LM4510SDX/NOPB [TI]

具有完全关断隔离的同步降压直流/直流转换器 | DSC | 10 | -40 to 85;
LM4510SDX/NOPB
型号: LM4510SDX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有完全关断隔离的同步降压直流/直流转换器 | DSC | 10 | -40 to 85

开关 转换器
文件: 总29页 (文件大小:6010K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
LM4510 Synchronous Step-Up DC/DC Converter with True Shutdown Isolation  
1 Features  
3 Description  
The LM4510 is a current mode step-up DC/DC  
1
18 V@ 80 mA from 3.2 V Input  
5 V @ 280 mA from 3.2 V Input  
No External Schottky Diode Required  
85% Peak Efficiency  
converter with  
a 1.2-A internal NMOS switch  
designed to deliver up to 120 mA at 16 V from a Li-  
Ion battery.  
The device's synchronous switching operation (no  
external Schottky diode) at heavy-load, and non-  
synchronous switching operation at light-load,  
maximizes power efficiency.  
Soft Start  
True Shutdown Isolation  
Stable with Small Ceramic or Tantalum Output  
Capacitors  
True shutdown function by synchronous FET and  
related circuitry ensures input and output isolation.  
Output Short-Circuit Protection  
Feedback Fault Protection  
A programmable soft-start circuit allows the user to  
limit the amount of inrush current during start-up. The  
output voltage can be adjusted by external resistors.  
Input Undervoltage Lock Out  
Thermal Shutdown  
The LM4510 features advanced short-circuit  
protection to maximize safety during output to ground  
short condition. During shutdown the feedback  
resistors and the load are disconnected from the  
input to prevent leakage current paths to ground.  
0.002-µA Shutdown Current  
Wide Input Voltage Range: 2.7 V to 5.5 V  
1-MHz Fixed Frequency Operation  
Low-profile 10-pin WSON Package (3 mm x 3 mm  
x 0.8 mm)  
Device Information(1)  
PART NUMBER  
LM4510  
PACKAGE  
BODY SIZE (NOM)  
2 Applications  
WSON (10)  
3.00 mm x 3.00 mm  
Organic LED Panel Power Supply  
Charging Holster  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
White LED Backlight  
space  
space  
USB Power Supply  
Class D Audio Amplifier  
Camera Flash LED Driver  
Typical Application Circuit  
Efficiency at VOUT = 16 V  
L = 4.7 PH  
V
2.7V ± 5.5V  
IN  
100  
V
OUT  
16.0V  
VIN  
EN  
SW VOUT  
FB  
90  
80  
70  
60  
50  
40  
R
240k  
F1  
C
IN  
4.7 PF  
VIN = 3.6V  
C
OUT  
10 PF  
LOAD  
SS  
COMP  
AGND  
R
F2  
20.5k  
R
C
C
10 nF  
S
46.4k  
C
C2  
15 pF  
PGND  
C
C1  
2.2 nF  
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70  
(mA)  
I
OUT  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
Table of Contents  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Applications ................................................ 13  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 Device and Documentation Support ................. 21  
11.1 Device Support...................................................... 21  
11.2 Trademarks........................................................... 21  
11.3 Electrostatic Discharge Caution............................ 21  
11.4 Glossary................................................................ 21  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 21  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (May 2013) to Revision D  
Page  
Added Device Information and Handling Rating tables, Feature Description, Device Functional Modes, Application  
and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and  
Mechanical, Packaging, and Orderable Information sections; moved some curves to Application Curves section ............. 1  
Changes from Revision B (May 2013) to Revision C  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 19  
2
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
5 Pin Configuration and Functions  
WSON Package (DSC)  
10 Pins  
SW  
PGND  
VIN  
1
2
3
4
5
10 VOUT  
10  
1
2
3
4
9
8
7
6
N/C  
FB  
9
8
7
6
EN  
COMP  
AGND  
SS  
5
Die-Attach Pad: GND  
Die-Attach Pad: GND  
Bottom View  
Top View  
Pin Functions  
PIN  
DESCRIPTION  
NO.  
1
NAME  
SW  
TYPE  
A
G
P
I
Switch pin. Drain connections of both internal NMOS and PMOS devices.  
Power ground  
2
PGND  
VIN  
3
Analog and Power supply input. Input range: 2.7 V to 5.5 V.  
Enable logic input. HIGH= Enabled, LOW=Shutdown.  
Soft-start pin  
4
EN  
5
SS  
A
G
A
A
6
AGND  
COMP  
FB  
Analog ground  
7
Compensation network connection.  
Output voltage feedback connection.  
No internal connection.  
8
9
N/C  
10  
DAP  
VOUT  
DAP  
A
Internal PMOS source connection for synchronous rectification.  
Die Attach Pad thermal connection  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM4510  
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings(1)(2)(3)  
MIN  
0.3  
0.3  
–0.3  
0.3  
0.2  
MAX  
6.5  
UNIT  
VIN  
V
V
V
V
V
VOUT  
SW(4)  
21  
VOUT+0.3  
6.5  
EN, SS, COMP FB  
PGND to AGND  
Continuous power dissipation(5)  
0.2  
Internally  
Limited  
Junction temperature (TJ-MAX  
Lead temperature (soldering, 10 sec)(6)  
)
150  
150  
260  
°C  
°C  
(1) Absolute maximum ratings are limits beyond which damage to the device may occur. Recommended Operating Conditions are  
conditions for which the device is intended to be functional. For specifications and test conditions, see the Electrical Characteristics.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(4) This condition applies if VIN < VOUT. If VIN > VOUT, a voltage greater than VIN + 0.3 V should not be applied to the VOUT or SW pins.  
The absolute maximum specification applies to DC voltage. An extended negative voltage limit of –1 V applies for a pulse of up to 1 µs,  
and –2 V for a pulse of up to 40 ns. An extended positive voltage limit of 22 V applies for a pulse of up to 20 ns.  
(5) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ= 150°C (Typ.) and  
disengages at TJ= 140°C (Typ.).  
(6) For detailed soldering information and specifications, please refer to Application Note 1187: Leadless Leadframe Package (LLP)  
(SNOI401).  
6.2 Handling Ratings  
MIN  
MAX  
150  
2
UNIT  
Tstg  
Storage temperature range  
–65  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001, all pins(1)  
kV  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
1000  
200  
V
V
Machine model  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
UNIT  
V
Supply voltage (VIN  
Junction temperature (TJ)(1)  
Output voltage (VOUT  
)
2.7  
40  
125  
18  
°C  
V
)
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX  
=
)
4
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
6.4 Thermal Information  
LM4510  
THERMAL METRIC(1)  
DSC  
10 PINS  
36  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
48.3  
22  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJB  
22.1  
3.8  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
Unless otherwise stated the following conditions apply: VIN = 3.6 V, EN = 3.6 V, TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
2.7 V VIN 5.5 V  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
1.265  
VFB  
FB Pin Voltage  
V
2.7 V VIN 5.5 V, 40°C ≤  
TJ 125°C  
1.24  
1.29  
IFB  
FB Pin Bias Current(3)  
NMOS Switch RDS(on)  
PMOS Switch RDS(on)  
NMOS Switch Current Limit  
40°C TJ 125°C  
ISW = 0.3 A  
0.050  
0.45  
0.9  
1.5  
1.1  
1.1  
1.8  
µA  
Ω
RDS(on)  
ICL  
ISW = 0.3 A, VOUT = 10 V  
1
1.2  
A
EN = 3.6 V, FB = COMP  
1.7  
Device Switching  
EN = 3.6 V, FB = COMP,  
40°C TJ 125°C  
2.5  
mA  
IQ  
EN = 3.6 V, FB > 1.29 V  
0.8  
Non-switching Current  
EN = 3.6 V, FB > 1.29 V,  
40°C TJ 125°C  
2
Shutdown Current  
SW Leakage Current(3)  
EN = 0 V  
0.002  
0.01  
90  
0.050  
0.150  
µA  
µA  
IL  
SW = 20 V  
VOUT = 20 V  
IVOUT  
VOUT Bias Current(3)  
µA  
VOUT = 20 V, 40°C TJ ≤  
125°C  
50  
150  
PMOS Switch Leakage  
Current  
SW = 0 V, VOUT = 20 V  
IVL  
0.001  
1
0.100  
µA  
fSW  
Switching Frequency  
MHz  
40°C TJ 125°C  
FB = 0 V  
0.85  
88%  
1.2  
94%  
DMAX  
DMIN  
Gm  
Maximum Duty Cycle  
Minimum Duty Cycle  
FB = 0 V, 40°C TJ 125°C  
15%  
130  
20%  
200  
Error Amplifier  
Transconductance  
µmho  
V
40°C TJ 125°C  
HIGH  
70  
0.81  
0.78  
Device Enable  
HIGH, 40°C TJ 125°C  
LOW  
1.2  
EN  
Threshold  
Device Shutdown  
LOW, 40°C TJ 125°C  
0.4  
(1) All room temperature limits are production tested, specified through statistical analysis or by design. All limits at 40°C TJ 125°C are  
specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing  
Quality Level (AOQL).  
(2) Typical numbers are at 25°C and represent the most likely norm.  
(3) Current flows into the pin.  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM4510  
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
Electrical Characteristics (continued)  
Unless otherwise stated the following conditions apply: VIN = 3.6 V, EN = 3.6 V, TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
0 < EN < 3.6 V  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
3.2  
IEN  
EN Pin Bias Current  
µA  
0 < EN < 3.6 V, 40°C TJ ≤  
125°C  
8
ON Threshold  
19.7  
18.7  
2.5  
ON Threshold, 40°C TJ ≤  
125°C  
18  
17  
20.7  
20  
FB Fault  
Protection  
Feedback Fault Protection  
V
OFF Threshold  
OFF Threshold, 40°C TJ ≤  
125°C  
ON Threshold  
ON Threshold, 40°C TJ ≤  
125°C  
2.65  
UVLO  
Input Undervoltage Lockout  
Soft-Start Pin Current(4)  
V
OFF Threshold  
2.35  
11.3  
OFF Threshold, 40°C TJ ≤  
125°C  
2.1  
9
ISS  
µA  
40°C TJ 125°C  
15  
(4) Current flows out of the pin.  
6
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
6.6 Typical Characteristics  
LM4510SD, Circuit of Figure 18, (L = 4.7 µH, COILCRAFT, DO3316-472ML; CIN = 4 .7 µF, TDK, C2012X5R0J475K; COUT  
=
10 µF, AVX, 12103D106KAT2A; CS = 10 nF, TDK, C1608C0G1E103J; CC1 = 2.2 nF, Taiyo Yuden, TMK107SD222JA-T; RC =  
46.4 kΩ, Yageo, 9t06031A4642FBHFT), VIN = 3.6 V, VOUT = 16 V, TA = 25°C, unless otherwise noted.  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
1200  
1000  
800  
600  
400  
200  
0
I
at -35°C  
Q
I
at 85°C  
Q
I
at 25°C  
Q
-40 -20  
0
20  
40  
60  
80 100  
5.6  
5.2  
2.8 3.2 3.6  
4
4.4 4.8  
(V)  
V
TEMPERATURE (°C)  
IN  
Figure 1. Switching Quiescent Current vs VIN  
Figure 2. RDS(on) vs Temperature at VIN= 3.6 V  
450  
17.04  
17.02  
17.00  
16.98  
16.96  
16.94  
16.92  
16.90  
16.88  
16.86  
16.84  
400  
-35°C  
350  
300  
25°C  
250  
200  
150  
100  
90°C  
50  
0
-60 -40 -20  
0
20 40 60 80 100  
2
5.5  
6
2.5  
3
3.5  
4
4.5  
5
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 4. Output Voltage vs Temperature (VOUT = 17 V)  
Figure 3. Load Capability vs VIN (VOUT = 16 V )  
1.03  
16.24  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
V
16.22  
16.20  
16.18  
16.16  
16.14  
16.12  
16.10  
= 3.6V  
IN  
20  
V
= 3.0V  
IN  
-40 -20  
0
20  
40  
60  
80 100  
0
40  
60  
80  
I
(mA)  
TEMPERATURE (°C)  
OUT  
Figure 5. Switching Frequency vs Temperature  
Figure 6. Load Regulation (VOUT = 16 V)  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM4510  
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
Typical Characteristics (continued)  
LM4510SD, Circuit of Figure 18, (L = 4.7 µH, COILCRAFT, DO3316-472ML; CIN = 4 .7 µF, TDK, C2012X5R0J475K; COUT  
=
10 µF, AVX, 12103D106KAT2A; CS = 10 nF, TDK, C1608C0G1E103J; CC1 = 2.2 nF, Taiyo Yuden, TMK107SD222JA-T; RC =  
46.4 kΩ, Yageo, 9t06031A4642FBHFT), VIN = 3.6 V, VOUT = 16 V, TA = 25°C, unless otherwise noted.  
5.030  
5.028  
5.026  
5.024  
5.022  
5.020  
5.018  
5.016  
5.014  
16.25  
16.23  
16.21  
16.19  
16.17  
16.15  
I
= 50 mA  
OUT  
0
50  
100  
150  
(mA)  
200  
250  
300  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
I
V
(V)  
OUT  
IN  
Figure 7. Load Regulation (VOUT = 5 V)  
Figure 8. Line Regulation (VOUT = 16 V)  
5.040  
5.035  
5.030  
5.025  
5.020  
5.015  
5.010  
4.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3  
V
(V)  
IN  
Figure 10. Line Transient Response (VOUT = 16 V)  
Figure 9. Line Regulation (VOUT = 5 V)  
Figure 11. Load Transient Response (VOUT = 16 V)  
Figure 12. Short Circuit Response (VOUT = 16 V)  
8
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
Typical Characteristics (continued)  
LM4510SD, Circuit of Figure 18, (L = 4.7 µH, COILCRAFT, DO3316-472ML; CIN = 4 .7 µF, TDK, C2012X5R0J475K; COUT  
=
10 µF, AVX, 12103D106KAT2A; CS = 10 nF, TDK, C1608C0G1E103J; CC1 = 2.2 nF, Taiyo Yuden, TMK107SD222JA-T; RC =  
46.4 kΩ, Yageo, 9t06031A4642FBHFT), VIN = 3.6 V, VOUT = 16 V, TA = 25°C, unless otherwise noted.  
Figure 13. Output Voltage Ripple (VOUT = 16 V, IOUT = 90 mA)  
Figure 14. Output Voltage Ripple (VOUT = 5 V, IOUT = 100 mA)  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM4510  
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
7 Detailed Description  
7.1 Overview  
LM4510 is a peak current-mode, fixed-frequency PWM boost regulator that employs both Synchronous and Non-  
Synchronous Switching.  
The DC/DC regulator regulates the feedback output voltage providing excellent line and load transient response.  
The operation of the LM4510 can best be understood by referring to the Block Diagram.  
7.2 Functional Block Diagram  
EN  
SS  
VIN  
VOUT  
10 uA  
S/D  
Feedback Fault Protection  
TSD  
UVP  
REF  
+
-
UVP  
OSC  
+
-
LOGIC  
SCP  
CURRENT  
LIMIT  
SYNC/NON-  
SYNC  
Current  
Sense  
RESET SET  
Ramp  
S Q  
R Q  
PWM  
+
-
SW  
BG  
BG  
COMP  
EAMP  
REF  
PGND  
FB  
AGND  
7.3 Feature Description  
7.3.1 Short Circuit Protection  
When VOUT goes down to VIN–0.7V (typ.), the device stops switching due to the short-circuit protection circuitry  
and the short-circuit output current is limited to IINIT_CHARGE  
.
10  
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
Feature Description (continued)  
7.3.2 Feedback Fault Protection  
The LM4510 features unique Feedback Fault Protection to maximize safety when the feedback resistor is not  
properly connected to a circuit or the feedback node is shorted directly to ground.  
Feedback fault triggers VOUT monitoring. During monitoring, if VOUT reaches a protection level, the device shuts  
down. When the feedback network is reconnected and VOUT is lower than the OFF threshold level of Feedback  
Fault Protection, VOUT monitoring stops. VOUT is then regulated by the control loop.  
7.3.3 Input Undervoltage Lock-Out  
The LM4510 has dedicated circuitry to protect the IC and the external components when the battery voltage is  
lower than the preset threshold. This undervoltage lock-out with hysteresis prevents malfunctions during start-up  
or abnormal power off.  
7.3.4 Thermal Shutdown  
If the die temperature exceeds 150°C (typ.), the thermal protection circuitry shuts down the device. The switches  
remain off until the die temperature is reduced to approximately 140°C (typ.).  
7.4 Device Functional Modes  
7.4.1 Non-Synchronous Operation  
The device operates in Non-synchronous Mode at light load (IOUT < 10 mA) or when output voltage is lower than  
10 V (typ.). At light load, LM4510 automatically changes its switching operation from 'Synchronous' to 'Non-  
Synchronous' depending on VIN and L. Non-Synchronous operation at light load maximizes power efficiency by  
reducing PMOS driving loss.  
7.4.2 Operation in Synchronous Continuous Conduction Mode (Cycle 1, Cycle 2)  
V
SW1  
V
OUT  
PMOS  
NMOS  
R
OUT  
LOAD  
+
-
C
PWM  
GND  
Figure 15. Schematic of Synchronous Boost Converter  
Synchronous boost converter is shown in Figure 15. At the start of each cycle, the oscillator sets the driver logic  
and turns on the NMOS power device and turns off the PMOS power device.  
7.4.2.1 Cycle 1 Description  
Refer to Figure 16. NMOS switch turn-on Inductor current increases and flows to GND.  
PMOS switch turn-off Isolate VOUT from SW Output capacitor supplies load current.  
OFF  
+
+
ON  
-
-
Figure 16. Equivalent Circuit During Cycle 1  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM4510  
 
 
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
Device Functional Modes (continued)  
During operation, EAMP output voltage (VCOMP) increases for larger loads and decreases for smaller loads.  
When the sum of the ramp compensation and the sensed NMOS current reaches a level determined by the  
EAMP output voltage, the PWM COMP resets the logic, turning off the NMOS power device and turning on the  
PMOS power device.  
7.4.2.2 Cycle 2 Description  
Refer to Figure 17. NMOS Switch turn-off PMOS Switch turn-onInductor current decreases and flows  
through PMOS Inductor current recharges output capacitor and supplies load current.  
ON  
OFF  
Figure 17. Equivalent Circuit During Cycle 2  
After the switching period the oscillator then sets the driver logic again repeating the process.  
12  
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM4510 shuts down when the EN pin is low. In this mode the feedback resistors and the load are  
disconnected from the input in order to avoid leakage current flow and to allow the output voltage to drop to 0 V.  
The LM4510 turns on when EN is high. There is an internal pull-down resistor on the EN pin so the device is in a  
normally off state.  
8.2 Typical Applications  
8.2.1 2.7 V to 5.5 V Input with a 16 V Output  
L = 4.7 PH  
V
2.7V ± 5.5V  
IN  
V
OUT  
16.0V  
VIN  
EN  
SW VOUT  
FB  
R
240k  
F1  
C
IN  
4.7 PF  
C
10 PF  
OUT  
LOAD  
SS  
COMP  
AGND  
R
F2  
20.5k  
R
C
C
S
46.4k  
10 nF  
C
C2  
PGND  
15 pF  
C
C1  
2.2 nF  
Figure 18. Typical Application Circuit for Normal DC/DC  
8.2.1.1 Design Requirements  
The LM4510 is designed to operate up to 75 mA at 2.7 V input and 350 mA at 5.5 V input to output 16 V. In any  
case, it is recommended to avoid starting up the device at minimum input voltage and maximum load. Special  
attention must be taken to avoid operating near thermal shutdown condition. A simple calculation can be used to  
determine the power dissipation at the operating condition. PD-MAX = (TJ-MAX-OP – TA-MAX)/RθJA(TJ-MAX-OP = 125°C).  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Adjusting Output Voltage  
The output voltage is set using the feedback pin and a resistor voltage divider (RF1, RF2) connected to the output  
as shown in Figure 18.  
The ratio of the feedback resistors sets the output voltage.  
RF2 Selection First of all choose a value for RF2 generally between 10 kand 25 k.  
RF1 Selection Calculate RF1 using Equation 1:  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM4510  
 
 
 
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
Typical Applications (continued)  
VO  
- 1  
) x RF2 [:]  
RF1 = (  
VFB  
(1)  
Table 1 gives suggested component values for several typical output voltages.  
Table 1. Suggested Component Values for Different Output Voltages  
OUTPUT VOLTAGE (V)  
RF2 (k)  
20.5  
RF1 (k)  
240  
RC (k)  
46.4  
CC1 (nF)  
16  
12  
5
2.2  
2.2  
2.2  
2.2  
20.5  
174  
46.4  
20.5  
60.4  
33  
46.4  
3.3  
20.5  
46.4  
8.2.1.2.2 Maximum Output Current  
When the output voltage is set at different level, it is important to know the maximum load capability. By first  
order estimation, IOUT(MAX) can be estimated by Equation 2:  
1.32 x VIN - 2.79  
[A]  
IOUT_Max  
=
VOUT  
(2)  
8.2.1.2.3 Inductor Selection  
The larger value inductor makes lower peak inductor current and reduces stress on internal power NMOS.  
On the other hand, the smaller value inductor has smaller outline, lower DCR and a higher current capacity.  
Generally a 4.7-μH to 15-μH inductor is recommended.  
8.2.1.2.4 IL_AVE Check  
The average inductor current is given by Equation 3:  
V
IOUT  
IN  
IL_ AVE  
=
[A],  
=
D'  
x
K
D
VOUT  
¿
(3)  
Where IOUT is output current, η is the converter efficiency of the total driven load and D’ is the off duty cycle of the  
switching regulator.  
Inductor DC current rating (40°C temperature rise) should be more than the average inductor current at worst  
case.  
ΔI Define  
The inductor ripple current is given by Equation 4:  
-
x
VOUT  
V
IN  
V
D
IN  
[A],  
D =  
'IL =  
x
VOUT  
L
fSW  
(4)  
Where D is the on-duty cycle of the switching regulator. A common choice is to set ΔIL to about 30% of IL_AVE  
L_PKICL Check & IMIN Define  
The peak inductor current is given by Equation 5:  
.
I
14  
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
 
 
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
'I  
2
L [A]  
IL _ pk = IL _ AVE  
IOUT  
+
V
IN x  
D
[A]  
IL _ pk  
=
+
x
x
2L fSW  
K
D
¿
(5)  
To prevent loss of regulation, ensure that the NMOS power switch current limit is greater than the worst-case  
peak inductor current in the target application.  
Also make sure that the inductor saturation current is greater than the peak inductor current under the worst-case  
load transient, high ambient temperature and start-up conditions. Refer to Table 2 for suggested inductors.  
Table 2. Suggested Inductors and Their Suppliers  
MODEL  
VENDOR  
COILCRAFT  
COILCRAFT  
DIMENSIONS LxWxH (mm)  
3.3mm x 3.3mm x 1.4mm  
12.95mm x 9.4mm x 5.4mm  
D.C.R (max)  
320 mΩ  
DO3314-472ML  
DO3316P-472ML  
18 mΩ  
8.2.1.2.5 Input Capacitor Selection  
Due to the presence of an inductor, the input current waveform is continuous and triangular. So the input  
capacitor is less critical than output capacitor in boost applications. Typically, a 4.7-μF to 10-μF ceramic input  
capacitor is recommended on the VIN pin of the IC.  
ICIN_RMS Check  
The RMS current in the input capacitor is given by Equation 6:  
'IL  
[A]  
ICIN_RMS  
=
12  
(6)  
The input capacitor should be capable of handling the RMS current.  
8.2.1.2.6 Output Capacitor Selection  
The output capacitor in a boost converter provides all the output current when the switch is closed and the  
inductor is charging. As a result, it sees very large ripple currents.  
A ceramic capacitor of value 4.7 μF to 10 μF is recommended at the output. If larger amounts of capacitance are  
desired for improved line support and transient response, tantalum capacitors can be used.  
ICOUT_RMS Check  
The RMS current in the output capacitor is given by Equation 7:  
¼
'IL2  
»
º[ A]  
D
2
-
ICOUT_RMS  
=
(1 D) I  
º
+
OUT  
»
¼
2
-
(1 D)  
12  
(7)  
The output capacitor should be capable of handling the RMS current.  
The ESR and ESL of the output capacitor directly control the output ripple. Use capacitors with low ESR and ESL  
at the output for high efficiency and low ripple voltage. The output capacitor also affects the soft-start time (See  
Soft-Start Function and Soft-Start Capacitor Selection). Table 3 shows suggested input and output capacitors.  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM4510  
 
 
 
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
Table 3. Suggested CIN and COUT Capacitors and Their Suppliers  
VOLTAGE  
RATING  
CASE SIZE  
INCH (mm)  
MODEL  
TYPE  
VENDOR  
4.7 µF for CIN  
C2012X5R0J475  
GRM21BR60J475  
JMK212BJ475  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
TDK  
muRata  
Taiyo-Yuden  
TDK  
6.3 V  
6.3 V  
6.3 V  
6.3 V  
0805 (2012)  
0805 (2012)  
0805 (2012)  
0603 (1608)  
C2012X5R0J475K  
10 µF for COUT  
TMK316BJ106KL  
12103D106KAT2A  
Ceramic, X5R  
Ceramic, X5R  
Taiyo-Yuden  
AVX  
25 V  
25 V  
1206 (3216)  
1210 (3225)  
8.2.1.2.7 Soft-Start Function and Soft-Start Capacitor Selection  
The LM4510 has a soft-start pin that can be used to limit the input inrush current. Connect a capacitor from SS  
pin to GND to set the soft-start period. Figure 19 describes the soft start process.  
Initial charging period: When the device is turned on, the control circuitry linearly regulating initial charge  
current charges VOUT by limiting the inrush current.  
Soft-start period: After VOUT reaches VIN –0.7 V (typ.), the device starts switching and the CS is charged at a  
constant current of 11 μA, ramping up to VIN. This period ends when VSS reaches VFB. CS should be large  
enough to ensure soft-start period ends after CO is fully charged.  
During the initial charging period, the required load current must be smaller than the initial charge current to  
ensure VOUT reaches VIN –0.7 V (typ.).  
V
EN  
V
SS  
= V  
IN  
V
= V  
FB  
SS  
V
SS  
appropriate V  
OUT  
V
OUT  
= V - 0.7V  
IN  
V
OUT  
Figure 19. Soft-Start Timing Diagram  
CS Selection  
The soft-start time without load can be estimated as:  
COUT x (VIN - 0.7)  
IINIT_CHARGE  
CS x VFB  
tSS  
=
+
[sec]  
ISS_CHARGE  
(8)  
Where the IINIT_CHARGE is Initial Charging Current depending on VIN and ISS_CHARGE (11 μA (typ.). Also, when  
selecting the fuse current rating, make sure the value is higher than the initial charging current.  
16  
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
8.2.1.2.8 Compensation Component Selection  
The LM4510 provides a compensation pin COMP to customize the voltage loop feedback. It is recommended  
that a series combination of RC and CC1 be used for the compensation network, as shown in the typical  
application circuit. In addition, CC2 is used for compensating high frequency zeros.  
The series combination of RC and CC1 introduces a pole-zero pair according to Equation 9:  
1
[Hz]  
fPC  
=
2S(RC +RO)CC1  
1
[Hz]  
fZC  
=
2SRCCC1  
(9)  
In addition, CC2 introduces a pole according to Equation 10:  
1
[Hz]  
fPC2  
=
2S(RC // RO)CC2  
(10)  
Where RO is the output impedance of the error amplifier, approximately 1 M, and amplifier voltage gain is  
typically 200 V/V depending on temperature and VIN.  
Refer to Table 4 for suggested soft start capacitor and compensation components.  
Table 4. Suggested CS and Compensation Components  
CASE SIZE  
MODEL  
TYPE  
VENDOR  
VOLTAGE RATING  
INCH (mm)  
603 (1608)  
603 (1608)  
603 (1608)  
(CS) C1608C0G1E103J  
(C1)TMK107SD222JA-T  
(RC) 9t06031A4642FBHFT  
Ceramic, X5R  
Ceramic, X5R  
Resistor  
TDK  
6.3 V  
25 V  
Taiyo Yuden  
Yageo Corporation  
1/10 W  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM4510  
 
 
 
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
8.2.1.3 Application Curves  
100  
100  
90  
80  
70  
60  
50  
40  
90  
80  
70  
60  
50  
40  
VIN = 3.6V  
V
= 5.5V  
IN  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
(mA)  
0
10 20 30 40 50 60 70 80 90 100  
(mA)  
I
I
OUT  
OUT  
Figure 20. Efficiency vs Output Current (VOUT = 16 V)  
Figure 21. Efficiency vs Output Current (VOUT = 12 V)  
85  
80  
75  
70  
65  
60  
55  
50  
0
40  
80 120 160 200 240 280  
= (mA)  
I
OUT  
Figure 23. Start Up (VOUT = 16 V, RLOAD = 530 )  
Figure 22. Efficiency vs Output Current (VOUT = 5 V, L=  
DO3314-472ML)  
Figure 24. Shut Down (VOUT = 16 V, RLOAD = 940 )  
18  
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
8.2.2 Flash and Torch Application  
LM4510 can be configured to drive white LEDs for the flash and torch functions. The flash/torch can be set up  
with the circuit shown in Figure 25 by using the resistor RT to determine the current in Torch Mode and RF to  
determine the current in Flash Mode. The amount of current can be estimated using Equation 11:  
VFB  
[A]  
ITorch  
=
=
RT  
VFB  
RT // RF  
[A]  
IFlash  
(11)  
L = 4.7 éH  
Everlight  
47-23UWD/TR8  
VIN  
SW  
VOUT  
EN  
SS  
Battery or  
Power Source  
LM4510  
C
IN  
C
OUT  
4.7 éF  
FB  
10 éF  
R
T
COMP  
R
F
R
C
50Ö  
12.4Ö  
46.6k  
C
S
PGND  
AGND  
C
C
10 nF  
2.2 nF  
Pull high for TORCH  
Pull high for FLASH  
Figure 25. Typical Application Circuit for Flash/Torch  
8.2.2.1 Design Requirements  
See Design Requirements.  
8.2.2.2 Detailed Design Procedure  
See Detailed Design Procedure.  
8.2.2.3 Application Curve  
See Application Curves.  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM4510  
 
 
LM4510  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
www.ti.com  
9 Power Supply Recommendations  
The power supply for the applications using the LM4510 device should be big enough considering output power  
and efficiency at given input voltage condition. Minimum current requirement condition is (VOUT * IOUT)/(VIN  
efficiency) and approximately 20 - 30% higher than this value is recommended  
*
10 Layout  
10.1 Layout Guidelines  
High frequency switching regulators require very careful layout of components in order to get stable operation  
and low noise. All components must be as close as possible to the LM4510 device. Refer to Figure 26 as an  
example. Some additional guidelines to be observed:  
1. CIN must be placed close to the device and connected directly from VIN to PGND pins. This reduces copper  
trace resistance, which affects the input voltage ripple of the device. For additional input voltage filtering,  
typically a 0.1 uF bypass capacitor can be placed between VIN and AGND. This bypass capacitor should be  
placed near the device closer than CIN.  
2. COUT must also be placed close to the device and connected directly from VOUT to PGND pins. Any copper  
trace connections for the COUT capacitor can increase the series resistance, which directly affects output  
voltage ripple and makes noise during output voltage sensing.  
3. All voltage-sensing resistors (RF1, RF2) should be kept close to the FB pin to minimize copper trace  
connections that can inject noise into the system. The ground connection for the voltage-sensing resistor  
should be connected directly to the AGND pin.  
4. Trace connections made to the inductor should be minimized to reduce power dissipation, EMI radiation and  
increase overall efficiency. Also poor trace connection increases the ripple of SW.  
5. CS, CC1, CC2, RC must be placed close to the device and connected to AGND.  
6. The AGND pin should connect directly to the ground. Not connecting the AGND pin directly, as close to the  
chip as possible, may affect the performance of the LM4510 and limit its current driving capability. AGND  
and PGND should be separate planes and should be connected at a single point.  
7. For better thermal performance, DAP should be connected to ground, but cannot be used as the primary  
ground connection. The PC board land may be modified to a "dog bone" shape to reduce SON thermal  
impedance. For detail information, refer to Application Note AN-1187.  
10.2 Layout Example  
Figure 26. Evaluation Board Layout  
20  
Submit Documentation Feedback  
Copyright © 2007–2014, Texas Instruments Incorporated  
Product Folder Links: LM4510  
 
LM4510  
www.ti.com  
SNVS533D SEPTEMBER 2007REVISED NOVEMBER 2014  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Trademarks  
All trademarks are the property of their respective owners.  
11.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2007–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM4510  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM4510SD/NOPB  
LM4510SDX/NOPB  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSC  
DSC  
10  
10  
1000 RoHS & Green  
4500 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
L4510  
L4510  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM4510SD/NOPB  
LM4510SD/NOPB  
LM4510SDX/NOPB  
LM4510SDX/NOPB  
WSON  
WSON  
WSON  
WSON  
DSC  
DSC  
DSC  
DSC  
10  
10  
10  
10  
1000  
1000  
4500  
4500  
178.0  
180.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM4510SD/NOPB  
LM4510SD/NOPB  
LM4510SDX/NOPB  
LM4510SDX/NOPB  
WSON  
WSON  
WSON  
WSON  
DSC  
DSC  
DSC  
DSC  
10  
10  
10  
10  
1000  
1000  
4500  
4500  
208.0  
200.0  
367.0  
346.0  
191.0  
183.0  
367.0  
346.0  
35.0  
25.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSC0010B  
WSON - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.2±0.1  
(0.2) TYP  
8X 0.5  
6
5
2X  
2
2±0.1  
1
10  
0.3  
0.2  
10X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.4  
10X  
0.05  
4214926/A 07/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSC0010B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.2)  
10X (0.65)  
SYMM  
10  
1
10X (0.25)  
SYMM  
(2)  
(0.75) TYP  
8X (0.5)  
5
6
(0.35) TYP  
(
0.2) TYP  
VIA  
(2.75)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
METAL  
UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214926/A 07/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSC0010B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
10X (0.65)  
SYMM  
METAL  
TYP  
10X (0.25)  
(0.55)  
SYMM  
(0.89)  
8X (0.5)  
(1.13)  
(2.75)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
84% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4214926/A 07/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LM4540

AC ’97 Codec with National 3D Sound
NSC

LM4540VH

AC ’97 Codec with National 3D Sound
NSC

LM4543

AC ’97 Codec with National 3D Sound
NSC

LM4543VH

AC ’97 Codec with National 3D Sound
NSC

LM4543VHX

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, TQFP-48, Consumer IC:Other
NSC

LM4545

AC ’97 Codec with Stereo Headphone Amplifier and National 3D Sound
NSC

LM4545VH

AC ’97 Codec with Stereo Headphone Amplifier and National 3D Sound
NSC

LM4545VHX

Soundcard Circuits
ETC

LM4546

AC ’97 Rev 2 Codec with Sample Rate Conversion and National 3D Sound
NSC

LM4546A

AC 97 Rev 2 Multi-Channel Audio Codec with Sample Rate Conversion and National 3D Sound
NSC

LM4546AVH

AC 97 Rev 2 Multi-Channel Audio Codec with Sample Rate Conversion and National 3D Sound
NSC

LM4546AVHX

SPECIALTY CONSUMER CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-48
TI