2  
11  
BRT Code  
(I2C and/or PWM)  
11  
DACi  
Mapper  
DAC  
11  
Backlight Adjust  
Threshold [10:3] +  
3 /6%¶VꢀVHWꢀWRꢀ000  
MAP_MODE  
Active High/  
BL_ADJ  
Active Low  
Polarity Bit  
29. Backlight Adjust Operation  
BL_ADJ  
ILED_BRT  
ILED  
ILED_ADJ  
tDAC_LED  
tBRT_DAC  
tBRT_DAC  
LED Current operates at an initial target ILED_BRT which is set by either I2C or PWM (or both).  
When the BL_ADJ input is driven to a logic high the LM36922's brightness code at the Mapper input has the MSBs  
set to the BL_ADJ Threshold and the LSBs set to 000.  
ILED steps down to the new target current in < 50 µs.  
When BL_ADJ is forced low the LED current returns to the initial brightness target.  
30. Backlight Adjust Timing  
7.4.4.1 Back-Light Adjust Input Polarity  
The BL_ADJ input can have either active high or active low polarity. With active high polarity (default), driving the  
BL_ADJ input high forces the LED current to the BL_ADJ low target current. With active low polarity, driving the  
BL_ADJ input low forces the LED current to the BL_ADJ low target current. The polarity is set via bit 0 in register  
11.  
22  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
7.4.5 Fault Protection/Detection  
7.4.5.1 Overvoltage Protection (OVP)  
The LM36922 provides four OVP thresholds (17 V, 21 V, 25 V, and 29 V). The OVP circuitry monitors the boost  
output voltage (VOUT) and protects OUT and SW from exceeding safe operating voltages in case of open load  
conditions or in the event the LED string voltage requires more voltage than the programmed OVP setting. The  
OVP thresholds are programmed in register 13 bits[3:2]. The operation of OVP differentiates between two  
overvoltage conditions and responds differently as outlined below:  
7.4.5.1.1 Case 1 OVP Fault Only (OVP Threshold Hit and All Enabled Current Sink Inputs > 40 mV)  
In steady-state operation with VOUT near the OVP threshold a rapid change in VIN or brightness code can result in  
a momentary transient excursion of VOUT above the OVP threshold. In this case the boost circuitry is disabled  
until VOUT drops below OVP – hysteresis (1 V). Once this happens the boost is re-enabled and steady state  
regulation continues. If VOUT remains above the OVP threshold for > 1 ms the OVP Flag is set (register 0x1F  
bit[0]).  
7.4.5.1.2 Case 2a OVP Fault and Open LED String Fault (OVP Threshold Occurrence and Any Enabled Current Sink  
Input 40 mV)  
When any of the enabled LED strings is open the boost converter tries to drive VOUT above OVP and at the same  
time the open string(s) current sink headroom voltage(s) (LED1, LED2) drop to 0. When the LM36922 detects  
three occurrences of VOUT > OVP and any enabled current sink input (VLED1 or VLED2) 40 mV, the OVP Fault  
flag is set (register 0x1F bit[0]), and the LED Open Fault flag is set (register 0x1F bit[4]).  
7.4.5.1.3 Case 2b OVP Fault and Open LED String Fault (OVP Threshold Duration and Any Enabled Current Sink  
Input 40 mV)  
When any of the enabled LED strings is open the boost converter tries to drive VOUT above OVP and at the same  
time the open string(s) current sink headroom voltage(s) (LED1, LED2) drop to 0. When the LM36922 detects  
VOUT > OVP for > 1 msec and any enabled current sink input (VLED1 or VLED2) 40 mV, the OVP Fault flag is set  
(register 0x1F bit[0]), and the LED Open Fault flag is set (register 0x1F bit[4]).  
7.4.5.1.4 OVP/LED Open Fault Shutdown  
The LM36922 has the option of shutting down the device when the OVP flag is set. This option can be enabled  
or disabled via register 0x1E bit[0]. When the shutdown option is disabled the fault flag is a report only. When the  
device is shut down due to an OVP/LED String Open fault, the fault flags register must be read back before the  
LM36922 can be re-enabled.  
7.4.5.1.5 Testing for LED String Open  
The procedure for detecting an open in a LED string is:  
Apply power the the LM36922.  
Enable all LED strings (Register 0x10 = 0x07).  
Set maximum brightness (Register 0x18 = 0x07 and Register 0x19 = 0xFF).  
Set the brightness control (Register 0x11 = 0x00).  
Open LED1 string.  
Wait 4 msec.  
Read LED open fault (Register 0x1F).  
If bit[4] = 1, then a LED open fault condition has been detected.  
Connect LED1 string.  
Repeat the procedure for the other LED strings.  
版权 © 2015, Texas Instruments Incorporated  
23  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
7.4.5.2 LED String Short Fault  
The LM36922 can detect an LED string short fault. This happens when the voltage between VIN and any enabled  
current sink input has dropped below (1.5 V). This test can only be performed on one LED string at a time.  
Performing this test with more than one LED string enabled can result in a faulty reading. The procedure for  
detecting a short in a LED string is:  
Apply power the the LM36922.  
Enable only LED1 string (Register 0x10 = 0x03).  
Enable short fault (Register 0x1E = 0x01.  
Set maximum brightness (Register 0x18 = 0x07 and Register 0x19 = 0xFF).  
Set the brightness control (Register 0x11 = 0x00).  
Wait 4 msec.  
Read LED short fault (Register 0x1F).  
If bit[3] = 1, then a LED short fault condition has been detected.  
Set chip enable and LED string enable low (Register 0x10 = 0x00).  
Repeat the procedure for the other LED strings.  
7.4.5.3 Overcurrent Protection (OCP)  
The LM36922 has 4 selectable OCP thresholds (750 mA, 1000 mA, 1250 mA, and 1500 mA). These are  
programmable in register 0x13 bits[1:0]. The OCP threshold is a cycle-by-cycle current limit and is detected in  
the internal low-side NFET. Once the threshold is hit the NFET turns off for the remainder of the switching period.  
7.4.5.3.1 OCP Fault  
If enough overcurrent threshold events occur, the OCP Flag (register 0x1F bit[1]) is set. To avoid transient  
conditions from inadvertently setting the OCP Flag, a pulse density counter monitors OCP threshold events over  
a 128-µs period. If 8 consecutive 128-µs periods occur where the pulse density count has found 2 or more OCP  
events,then the OCP Flag is set.  
During device start-up and during brightness code changes, there is a 4-ms blank time where OCP events are  
ignored. As a result, if the device starts up in an overcurrent condition there is an approximate 5-ms delay before  
the OCP Flag is set.  
7.4.5.3.2 OCP Shutdown  
The LM36922 has the option of shutting down the device when the OCP flag is set. This option can be enabled  
or disabled via register 0x1E bit[1]. When the shutdown option is disabled, the fault flag is a report only. When  
the device is shut down due to an OCP fault, the fault flags register must be read back before the LM36922 can  
be re-enabled.  
7.4.5.4 Device Overtemperature (TSD)  
Thermal shutdown (TSD) is triggered when the device die temperature reaches 135˚C. When this happens the  
boost stops switching, and the TSD Flag (register 0x1F bit[2]) is set. The boost automatically starts up again  
when the die temperature cools down to 120˚C.  
7.4.5.4.1 Overtemperature Shutdown  
The LM36922 has the option of shutting down the device when the TSD flag is set. This option can be enabled  
or disabled via register 0x1E bit[2]. When the shutdown option is disabled the fault flag is a report only. When the  
device is shutdown due to a TSD fault, the Fault Flags register must be read back before the LM36922 can be  
re-enabled.  
24  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
7.5 Programming  
7.5.1 I2C Interface  
7.5.1.1 Start and Stop Conditions  
The LM36922 is configured via an I2C interface. START (S) and STOP (P) conditions classify the beginning and  
the end of the I2C session 31. A START condition is defined as SDA transitioning from HIGH to LOW while  
SCL is HIGH. A STOP condition is defined as SDA transitioning from LOW to HIGH while SCL is HIGH. The I2C  
master always generates the START and STOP conditions. The I2C bus is considered busy after a START  
condition and free after a STOP condition. During the data transmission the I2C master can generate repeated  
START conditions. A START and a repeated START conditions are equivalent function-wise. The data on SDA  
must be stable during the HIGH period of the clock signal (SCL). In other words, the state of SDA can only be  
changed when SCL is LOW.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
31. I2C Start and Stop Conditions  
7.5.1.2 I2C Address  
The 7-bit chip address for the LM36922 is (0x36). After the START condition the I2C master sends the 7-bit chip  
address followed by an eighth bit read or write (R/W). R/W = 0 indicates a WRITE, and R/W = 1 indicates a  
READ. The second byte following the chip address selects the register address to which the data is written. The  
third byte contains the data for the selected register.  
7.5.1.3 Transferring Data  
Every byte on the SDA line must be eight bits long with the most significant bit (MSB) transferred first. Each byte  
of data must be followed by an acknowledge bit (ACK). The acknowledge related clock pulse, (9th clock pulse),  
is generated by the master. The master then releases SDA (HIGH) during the 9th clock pulse. The LM36922  
pulls down SDA during the 9th clock pulse, signifying an acknowledge. An acknowledge is generated after each  
byte has been received.  
7.5.1.4 Register Programming  
For glitch free operation, the following bits and/or registers should only be programmed while the LED Enable  
bits are 0 (Register 0x10, Bit [2:1] = 0) and Device Enable bit is 1 (Register 0x10, Bit[0] = 1) :  
1. Register 0x11 Bit[7] (Mapping Mode)  
2. Register 0x11 Bits[6:5] (Brightness Mode)  
3. Register 0x11 Bit[4] (Ramp Enable)  
4. Register 0x11 Bit[3:1] (Ramp Rate)  
5. Register 0x12 Bits[7:6] (PWM Sample Rate)  
6. Register 0x12 Bits[5] (PWM Polarity)  
7. Register 0x12 Bit[3:2] (PWM Hysteresis)  
8. Register 0x12 Bit[3:2] (PWM Pulse Filter)  
9. Register 0x15 (auto frequency high threshold)  
10. Register 0x16 (auto frequency low threshold)  
11. Register 0x17 (back-light adjust threshold)  
版权 © 2015, Texas Instruments Incorporated  
25  
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
7.6 Register Maps  
Note: Read of Reserved (R) or Write Only register returns 0  
8. Revision (0x00)  
Bits [7:4]  
Bits [3:0]  
R
Revision Code  
9. Software Reset (0x01)  
Software Reset  
Bit [0]  
Bits [7:1]  
R
0 = Normal Operation  
1 = Device Reset (automatically resets back to 0)  
10. Enable (0x10)  
LED2  
Enable  
Bit [2]  
LED1  
Enable  
Bit [1]  
Device  
Enable  
Bit [0]  
Bits [7:4]  
R
0 =  
0 =  
0 =  
Disabled  
Disabled  
Disabled  
1 = Enabled 1 = Enabled 1 = Enabled  
(Default) (Default) (Default)  
NOTE: When the Device Enable (Bit [0]) is set high the following registers/bits are set to the default value: Register 0x11 Bit[0], Register  
0x12 Bits[7:0].  
11. Brightness Control (0x11)  
Brightness  
Mode  
Bits [6:5]  
BL_ADJ  
Polarity  
Bits [0]  
Mapping Mode  
Bit [7]  
Ramp Enable  
Bits [4]  
Ramp Rate  
Bit [3:1]  
0 = Linear (default)  
1 = Exponential  
00 = Brightness  
Register Only  
01 = PWM Duty  
Cycle Only  
10 = Multiply  
Then Ramp  
(Brightness  
Register ×  
0 = Ramp Disabled (default)  
1 = Ramp Enabled  
000 = 0.125  
ms/step  
(default)  
001 = 0.250  
ms/step  
010 = 0.5  
ms/step  
011 = 1  
0 = Active  
Low  
1 = Active  
High  
(default)  
PWM)  
ms/step  
100 = 2  
ms/step  
101 = 4  
ms/step  
110 = 8  
11 = Ramp  
Then Multiply  
(Brightness  
Register ×  
PWM) (default)  
ms/step  
111 = 16  
ms/step  
12. PWM Control (0x12)  
PWM Input  
PWM Sample Rate  
Bit [7:6]  
Polarity  
Bit [5]  
PWM Hysteresis  
PWM Pulse Filter  
Bit [1:0]  
Bits [4:2]  
00 = 800 kHz  
01 = 4 MHz (default)  
1X = 24 MHz  
0 = Active Low  
1 = Active High  
(default)  
000 = None  
001 = 1 LSB  
00 = No Filter  
01 = 100 ns  
10 = 150 ns  
010 = 2 LSBs  
011 = 3 LSBs  
100 = 4 LSBs (default)  
101 = 5 LSBs  
110 = 6 LSBs  
111 = N/A  
11 = 200 ns (default)  
26  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
13. Boost Control 1 (0x13)  
Minimum  
Inductor  
Select  
Overvoltage  
Protection  
(OVP)  
Boost Switching  
Frequency Shift  
Bit [6]  
Boost Switching Frequency  
Current Limit  
(OCP)  
Bits [1:0]  
Reserved  
Bit [7]  
Select  
Bit [5]  
Bit [4]  
Bits [3:2]  
N/A  
0 = –12% Shift  
1 =No Shift (default)  
0 = 500 kHz  
1 = 1 MHz (default)  
0 = 10 µH  
(default)  
1 = 22 µH  
00 = 17 V  
01 = 21 V  
10 = 25 V  
11 = 29 V  
(default)  
00 = 750 mA  
01 = 1000 mA  
10 = 1250 mA  
11 = 1500 mA  
(default)  
14. Auto Frequency High Threshold (0x15)  
Auto Frequency High Threshold (500 kHz to 1000 kHz)  
Bits [7:0]  
Compared against the 8 MSBs of 11-bit brightness code (default = 00000000).  
15. Auto Frequency Low Threshold (0x16)  
Auto Frequency High Threshold (250 kHz to 500 kHz)  
Bits [7:0]  
Compared against the 8 MSBs of 11-bit brightness code (default = 00000000).  
16. Back Light Adjust Threshold (0x17)  
Back Light Adjust Threshold (Brightness Ceiling)  
Bits [7:0]  
When BL_ADJ Input is driven high the MSBs of the brightness code are forced to the code in this register (default = 00000000).  
17. Brightness Register LSBs (0x18)  
I2C Brightness Code (LSB)  
Bits [7:3]  
Bits [2:0]  
R
This is the lower 3 bits of the 11-bit brightness code (default = 111).  
18. Brightness Register MSBs (0x19)  
I2C Brightness Code (MSB)  
Bits [7:0]  
This is the upper 8 bits of the 11-bit brightness code (default = 11111111).  
版权 © 2015, Texas Instruments Incorporated  
27  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
19. Fault Control (0x1E)  
OVP/LED  
Open  
Shutdown  
Disable  
Bit [0]  
OCP  
Shutdown  
Disable  
Bit [1]  
LED Short  
Reserved  
Bits [7:4]  
Fault Enable  
Bit [3]  
TSD Shutdown Disable  
Bit [2]  
R
0 = LED Short 0 = When the TSD Flag is set, 0 = When the  
0 = When  
the OVP  
Fault Detection  
is disabled  
the device is forced into  
shutdown.  
OCP Flag is  
set, the device Flag is set,  
(default)  
1 = No shutdown (default)  
is forced into  
shutdown.  
1 = No  
shutdown  
(default)  
the device  
is forced  
into  
shutdown.  
1 = No  
1 = LED Short  
Fault Detection  
is enabled  
shutdown  
(default)  
20. Fault Flags (0x1F)  
LED Open  
Fault  
Bit [4]  
LED Short  
Fault  
Bit [3]  
OVP  
Fault  
Bit [0]  
Reserved  
Bits [7:5]  
TSD Fault  
Bit [2]  
OCP Fault  
Bit [1]  
R
1 = LED  
String Open  
Fault  
1 = LED  
Short Fault  
1 = Thermal Shutdown  
Fault  
1 = Current Limit  
Fault  
1 =  
Output  
Overvolta  
ge Fault  
28  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM36922 provides a complete high-performance LED lighting solution for mobile handsets. The LM36922 is  
highly configurable and can support multiple LED configurations.  
8.2 Typical Application  
32. LM36922 Typical Application  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
Minimum input voltage (VIN  
)
2.7 V  
2 × 8  
3.2 V  
80%  
LED parallel/series configuration  
LED maximum forward voltage (Vf)  
Efficiency  
The number of LED strings, number of series LEDs, and minimum input voltage are needed in order to calculate  
the peak input current. This information guides the designer to make the appropriate inductor selection for the  
application. The LM36922 boost converter output voltage (VOUT) is calculated as follows: number of series LEDs  
× Vƒ + 0.23 V. The LM36922 boost converter output current (IOUT) is calculated as follows: number of parallel  
LED strings × 25 mA. The LM36922 peak input current is calculated using 公式 6.  
版权 © 2015, Texas Instruments Incorporated  
29  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Component Selection  
8.2.2.1.1 Inductor  
The LM36922 requires a typical inductance in the range of 10 µH to 22 µH. When selecting the inductor, ensure  
that the saturation rating for the inductor is high enough to accommodate the peak inductor current of the  
application (IPEAK) given in the inductor datasheet. The peak inductor current occurs at the maximum load  
current, the maximum output voltage, the minimum input voltage, and the minimum switching frequency setting.  
Also, the peak current requirement increases with decreasing efficiency. IPEAK can be estimated using 公式 6:  
8176 × +176  
8
8 × K  
8
176  
+0  
+0  
+
=
+
× l1 +  
p
2'#-  
8 ×  
K
2 × B × .  
+0  
59  
(6)  
Also, the peak current calculated above is different from the peak inductor current setting (ISAT). The NMOS  
switch current limit setting (ICL_MIN) must be greater than IPEAK from 公式 6 above.  
8.2.2.1.2 Output Capacitor  
The LM36922 requires a ceramic capacitor with a minimum of 0.4 µF of capacitance at the output, specified over  
the entire range of operation. This ensures that the device remains stable and oscillation free. The 0.4 µF of  
capacitance is the minimum amount of capacitance, which is different than the value of capacitor. Capacitance  
would take into account tolerance, temperature, and DC voltage shift.  
21 lists possible output capacitors that can be used with the LM36922. 33 shows the DC bias of the four  
TDK capacitors. The useful voltage range is determined from the effective output voltage range for a given  
capacitor as determined by 公式 7:  
0.38µ(  
&% 8KHP=CA &AN=PEJC R  
:
;
:
;
1 F 6KH × 1 F 6AIL_?K  
(7)  
21. Recommended Output Capacitors  
RECOMMENDED MAX  
OUTPUT VOLTAGE  
(FOR SINGLE  
NOMINAL  
CAPACITANCE  
(µF)  
CASE  
SIZE  
VOLTAGE  
RATING (V)  
TEMPERATURE  
COEFFICIENT (%)  
PART NUMBER  
MANUFACTURER  
TOLERANCE (%)  
CAPACITOR)  
C2012X5R1H105K085AB  
C2012X5R1H225K085AB  
C1608X5R1V225K080AC  
C1608X5R1H105K080AB  
TDK  
TDK  
TDK  
TDK  
0805  
0805  
0603  
0603  
50  
50  
35  
50  
1
±10  
±10  
±10  
±10  
±15  
±15  
±15  
±15  
22  
24  
12  
15  
2.2  
2.2  
1
For example, with a 10% tolerance, and a 15% temperature coefficient, the DC voltage derating must be ≥  
0.38/(0.9 × 0.85) = 0.5 µF. For the C1608X5R1H225K080AB (0603, 50-V) device, the useful voltage range  
occurs up to the point where the DC bias derating falls below 0.523 µF, or around 12 V. For configurations where  
VOUT is > 15 V, two of these capacitors can be paralleled, or a larger capacitor such as the  
C2012X5R1H105K085AB must be used.  
30  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
C2012X5R1H105K085AB  
C2012X5R1H225K085AB  
C1608X5R1V225K080AC  
C1608X5R1H105K080AB  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28  
C006  
DC Bias  
33. DC Bias Derating for 0805 Case Size and  
0603 Case Size 35-V and 50-V Ceramic Capacitors  
8.2.2.1.3 Input Capacitor  
The input capacitor in a boost is not as critical as the output capacitor. The input capacitor primary function is to  
filter the switching supply currents at the device input and to filter the inductor current ripple at the input of the  
inductor. The recommended input capacitor is a 2.2-µF ceramic (0402, 10-V device) or equivalent.  
8.2.3 Application Curves  
L1 = 10 µH (VLF403212-100M) or 22 µH (VLF504015-220M) as noted in graphs, D1 = NSR530P2T5G, LEDs are Rohm  
SML312WBCW1, temperature = 25°C, VIN = 3.7 V, unless otherwise noted.  
Two String, AF Enabled, 10 uH, 3.7V  
Two String, AF Enabled -12%, 10 uH, 3.7V  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
2p4s  
2p4s  
2p5s  
2p6s  
2p7s  
2p8s  
2p5s  
2p6s  
2p7s  
2p8s  
LED CURRENT (mA)  
LED CURRENT (mA)  
C001  
C001  
34. Boost Efficiency vs Series LEDs  
35. Boost Efficiency vs Series LEDs  
版权 © 2015, Texas Instruments Incorporated  
31  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
L1 = 10 µH (VLF403212-100M) or 22 µH (VLF504015-220M) as noted in graphs, D1 = NSR530P2T5G, LEDs are Rohm  
SML312WBCW1, temperature = 25°C, VIN = 3.7 V, unless otherwise noted.  
Two String, 443kHz, 22 uH, 3.7V  
Two String, 500kHz, 22 uH, 3.7V  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
2p8s  
2p8s  
2p7s  
2p6s  
2p5s  
2p4s  
2p7s  
2p6s  
2p5s  
2p4s  
LED CURRENT (mA)  
LED CURRENT (mA)  
C001  
C001  
C001  
C001  
C001  
C001  
36. Boost Efficiency vs Series LEDs  
37. Boost Efficiency vs Series LEDs  
Two String, 887kHz, 22 uH, 3.7V  
Two String, 1Mhz, 10 uH, 3.7V  
95%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
90%  
85%  
80%  
75%  
70%  
65%  
2p8s  
2p7s  
2p6s  
2p5s  
2p4s  
2p4s  
2p5s  
2p6s  
2p7s  
2p8s  
LED CURRENT (mA)  
LED CURRENT (mA)  
38. Boost Efficiency vs Series LEDs  
39. Boost Efficiency vs Series LEDs  
Two String, 887kHz, 10 uH, 3.7V  
Two String, 500kHz, 10 uH, 3.7V  
95%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
2p4s  
2p5s  
2p6s  
2p7s  
2p8s  
2p4s  
2p5s  
2p6s  
2p7s  
2p8s  
LED CURRENT (mA)  
LED CURRENT (mA)  
40. Boost Efficiency vs Series LEDs  
41. Boost Efficiency vs Series LEDs  
32  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
L1 = 10 µH (VLF403212-100M) or 22 µH (VLF504015-220M) as noted in graphs, D1 = NSR530P2T5G, LEDs are Rohm  
SML312WBCW1, temperature = 25°C, VIN = 3.7 V, unless otherwise noted.  
Two String, 443kHz, 10 uH, 3.7V  
100  
95%  
90%  
10  
85%  
80%  
1
75%  
2p4s  
2p5s  
2p6s  
2p7s  
2p8s  
70%  
65%  
60%  
0.1  
0.01  
BRIGHTNESS CODE  
C001  
LED CURRENT (mA)  
C001  
43. LED Current vs Brightness Code (Exponential  
42. Boost Efficiency vs Series LEDs  
Mapping)  
25  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
Exponential  
Linear  
23  
20  
18  
15  
13  
10  
8
5
3
0
BRIGHTNESS CODE  
BRIGHTNESS CODE  
C001  
C001  
44. LED Current vs Brightness Code  
0.35  
45. LED Matching (Exponential Mapping)  
Exponential Mapping, 25C, 3.7V  
2.00  
Accuracy I1  
1.80  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
Accuracy I2  
1.60  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
BRIGHTNESS CODE  
BRIGHTNESS CODE  
C001  
C001  
47. LED Current Accuracy  
46. LED Matching (Linear Mapping)  
版权 © 2015, Texas Instruments Incorporated  
33  
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
L1 = 10 µH (VLF403212-100M) or 22 µH (VLF504015-220M) as noted in graphs, D1 = NSR530P2T5G, LEDs are Rohm  
SML312WBCW1, temperature = 25°C, VIN = 3.7 V, unless otherwise noted.  
Linear Mapping, 25C, 3.7V  
Exponential Mapping, 25C, 3.7V  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VH1  
VH2  
Accuracy I1  
Accuracy I2  
BRIGHTNESS CODE  
BRIGHTNESS CODE  
C001  
C001  
48. LED Current Accuracy  
49. LED Headroom Voltage (Mis-Matched Strings)  
Linear Mapping, 25C, 3.7V  
2.0  
24Mhz  
4Mhz  
0.8Mhz  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
VH1  
VH2  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
BRIGHTNESS CODE  
VIN (V)  
C001  
C001  
50. LED Headroom Voltage (Mis-Matched Strings)  
51. Current vs PWM Sample Frequency  
34  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
9 Power Supply Recommendations  
9.1 Input Supply Bypassing  
The LM36922 is designed to operate from an input supply range of 2.5 V to 5.5 V. This input supply should be  
well regulated and be able to provide the peak current required by the LED configuration and inductor selected  
without voltage drop under load transients (start-up or rapid brightness change). The resistance of the input  
supply rail should be low enough such that the input current transient does not cause the LM36922 supply  
voltage to droop more than 5%. Additional bulk decoupling located close to the input capacitor (CIN) may be  
required to minimize the impact of the input supply rail resistance.  
10 Layout  
10.1 Layout Guidelines  
The LM36922's inductive boost converter sees a high switched voltage (up to VOVP) at the SW pin, and a step  
current (up to ICL) through the Schottky diode and output capacitor each switching cycle. The high switching  
voltage can create interference into nearby nodes due to electric field coupling (I = CdV/dt). The large step  
current through the diode and the output capacitor can cause a large voltage spike at the SW pin and the OUT  
pin due to parasitic inductance in the step current conducting path (V = Ldi/dt). Board layout guidelines are  
geared towards minimizing this electric field coupling and conducted noise. 52 highlights these two noise-  
generating components.  
Voltage Spike  
VOUT + VF Schottky  
Pulsed voltage at SW  
IPEAK  
Current through  
Schottky and  
COUT  
IAVE = IIN  
Current through  
Inductor  
Parasitic  
Circuit Board  
Inductances  
Affected Node  
due to Capacitive Coupling  
LCD Display  
Cp1  
L
Lp1  
D1  
Lp2  
Up to 29V  
2.5 V to 5.5 V  
COUT  
SW  
LM36922  
IN  
Lp3  
CIN  
OUT  
LED1  
LED2  
GND  
52. SW Pin Voltage (High Dv/Dt) and Current Through Schottky Diode and COUT (High Di/Dt)  
版权 © 2015, Texas Instruments Incorporated  
35  
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
Layout Guidelines (接下页)  
The following list details the main (layout sensitive) areas of the LM36922's inductive boost converter in order of  
decreasing importance:  
Output Capacitor  
Schottky Cathode to COUT+  
COUT– to GND  
Schottky Diode  
SW pin to Schottky Anode  
Schottky Cathode to COUT+  
Inductor  
SW Node PCB capacitance to other traces  
Input Capacitor  
CIN+ to IN pin  
10.1.1 Boost Output Capacitor Placement  
Because the output capacitor is in the path of the inductor current discharge path it detects a high-current step  
from 0 to IPEAK each time the switch turns off and the Schottky diode turns on. Any inductance along this series  
path from the cathode of the diode through COUT and back into the LM36922's GND pin contributes to voltage  
spikes (VSPIKE = LP_ × di/dt) at SW and OUT. These spikes can potentially overvoltage the SW pin, or feed  
through to GND. To avoid this, COUT+ must be connected as close as possible to the cathode of the Schottky  
diode, and COUTmust be connected as close as possible to the LM36922's GND pin. The best placement for  
COUT is on the same layer as the LM36922 in order to avoid any vias that can add excessive series inductance.  
10.1.2 Schottky Diode Placement  
In the LM36922's boost circuit the Schottky diode is in the path of the inductor current discharge. As a result the  
Schottky diode sees a high-current step from 0 to IPEAK each time the switch turns off and the diode turns on.  
Any inductance in series with the diode causes a voltage spike (VSPIKE = LP_ × di/dt) at SW and OUT. This can  
potentially over-voltage the SW pin, or feed through to VOUT and through the output capacitor and into GND.  
Connecting the anode of the diode as close as possible to the SW pin and the cathode of the diode as close as  
possible to COUT and reduces the inductance (LP_) and minimize these voltage spikes.  
10.1.3 Inductor Placement  
The node where the inductor connects to the LM36922's SW pin has 2 issues. First, a large switched voltage (0  
to VOUT + VF_SCHOTTKY) appears on this node every switching cycle. This switched voltage can be capacitively  
coupled into nearby nodes. Second, there is a relatively large current (input current) on the traces connecting the  
input supply to the inductor and connecting the inductor to the SW bump. Any resistance in this path can cause  
voltage drops that can negatively affect efficiency and reduce the input operating voltage range.  
To reduce the capacitive coupling of the signal on SW into nearby traces, the SW bump-to-inductor connection  
must be minimized in area. This limits the PCB capacitance from SW to other traces. Additionally, high  
impedance nodes that are more susceptible to electric field coupling need to be routed away from SW and not  
directly adjacent or beneath. This is especially true for traces such as SCL, SDA, HWEN, BL_ADJ, and PWM. A  
GND plane placed directly below SW dramatically reduces the capacitance from SW into nearby traces.  
Lastly, limit the trace resistance of the VIN to inductor connection and from the inductor to SW connection, by use  
of short, wide traces.  
10.1.4 Boost Input Capacitor Placement  
For the LM36922 boost converter, the input capacitor filters the inductor current ripple and the internal MOSFET  
driver currents during turn on of the internal power switch. The driver current requirement can range from 50 mA  
at 2.7 V to over 200 mA at 5.5 V with fast durations of approximately 10 ns to 20 ns. This appears as high di/dt  
current pulses coming from the input capacitor each time the switch turns on. Close placement of the input  
capacitor to the IN pin and to the GND pin is critical since any series inductance between IN and CIN+ or CIN−  
and GND can create voltage spikes that could appear on the VIN supply line and in the GND plane. Close  
36  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
Layout Guidelines (接下页)  
placement of the input bypass capacitor at the input side of the inductor is also critical. The source impedance  
(inductance and resistance) from the input supply, along with the input capacitor of the LM36922 , form a series  
RLC circuit. If the output resistance from the source (RS) is low enough the circuit is underdamped and has a  
resonant frequency (typically the case). Depending on the size of LS the resonant frequency could occur below,  
close to, or above the LM36922 switching frequency. This can cause the supply current ripple to be:  
1. Approximately equal to the inductor current ripple when the resonant frequency occurs well above the  
LM36922 switching frequency;  
2. Greater than the inductor current ripple when the resonant frequency occurs near the switching frequency; or  
3. Less than the inductor current ripple when the resonant frequency occurs well below the switching frequency.  
53 shows the series RLC circuit formed from the output impedance of the supply and the input capacitor. The  
circuit is redrawn for the AC case where the VIN supply is replaced with a short to GND, and the LM36922 +  
Inductor is replaced with a current source (ΔIL). Equation 1 is the criteria for an underdamped response. Equation  
2 is the resonant frequency. Equation 3 is the approximated supply current ripple as a function of LS, RS, and  
CIN. As an example, consider a 3.6-V supply with 0.1 Ω of series resistance connected to CIN through 50 nH of  
connecting traces. This results in an underdamped input-filter circuit with a resonant frequency of 712 kHz. Since  
both the 1-MHz and 500-kHz switching frequency options lie close to the resonant frequency of the input filter,  
the supply current ripple is probably larger than the inductor current ripple. In this case, using equation 3, the  
supply current ripple can be approximated as 1.68 times the inductor current ripple (using a 500-kHz switching  
frequency) and 0.86 times the inductor current ripple using a 1-MHz switching frequency. Increasing the series  
inductance (LS) to 500 nH causes the resonant frequency to move to around 225 kHz, and the supply current  
ripple to be approximately 0.25 times the inductor current ripple (500-kHz switching frequency) and 0.053 times  
for a 1-MHz switching frequency.  
I
SUPPLY  
'I  
L
L
LM36922  
R
S
L
S
SW  
IN  
V
IN  
Supply  
CIN  
I
SUPPLY  
L
R
S
S
'I  
L
C
IN  
2
RS  
1
>
1.  
2
LS x CIN  
4x LS  
1
fRESONANT  
=
2.  
2S LS x CIN  
1
2S x 500 kHz x CIN  
3. ISUPPLYRIPPLE | 'IL x  
2
§
·
2
1
¨
¸
¸
¹
RS + 2S x 500 kHz x LS -  
¨
2S x 500 kHz xCIN  
©
53. Input RLC Network  
版权 © 2015, Texas Instruments Incorporated  
37  
 
LM36922  
ZHCSDT6 MAY 2015  
www.ti.com.cn  
10.2 Layout Example  
VIA  
Inner or  
Top Layer  
Bottom Layer  
Input Cap  
Diode  
BLADJ  
Inductor  
Output Cap  
6.5 mm  
54. LM36922 Layout Example  
38  
版权 © 2015, Texas Instruments Incorporated  
LM36922  
www.ti.com.cn  
ZHCSDT6 MAY 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 商标  
All trademarks are the property of their respective owners.  
11.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
39  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM36922YFFR  
ACTIVE  
DSBGA  
YFF  
12  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
36922  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YFF0012  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
0.8 TYP  
0.4 TYP  
D
C
B
SYMM  
1.2  
TYP  
D: Max = 1.756 mm, Min =1.695 mm  
E: Max = 1.355 mm, Min =1.295 mm  
A
0.4 TYP  
1
2
3
0.3  
12X  
0.015  
0.2  
SYMM  
C A  
B
4222191/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0012  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
12X ( 0.23)  
(0.4) TYP  
1
2
A
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222191/A 07/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0012  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
12X ( 0.25)  
1
2
3
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222191/A 07/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY