LM3699 [TI]

高效白光 LED 驱动器;
LM3699
型号: LM3699
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高效白光 LED 驱动器

驱动 驱动器
文件: 总24页 (文件大小:939K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
LM3699 高效白光发光二极管 (LED) 驱动器  
1 特性  
3 说明  
1
驱动并联高压 LED 灯串用于显示或键区照明  
LM3699 是一款三灯串,高效、由 PWM 控制的电源,  
用于智能手机的显示背光或键区 LED。 具有集成  
1A40V MOSFET 的高压电感升压转换器为三个串联  
LED 灯串供电。 升压输出自动调节到 LED 正向电  
压,以最大限度地减少净空电压并有效地改进 LED 效  
率。  
升压转换器效率高达 90%  
四个用户可选满量程电流设置  
(20.2mA18.6mA17.0mA15.4mA)  
快速调光使能端子 (ILOW)  
简单脉宽调制 (PWM) 占空比控制  
24V 过压保护阀值  
ILOW 端子提供一个在照相机闪光灯运行时快速减少  
LED 亮度的方法。  
固定 1MHz 开关频率  
集成型 1A/40V 金属氧化物半导体场效应晶体管  
(MOSFET)  
LM3699 具有集成过压、过流和过热保护。  
三个灌电流端子  
此器件在 2.7V 5.5V 的输入电压范围和 -40°C 至  
85°C 的温度范围内运行。  
自适应升压输出至 LED 电压  
热关断保护  
29mm2 总体解决方案尺寸  
器件信息  
订货编号  
封装  
封装尺寸  
2 应用范围  
芯片级球状引脚栅格  
阵列 (DSBGA) (12)  
LM3699YFQ  
1.64mm x 1.29mm  
用于智能手机照明的电源  
显示或键区照明  
在使用 10µH 电感器时,升压效率与 VIN 之间的关系  
简化电路原理图  
L
D1  
VOUT up to 24V  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
VIN  
CIN  
COUT  
IN  
SW  
LM3699  
GND  
OVP  
IS1  
IS0  
HVLED1  
HVLED2  
HVLED3  
3s3p  
4s3p  
5s3p  
6s3p  
76%  
74%  
72%  
70%  
ILOW  
RST  
ILOW  
HWEN  
PWM  
PWM  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
C012  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVS821  
 
 
 
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 8  
7.4 Device Functional Modes.......................................... 9  
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application .................................................. 10  
Power Supply Recommendations...................... 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics .......................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
8
9
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................ 16  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持................................................................ 19  
11.2 Trademarks........................................................... 19  
11.3 Electrostatic Discharge Caution............................ 19  
11.4 Glossary................................................................ 19  
12 机械封装和可订购信息 .......................................... 19  
7
4 修订历史记录  
Changes from Original (January 2014) to Revision A  
Page  
已更改 更改为全新的 TI 数据表格式:添加处理额定值表以及器件和文档支持部分 ............................................................... 1  
Added new scope shot ........................................................................................................................................................ 14  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
5 Terminal Configuration and Functions  
DSBGA (YFQ)  
12 Terminals  
Top View  
Bottom View  
3
2
1
3
2
1
A
B
C
D
D
C
B
A
Terminal Functions  
TERMINAL  
DESCRIPTION  
NUMBER  
NAME  
A1  
PWM  
PWM brightness control input. PWM is a high-impedance input and cannot be left floating.  
Current select input 1. This is a high-impedance input and cannot be left floating. IS0 can be connected to  
IN or GND.  
A2  
IS0  
Hardware enable input. Drive this terminal high to enable the device. Drive this terminal low to force the  
device into a low-power shutdown. HWEN is a high-impedance input and cannot be left floating.  
A3  
B1  
HWEN  
HVLED1  
Input terminal to high-voltage current sink 1 (24 V max). The boost converter regulates the minimum of  
HVLED1, HVLED2, and HVLED3 to VHR  
.
Current select input 2. This is a high-impedance input and cannot be left floating. IS1 can be connected to  
IN or GND.  
B2  
B3  
C1  
IS1  
IN  
Input voltage connection. Bypass IN to GND with a minimum 2.2-µF ceramic capacitor.  
Input terminal to high-voltage current sink 2 (24 V max). The boost converter regulates the minimum of  
HVLED2  
HVLED1, HVLED2, and HVLED3 to VHR  
.
Low level current enable. Drive this terminal high to reduce LED current by approximately 95%. ILOW is a  
high-impedance input and cannot be left floating. If not used connect to GND.  
C2  
C3  
D1  
ILOW  
GND  
Ground.  
Input terminal to high-voltage current sink 3 (24 V max). The boost converter regulates the minimum of  
HVLED3  
HVLED1, HVLED2, and HVLED3 to VHR  
.
Overvoltage sense input. Connect OVP to the positive terminal of the inductive boost output capacitor  
(COUT).  
D2  
D3  
OVP  
SW  
Drain connection for the internal NFET. Connect SW to the junction of the inductor and the Schottky diode  
anode.  
Copyright © 2014, Texas Instruments Incorporated  
3
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
MAX  
6
UNIT  
VIN to GND  
0.3V  
0.3V  
0.3V  
0.3V  
VSW, VOVP, VHVLED1, VHVLED2, VHVLED3 to GND  
VIS1, VIS0, VILOW, VPWM to GND  
VHWEN to GND  
45  
6
V
6
Continuous power dissipation  
Maximum lead temperature (soldering)  
Internally Limited  
260 (peak)  
150  
°C  
Junction temperature (TJ-MAX  
)
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND terminal.  
6.2 Handling Ratings  
MIN  
MAX  
150  
UNIT  
°C  
Storage temperature range  
Human body model (HBM)(2)  
Charged device model (CDM)(3)  
65  
2.0  
kV  
ESD Ratings(1)  
1500  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
0
MAX  
5.5  
UNIT  
V
VIN to GND  
VSW, VOVP, VHVLED1, VVHLED2, VVHLED3 to GND  
24  
(1)(2)  
Junction temperature (TJ)  
40  
125  
°C  
(1) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ= 140°C (typ) and  
disengages at TJ = 125°C (typ).  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (θJA × PD-MAX).  
6.4 Thermal Information  
DSBGA  
THERMAL METRIC(1)  
UNIT  
(12 TERMINALS)  
RθJA  
Junction-to-ambient thermal resistance  
55  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
6.5 Electrical Characteristics  
Limits apply over the full operating ambient temperature range (40°C TA 85°C) and VIN = 3.6V, unless otherwise  
specified.(1)(2)  
SYMBOL  
General  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.7 V VIN 5.5 V, HWEN = GND  
3.0  
ISHDN  
Shutdown current  
µA  
°C  
2.7 V VIN 5.5 V, HWEN = GND,  
TA = 25°C  
1
Thermal shutdown  
Hysteresis  
140  
15  
TSD  
Boost Converter  
2.7 V VIN 5.5 V, ILOW = GND,  
IS0 = IS1 = VIN,  
18.38  
22.02  
PWM Duty Cycle = 100%  
2.7 V VIN 5.5 V, ILOW = GND,  
IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%  
TA = 25°C  
20.2  
20.2  
ILOW = GND, IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%  
TA = 25°C  
18.7  
21.58  
21.58  
Output current  
regulation (HVLED1,  
HVLED2, HVLED3)  
IHVLED(1/2/3)  
mA  
ILOW = GND, IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%,  
TA = 25°C  
3.0 V VIN 4.5 V, ILOW = GND,  
IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%  
TA = 25°C  
18.63  
3.0 V VIN 4.5 V, ILOW = GND,  
IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%  
TA = 25°C  
20.2  
2.7 V VIN 5.5 V, ILOW = GND,  
IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%  
–2.5%  
–2%  
2.5%  
1.7%  
HVLED matching  
(HVLED1 to HVLED2  
ILOW = GND, IS0 = IS1 = VIN,  
IMATCH_HV  
or HVLED2 to HVLED3 PWM Duty Cycle = 100%, TA =  
or HVLED1 to  
HVLED3)  
25°C  
(3)  
3.0 V VIN 4.5 V, ILOW = GND,  
IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%  
–2.5%  
2.5%  
275  
ILOW = GND, IS0 = IS1 = VIN,  
PWM Duty Cycle = 100%,  
TA = 25°C  
Regulated current sink  
headroom voltage  
VREG_CS  
400  
ILED = 95% of nominal, ILOW =  
GND, IS0 = IS1 = VIN, PWM Duty  
Cycle = 100%  
mV  
Minimum current sink  
headroom voltage for  
HVLED current sinks  
VHR_MIN  
ILED = 95% of nominal, ILOW =  
GND, IS0 = IS1 = VIN, PWM Duty  
Cycle = 100%  
190  
0.3  
TA = 25°C  
NMOS switch on  
resistance  
RDSON  
ISW = 500 mA, TA = 25°C  
TA = 25°C  
880  
1120  
NMOS Switch Current  
Limit  
ICL_BOOST  
mA  
1000  
(1) All voltages are with respect to the potential at the GND terminal.  
(2) Minimum (Min) and Maximum (Max) limits are verified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but  
do represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VIN = 3.6 V and TA = 25°C.  
(3) LED current sink matching in the high-voltage current sinks (HVLED1, HVLED2, and HVLED3) is given as the maximum matching value  
between any two current sinks, where the matching between any two high-voltage current sinks (X and Y) is given as (IHVLEDX (or  
IHVLEDY) - IAVE(X-Y))/(IAVE(X-Y)) x 100.  
Copyright © 2014, Texas Instruments Incorporated  
5
 
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Limits apply over the full operating ambient temperature range (40°C TA 85°C) and VIN = 3.6V, unless otherwise  
specified.(1)(2)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
ON threshold, 2.7 V VIN 5.5 V  
ON threshold, TA = 25°C  
Hysteresis, TA = 25°C  
2.7 V VIN 5.5 V  
MIN  
TYP  
MAX  
UNIT  
23  
25  
Output overvoltage  
protection  
VOVP  
24  
V
0.7  
900  
1100  
fSW  
Switching frequency  
Maximum duty cycle  
kHz  
V
TA = 25°C  
1000  
94%  
DMAX  
TA = 25°C  
HWEN Input  
Input logic low  
Input logic high  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
0
0.4  
VIN  
VHWEN  
1.2  
PWM Input  
VPWM_L  
Input logic low  
Input logic high  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
0
0.4  
VIN  
V
VPWM_H  
1.31  
Minimum PWM input  
pulse detected  
tPWM  
2.7 V VIN 5.5 V  
0.75  
µs  
IS1, IS0, ILOW Inputs  
VIL  
VIH  
Input logic low  
Input logic high  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
0
0.4  
VIN  
V
V
1.29  
Internal POR Threshold  
VIN ramp time = 100 μs  
1.7  
2.1  
POR reset release  
voltage threshold  
VPOR  
VIN ramp time = 100 μs  
TA = 25°C  
1.9  
6
Copyright © 2014, Texas Instruments Incorporated  
 
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
6.6 Typical Characteristics  
0.5  
0.45  
0.4  
2.5  
2
1.5  
1
0.35  
0.3  
0.5  
0
VIN=2.7  
VIN=3.6  
VIN=5.5  
VIN=5.5  
VIN=3.6  
VIN=2.7  
0.25  
0.2  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature (ƒC)  
Temperature (ƒC)  
C022  
C024  
Figure 1. Rdson vs Temperature  
Figure 2. IQ Shutdown vs Temperature  
300  
250  
200  
150  
100  
50  
2
1.5  
1
0.5  
0
VIN=2.7  
VIN=3.6  
VIN=5.5  
VIN=3.6  
0
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature (ƒC)  
Temperature (ƒC)  
C027  
C023  
Figure 3. VHR_MIN vs Temperature  
Figure 4. POR Threshold vs Temperature  
1.4  
1.2  
1
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
VIN=5.5  
VIN=3.6  
VIN=2.7  
VIN=5.5  
VIN=3.6  
VIN=2.7  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
Temperature (ƒC)  
Temperature (ƒC)  
C025  
C026  
Figure 5. PWM VIH vs Temperature  
Figure 6. PWM VIL vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
7
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM3699 provides power for three high-voltage LED strings. The high-voltage LED strings are powered from  
an integrated boost converter. The LED current is directly controlled by a Pulse Width Modulation (PWM) input.  
7.2 Functional Block Diagram  
IN  
SW  
Overvoltage  
Protection  
OVP  
Boost Converter  
Hardware Enable,  
Reference, and  
Thermal Shutdown  
HWEN  
PWM  
Current Limit  
Switch Frequency  
High Voltage  
Current Sinks  
LPF  
HVLED1  
HVLED2  
HVLED3  
Full-Scale  
Current  
Control  
IS1  
IS0  
Quick  
Dimming  
Control  
GND  
ILOW  
7.3 Feature Description  
7.3.1 PWM Input  
The active high PWM input is filtered by an internal low-pass filter, then converted to an analog control voltage to  
set the current level on the current sink outputs. The PWM input is high-impedance and cannot be left floating.  
7.3.1.1 PWM Input Frequency Range  
The usable input frequency range for the PWM input is governed on the low end by the cutoff frequency of the  
internal low-pass filter (540 Hz, Q = 0.33) and on the high end by the propagation delays through the internal  
logic. For frequencies below 2 kHz the current ripple begins to become a larger portion of the DC LED current.  
Additionally, at lower PWM frequencies the boost output voltage ripple increases, causing a non-linear response  
from the PWM duty cycle to the average LED current due to the response time of the boost. For the best  
response of current vs. duty cycle, the PWM input frequency should be kept between 2 kHz and 100 kHz.  
7.3.1.2 PWM Low Detect  
The LM3699 incorporates a feature to detect when the PWM input duty cycle is near zero. This feature requires  
that the minimum PWM input pulse width be greater than tPWM (see Electrical Characteristics ). A PWM input  
pulse width less than tPWM can result in the current sink outputs turning on and off resulting in flicker on the  
LEDs.  
8
Copyright © 2014, Texas Instruments Incorporated  
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
Feature Description (continued)  
7.3.2 HWEN Input  
HWEN is the global hardware enable to the LM3699 and must be driven high to enable the device. HWEN is a  
high-impedance input, so it cannot be left floating. When HWEN is driven low the LM3699 is placed in shutdown,  
and the boost converter and all the HVLED current sinks are turned off.  
7.3.3 Current Select Inputs (IS1 And IS0)  
The current select inputs IS1 and IS0 select the maximum full-scale current (ifs). These digital inputs are static  
and must not change state when HWEN > VIL. IS1 and IS0 are high-impedance inputs so they cannot be left  
floating. The terminals IS1 and IS0 can be connected directly to IN or GND and do not require an external  
pullup/pulldown resistor. The full-scale current is set according to Table 1:  
Table 1. Full-Scale Current vs Current Select Inputs IS1 and IS0  
IS1  
0
IS0  
0
FULL-SCALE CURRENT (ifs) (mA)  
15.4  
17.0  
18.6  
20.2  
0
1
1
0
1
1
7.3.4 ILOW Input  
The ILOW feature provides a way to quickly reduce the LED current. This feature can be used to dim the LCD  
backlight during camera flash operation without changing the PWM duty cycle. ILOW is a high-impedance input  
so it cannot be left floating. When ILOW is driven high, the high-voltage current sink outputs are approximately  
equal to (ifs x DPWM x 5%). When ILOW is driven low, the high-voltage current sinks are a function of the full-  
scale current setting and the PWM input duty cycle. If ILOW is not required the input should be connected to  
GND.  
7.3.5 Thermal Shutdown  
The LM3699 contains a thermal shutdown protection. In the event the die temperature reaches 140°C (typ), the  
boost converter and current sink outputs shut down until the die temperature drops to typically 125°C.  
7.4 Device Functional Modes  
7.4.1 Operation with an Unused Current Sink  
If one of the current sink outputs is not connected to a LED string the terminal must be connected to VIN. This  
ensures that the boost converter regulates the headroom voltage on the highest voltage LED string.  
Copyright © 2014, Texas Instruments Incorporated  
9
 
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
8 Application and Implementation  
8.1 Application Information  
Table 2. Recommended Components  
CURRENT/VOLTAGE  
RATING (RESISTANCE)  
COMPONENT MANUFACTURER  
VALUE  
PART NUMBER  
SIZE (mm)  
L
TDK  
TDK  
10 µH  
1.0 µF  
VLF302512MT-100M  
C2012X5R1E105  
C1005X5R1A225  
NSR0240V2T1G  
2.5 x 3.0 x 1.2  
0805  
620 mA/0.25 Ω  
25V  
COUT  
CIN  
TDK  
2.2 µF  
0402  
10V  
Diode  
On-Semi  
Schottky  
SOD-523  
40V, 250 mA  
8.2 Typical Application  
VIN = 2.7 - 5.5 V  
VIN  
L1  
CIN  
VLF302512MT-100M  
2.2µF  
10µH  
U2  
D1  
LM3699YFQ  
NSR0240V2T1G  
40V  
GND  
B3  
D3  
D2  
SW  
IN  
SW  
VOUT  
OVP  
B2  
A2  
A3  
IS1  
IS0  
HWEN  
COUT  
1µF  
HWEN  
PWM  
B1  
C1  
D1  
HVLED1  
HVLED2  
HVLED3  
LED1  
LED2  
LED3  
A1  
C2  
PWM  
ILOW  
GND  
C3  
ILOW  
GND  
GND  
Figure 7. LM3699 Simplified Schematic  
8.2.1 Design Requirements  
Table 3. Design Parameters  
DESIGN PARAMETER  
Full-scale current setting  
Minimum input voltage  
EXAMPLE VALUE  
20.2 mA  
2.7 V  
6s3p  
LED series/parallel configuration  
LED maximum forward voltage (Vf)  
Efficiency  
3.5 V  
75%  
8.2.2 Detailed Design Procedure  
8.2.2.1 Step-by-Step Design Procedure  
The designer needs to know the following:  
Full-scale current setting  
Minimum input voltage  
LED series/parallel configuration  
LED maximum forward voltage (Vf)  
LM3699 efficiency for LED configuration  
10  
Copyright © 2014, Texas Instruments Incorporated  
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
The full-scale current setting, number of series LEDs, and minimum input voltage are needed in order to  
calculate the peak input current, maximum output voltage, and maximum required output power. This information  
guides the designer to determine if the LM3699 can support the required output power and make the appropriate  
inductor selection for the application.  
The LM3699 Boost converter output voltage (VOUT) is calculated as follows:  
number of series LEDs x Vf + 0.4V  
The LM3699 Boost converter output current (IOUT) is calculated as follows:  
number of parallel LED strings x full-scale current  
The LM3699 peak input current (IIN_PK) is calculated as follows:  
VOUT uIOUT / Minimum VIN / Efficiency  
VOUT   21.4 V   6u3.5 V  0.4 V  
IOUT   0.0606 A   0.0202 A u3  
I
! 0.640 A   21.4 V u0.0606 A / 2.7 V / 0.75  
IN_PK  
(1)  
8.2.2.2 Maximum Output Power  
The maximum output power of the device is governed by two factors: the peak current limit (ICL = 880 mA min)  
and the maximum output voltage (VOUT). When the application causes either of these limits to be reached, it is  
possible that the proper current regulation and matching between LED current strings will not be met.  
8.2.2.2.1 Peak Current Limited  
In the case of a peak current limited situation, when the peak of the inductor current hits the LM3699 current  
limit, the NFET switch turns off for the remainder of the switching period. If this happens each switching cycle the  
LM3699 regulates the peak of the inductor current instead of the headroom across the current sinks. This can  
result in the dropout of the current sinks, and the LED current dropping below its programmed level.  
The peak current (IPEAK) in a boost converter is dependent on the value of the inductor, total LED current in the  
boost (IOUT), the boost output voltage (VOUT) (which is the highest voltage LED string + VHR ), the input voltage  
(VIN), the switching frequency (ƒSW), and the efficiency (Output Power/Input Power). Additionally, the peak  
current is different depending on whether the inductor current is continuous during the entire switching period  
(CCM), or discontinuous (DCM) where it goes to 0 before the switching period ends. For CCM, the peak inductor  
current is given by:  
IOUT x VOUT  
VIN  
VIN x efficiency  
VOUT  
x
1 -  
+
IPEAK  
=
VIN x efficiency  
2 x ¦SW x L  
(2)  
For DCM the peak inductor current is given by:  
2 u IOUT  
§
·
u VOUT - VIN u efficiency  
IPEAK  
=
´
©
¹
SW u L u efficiency  
(3)  
To determine which mode the circuit is operating in (CCM or DCM) a calculation must be done to test whether  
the inductor current ripple is less than the anticipated input current (IIN). If ΔIL is less than IIN, then the device is  
operating in CCM. If ΔIL is greater than IIN then the device is operating in DCM.  
VIN  
IOUT u VOUT  
VIN u efficiency  
VIN u efficiency  
§
·
¹
>
u 1 ꢀ  
´
VOUT  
©
SW u L  
(4)  
Typically at currents high enough to reach the LM3699 peak current limit, the device operates in CCM.  
Figure 8 shows the output current derating for a 10-µH and a 22-µH inductor using 75% and 80% efficiency  
estimates. These plots take equations (2) and (3) from above and plot IOUT with varying VIN using a constant  
peak current of 880 mA (ICL_MIN) and 1-MHz switching frequency. Using these curves can help the user  
understand the impact of VIN, inductance, and efficiency on the maximum output current. A 10-µH inductor can  
typically be a smaller device with lower on resistance, but the peak currents will be higher. A 22-µH inductor  
provides for lower peak currents, but to match the DC resistance of a 10-µH inductor requires a larger sized  
device.  
Copyright © 2014, Texas Instruments Incorporated  
11  
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
0.062  
0.061  
0.06  
0.059  
0.058  
0.057  
0.056  
0.055  
0.054  
0.053  
10uH 75% Eff  
10uH 80% Eff  
22uH 75% Eff  
VIN (V)  
C021  
Figure 8. Maximum Output Power Vs Inductance And Efficiency  
8.2.2.2.2 Output Voltage Limited  
If a output voltage limited situation occurs, when the boost output voltage hits the LM3699 OVP threshold, the  
NFET turns off and stays off until the output voltage falls below the hysteresis level (typically 1 V below the OVP  
threshold). This results in the boost converter regulating the output voltage to the OVP threshold, causing the  
current sinks to go into dropout. The LM3699 OVP setting supports LED strings up to 6 series LEDs (Vƒmax = 3.5  
V).  
8.2.2.3 Boost Inductor Selection  
The boost converter operates using either a 10-µH or 22-µH inductor. The inductor selected must have a  
saturation current greater than the peak operating current.  
8.2.2.4 Output Capacitor Selection  
The LM3699 inductive boost converter requires a 1.0-µF X5R or X7R 50V (0805 size) ceramic capacitor to filter  
the output voltage. Pay careful attention to the capacitor tolerance and DC bias response. Smaller body-size 1.0-  
µF ceramic capacitors or 25-V, 1.0-µF ceramic capacitors can be used, but for proper operation the degradation  
in capacitance due to tolerance, DC bias, and temperature should stay above 0.4 µF. This might require placing  
two devices in parallel in order to maintain the required output capacitance over the device operating range and  
series LED configuration.  
8.2.2.5 Schottky Diode Selection  
The Schottky diode must have a reverse breakdown voltage greater than the LM3699’s maximum output voltage.  
Additionally, the diode must have an average current rating high enough to handle the LM3699’s maximum  
output current, and at the same time the diode peak current rating must be high enough to handle the peak  
inductor current. Schottky diodes are required due to their lower forward voltage drop (0.3 V to 0.5 V) and their  
fast recovery time.  
8.2.2.6 Input Capacitor Selection  
The LM3699 inductive boost converter requires a 2.2-µF X5R or X7R ceramic capacitor to filter the input voltage.  
The input capacitor filters the inductor current ripple and the internal MOSFET driver currents during turnon of the  
internal power switch.  
12  
Copyright © 2014, Texas Instruments Incorporated  
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
8.2.3 Application Performance Plots  
VIN = 3.6 V, LEDs are WLEDs part # SML-312WBCW(A), Typical Application Circuit with L = TDK (VLF302512, 10 µH, 22 µH  
where specified), Schottky = On-Semi (NSR0240V2T1G), TA = 25°C unless otherwise specified. Efficiency is given as (VOUT  
×
(IHVLED1 + IHVLED2+ IHVLED3))/(VIN × IIN), matching curves are given as (ΔILED_MAX/ILED_AVE).  
92%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
3s3p  
4s3p  
5s3p  
6s3p  
3s3p  
4s3p  
5s3p  
6s3p  
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN (V)  
VIN (V)  
C013  
C012  
L = 22 µH  
20 mA/String  
L = 10 µH  
20 mA/String  
Figure 9. Boost Efficiency vs VIN  
Figure 10. Boost Efficiency vs VIN  
92.0%  
90.0%  
88.0%  
86.0%  
84.0%  
82.0%  
80.0%  
78.0%  
76.0%  
74.0%  
72.0%  
70.0%  
90.0%  
88.0%  
86.0%  
84.0%  
82.0%  
80.0%  
78.0%  
76.0%  
74.0%  
72.0%  
70.0%  
3s3p  
4s3p  
5s3p  
6s3p  
3s3p  
4s3p  
5s3p  
6s3p  
0
12  
24  
36  
48  
60  
0
12  
24  
36  
48  
60  
ILED (mA)  
ILED (mA)  
C004  
C003  
Figure 11. LED Efficiency vs ILED  
Figure 12. LED Efficiency vs ILED  
1.70  
1.50  
1.30  
1.10  
0.90  
0.70  
0.50  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
0.91  
0.90  
-40°C  
85°C  
25°C  
85°C  
-40°C  
25°C  
VIN (V)  
VIN (V)  
C001  
C001  
Figure 13. Shutdown Current vs VIN  
Figure 14. Open Loop Current Limit vs VIN  
Copyright © 2014, Texas Instruments Incorporated  
13  
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
VIN = 3.6 V, LEDs are WLEDs part # SML-312WBCW(A), Typical Application Circuit with L = TDK (VLF302512, 10 µH, 22 µH  
where specified), Schottky = On-Semi (NSR0240V2T1G), TA = 25°C unless otherwise specified. Efficiency is given as (VOUT  
×
(IHVLED1 + IHVLED2+ IHVLED3))/(VIN × IIN), matching curves are given as (ΔILED_MAX/ILED_AVE).  
100.00%  
10.00%  
1.00%  
0.10%  
0.01%  
DPWM = 100%  
3 x 6 LEDs  
20 mA/String  
PWM FREQUENCY (Hz)  
C001  
DPWM = 50%  
3 x 6 LEDs  
20 mA/String  
Figure 16. Start-Up Response  
Figure 15. LED Current Ripple vs FPWM  
DPWM = 0%  
3 x 6 LEDs  
20 mA/String  
3p6s  
DPWM = 30% to 90%  
ƒ = 10 kHz  
20.2 mA/String  
Figure 17. Start-Up Response  
Figure 18. DPWM Step Change Response  
3p6s  
20.2 mA/String  
DPWM = 100%  
3p6s  
20.2 mA/String  
DPWM = 100%  
4.2 V to 3.6 V  
Figure 20. VIN Step Response  
Figure 19. VIN Step Response  
14  
Copyright © 2014, Texas Instruments Incorporated  
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
VIN = 3.6 V, LEDs are WLEDs part # SML-312WBCW(A), Typical Application Circuit with L = TDK (VLF302512, 10 µH, 22 µH  
where specified), Schottky = On-Semi (NSR0240V2T1G), TA = 25°C unless otherwise specified. Efficiency is given as (VOUT  
×
(IHVLED1 + IHVLED2+ IHVLED3))/(VIN × IIN), matching curves are given as (ΔILED_MAX/ILED_AVE).  
3p6s  
20.2 mA/String  
DPWM = 50%  
3p6s  
20.2 mA/String  
DPWM = 100%  
3.6 V to 4.2 V  
Figure 22. ILOW Disabled  
Figure 21. VIN Step Response  
3p6s  
20.2 mA/String  
DPWM = 50%  
Figure 23. ILOW Enabled  
9 Power Supply Recommendations  
The LM3699 is designed to operate from an input voltage supply range of 2.7 V to 5.5 V. The input supply  
connection must be properly designed to support the LM3699 maximum peak current limit.  
Copyright © 2014, Texas Instruments Incorporated  
15  
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The LM3699 inductive boost converter sees a high switched voltage (up to 24 V) at the SW terminal, as well as a  
step current (up to 1 A) through the Schottky diode and output capacitor each switching cycle. The high switching  
voltage can create interference into nearby nodes due to electric field coupling (I = CdV/dt). The large step  
current through the diode and the output capacitor can cause a large voltage spike at the SW and OVP terminals  
due to parasitic inductance in the step current conducting path (V = Ldi/dt). Board layout guidelines are geared  
towards minimizing this electric field coupling and conducted noise. Figure 24 highlights these two noise-  
generating components.  
Voltage Spike  
VOUT + VF Schottky  
Pulsed voltage at SW  
IPEAK  
Current through  
Schottky and  
COUT  
IAVE = IIN  
Current through  
Inductor  
Parasitic  
Circuit Board  
Inductances  
Affected Node  
due to Capacitive Coupling  
LCD Display  
Cp1  
L
Lp1  
D1  
Lp2  
Up to 24V  
2.7 V to 5.5 V  
COUT  
SW  
IN  
Lp3  
CIN  
LM3699  
PWM  
OVP  
HWEN  
ILOW  
IS1  
IS0  
HVLED1  
HVLED2  
HVLED3  
GND  
Figure 24. LM3699 Inductive Boost Converter Showing Pulsed Voltage At SW (High dv/dt) And Current  
Through Schottky And COUT (High di/dt)  
The following list details the main (layout sensitive) areas of the LM3699 inductive boost converter in order of  
decreasing importance:  
1. Output Capacitor  
Schottky Cathode to COUT+  
COUTto GND  
2. Schottky Diode  
SW Terminal to Schottky Anode  
Schottky Cathode to COUT  
+
16  
Copyright © 2014, Texas Instruments Incorporated  
 
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
Layout Guidelines (continued)  
3. Inductor  
SW Node PCB capacitance to other traces  
4. Input Capacitor  
CIN+ to IN terminal  
10.1.1 Boost Output Capacitor Placement  
Because the output capacitor is in the path of the inductor current discharge path, a high-current step from 0 to  
IPEAK occurs each time the switch turns off and the Schottky diode turns on. Any inductance along this series  
path from the cathode of the diode through COUT and back into the LM3699 GND terminal contributes to voltage  
spikes (VSPIKE = LP_ × di/dt) at SW and OUT. These spikes can potentially over-voltage the SW terminal, or feed  
through to GND. To avoid this, COUT+ must be connected as close as possible to the Cathode of the Schottky  
diode, and COUTmust be connected as close as possible to the LM3699 GND terminal. The best placement for  
COUT is on the same layer as the LM3699 so as to avoid any vias that can add excessive series inductance.  
10.1.2 Schottky Diode Placement  
In the boost circuit of the device the Schottky diode is in the path of the inductor current discharge. As a result  
the Schottky diode sees a high-current step from 0 to IPEAK each time the switch turns off and the diode turns on.  
Any inductance in series with the diode may cause a voltage spike (VSPIKE = LP_ × di/dt) at SW and OUT. This  
can potentially over-voltage the SW terminal, or feed through to VOUT and through the output capacitor and into  
GND. Connecting the anode of the diode as close as possible to the SW terminal and the cathode of the diode  
as close as possible to COUT+ reduces the inductance (LP_) and minimize these voltage spikes.  
10.1.3 Inductor Placement  
The node where the inductor connects to the LM3699 SW terminal has 2 issues. First, a large switched voltage  
(0 to VOUT + VF_SCHOTTKY) appears on this node every switching cycle. This switched voltage can be  
capacitively coupled into nearby nodes. Second, there is a relatively large current (input current) on the traces  
connecting the input supply to the inductor and connecting the inductor to the SW terminal. Any resistance in this  
path can cause voltage drops that can negatively affect efficiency and reduce the input operating voltage range.  
To reduce the capacitive coupling of the signal on SW into nearby traces, the SW terminal-to-inductor connection  
must be minimized in area. This limits the PCB capacitance from SW to other traces. Additionally, high-  
impedance nodes that are more susceptible to electric field coupling need to be routed away from SW and not  
directly adjacent or beneath. This is especially true for traces such as IS1, IS0, ILOW, HWEN, and PWM. A GND  
plane placed directly below SW greatly reduce the capacitance from SW into nearby traces.  
Lastly, limit the trace resistance of the VBATT-to-inductor connection and from the inductor-to-SW connection, by  
use of short, wide traces.  
10.1.4 Boost Input Capacitor Placement  
For the LM3699 boost converter, the input capacitor filters the inductor current ripple and the internal MOSFET  
driver currents during turnon of the internal power switch. The driver current requirement can range from 50 mA  
at 2.7 V to over 200 mA at 5.5 V with fast durations of approximately 10 ns to 20 ns. This appears as high di/dt  
current pulses coming from the input capacitor each time the switch turns on. Close placement of the input  
capacitor to the IN terminal and to the GND terminal is critical since any series inductance between IN and CIN+  
or CINand GND can create voltage spikes that could appear on the VIN supply line and in the GND plane.  
Copyright © 2014, Texas Instruments Incorporated  
17  
LM3699  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
www.ti.com.cn  
10.2 Layout Example  
Figure 25 requires two PCB layers and is optimized for the GND connection.  
Figure 25. LM3699 GND Optimized Layout Example  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
LM3699  
www.ti.com.cn  
ZHCSCB2A JANUARY 2014REVISED MARCH 2014  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Trademarks  
All trademarks are the property of their respective owners.  
11.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3699YFQR  
ACTIVE  
DSBGA  
YFQ  
12  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
D9  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3699YFQR  
DSBGA  
YFQ  
12  
3000  
178.0  
8.4  
1.35  
1.75  
0.76  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFQ 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
208.0 191.0 35.0  
LM3699YFQR  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YFQ0012x
D
0.600  
±0.075  
E
TMD12XXX (Rev B)  
D: Max = 1.64 mm, Min = 1.58 mm  
E: Max = 1.29 mm, Min = 1.23 mm  
4215079/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY