LM48901SQE [TI]

Audio Power Amplifier Series; 音频功率放大器系列
LM48901SQE
型号: LM48901SQE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Audio Power Amplifier Series
音频功率放大器系列

放大器 功率放大器
文件: 总51页 (文件大小:805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 5, 2012  
LM48901  
Quad Class D Spatial Array  
General Description  
Features  
The LM48901 is a quad Class D amplifier that utilizes Texas  
Instruments’ proprietary spatial sound processor to create an  
enhanced sound stage for portable multimedia devices. The  
Class D output stages feature Texas Instruments’ edge rate  
control (ERC) PWM architecture that significantly reduces RF  
emissions while preserving audio quality and efficiency.  
The LM48901’s flexible I2S interface is compatible with stan-  
dard serial audio interfaces. A stereo differential-input ADC  
gives the device the ability to process analog stereo audio  
signals.  
The LM48901 is configured through an I2C compatible inter-  
face and is capable of delivering 2.8W/channel of continuous  
output power into an 4load with less than 10% THD+N. A  
2.1 mode pairs two output drivers in parallel, increasing cur-  
rent drive for 4loads.  
Output short circuit and thermal overload protection prevent  
the device from being damaged during fault conditions. Su-  
perior click and pop suppression eliminates audible transients  
on power-up/down and during shutdown. The LM48901 is  
available in space saving microSMD and LLP packages.  
Spatial Sound Processing  
I2S Compatible Input  
Differential-Input Stereo ADC  
Edge Rate Control Reduces EMI while Preserving Audio  
Quality and Efficiency  
Paralleled Output Mode  
Short Circuit and Thermal Overload Protection  
Minimum external components  
Click and Pop suppression  
Micro-power shutdown  
Available in space-saving micro SMD and LLP packages  
Applications  
Laptops  
Tablets  
Desktop Computers  
Sound Bars  
Multimedia Devices  
MP3 Player Accessories  
Key Specifications  
Docking Stations  
■ꢀSNR (A-Weighted)  
■ꢀOutput Power/channel, PVDD = 5V  
RL = 8Ω, THD+N 10%  
RL = 4Ω, THD+N 10%  
■ꢀTHD+N  
■ꢀEfficiency/Channel  
■ꢀPSRR at 217Hz  
■ꢀShutdown current  
87dBA (typ)  
1.7W (typ)  
2.8W (typ)  
0.06% (typ)  
89% (typ)  
71dB (typ)  
A (typ)  
Boomer® is a registered trademark of National Semiconductor Corporation.  
© 2012 Texas Instruments Incorporated  
301692 SNAS520C  
www.ti.com  
Typical Application  
30169203  
FIGURE 1. Typical Audio Amplifier Application Circuit  
www.ti.com  
2
30169209  
FIGURE 2. Channel Audio Amplifier Application Circuit  
Only OUT2 and OUT3 can be configured in parallel. OUT1 and OUT4 cannot be configured in parallel.  
3
www.ti.com  
Connection Diagrams  
micro SMD Package  
36–Bump micro SMD Marking  
301692a5  
Top View  
XY = Date code  
TT = Die traceability  
G = Boomer Family  
02 = LM48901RL  
30169202  
Top View  
Order Number LM48901RL  
See NS Package Number RLA36JSA  
SQ Package  
30169201  
Top View  
Order Number LM48901SQ  
See NS Package Number SQA32A  
www.ti.com  
4
Ordering Information  
Ordering Information Table  
Package  
MSL  
Level  
Order Number  
Package  
Drawing  
Number  
Transport Media  
Green Status n  
LM48901RL  
36–bump microSMD RLA36JSA  
250 units on tape and reel  
1000 units on tape and reel  
1000 units on tape and reel  
250 units on tape and reel  
4500 units on tape and reel  
1
1
1
1
1
RoHS & no Sb/Br  
RoHS & no Sb/Br  
RoHS & no Sb/Br  
RoHS & no Sb/Br  
RoHS & no Sb/Br  
LM48901RLX 36–bump microSMD RLA36JSA  
LM48901SQ  
32–pin LLP  
SQA32A  
SQA32A  
SQA32A  
LM48901SQE 32–pin LLP  
LM48901SQX 32–pin LLP  
TABLE 1. Pin Descriptions  
DESCRIPTION  
BUMP  
A1  
PIN  
1
NAME  
OUT4+  
PVDD  
Channel 4 Non-Inverting Output  
Class D Power Supply  
A2, A5  
A3  
2, 7  
4
OUT3+  
OUT2+  
OUT1+  
OUT4-  
PGND  
OUT3-  
OUT2-  
OUT1-  
IOVDD  
DVDD  
Channel 3 Non-Inverting Output. Connect to OUT2+ in Parallel Mode.  
Channel 2 Non-Inverting Output. Connect to OUT3+ in Parallel Mode.  
Channel 1 Non-Inverting Output  
Channel 4 Inverting Output  
A4  
5
A6  
8
B1  
31  
9, 32  
3
B2, B5  
B3  
Power Ground  
Channel 3 Inverting Output. Connect to OUT2- in Parallel Mode.  
Channel 2 Inverting Output. Connect to OUT3- in Parallel Mode.  
Channel 1 Inverting Output  
B4  
6
B6  
10  
29  
28  
30  
11  
12  
27  
26  
30  
13  
25  
23  
20  
18  
15  
14  
24  
22  
21  
19  
17  
16  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
Digital Interface Power Supply  
Digital Power Supply  
DGND  
AGND1  
AVDD3  
AVDD1  
SHDN  
I2C_EN  
IOGND  
AGND2  
PLLVDD  
AVDD2  
I2C_EX  
Digital Ground  
Modulator Analog Ground  
ADC Reference Power Supply  
Modulator Analog Power Supply. Set to same voltage as PVDD for maximum headroom.  
Active Low Shutdown. Connect to VDD for normal operation.  
I2C Enable Input  
Digital Interface Ground  
ADC Analog Ground  
PLL Power Supply  
ADC Analog Power Supply  
I2C Enable Output  
I2S Word Select Input  
E2  
WS  
SDA  
INR-  
INL-  
I2C Serial Data Input  
E3  
E4  
Right Channel Inverting Analog Input  
Left Channel Inverting Analog Input  
ADC Reference Bypass  
E5  
E6  
REF  
F1  
MCLK  
SCLK  
SDIO  
SCL  
Master Clock  
F2  
Serial Clock Input  
I2S Serial Data Input/Output  
F3  
I2C Clock Input  
F4  
F5  
INR+  
INL+  
Right Channel Non-Inverting Analog Input  
Left Channel Non-Inverting Analog Input  
F6  
5
www.ti.com  
Thermal Resistance  
ꢁθJA (microSMD)  
ꢁθJA (LLP)  
Absolute Maximum Ratings (Note 1, Note  
2)  
26°C/W  
26°C/W  
2.6°C/W  
If Military/Aerospace specified devices are required,  
please contact the Texas Instruments Sales Office/  
Distributors for availability and specifications.  
ꢁθJC (LLP)  
Operating Ratings  
Supply Voltage  
Temperature Range  
TMIN TA TMAX  
Supply Voltage  
AVDD  
AVDD, PVDD, PLVDD, IOVDD(Note 1)  
−40°C TA +85°C  
6.0V  
Supply Voltage, DVDD (Note 1)  
Storage Temperature  
2.2V  
−65°C to + 150°C  
−0.3V to VDD + 0.3V  
Internally limited  
2000V  
2.7V AVDD 5.5V  
2.7V PVDD 5.5V  
2.7V PLLVDD 5.5V  
1.62V IOVDD 5.5V  
1.62V DVDD 1.98V  
Input Voltage  
PVDD  
Power Dissipation (Note 3)  
ESD Susceptibility (Note 4)  
ESD Susceptibility (Note 5)  
Junction Temperature  
PLLVDD  
IOVDD  
DVDD  
150V  
150°C  
Electrical Characteristics PVDD = AVDD = 5V, IOVDD = PLLVDD = 3.3V, DVDD  
=
1.8 (Note 2, Note 8)  
The following specifications apply for AV = 0dB, CREF = 4.7µF, RL = 8Ω, f = 1kHz, unless otherwise specified. Limits apply for TA  
= 25°C.  
LM48901  
Units  
Symbol  
AVDD  
Parameter  
Conditions  
Min  
(Note 8)  
Typ  
Max  
(Limits)  
(Note 7)  
(Note 8)  
Analog Supply Voltage Range  
(Note 9)  
2.7  
2.7  
5.5  
5.5  
V
V
PVDD  
Amplifier Supply Voltage Range (Note 9)  
PLL Supply Voltage Range  
PLLVDD  
IOVDD  
DVDD  
2.7  
5.5  
V
Interface Supply Voltage Range  
Digital Supply Voltage Range  
1.62  
1.62  
5.5  
V
1.98  
21  
V
LM48901RL  
17.5  
19.2  
mA  
mA  
AIDD  
Analog Quiescent Supply Current  
LM48901SQ  
22.3  
Amplifier Quiescent Supply  
Current  
PIDD  
RL = 8Ω  
5.25  
1.5  
8.25  
mA  
mA  
mA  
PLLIDD  
DIDD  
PLL Quiescent Supply Current  
LM48901RL  
Quiescent Digital Power Supply  
Current  
5.5  
6.2  
5
Shutdown Current (Analog,  
Amplifier and PLL Supplies)  
ISD  
Shutdown Enabled  
Shutdown Enabled  
1
μA  
DISTBY  
DISD  
VOS  
Digital Standby Current  
Digital Shutdown Current  
30  
2
μA  
μA  
Differential Output Offset Voltage VIN = 0  
–17  
0
17  
mV  
ms  
ms  
kHz  
Power Up (Device Initialization)  
150  
30  
384  
TWU  
fSW  
Wake-up Time  
From Shutdown  
fS = 48kHz  
Switching Frequency  
www.ti.com  
6
LM48901  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
(Note 7)  
Max  
(Note 8)  
(Note 8)  
RL = 4Ω, THD+N = 10%  
f = 1kHz, 22kHz BW  
VDD = 5V  
2.8  
1.4  
W
W
VDD = 3.6V  
RL = 4Ω, THD+N = 1%  
f = 1kHz, 22kHz BW  
VDD = 5V  
2.2  
1.2  
W
W
VDD = 3.6V  
PO  
Output Power/Channel  
RL = 8Ω, THD+N = 10%  
f = 1kHz, 22kHz BW  
VDD = 5V  
1.7  
W
VDD = 3.6V  
825  
mW  
RL = 8Ω, THD+N = 1%  
f = 1kHz, 22kHz BW  
VDD = 5V  
1.0  
1.3  
W
VDD = 3.6V  
650  
mW  
RL = 4Ω, THD+N = 10%, f = 1kHz, 22kHz BW  
VDD = 5V  
3.2  
1.6  
W
W
VDD = 3.6V  
Output Power (Parallel Mode)  
(Note 10)  
PO  
RL = 4Ω, THD+N = 1%, f = 1kHz, 22kHz BW  
VDD = 5V  
2.5  
1.2  
W
W
%
VDD = 3.6V  
THD+N  
PSRR  
Total Harmonic Distortion + Noise PO = 500mW, f = 1kHz, RL = 8Ω  
0.06  
VRIPPLE = 200mVP-P sine, Inputs AC GND, CIN = 1μF  
fRIPPLE = 217Hz, Applied to PVDD  
fRIPPLE = 217Hz, Applied to DVDD  
fRIPPLE = 1kHz, Applied to PVDD  
fRIPPLE = 1kHz, Applied to DVDD  
fRIPPLE = 10kHz, Applied to PVDD  
fRIPPLE = 10kHz, Applied to DVDD  
VRIPPLE = 200mVP-P sine, Inputs –120dBFS  
fRIPPLE = 217Hz, Applied to PVDD  
fRIPPLE = 217Hz, Applied to DVDD  
fRIPPLE = 1kHz, Applied to PVDD  
fRIPPLE = 1kHz, Applied to DVDD  
fRIPPLE = 10kHz, Applied to PVDD  
fRIPPLE = 10kHz, Applied to DVDD  
67  
54  
66  
54  
57  
52  
dB  
dB  
dB  
dB  
dB  
dB  
Power Supply Rejection Ratio  
(ADC Path)  
71  
58  
69  
57  
70  
55  
dB  
dB  
dB  
dB  
dB  
dB  
Power Supply Rejection Ratio  
(I2S Path)  
PSRR  
VRIPPLE = 1VP-P, fRIPPLE = 217Hz,  
AV = 0dB  
CMRR  
Common Mode Rejection Ratio  
Efficiency/Channel  
Efficiency  
60  
dB  
VDD = 5V, PO = 1.1W  
VDD = 3.6V, PO = 400mW  
VDD = 5V, PO = 1.1W  
VDD = 3.6V, PO = 400mW  
ADC Input, PO = 1W  
I2S Input, PO = 1W  
89  
87  
87  
86  
85  
87  
%
%
η
%
η
%
dB  
dB  
SNR  
Signal-to-Noise-Ratio  
7
www.ti.com  
LM48901  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
(Note 7)  
Max  
(Note 8)  
(Note 8)  
Common Mode Input Voltage  
Range  
CMVR  
5
V
Inputs AC GND, A-weighted,  
AV = 0dB  
130  
μV  
εOS  
Output Noise  
Crosstalk  
I2S Input  
72  
75  
μV  
XTALK  
dB  
I2C Interface Characteristics (Note 1, Note 2)  
The following specifications apply for RPU = 1kto IOVDD, unless otherwise specified. Limits apply for TA = 25°C.  
LM48901  
Symbol  
Parameter  
Conditions  
Units  
Min  
Typ  
Max  
(Note 7)  
(Note 6)  
(Note 7)  
0.7*IOVDD  
VIH  
VIL  
Logic Input High Threshold  
Logic Input Low Threshold  
Logic Output Low Threshold  
Logic Output High Current  
SCL Frequency  
SDA, SCL  
SDA, SCL  
V
mV  
V
300  
VOL  
IOH  
SDA, ISDA = 3.6mA  
SDA, SCL  
0.35  
2
uA  
kHz  
400  
Hold Time  
(repeated START Condition)  
1
0.6  
µs  
2
3
Clock Low Time  
Clock High Time  
1.3  
µs  
ns  
600  
Setup Time for Repeated  
START condition  
4
600  
ns  
5
6
7
8
9
Data Hold Time  
Output  
300  
100  
900  
ns  
ns  
ns  
ns  
ns  
Data Setup Time  
SDA Rise Time  
300  
300  
SDA Fall Time  
Setup Time for STOP Condition  
600  
1.3  
Bus Free Time Between STOP  
and START Condition  
10  
µs  
I2S Timing Characteristics (Note 2, Note 8)  
The following specifications apply for DVDD = 1.8V, unless otherwise specified. Limits apply for TA = 25°C.  
LM48901  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
(Note 6)  
Max  
(Note 7)  
(Note 7)  
tMCLKL  
tMCLKH  
tMCLKY  
tBCLKR  
tBCLKCF  
tBCLKDS  
MCLK Pulse Width Low  
MCLK Pulse Width High  
MCLK Period  
16  
16  
27  
ns  
ns  
ns  
ns  
ns  
%
SCLK rise time  
3
3
SCLK fall time  
SCLK Duty Cycle  
50  
LRC Propagation Delay from  
SCLK falling edge  
TDL  
TDST  
TDHT  
10  
ns  
ns  
ns  
DATA Setup Time to SCLK  
Rising Edge  
10  
10  
DATA Hold Time from SCLK  
Rising Edge  
www.ti.com  
8
Note 1: Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability  
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in  
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the  
device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.  
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified  
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.  
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum  
allowable power dissipation is PDMAX = (TJMAX − TA) / θJA or the given in Absolute Maximum Ratings, whichever is lower.  
Note 4: Human body model, applicable std. JESD22-A114C.  
Note 5: Machine model, applicable std. JESD22-A115-A.  
Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product  
characterization and are not guaranteed.  
Note 7: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.  
Note 8: RL is a resistive load in series with two inductors to simulate an actual speaker load. For RL = 8Ω, the load is 15μH+8Ω+15μH. For RL = 4Ω, the load is  
15μH+4Ω+15μH.  
Note 9: Maintain PVDD and AVDD at the same voltage potential.  
Note 10: Only OUT2 and OUT3 can be configured in Parallel Mode.  
9
www.ti.com  
 
 
 
 
 
 
 
 
 
 
Typical Performance Characteristics  
THD+N vs FREQUENCY  
VDD = 3.6V, POUT = 500mW,  
THD+N vs FREQUENCY  
VDD = 5V, POUT = 925 mW,  
RL = 8Ω, ADC Input  
RL = 8Ω, ADC Input  
30169220  
30169221  
THD+N vs FREQUENCY  
VDD = 3.6V, POUT = 7505 mW,  
THD+N vs FREQUENCY  
VDD = 5V, POUT = 1.3W,  
RL = 4Ω, ADC Input  
RL = 4Ω, ADC Input  
30169223  
30169222  
THD+N vs FREQUENCY  
THD+N vs FREQUENCY  
VDD = 3.6V, POUT = 900mW,  
VDD = 3.6V, POUT = 450mW,  
RL = 4Ω, ADC Input  
RL = 8Ω, I2S Input  
30169224  
30169226  
www.ti.com  
10  
THD+N vs FREQUENCY  
VDD = 5V, POUT = 950mW,  
THD+N vs FREQUENCY  
VDD = 3.6V, POUT = 750mW,  
RL = 8Ω, I2S Input  
RL = 4Ω, I2S Input  
30169227  
30169283  
30169285  
30169282  
THD+N vs FREQUENCY  
VDD = 5V, POUT = 1.65W,  
THD+N vs FREQUENCY  
VDD = 3.6V, POUT = 850mW,  
RL = 4Ω, I2S Input  
RL = 4Ω, I2S Input  
30169284  
THD+N vs FREQUENCY  
VDD = 5V, POUT = 1.8W,  
THD+N vs OUTPUT POWER  
RL = 8Ω, f = 1kHz, ADC Input  
RL = 4Ω, I2S Input  
30169210  
11  
www.ti.com  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, ADC Input, Single channel  
THD+N vs OUTPUT POWER  
RL = 8Ω, f = 1kHz, ADC Input  
30169211  
30169212  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, ADC Input, All channels  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, ADC Input, Parallel mode  
30169213  
30169214  
THD+N vs OUTPUT POWER  
RL = 8Ω, f = 1kHz, I2S Input, Single mode  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, I2S Input, Single channel  
30169215  
30169216  
www.ti.com  
12  
THD+N vs OUTPUT POWER  
RL = 8Ω, f = 1kHz, I2S Input, All channels  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, I2S Input, All channels  
30169217  
30169218  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, I2S Input, All channels  
THD+N vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, I2S Input, Parallel mode  
30169218  
30169219  
EFFICIENCY vs OUTPUT POWER  
RL = 8Ω, f = 1kHz, ADC Input, All channels  
EFFICIENCY vs OUTPUT POWER  
RL = 4Ω, f = 1kHz, ADC Input, All channels  
30169286  
30169287  
13  
www.ti.com  
POWER DISSIPATION vs OUTPUT POWER  
POWER DISSIPATION vs OUTPUT POWER  
RL = 8Ω, f = 1kHz, ADC Input  
RL = 4Ω, f = 1kHz, ADC Input  
30169288  
30169289  
OUTPUT POWER vs SUPPLY VOLTAGE  
RL = 4Ω, f = 1kHz, ADC Input, Single mode  
OUTPUT POWER vs SUPPLY VOLTAGE  
RL = 4Ω, f = 1kHz, ADC Input, Parallel mode  
30169290  
30169291  
OUTPUT POWER vs SUPPLY VOLTAGE  
RL = 8Ω, f = 1kHz, ADC Input, Single channel  
PSRR vs FREQUENCY  
PVDD = 5V, VRIPPLE = 200mVP-P, RL = 8Ω,  
ADC Mode, ADC input = AC GND  
30169292  
301692a8  
www.ti.com  
14  
PSRR vs FREQUENCY  
PSRR vs FREQUENCY  
PVDD = 5V, VRIPPLE = 200mVP-P, RL = 8Ω,  
I2S mode, I2S input = –120dBFS  
DVDD = 1.8V, VRIPPLE = 200mVP-P, RL = 8Ω,  
ADC Mode, ADC input = AC GND  
301692a9  
301692b0  
PSRR vs FREQUENCY  
DVDD = 1.8V, VRIPPLE = 200mVP-P, RL = 8Ω,  
I2S mode, I2S input = –120dBFS  
PSRR vs FREQUENCY  
VRIPPLE = 200mVP-P, RL = 8Ω,  
ADC mode  
301692b1  
30169297  
SUPPLY CURRENT vs SUPPLY VOLTAGE (PVDD  
RL = Open, ADC mode,  
)
SUPPLY CURRENT vs SUPPLY VOLTAGE (AVDD  
RL = Open  
)
All channels enabled  
30169299  
30169298  
15  
www.ti.com  
SUPPLY CURRENT vs SUPPLY VOLTAGE (PLVDD  
ADC mode, All channels enabled  
)
SUPPLY CURRENT vs SUPPLY VOLTAGE (DVDD  
RL = Open  
)
301692a0  
301692a1  
SHUTDOWN CURRENT vs SUPPLY VOLTAGE  
SHUTDOWN CURRENT vs SUPPLY VOLTAGE (DVDD)  
301692a2  
301692a3  
OUTPUT NOISE VS FREQUENCY  
PVDD = 5V, RL = 8Ω,  
ADC mode, ADC Input = AC GND  
OUTPUT NOISE VS FREQUENCY  
DVDD = 1.8V, RL = 8Ω,  
I2S mode, I2S Input = –120dBFS  
301692b7  
301692b8  
www.ti.com  
16  
as the I2C master, generating the SCL signal. Each transmis-  
sion sequence is framed by a START condition and a STOP  
condition Figure 4.  
Application Information  
I2C COMPATIBLE INTERFACE  
Due to the number of data registers, the LM48901 employs a  
page mode scheme. Each data write consists of 7, 8 bit data  
bytes, device address (1 byte), 16 bit register address (2  
bytes), and 32 bit register data (4 bytes). Each byte is followed  
by an acknowledge pulse Figure 5. Single byte read and write  
commands are ignored. The LM48901 device address is  
0110000X.  
The LM48901 is controlled through an I2C compatible serial  
interface that consists of a serial data line (SDA) and a serial  
clock (SCL). The clock and data lines are bi-directional (open  
drain). The LM48901 can communicate at clock rates up to  
400kHz. Figure 3 shows the I2C interface timing diagram. Da-  
ta on the SDA line must be stable during the HIGH period of  
SCL. The LM48901 is a transmit/receive device, and can act  
30169240  
FIGURE 3. I2C Timing Diagram  
30169241  
FIGURE 4. Start and Stop Diagram  
17  
www.ti.com  
 
 
WRITE SEQUENCE  
Once the master device registers the ACK bit, the first 8-bit  
register address word is sent, MSB first [15:8]. Each data bit  
should be stable while SCL is HIGH. After the first 8-bit reg-  
ister address is sent, the LM48901 sends another ACK bit.  
Upon receipt of acknowledge, the second 8-bit register ad-  
dress word is sent [7:0], followed by another ACK bit. The  
register data is sent, 8-bits at a time, MSB first in the following  
order [7:0], [15:8], [23:16], [31:24]. Each 8-bit word is followed  
by an ACK, upon receipt of which the successive 8-bit word  
is sent. Following the acknowledgement of the last register  
data word [31:24], the master issues a STOP bit, allowing  
SDA to go high while SDA is high.  
The example write sequence is shown in Figure 5. The  
START signal, the transition of SDA from HIGH to LOW while  
SDA is HIGH, is generated, altering all devices on the bus that  
a device address is being written to the bus.  
The 7-bit device address is written to the bus, most significant  
bit (MSB) first, followed by the R/W bit (R/W = 0 indicating the  
master is writing to the LM48901). The data is latched in on  
the rising edge of the clock. Each address bit must be stable  
while SDA is HIGH. After the R/W\ bit is transmitted, the mas-  
ter device releases SDA, during which time, an acknowledge  
clock pulse is generated by the slave device. If the LM48901  
receives the correct address, the device pulls the SDA line  
low, generating and acknowledge bit (ACK).  
30169205  
FIGURE 5. Example I2C Write Sequence  
READ SEQUENCE  
LM48901. Upon receipt of the acknowledge, the second 8-bit  
register address word is sent [7:0], followed by another ACK  
bit. Following the acknowledgement of the last register ad-  
dress, the master initiates a REPEATED START, followed by  
the 7-bit device address, followed by R/W = 1 (R/W = 1 indi-  
cating the master wants to read data from the LM48901). The  
LM48901 sends an ACK, followed by the selected register  
data. The register data is sent, 8-bits at a time, MSB first in  
the following order [7:0], [15:8], [23:16], [31:24]. Each 8-bit  
word is followed by an ACK, upon receipt of which the suc-  
cessive 8-bit word is sent. Following the acknowledgement of  
the last register data word [31:24], the master issues a STOP  
bit, allowing SDA to go high while SDA is high.  
The example read sequence is shown in Figure 6. The  
START signal, the transition of SDA from HIGH to LOW while  
SDA is HIGH, is generated, altering all devices on the bus that  
a device address is being written to the bus.  
The 7-bit device address is written to the bus, followed by the  
R/W = 0. After the R/W bit is transmitted, the master device  
releases SDA, during which time, an acknowledge clock  
pulse is generated by the slave device. If the LM48901 re-  
ceives the correct address, the device pulls the SDA line low,  
generating and acknowledge bit (ACK). Once the master de-  
vice registers the ACK bit, the first 8-bit register address word  
is sent, MSB first [15:8], followed by and ACK from the  
30169206  
FIGURE 6. Example I2C Read Sequence  
www.ti.com  
18  
 
 
I2S DATA FORMAT  
Mode, the audio data format is similar to the Normal Mode,  
without the delay between the LSB and the change in  
I2S_WS. In Right Justified Mode, the audio data MSB is trans-  
mitted after a delay of a preset number of bits.  
The LM48901 supports three I2S formats: Normal Mode Fig-  
ure 7, Left Justified Mode Figure 8, and Right Justified Mode  
Figure 9. In Normal Mode, the audio data is transmitted MSB  
first, with the unused bits following the LSB. In Left Justified  
301692b4  
FIGURE 7. I2S Normal Input Format  
301692b5  
FIGURE 8. I2S Left Justified Input Format  
301692b6  
FIGURE 9. I2S Right Justified Input Format  
19  
www.ti.com  
 
 
 
MEMORY ORGANIZATION  
configuration settings, and a 48-bit wide Audio Sample Space  
that holds the current audio data sampled from either the AD-  
Cs or the I2S interface, organized as shown in Figure 10.  
The LM48901 memory is organized into three main regions:  
a 32-bit wide Coefficient Space that holds the spatial coeffi-  
cients, a 32-bit wide Register Space that holds the device  
30169207  
FIGURE 10. LM48901 Memory Organization  
COEFFICIENT MEMORY  
Register 1 (0x504h) = 1 to enable Debug mode. The Coeffi-  
cient Memory Space is organized as follows.  
The device must be in Debug mode in order to write to the  
Coefficient memory. Set Bit 7 (DBG_ENABLE) in Filter Debug  
TABLE 2. Coefficient Memory Space  
REGISTER ADDRESS  
(31:16)  
REGISTER CONTENTS  
(15:0)  
256x16 bit Array Taps  
0x000h - 0x0FFh  
256x16 bit Array Taps  
(Left Input to OUT4)  
256x16 bit Array Taps  
(Left Input to OUT3)  
256x16 bit Array Taps  
(Left Input to OUT2)  
256x16 bit Array Taps  
(Left Input to OUT1)  
C0 128x16 bit Prefilter FIR Taps  
(Left to Left)  
(Right Input to OUT4)  
256x16 bit Array Taps  
0x100h - 0x1FFh  
(Right Input to OUT3)  
256x16 bit Array Taps  
0x200h - 0x2FFh  
(Right Input to OUT2)  
256x16 bit Array Taps  
0x300h - 0x3FFh  
(Right Input to OUT1)  
C2 128x16 bit Prefilter Taps  
0x400h - 0x47Eh (EVEN)  
(Right to Right)  
C3 128x16 bit Prefilter Taps  
0x441h - 0x47Fh (ODD)  
C1 128x16 bit Prefilter FIR Taps  
(Left to Right)  
(Right to Left)  
www.ti.com  
20  
 
CONTROL REGISTERS  
TABLE 3. Register Map  
Register  
Name  
Register  
Address  
Default  
Value  
7
6
5
4
3
2
1
0
0x500h  
[7:0]  
0xFFh  
ARRAY_TAP  
PRE_TAP  
CH2_SEL  
0x500h  
[15:8]  
0xFFh UNUSED  
FILTER  
CONTROL  
0x500h  
[23:16]  
0xE4h  
0x31h  
0x00h  
CH4_SEL  
CH3_SEL  
ARRAY_ PRE_  
CH1_SEL  
ARRAY_  
PRE_  
0x500h  
[31:24]  
UNUSED  
COMP_TH  
UNUSED COMP_RATIO  
ENABLE ENABLE BYPASS BYPASS  
0x501h  
[7:0]  
G1_GAIN  
0x501h  
[15:8]  
0x00h UNUSED  
0x00h  
POST_GAIN  
FILTER  
COMP1  
0x501h  
[23:16]  
ARRAY_COMP_SELECT  
UNUSED  
0x501h  
[31:24]  
0x00h  
0x502h  
[7:0]  
G1_GAIN  
G1_GAIN  
COMP_TH  
COMP_RATIO  
COMP_TH  
COMP_RATIO  
0x00h  
0x502h  
[15:8]  
0x00h UNUSED  
POST_GAIN  
UNUSED  
FILTER  
COMP2  
0x502h  
[23:16]  
0x00h  
0x502h  
[31:24]  
0x00h UNUSED  
0xFFh  
POST_GAIN  
UNUSED  
DBG_DATA [7:0]  
DBG_DATA [15:8]  
DBG_DATA [23:16]  
UNUSED  
0x503h  
[7:0]  
0x503h  
[15:8]  
0xFFh  
FILTER  
DEBUG0  
0x503h  
[23:16]  
0xFFh  
DBG_  
0xFFh  
0x503h  
[31:24]  
STEP  
DBG_  
0xFFh  
STEP_  
FILTER_  
SELECT  
0x504h  
[7:0]  
UNUSE  
D
ACC_ADDR  
ENABLE ENABLE  
0x504h  
[15:8]  
0xFFh  
0xFFh  
0xFFh  
0x00h  
0x80h  
0x00h  
0x80h  
UNUSED  
UNUSED  
UNUSED  
FILTER  
DEBUG1  
0x504h  
[23:16]  
0x504h  
[31:24]  
0x505h  
[7:0]  
COUNT1_MODE  
UNUSED  
CH_SEL  
COUNT2_MODE  
CH_SEL  
0x505h  
[15:8]  
CLEAR  
FILTER  
STATS  
0x505h  
[23:16]  
COUNT1_MODE  
UNUSED  
0x505h  
[31:24]  
CLEAR  
COUNT2_MODE  
21  
www.ti.com  
Register  
Name  
Register  
Address  
Default  
Value  
7
6
5
4
3
2
1
0
0x508h  
[7:0]  
0x7Fh  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
TAP_LENGTH  
UNUSED  
0x508h  
[15:8]  
FILTER TAP  
(READ-  
0x508h  
[23:16]  
ONLY)  
UNUSED  
0x508h  
[31:24]  
UNUSED  
0x509h  
[7:0]  
DBG_ACCL [7:0]  
DBG_ACCL [15:8]  
DBG_ACCL [23:16]  
DBG_ACCL [31:24]  
DBG_ACCH  
0x509h  
[15:8]  
ACCUML  
DEBUG  
(READ-  
ONLY)  
0x509h  
[23:16]  
0x509h  
[31:24]  
0x50Ah  
[7:0]  
0x50Ah  
[15:8]  
ACCUMH  
DEBUG  
(READ-  
ONLY)  
BDG_ACCH  
0x50Ah  
[23:16]  
UNUSED  
0x50Ah  
[31:24]  
UNUSED  
0x50Bh  
[7:0]  
DBG_SAT [7:0]  
DBG_SAT [15:8]  
DBG_SAT [23:16]  
UNUSED  
0x50Bh  
[15:8]  
DBG SAT  
(READ-  
ONLY)  
0x50Bh  
[23:16]  
0x50Bh  
[31:24]  
0x50Ch  
[7:0]  
COUNT [7:0]  
COUNT [15:8]  
COUNT [23:16]  
COUNT [30:24]  
COUNT [7:0]  
COUNT [15:8]  
COUNT [23:16]  
COUNT [30:24]  
0x50Ch  
[15:8]  
STAT  
PCNT1  
(READ-  
ONLY)  
0x50Ch  
[23:16]  
0x50Ch  
[31:24]  
OVF  
0x50Dh  
[7:0]  
0x50Dh  
[15:8]  
STAT  
PCNT2  
(READ-  
ONLY)  
0x50Dh  
[23:16]  
0x50Dh  
[31:24]  
OVF  
www.ti.com  
22  
Register  
Name  
Register  
Address  
Default  
Value  
7
6
5
4
3
2
1
0
0x50Eh  
[7:0]  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
COUNT [7:0]  
COUNT [15:8]  
COUNT [23:16]  
0x50Eh  
[15:8]  
STAT  
ACNT1  
(READ-  
ONLY)  
0x50Eh  
[23:16]  
0x50Eh  
[31:24]  
OVF  
COUNT [30:24]  
0x50Fh  
[7:0]  
COUNT [7:0]  
COUNT [15:8]  
COUNT [23:16]  
0x50Fh  
[15:8]  
STAT  
ACNT2  
(READ-  
ONLY)  
0x50Fh  
[23:16]  
0x50Fh  
[31:24]  
OVF  
COUNT [30:24]  
CONFIG  
_CLK_  
0x530h  
[7:0]  
0x30h  
DEVICE_ID  
ENABLE  
ALTID_  
ENABLE  
CL_  
0x530h  
[15:8]  
SYS  
CONFIG  
0x00h  
0x8Ch  
0x00h  
0x00h  
0x10h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
ALT_DEVICE_ID  
CL_PAGE  
0x530h  
[23:16]  
UNUSED  
CL_W  
CL_REQ  
ENABLE  
MBIST1_ MBIST0_  
ENABLE ENABLE  
0x530h  
[31:24]  
UNUSED  
0x531h  
[7:0]  
TRANS_LENGTH [7:0]  
TRANS_LENGTH [15:8]  
REG_START_ADDR [7:0]  
REG_START_ADDR [16:8]  
E2_START_ADDR [7:0]  
E2_START_ADDR [15:8]  
UNUSED  
0x531h  
[15:8]  
CL REG0  
0x531h  
[23:16]  
0x531h  
[31:24]  
0x532h  
[7:0]  
0x532h  
[15:8]  
CL REG1  
0x532h  
[23:16]  
0x532h  
[31:24]  
UNUSED  
0x533h  
[7:0]  
UNUSED  
E2_OFFSET  
0x533h  
[15:8]  
UNUSED  
UNUSED  
UNUSED  
E2_  
OFFSET  
0x533h  
[23:16]  
0x533h  
[31:24]  
23  
www.ti.com  
Register  
Name  
Register  
Address  
Default  
Value  
7
6
5
4
3
2
1
0
I2C  
0x534h  
[7:0]  
0x00h  
0x00h  
0x00h  
0x00h  
0x7Fh  
0x80h  
0x00h  
0x80h  
UNUSED  
E2NXT_OFFSET  
UNUSED  
_EnXT  
0x534h  
[15:8]  
I2C_EnXT  
0x534h  
[23:16]  
UNUSED  
UNUSED  
0x534h  
[31:24]  
0x538h  
[7:0]  
UNUSED  
MBIST_EN  
MBIST_GO  
MBIST_DONE  
0x538h  
[15:8]  
MBIST  
STAT  
(READ-  
ONLY)  
UNUSED  
UNUSED  
UNUSED  
0x538h  
[23:16]  
0x538h  
[31:24]  
0x520h  
[7:0]  
POWER_UP_DELAY [7:0]  
POWER_UP_DELAY [15:8]  
DEGLITCH_DELAY  
0x06h  
0x00h  
0x20h  
0x520h  
[15:8]  
DELAY  
0x520h  
[23:16]  
0x520h  
[31:24]  
STATE_DELAY  
0x09h  
0x00h  
VREF_  
DELAY  
0x521h  
[7:0]  
UNUSED  
PULSE  
FORCE ENABLE  
QSA_  
CLK_  
STOP  
PCM_  
0x521h  
[15:8]  
0x00h UNUSED  
HIFI  
I2S_CLK  
MCLK_RATE  
ENABLE &  
CLOCKS  
CLK_SEL  
ADC_  
SYNC  
0x521h  
[23:16]  
0x00h  
0x00h  
UNUSED  
UNUSED  
0x521h  
[31:24]  
ZERO_  
0x33h  
0x522h  
[7:0]  
MUTE  
ADC_LVL  
CROSS  
0x522h  
[15:8]  
I2S_LVL  
0x33h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
UNUSED  
DIGITAL  
MIXER  
0x522h  
[23:16]  
ADC_DS  
P
I2SB_ON I2SA_ON  
OUT4_SEL  
I2SB_TX_SEL  
OUT3_SEL  
I2SA_TX_SEL  
OUT2_SEL  
I2S_DSP  
0x522h  
[31:24]  
OUT1_SEL  
ANA_LVL  
ZERO_  
0x523h  
[7:0]  
BYPASS  
_MOD  
AUTO  
_SD  
ADC  
TRIM  
ZERO  
_DIG  
PARALLEL  
TSD_DIS  
ANA  
PMC_  
TEST  
0x523h  
[15:8]  
SCKT  
_DIS  
UNUSED  
SE_MOD  
TST_SHT  
ANALOG  
0x523h  
[23:16]  
UNUSED  
UNUSED  
0x523h  
[31:24]  
www.ti.com  
24  
Register  
Name  
Register  
Address  
Default  
Value  
7
6
5
4
3
2
1
0
STEREO_  
SYNC_  
SYNC_  
MODE  
CLOCK_  
PHASE  
TX_  
RX_  
0x524h  
[7:0]  
SYNC  
_MS  
0x01h  
CLK_MS  
STEREO  
PHASE  
ENABLE ENABLE  
0x524h  
[15:8]  
0x00h  
0x00h  
0x00h  
0x00h  
UNUSED  
HALF_CYCLE_DIVIDER  
SYNTH_  
0x524h  
[23:14]  
UNUSED  
SYNTH_NUM  
DENOM  
0x524h  
[31:24]  
UNUSED  
TX_BIT  
MONO_SYNC_WIDTH  
TX_WIDTH  
SYNC_RATE  
RX_WIDTH  
I2S PORT  
0x525h  
[7:0]  
RX_  
RX_  
0x525h  
[15:8]  
RX  
_MODE  
0x02h  
0x02h  
RX_MSB_POSITION  
A/µLAW COMPAN  
D
TX_  
TX_  
0x525h  
[23:16]  
TX  
_MODE  
TX_MSB_POSITION  
A/µLAW COMPAN  
D
0x525h  
[31:24]  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
UNUSED  
0x526h  
[7:0]  
ADC_COMP_COEFF_C0 [7:0]  
ADC_COMP_COEFF_C0 [15:8]  
ADC_COMP_COEFF_C1 [7:0]  
ADC_COMP_COEFF_C1 [15:8]  
ADC_COMP_COEFF_C2 [7:0]  
ADC_COMP_COEFF_C2 [15:8]  
0x526h  
[15:8]  
0x526h  
[23:14]  
ADC TRIM  
CO-EF  
FICIENT  
0x526h  
[31:24]  
0x527h  
[7:0]  
0x527h  
[15:8]  
I2SL  
_LVL  
CLIP  
I2SR  
_LVL  
CLIP  
ADCL  
_LVL  
CLIP  
ADCR  
_LVL  
CLIP  
ADCL_  
CLIP  
ADCR_  
CLIP  
0x528h  
[7:0]  
0x00h  
UNUSED  
UNUSED  
0x528h  
[15:8]  
READBACK  
(READ-  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
0x00h  
THERMAL SHORT4 SHORT3 SHORT2 SHORT1  
ONLY)  
0x528h  
[23:14]  
SPARE  
UNUSED  
CE_STATE  
SPARE  
0x528h  
[31:24]  
0x529h  
[7:0]  
UNUSED  
0x529h  
[15:8]  
READBACK  
(READ-  
0x529h  
[23:14]  
ONLY)  
UNUSED  
UNUSED  
0x529h  
[31:24]  
FILTER CONTROL REGISTER (0x500h)  
Configures the LM48901 Array and Pre-Array filters (Spatial Engine). The Filter Control Register sets the length of the Array and  
Pre-Array filter taps, and selects the filter channel source for each audio output. Set PRE_BYPASS and ARRAY_BYPASS to 1 to  
bypass the Spatial Engine, disabling the spatial effect without modifying the coefficients. Set PRE_ENABLE and ARRAY_ENABLE  
25  
www.ti.com  
to 1 to enable the Spatial Engine. Set PRE_ENABLE and ARRAY_ENABLE to 0 to disable the spatial engine. Disabling the Spatial  
Engine does not affect the register contents. Disable the Spatial Engine during coefficient programming.  
TABLE 4. Filter Control Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
Array Filter Tap Length  
7:0  
ARRAY_TAP  
Pre-filter Tap Length. Pre-filter tap length should be  
less than or equal to the Array filter tap length  
14:8  
15  
PRE_TAP  
UNUSED  
Channel 1 Output Routing Selection  
Array Filter Channel 0 Output Select  
Array Filter Channel 1 Output Select  
Array Filter Channel 2 Output Select  
Array Filter Channel 3 Output Select  
Channel 2 Output Routing Selection  
Array Filter Channel 0 Output Select  
Array Filter Channel 1 Output Select  
Array Filter Channel 2 Output Select  
Array Filter Channel 3 Output Select  
Channel 3 Output Routing Selection  
Array Filter Channel 0 Output Select  
Array Filter Channel 1 Output Select  
Array Filter Channel 2 Output Select  
Array Filter Channel 3 Output Select  
Channel 4 Output Routing Selection  
Array Filter Channel 0 Output Select  
Array Filter Channel 1 Output Select  
Array Filter Channel 2 Output Select  
Array Filter Channel 3 Output Select  
00  
01  
10  
11  
17:16  
19:18  
21:20  
23:22  
CH1_SEL  
CH2_SEL  
CH3_SEL  
CH4_SEL  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
27:24  
28  
UNUSED  
0
1
0
1
Pre-Array filter not bypassed  
Pre-Array filter bypassed  
Array filter not bypassed  
Array filter bypassed  
PRE_BYPASS  
29  
ARRAY_BYPASS  
Pre-Array filter disabled. Disable the Pre-Array Filter  
during filter and coefficient programming. Disabling  
the Pre-Array Filter does not affect the device memory  
contents.  
0
30  
PRE_ENABLE  
1
0
1
Pre-Array filter enabled  
Array filter disabled. Disable the Array Filter during  
filter and coefficient programming. Disabling the Array  
Filter does not affect the device memory contents.  
31  
ARRAY_ENABLE  
Array filter enabled  
www.ti.com  
26  
COMPRESSOR CONTROL REGISTER 1 (FILTER COMP1) (0x501h)  
TABLE 5. Compressor Control Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
Pre-Filter Compressor Threshold  
00000  
00001  
00010  
-
0
0.3125  
0.0625  
-
4:0  
COMP_TH  
10000  
-
0.5  
-
11000  
-
0.75  
-
11111  
0.96875  
Pre-Compression Gain (V/V)  
000  
001  
010  
011  
100  
101  
110  
111  
2
4
8
7:5  
G1_GAIN  
16  
32  
64  
128  
256  
Compression Ratio  
000  
001  
010  
011  
100  
101  
110  
111  
1:1  
2:1  
2.66:1  
4:1  
10:8  
11  
COMP_RATIO  
UNUSED  
5.33:1  
8:1  
10.66:1  
16:1  
Post Compression Gain (V/V)  
000  
001  
010  
011  
100  
101  
110  
111  
1
1.25  
1.5  
2
14:12  
POST_GAIN  
UNUSED  
2.5  
3
4
8
15  
27  
www.ti.com  
BIT  
NAME  
ARRAY_COMP_SELECT  
UNUSED  
VALUE  
DESCRIPTION  
Array Filter Compression Control Register Select. The  
Array Filter has four channels, each channel can  
choose one of two Array Filter Compression Threshold,  
Pre-Compression Gain, Compression Ratio, and Post  
Compression Gain settings from the FILTER_COMP2  
register Table 4.  
23:16  
0000  
-
Select Setting 0  
-
1111  
Select Setting 1  
31:24  
COMPRESSOR CONTROL REGISTER 2 (FILTER COMP2) (0x502h)  
TABLE 6. Compressor Control Register 2  
BIT  
NAME  
VALUE  
DESCRIPTION  
Array Filter Compressor Threshold (Setting 0)  
00000  
00001  
00010  
-
0
0.03125  
0.0325  
-
4:0  
COMP_TH  
10000  
-
0.5  
-
11000  
-
0.75  
-
11111  
0.96875  
Pre-Compression Gain (V/V) (Setting 0)  
000  
001  
010  
011  
100  
101  
110  
111  
2
4
8
7:5  
G1_GAIN  
16  
32  
64  
128  
256  
Compression Ratio (Setting 0)  
000  
001  
010  
011  
100  
101  
110  
111  
1:1  
2:1  
2.66:1  
4:1  
10:8  
11  
COMP_RATIO  
UNUSED  
5.33:1  
8:1  
10.66:1  
16:1  
www.ti.com  
28  
BIT  
14:12  
15  
NAME  
POST_GAIN  
UNUSED  
VALUE  
DESCRIPTION  
Post Compression Gain (V/V) (Setting 0)  
000  
001  
010  
011  
100  
101  
110  
111  
1
1.25  
1.5  
2
2.5  
3
4
8
Pre-Filter Compressor Threshold (Setting 1)  
00000  
00001  
00010  
-
0
0.03125  
0.0325  
-
20:16  
COMP_TH  
10000  
-
0.5  
-
11000  
-
0.75  
-
11111  
0.96875  
Pre-Compression Gain (V/V) (Setting 1)  
000  
001  
010  
011  
100  
101  
110  
111  
2
4
8
23:21  
G1_GAIN  
16  
32  
64  
128  
256  
Compression Ratio (Setting 1)  
000  
001  
010  
011  
100  
101  
110  
111  
1:1  
2:1  
2.66:1  
4:1  
24:26  
COMP_RATIO  
UNUSED  
5.33:1  
8:1  
10.66:1  
16:1  
27  
Post Compression Gain (V/V) (Setting 1)  
000  
001  
010  
011  
100  
101  
110  
111  
1
1.25  
1.5  
2
30:28  
POST_GAIN  
UNUSED  
2.5  
3
4
8
31  
29  
www.ti.com  
FILTER DEBUG REGISTER 1 (FILT_DBG1) (0x504h)  
TABLE 7. Filter Debug Register 1  
BIT  
NAME  
VALUE  
DESCRIPTION  
Accumulator Address. Selects which accumulator is  
read during debug mode  
3:0  
ACC_ADDR  
0
1
Selects Pre-Filter Accumulators  
Selects Array Filter Accumulators  
4
5
6
FILTER_SELECT  
UNUSED  
0
1
Single Step Disabled  
Single Step Enabled  
STEP_ENABLE  
Debug Mode Disabled. Coefficient memory is  
inaccessible with Debug mode is disabled.  
0
1
7
DBG_ENABLE  
UNUSED  
Debug Mode Enabled. Coefficient memory is  
accessible when Debug mode is enabled.  
31:8  
FILTER STATISTICS CONTROL REGISTER (FILT_STC) (0x505h)  
TABLE 8. Filter Statistics Control Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
PRE-FILTER Counter  
Channel Select  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
000  
001  
010  
011  
100  
101  
110  
111  
3:0  
CH_SEL  
Counter 1 Mode Select. Specifies input of Counter 1  
Sample Count Mode. Every audio sample is counted  
Overflow. Overflow events counted  
0000  
0001  
Frequency Error. Indicates input frequency not  
sufficient for given filter length  
0010  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
MAGN[7}  
MAGN[7:6]  
MAGN[7:5}  
MAGN[7:4}  
MAGN[7:3}  
MAGN[7:2]  
MAGN[7:1}  
MAGN[7:0]  
7:4  
COUNT1_MODE  
www.ti.com  
30  
BIT  
NAME  
VALUE  
DESCRIPTION  
Counter 2 Mode Select. Specifies input of Counter 2  
Sample Count Mode. Every audio sample is counted  
Overflow. Overflow events counted  
0000  
0001  
Frequency Error. Indicates input frequency not  
sufficient for given filter length  
0010  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
MAGN[7}  
MAGN[7:6]  
MAGN[7:5}  
MAGN[7:4}  
MAGN[7:3}  
MAGN[7:2]  
MAGN[7:1}  
MAGN[7:0]  
11:8  
COUNT2_MODE  
14:12  
UNUSED  
CLEAR  
0
1
Counter Enabled  
Counter Cleared  
15  
ARRAY-FILTER Counter  
Channel Select  
000  
001  
010  
011  
100  
101  
110  
111  
Channel 0  
Channel 1  
Channel 2  
19:16  
CH_SEL  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
Counter 1 Mode Select. Specifies input of Counter 1  
Sample Count Mode. Every audio sample is counted  
Overflow. Overflow events counted  
0000  
0001  
Frequency Error. Indicates input frequency not  
sufficient for given filter length  
0010  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
MAGN[7}  
MAGN[7:6]  
MAGN[7:5}  
MAGN[7:4}  
MAGN[7:3}  
MAGN[7:2]  
MAGN[7:1}  
MAGN[7:0]  
23:20  
COUNT1_MODE  
31  
www.ti.com  
BIT  
NAME  
VALUE  
DESCRIPTION  
Counter 2 Mode Select. Specifies input of Counter 2  
Sample Count Mode. Every audio sample is counted  
Overflow. Overflow events counted  
0000  
0001  
Frequency Error. Indicates input frequency not  
sufficient for given filter length  
0010  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
MAGN[7}  
MAGN[7:6]  
MAGN[7:5}  
MAGN[7:4}  
MAGN[7:3}  
MAGN[7:2]  
MAGN[7:1}  
MAGN[7:0]  
27:24  
COUNT2_MODE  
30:28  
31  
UNUSED  
CLEAR  
0
1
Counter Enabled  
Counter Cleared  
DELAY REGISTER (DELAY) (0x520h)  
TABLE 9. Delay Register  
VALUE  
BIT  
15:0  
NAME  
DESCRIPTION  
POWER_UP_DELAY  
DEGLITCH_DELAY  
STATE_DELAY  
Sets I2C Delay Time. Default 10ms delay.  
23:16  
31:24  
Sets ENABLE Bit Polling Timeout. Default 32ms delay  
Sets Delay Between Power Up/Down States  
ENABLE AND CLOCK CONFIGURATION REGISTER (ENABLE & CLOCKS) (0x521h)  
TABLE 10. Enable and Clock Configuration Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
Device Disabled in I2C Mode  
0
1
0
1
0
1
0
ENABLE  
Device Enabled in I2C Mode  
Device Enabled Via SHDN <<overbar>> Pin  
Device Enabled Via I2C  
1
2
FORCE  
PULSE  
SHDN<<overbar>> Requires a Stable Logic Level  
SHDN<<overbar>> Accepts a Pulse Input  
Device waits for delay time determined by  
STATE_DELAY to enable.  
0
1
3
RELY_ON_VREF  
UNUSED  
Device waits for stable VREF  
7:4  
Selects PLL Input Divider  
32fs (1.536MHz)  
64fs (3.072MHz)  
128fs (6.114MHz)  
256fs (12.288MHz)  
512fs (24.576MHz)  
UNUSED  
000  
001  
010  
011  
100  
101  
110  
111  
0
10:8  
MCLK_RATE  
UNUSED  
UNUSED  
MCLK Input to PLL  
I2S_CLK Input to PLL  
11  
I2S_CLK  
1
www.ti.com  
32  
BIT  
NAME  
VALUE  
DESCRIPTION  
0
Oscillator Clock Input to Power Management Circuitry  
External Clock to Power Management Circuitry. Power  
management circuit uses MCLK or I2S_CLK. Clock  
source depends on the state of I2S_CLK. External  
Clock mode disables the internal oscillator.  
12  
PMC_CLK_SEL  
1
0
1
HiFi Mode Disabled  
13  
HIFI  
HiFi Mode Enabled. PLL always produces a 4096fs  
clock.  
0
1
QSA Clock Enabled  
14  
15  
QSA_CLK_STOP  
UNUSED  
QSA Clock Disabled Following Device Configuration  
0
1
Normal Operation  
16  
ADC_SYNC_SEL  
UNUSED  
Reverse ADC SYNC Signal for additional timing margin  
at low supply voltages.  
31:17  
DIGITAL MIXER CONTROL REGISTER (DIGITAL MIXER) (0x522h)  
TABLE 11. Digital Mixer Control Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
Sets the Gain of the ADC Path (dB)  
000000  
-76.5  
000001  
-75  
-
1.5dB steps  
5:0  
ADC_LVL  
110010  
-1.5  
110011  
0
110100  
1.5  
-
1.5dB Steps  
111111  
18  
0
1
0
1
Normal Operation  
6
7
MUTE  
Mute  
Zero Crossing Detection Enabled  
ZXD_DISABLE  
Zero Crossing Detection Disabled  
Sets the Gain of the I2S Path (dB)  
000000  
000001  
-
-76.5  
-75  
1.5dB steps  
I2S_LVL  
13:8  
110010  
110011  
110100  
-
-1.5  
0 (VOUT = 3.36VRMS with 0dBFS input)  
1.5  
1.5dB Steps  
18  
111111  
15:14  
16  
UNUSED  
I2S_DSP  
I2S Data Not Passed to DSP  
I2S Data Passed to DSP  
0
1
0
1
ADC Output Not Passed to DSP  
ADC Output Passed to DSP  
17  
ADC_DSP  
33  
www.ti.com  
BIT  
NAME  
VALUE  
DESCRIPTION  
Selects Input of Primary I2S Transmitter  
00  
01  
10  
11  
None  
19:18  
ISA_TX_SEL  
ADC  
DSP1/2  
DSP3/4  
Selects Input of Secondary I2S Transmitter  
00  
01  
10  
11  
0
None  
21:20  
ISB_TX_SEL  
ADC  
DSP1/2  
DSP3/4  
I2SA Data NOT Output on SHDN  
I2SA_ON  
I2SB_ON  
22  
23  
I2SA Data Output on SHDN  
1
I2SB Data NOT Output on SHDN  
0
I2SB Data Output on SHDN  
1
Selects OUT1 Amplifier Input Source  
00  
01  
10  
11  
OUT1 Disabled  
25:24  
27:26  
29:28  
31:30  
OUT1_SEL  
OUT2_SEL  
OUT3_SEL  
OUT4_SEL  
DSP  
I2S  
ADC  
Selects OUT2 Amplifier Input Source  
00  
01  
10  
11  
OUT2 Disabled  
DSP  
I2S  
ADC  
Selects OUT3 Amplifier Input Source  
00  
01  
10  
11  
OUT3 Disabled  
DSP  
I2S  
ADC  
Selects OUT4 Amplifier Input Source  
00  
01  
10  
11  
OUT4 Disabled  
DSP  
I2S  
ADC  
ANALOG CONFIGURATION REGISTER (ANALOG) (0x523h)  
TABLE 12. Analog Configuration Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
Sets ADC Preamplifier Gain (dB)  
00  
01  
10  
11  
0
1:0  
ANA_LVL  
2.4  
3.5  
6
Normal Operation. OUT2 and OUT3 operate as  
separate amplifiers.  
0
1
2
PARALLEL  
Parallel Operation. OUT2 and OUT3 operate in parallel  
as a single amplifier.  
www.ti.com  
34  
BIT  
NAME  
VALUE  
DESCRIPTION  
0
Normal Operation  
3
ZERO_ANA  
Auto-Shutdown Mode. Automatically disables the  
amplifiers when no analog input is detected.  
1
0
1
0
1
Normal Operation  
4
ZERO_DIG  
Auto-Shutdown Mode. Automatically disables the  
amplifiers when there is no I2S input.  
ADC Trim Disabled  
5
6
ADCTRIM  
AUTO_SD  
ADC Trim Enabled. Use ADC_COMP_COEFF_C0-C2  
to trim ADC.  
0
1
0
Normal Operation  
Fault Conditions Disable the Amplifiers  
Normal Operation  
Pulse Correction Bypass. Amplifier output stages act as  
a buffer, passing PWM signal without correction to  
output.  
7
8
BYPASS_MOD  
TST_SHT  
1
0
1
Normal Operation  
Short Amplifier Inputs. Sets amplifier outputs to 50%  
duty cycle, minimizing click and pop during power up/  
down.  
0
1
0
1
0
1
0
1
Normal Operation  
9
SCKT_DIS  
TSD_DIS  
Output Short Circuit Protection Disabled  
Normal Operation  
10  
11  
Thermal Shutdown Disabled  
Normal Operation  
PMC_TEST  
PMC uses PLL Source Clock  
Normal Operation  
12  
SE_MOD  
UNUSED  
Single Edge Modulation Mode  
31:13  
I2S PORT CONFIGURATION REGISTER (I2S PORT) (0x524h/0x525h)  
TABLE 13.  
BIT  
NAME  
VALUE  
0x524h  
DESCRIPTION  
0
1
0
1
0
1
Mono Mode  
0
1
2
STEREO  
Stereo Mode  
Receive Mode Disabled  
Receive Mode Enabled  
Transmit Mode Disabled  
Transmit Mode Enabled  
RX_ENABLE  
TX_ENABLE  
I2S Clock Slave. Device requires an external SCLK for  
proper operation.  
0
1
0
1
0
1
3
4
5
CLK_MS  
SYNC_MS  
I2S Clock Master. Device generates SCLK and transmits  
when either RX or TX mode are enabled.  
I2S WS Slave. Device requires an external WS for proper  
operation.  
I2S WS Master. Device generates WS and transmits  
when either RX or TX mode are enabled.  
I2S Clock Phase. Transmit on falling edge, receive on  
rising edge.  
CLOCK_PHASE  
PCM Clock Phase. Transmit on rising edge, receive on  
falling edge.  
35  
www.ti.com  
BIT  
NAME  
VALUE  
DESCRIPTION  
I2S Data Format: Left, Right  
0
STEREO_SYNC  
_PHASE  
6
1
Mono  
0
I2S Data Format: Right, Left  
Rising edge indicates start of data word.  
SYNC low = Left, SYNC high = Right  
SYNC low = Right, SYNC high = left  
7
SYNC_MODE  
1
Configures the I2S port master clock half-cycle divider.  
Program the half-cycle divider by: (ReqDiv*2) 1  
000000  
000001  
000010  
000011  
-
BYPASS  
1
1.5  
2
HALF_CYCLE  
_DIVIDER  
13:8  
-
111101  
111110  
111111  
31  
31.5  
32  
15:14  
18:16  
UNUSED  
Sets the Clock Generator Numberator  
SYNTH_DENOM (1/)  
000  
001  
010  
011  
100  
101  
110  
111  
0
100/SYNTH_DENOM  
96/SYNTH_DENOM  
SYNTH_NUM  
80/SYNTH_DENOM  
72/SYNTH_DENOM  
64/SYNTH_DENOM  
48/SYNTH_DENOM  
0/SYNTH_DENOM  
Clock Generator Denominator = 128  
Clock Generator Denominator = 125  
19  
SYNTH_DENOM  
UNUSED  
1
23:20  
Sets number of clock cycles before SYNC pattern  
repeats.  
MONO MODE  
000  
001  
010  
011  
100  
101  
110  
111  
8
12  
16  
18  
20  
24  
25  
26:24  
SYNC_RATE  
32  
STEREO MODE  
000  
01  
16  
24  
32  
36  
40  
48  
50  
64  
010  
011  
100  
101  
110  
111  
www.ti.com  
36  
BIT  
NAME  
MONO_SYNC_WIDTH  
UNUSED  
VALUE  
DESCRIPTION  
Sets SYNC symbol width in Mono Mode  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
29:27  
31:30  
7
8
11  
15  
16  
0x525h  
Sets number of valid RECEIVE bits.  
000  
001  
010  
011  
100  
101  
110  
111  
24  
20  
18  
2:0  
RX_WIDTH  
16  
14  
13  
12  
8
Sets number of TRANSMIT bits.  
000  
001  
010  
011  
100  
101  
110  
111  
24  
20  
18  
5:3  
TX_WIDTH  
16  
14  
13  
12  
8
Sets number of pad bits after the valid Transmit bits.  
00  
01  
10  
11  
0
0
7:6  
8
TX_BIT  
1
High-Z  
High-Z  
MSB Justified Receive Mode  
LSB Justified Receive Mode  
RX_MODE  
1
37  
www.ti.com  
BIT  
NAME  
VALUE  
DESCRIPTION  
MSB location from the frame start (MSB Justified) or LSB  
location from the frame end (LSB Justified)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
0
0 (DSP/PCM LONG)  
1 (I2S/PCM SHORT)  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
13:9  
RX_MSB_POSITION  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Normal Operation  
Audio Data Companded  
µLaw Compand Mode  
A-Law Compand Mode  
MSB Justified Transmit Mode  
LSB Justified Transmit Mode  
14  
15  
16  
RX_COMPAND  
RX_A/µLAW  
TX_MODE  
1
0
1
0
1
www.ti.com  
38  
BIT  
NAME  
VALUE  
DESCRIPTION  
MSB location from the frame start (MSB Justified) or LSB  
location from the frame end (LSB Justified)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
0
0 (DSP/PCM LONG)  
1 (I2S/PCM SHORT)  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
21:17  
TX_MSB_POSITION  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Normal Operation  
Audio Data Companded  
µLaw Compand Mode  
A-Law Compand Mode  
22  
TX_COMPAND  
1
0
23  
TX_A/µLAW  
UNUSED  
1
31:24  
39  
www.ti.com  
ADC TRIM COEFFICIENT REGISTER (ADC_TRIM) (0x526h/0x527)  
TABLE 14. ADC Trim Coefficient Register  
VALUE  
BIT  
NAME  
DESCRIPTION  
0x526h  
15:0  
ADC_COMP_COEFF_C0  
ADC_COMP_COEFF_C1  
Sets ADC Trim Coefficient C0  
Sets ADC Trim Coefficient C1  
31:16  
0x527h  
15:0  
ADC_COMP_COEFF_C2  
Sets ADC Trim Coefficient C2  
READBACK REGISTER (READBACK) (0x528h) READ-ONLY  
TABLE 15. Readback Register  
BIT  
0
NAME  
ADCR_CLIP  
ADCL_CLIP  
ADCR_LVLCLIP  
ADCL_LVLCLIP  
I2SR_LVLCLIP  
I2SL_LVLCLIP  
UNUSED  
VALUE  
DESCRIPTION  
Right Channel ADC Input Clipped  
Left Channel ADC Input Clipped  
Right Channel ADC Output Clipped  
Left Channel ADC Output Clipped  
Right Channel I2S Output Clipped  
Left Channel I2S Output Clipped  
1
1
1
1
1
1
1
2
3
4
5
7:6  
8
SHORT1  
1
1
1
1
1
OUT1 Output Short Circuit  
9
SHORT2  
OUT2 Output Short Circuit  
10  
11  
12  
23:13  
31:24  
SHORT3  
OUT3 Output Short Circuit  
SHORT4  
OUT4 Output Short Circuit  
THERMAL  
SPARE  
Thermal Shutdown Threshold Exceeded  
UNUSED  
www.ti.com  
40  
SYSTEM CONFIGURATION REGISTER (SYS_CONFIG) (0x530h)  
TABLE 16. System Configuration Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
6:0  
DEVICE_ID  
Sets LM48901 Device ID in slave mode  
Configuration Loader Clock Disabled  
Configuration Loader Clock Enabled  
Sets Alternate Device ID in Slave Mode.  
Selects DEVICE_ID  
0
1
CONFIG_CLK  
_ENABLE  
7
14:8  
15  
ALT_DEVICE_ID  
0
1
0
ALTID_ENABLE  
Selects ALT_DEVICE_ID  
Configuration Loader Access not Requested  
16  
17  
CL_REQ  
CL_W  
Configuration Loader Access Requested. I2C Master  
Transaction Enabled  
1
0
1
Configuration Loader Set to READ-ONLY  
Configuration Loader Set to WRITE  
Sets I2C Page Mode Length  
Single Byte  
00  
01  
10  
11  
20:18  
CL_PAGE  
4 Bytes  
8 Bytes  
16 Bytes  
22:21  
23  
UNUSED  
CL_ENABLE  
0
1
0
1
0
1
Device Configured as I2C Slave  
Device Configured as I2C Master  
Memory BIST Controller 0 Disabled  
Memory BIST Control 0 Enabled.  
Memory BIST Controller 1 Disabled  
Memory BIST Control 1 Enabled.  
24  
MBIST0_ENABLE  
25  
MBIST1_ENABLE  
UNUSED  
31:26  
I2C MASTER CONFIGURATION LOADER REGISTER 0 (CL_REG0) (0x531h)  
TABLE 17. Filter Debug Register 0  
BIT  
15:0  
NAME  
VALUE  
DESCRIPTION  
Sets I2C Master Transaction Length  
Starting Address of LM48901 Memory  
TRANS_LENGTH  
REG_START_ADDR  
31:16  
I2C MASTER CONFIGURATION LOADER REGISTER 1 (CL_REG1) (0x532h)  
TABLE 18. Filter Debug Register 1  
BIT  
NAME  
VALUE  
DESCRIPTION  
Sets EEPROM Address. Indicates EEPROM start  
address where data is stored  
15:0  
E2_START_ADDR  
UNUSED  
31:16  
EEPROM ADDRESS OFFSET REGISTER (E2_OFFSET) (0x533h)  
TABLE 19. EEPROM Address Offset Register  
VALUE  
BIT  
5:0  
NAME  
E2_OFFSET  
UNUSED  
DESCRIPTION  
EEPROM Address Offset Value.  
31:6  
41  
www.ti.com  
I2C EnXT REGISTER (I2CEnXT) (0x534h)  
TABLE 20. I2C EnXT Register  
VALUE  
BIT  
5:0  
6
NAME  
E2NXT_OFFSET  
UNUSED  
DESCRIPTION  
Sets EEPROM Address Offset for Following LM48901  
when devices are Daisy Chained.  
Next Device in Daisy Chain Disabled. I2C_EX driven  
Low.  
0
1
7
I2C_EnXT  
UNUSED  
Next Device in Daisy Chain Enabled. I2C_EX driven  
HIGH.  
31:8  
READ-ONLY MBIST STATUS REGISTER (MBIST_STAT) (0x538h)  
TABLE 21. MBIST Status Register  
BIT  
NAME  
VALUE  
DESCRIPTION  
1:0  
MBIST_DONE  
Logic HIGH indicates memory test complete  
Logic Low indicates memory fault when MBIST_DONE  
is HIGH  
3:2  
BIST_GO  
0
1
MBIST Read-back Disabled  
MBIST Read-back Enabled  
5:4  
MBIST_EN  
UNUSED  
31:6  
DAISY CHAINING  
I2C_EN/I2C_EX  
The LM48901 supports daisy chaining up to 127 devices from a single I2C bus utilizing I2C_EN and I2C_EX in a chain enable  
scheme. I2C_EX is a push/pull logic output that drives the I2C_EN of the following device in the chain Figure 11. At power up,  
I2C_EnXT (bit 8, I2C_EnXT Register [0x534h]) is set to 0, resulting in I2C_EN driven low, disabling the I2C interface of the following  
device. Once device configuration is complete, and I2C_EnXT is set to 1, I2C_EN is driven high, enabling the I2C interface of the  
following device. Driving I2C_EN high enables the device’s I2C interface, driving I2C_EN low disables the device’s I2C interface.  
www.ti.com  
42  
30169208  
FIGURE 11. I2C_EN/I2C_EX Daisy Chaining Example  
Device Address  
The 0110000X is the default LM48901 I2C address hard coded into the device. Two alternate device addresses can be pro-  
grammed, via the SYS CONFIG (0x530h) Register. Use the default address during initial device configuration.  
43  
www.ti.com  
 
GENERAL AMPLIFIER FUNCTION  
Class D Amplifier  
The LM48901 features four high-efficiency Class D audio power amplifiers that utilizes Texas Instruments’ filterless modulation  
scheme external component count, conserving board space and reducing system cost. The Class D outputs transition from VDD  
to GND with a 384kHz switching frequency. With no signal applied, the outputs switch with a 50% duty cycle, in phase, causing  
the two outputs to cancel. This cancellation results in no net voltage across the speaker, thus there is no current to the load in the  
idle state.  
With the input signal applied, the duty cycle (pulse width) of the LM48901 outputs changes. For increasing output voltage, the duty  
cycle of OUT_+ increases while the duty cycle of OUT_- decreases. For decreasing output voltages, the converse occurs. The  
difference between the two pulse widths yield the differential output voltage.  
Edge Rate Control (ERC)  
The LM48901 features Texas Instruments’ advanced edge rate control (ERC) that reduces EMI, while maintaining high quality  
audio reproduction and efficiency. The LM48901 ERC greatly reduces the high frequency components of the output square waves  
by controlling the output rise and fall times, slowing the transitions to reduce RF emissions, while maximizing THD+N and efficiency  
performance. The overall result of the E2S system is a filterless Class D amplifier that passes FCC Class B radiated emissions  
standards with 24in of twisted pair cable, with excellent 0.06% THD+N and high 89% efficiency.  
POWER DISSIPATION AND EFFICIENCY  
The major benefit of a Class D amplifier is increased efficiency versus a Class AB. The efficiency of the LM48901 is attributed to  
the region of operation of the transistors in the output stage. The Class D output stage acts as current steering switches, consuming  
negligible amounts of power compared to their Class AB counterparts. Most of the power loss associated with the output stage is  
due to the IR loss of the MOSFET on-resistance, along with switching losses due to gate charge.  
ANALOG INPUT  
The LM48901 features a differential input, stereo ADC for analog systems. A differential amplifier amplifies the difference between  
the two input signals. Traditional audio power amplifiers have typically offered only single-ended inputs resulting in a 6dB reduction  
of SNR relative to differential inputs. The LM48901 also offers the possibility of DC input coupling which eliminates the input coupling  
capacitors. A major benefit of the fully differential amplifier is the improved common mode rejection ratio (CMRR) over single ended  
input amplifiers. The increased CMRR of the differential amplifier reduces sensitivity to ground offset related noise injection, es-  
pecially important in noisy systems.  
PARALLEL MODE  
In Parallel mode, channels OUT2 and OUT3 are driven from the same audio source, allowing the two channels to be connected  
in parallel, increasing output power to 3.2W into 4at 10% THD+N. Set bit 2 (PARALLEL) of the Analog Configuration Register  
(0x532h) = 1 to configured the device in Parallel mode. After the device is set to Parallel mode, make an external connection  
between OUT2+ and OUT3+, and a connection between OUT2- and OUT3- (Figure 2). In Parallel mode, the combined channels  
are driven from the OUT2 source. OUT1 and OUT4 are unaffected. Signal routing, mixing, filtering, and equalization are done  
through the Spatial Engine.  
Make sure the device is configured in Parallel mode, before connecting OUT2 and OUT3 and enabling the outputs. Do not make  
a connection between OUT2 and OUT3 together while the outputs are enabled. Disable the outputs first, then make the connections  
between OUT2 and OUT3.  
GAIN SETTING  
The LM48901 has three gain stages, the ADC preamplifier, and two independent volume controls in the Digital Mixer, one for the  
ADC path and one for the I2S path. The ADC preamplifier has four gain settings (0dB, 2.4dB, 3.5dB, and 6dB). The preamplifier  
gain is set by bits 0 and 1 (ANA_LVL) of the Analog Configuration Register (0x523h). The Digital Mixer has two 64 step volume  
controls. The ADC path volume control is set by bits 5:0 (ADC_LVL) in the Digital Mixer Control Register (0x522h). The I2S path  
volume control is set by bits 13:8 (I2S_LVL) in the Digital Mixer Control Register (0x522h). Both volume controls have a range of  
-76.5dB to 18dB in 1.5dB increments.  
www.ti.com  
44  
MODULATOR POWER SUPPLY (AVDD1  
)
The AVDD1 (RL package: bump C2, SQ package: pin 12) powers the class D modulators. For maximum output swing, set AVDD1  
and PVDD to the same voltage. Table 22 shows the output voltage for different AVDD1 levels.  
TABLE 22. Amplifier Output Voltage with Variable AVDD1 Voltage  
AVDD1 (V)  
VOUT (VRMS) @ PVDD = 5V, THD+N = 1%  
VOUT (VRMS) @ PVDD = 3.6V, THD+N = 1%  
5
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
2
-
-
4.5  
4.2  
4
-
-
3.6  
3.3  
3
2.4  
2.2  
2.1  
1.9  
2.8  
CLOCK REQUIREMENTS  
The LM48901 requires an external clock source for proper operation, regardless of input source or device configuration. The device  
derives the ADC, digital mixer, DSP, I2S port, and PWM clocks from the external clock. The clock can be derived from either MCLK  
or SCLK inputs. Set bit 11 (I2S_CLK) of the Enable and Clock configuration register (0x521h) to 0 to select MCLK, set I2S_CLK to  
1 to select SCLK. The LM48901 accepts five different clock frequencies, 1.536, 3.072, 6.114, 12.288, and 24.576MHz. Set bits  
10:8 (MCLK_RATE) of the Enable and Clock Configuration Register to the appropriate clock frequency. In systems where both  
MCLK and SCLK are available, choose the lower frequency clock for improved power consumption.  
SHUTDOWN FUNCTION  
There are two ways to shutdown the LM48901, hardware mode, and software mode. The default is hardware mode.  
Set bit 1 (FORCE) of the Enable and Clock Configuration Register (0x521h) to 0 to enable hardware shutdown mode. In hardware  
mode, the device is enabled and disabled through SHDN. Connect SHDN to VDD for normal operation. Connect SHDN to GND to  
disable the device. Hardware shutdown mode supports a one shot, or momentary switch SHDN input. When bit 2 (PULSE) of the  
Enable and Clock Configuration Register (0x521h) is set to 1, the LM48901 responds to a rising edge on SHDN to change the  
device state. When PULSE = 0, the device requires a stable logic level on SHDN.  
Set FORCE = 1 to enable software shutdown mode. In software shutdown mode, the device is enabled and disabled through bit  
0 (ENABLE) of the Enable and Clock Configuration Register (0x512h). Set ENABLE = 0 to disable the LM48901. Set ENABLE =  
1 to enable the LM48901.  
In either hardware or software mode, the content of the LM48901 memory registers is retained after the device is disabled, as long  
as power is still applied to the device. Minimize power consumption by disabling the PMC clock oscillator when the LM48901 is  
shutdown. Set bit 12 (PMC_CLK_SEL) and bit 14 (QSA_CLK_STOP) of the Enable and Clock configuration Register (0x521h) =  
1 to disable the PMC clock oscillator.  
EXTERNAL CAPACITOR SELECTION  
Power Supply Bypassing and Filtering  
Proper power supply bypassing is critical for low noise performance and high PSRR. Place the supply bypass capacitors as close  
to the device as possible. Typical applications employ a voltage regulator with 10μF and 0.1μF bypass capacitors that increase  
supply stability. These capacitors do not eliminate the need for bypassing of the LM48901 supply pins. A 1μF capacitor is recom-  
mended for IOVDD, PLLVDD, DVDD, and AVDD. A 2.2μF capacitor is recommended for PVDD  
.
REF and BYPASS Capacitor Selection  
For best performance, bypass REF with a 4.7μF ceramic capacitor.  
45  
www.ti.com  
 
INPUT CAPACITOR SELECTION  
The LM48901 analog inputs require input coupling capacitors. Input capacitors block the DC component of the audio signal, elim-  
inating any conflict between the DC component of the audio source and the bias voltage of the LM48901. The input capacitors  
create a high-pass filter with the input resistors RIN. The -3dB point of the high pass filter is found using Equation (1) below.  
f = 1 / 2πRINCIN  
Where the value of RIN is 20kΩ.  
The input capacitors can also be used to remove low frequency content from the audio signal. Small speakers cannot reproduce,  
and may even be damaged by low frequencies. High pass filtering the audio signal helps protect the speakers. When the LM48901  
is using a single-ended source, power supply noise on the ground is seen as an input signal. Setting the high-pass filter point above  
the power supply noise frequencies, 217Hz in a GSM phone, for example, filters out the noise such that it is not amplified and  
heard on the output. Capacitors with a tolerance of 10% or better are recommended for impedance matching and improved CMRR  
and PSRR.  
PCB LAYOUT GUIDELINES  
As output power increases, interconnect resistance (PCB traces and wires) between the amplifier, load, and power supply create  
a voltage drop. The voltage loss due to the traces between the LM48901 and the load results in lower output power and decreased  
efficiency. Higher trace resistance between the supply and the LM48901 has the same effect as a poorly regulated supply, in-  
creasing ripple on the supply line, and reducing peak output power. The effects of residual trace resistance increases as output  
current increases due to higher output power, decreased load impedance or both. To maintain the highest output voltage swing  
and corresponding peak output power, the PCB traces that connect the output pins to the load and the supply pins to the power  
supply should be as wide as possible to minimize trace resistance.  
The use of power and ground planes will give the best THD+N performance. In addition to reducing trace resistance, the use of  
power planes creates parasitic capacitors that help to filter the power supply line.  
The inductive nature of the transducer load can also result in overshoot on one of both edges, clamped by the parasitic diodes to  
GND and VDD in each case. From an EMI standpoint, this is an aggressive waveform that can radiate or conduct to other compo-  
nents in the system and cause interference. In is essential to keep the power and output traces short and well shielded if possible.  
Use of ground planes beads and micros-strip layout techniques are all useful in preventing unwanted interference.  
As the distance from the LM48901 and the speaker increases, the amount of EMI radiation increases due to the output wires or  
traces acting as antennas become more efficient with length. Ferrite chip inductors places close to the LM48901 outputs may be  
needed to reduce EMI radiation.  
www.ti.com  
46  
Revision History  
Rev  
1.0  
Date  
Description  
10/31/11  
12/02/11  
12/12/11  
12/16/11  
Initial Web released.  
1.01  
1.02  
1.03  
Fixed a typo (LM488901 to LM48901) on page 45.  
Added two sections “Modulator Power Supply” and Clock Requirements.  
Changed National to Texas Instruments.  
47  
www.ti.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
36–pin micro SMD  
Order Number LM48901RL  
NS Package Number TLA36JSA  
X1 = 3.204±0.03mmX2 = 3.434±0.03mmX3 = 0.65±0.075mm  
LLP Package  
Order Number LM48901SQ  
NS Package Number SQA32A  
X1 = 5mmX2 = 5mmX3 = 0.8mm  
www.ti.com  
48  
Notes  
49  
www.ti.com  
Notes  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

LM48901SQX

Audio Power Amplifier Series
TI

LM48903

Stereo Class D Spatial Array
TI

LM48903TL

Stereo Class D Spatial Array
TI

LM48903TLE/NOPB

AUDIO AMPLIFIER
TI

LM4890IBL

1 Watt Audio Power Amplifier
NSC

LM4890IBLX

1 Watt Audio Power Amplifier
NSC

LM4890IBP

1 Watt Audio Power Amplifier
NSC

LM4890IBP

1W, 1 CHANNEL, AUDIO AMPLIFIER, PBGA8, MICRO, SMD-8
TI

LM4890IBPX

1 Watt Audio Power Amplifier
NSC

LM4890IBPX

1W, 1 CHANNEL, AUDIO AMPLIFIER, PBGA8, MICRO, SMD-8
TI

LM4890IBPX/NOPB

1W, 1 CHANNEL, AUDIO AMPLIFIER, PBGA8, MICRO, SMD-8
TI

LM4890ITL

1 Watt Audio Power Amplifier
NSC