LM49360RLX [TI]

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators; 单声道D类音频编解码器PMU与接地参考耳机放大器,耳机驱动器,音频DSP , 2降压型DC - DC转换器,以及7 LDO稳压器
LM49360RLX
型号: LM49360RLX
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Mono Class D Audio Codec PMU with Ground Referenced Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and 7 LDO Regulators
单声道D类音频编解码器PMU与接地参考耳机放大器,耳机驱动器,音频DSP , 2降压型DC - DC转换器,以及7 LDO稳压器

解码器 驱动器 转换器 稳压器 编解码器 放大器
文件: 总137页 (文件大小:2402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM49360  
LM49360 Mono Class D Audio Codec PMU with Ground Referenced Headphone  
Amplifiers, Earpiece Driver, Audio DSP, 2 Step-Down DC-DC Converters, and  
7 LDO Regulators  
Literature Number: SNAS501A  
December 1, 2011  
LM49360  
Mono Class D Audio Codec PMU with Ground Referenced  
Headphone Amplifiers, Earpiece Driver, Audio DSP, 2 Step-  
Down DC-DC Converters, and 7 LDO Regulators  
1.0 General Description  
4.0 Features  
The LM49360 combines a high performance mixed signal au-  
dio subsystem and power management unit (PMU) into a tiny  
4.169mm x 3.99mm micro SMD package. The LM49360 in-  
cludes a high quality stereo DAC, a high quality stereo ADC,  
a stereo headphone amplifier, which supports True Ground  
operation, a low EMI Class D loudspeaker amplifier, an ear-  
piece speaker amplifier, two high efficiency buck converters,  
and seven LDO regulators. It combines advanced audio pro-  
cessing, conversion, mixing, amplification, and power man-  
agement in the smallest possible footprint while extending the  
battery life of feature rich portable devices.  
Ultra efficient, spread spectrum Class D loudspeaker  
amplifier  
Low voltage, true ground headphone amplifier operation  
2 high efficiency 700mA step-down DC/DC converters  
2 low noise 400mA LDOs and 4 low noise 200mA LDOs  
1 low noise 20mA High Input Low Output (HILO) LDO  
Programmable PMU startup sequence capability  
High performance 103dB SNR stereo DAC  
High performance 98dB SNR stereo ADC  
Up to 96kHz stereo audio playback  
The LM49360 features dual bi-directional I2S or PCM audio  
interfaces and an I2C compatible interface for control. This  
device can be configured as a sub-PMU for camera/multime-  
dia modules or as a AP-PMU that powers the applications  
processor.  
Up to 48kHz stereo recording  
Dual bidirectional I2S or PCM compatible audio interfaces  
Read/write I2C compatible control interface  
Flexible digital mixer with sample rate conversion  
The LM49360 employs advanced techniques to extend bat-  
tery life, to reduce controller overhead, to speed development  
time, and to eliminate click and pop artifacts. Boomer audio  
power amplifiers are designed specifically for mobile devices  
and require minimal PCB area and external components.  
Sigma-delta PLL clock network that supports system  
clocks up to 50MHz including 13MHz, 19.2MHz, and  
26MHz  
Stereo 5 band parametric equalizer  
Cascadable DSP effects that allow stereo 10 band  
parametric equalization  
2.0 Applications  
ALC/Limiter/Compressor on both DAC and ADC paths  
Smart Phones  
Dedicated Earpiece Speaker Amplifier  
Mobile Phones and VOIP Phones  
Stereo auxiliary inputs and mono differential input  
Portable GPS Navigator and Portable Gaming Devices  
Differential microphone input with single-ended option  
Portable Media Players  
Automatic level control for digital audio inputs, mono  
differential input, microphone input, and stereo auxiliary  
inputs  
Digital Cameras/Camcorders  
3.0 Key Specifications  
Flexible audio routing from input to output  
PEP at A_VDD = 3.6V, 32, 1% THD  
PHP at HP_VDD = 2.8V, Stereo 32Ω,  
60mW (typ)  
70mW/ch (typ)  
16 Step volume control for microphone with 2dB steps  
32 Step volume control for auxiliary inputs in 1.5dB steps  
4 Step volume control for class D loudspeaker amplifier  
8 Step volume control for headphone amplifier  
Micro-power shutdown mode  
1% THD  
PLS at LS_VDD = 5V, 8, 1% THD  
PLS at LS_VDD = 4.2V, 8, 1% THD  
PLS at LS_VDD = 3.6V, 8, 1% THD  
SNR (Stereo DAC at 48kHz)  
PSRR at 217 Hz, A_VDD = 3.6V,  
1.3W (typ)  
900mW (typ)  
595mW (typ)  
97dB (typ)  
Available in the 4.169 x 3.99 mm 64 bump micro SMD  
package  
95dB (typ)  
(HP from AUX)  
Boomer® is a registered trademark of National Semiconductor Corporation.  
© 2011 Texas Instruments Incorporated  
301282  
www.ti.com  
 
 
 
5.0 LM49360 Overview  
301282h8  
FIGURE 1. LM49360 Block Diagram  
www.ti.com  
2
 
 
6.0 Typical Application  
30128211  
FIGURE 2. Sub PMU System Diagram  
3
www.ti.com  
 
 
30128216  
FIGURE 3. AP PMU System Diagram  
www.ti.com  
4
 
LM49360 Default Voltage Options  
CONFIG = VBATT (SUB_PMU Mode)  
Max Output  
Current (mA)  
Outputs  
Default  
Start-up Sequence  
Loads  
Voltage (V)  
Buck1  
Buck2  
700  
700  
400  
200  
400  
200  
200  
200  
20  
1.0  
1.5  
1.8  
2.9  
3.3  
1.8  
2.6  
2.8  
1.0  
CVDD _CORE  
CAM_CORE  
VDD_SDRAM  
VDD_I/O  
t4(t0+32μs)  
I2C  
LDO1  
t0  
LDO2  
t0  
t4(t0+32μs)  
I2C  
LDO3  
VDD_PLL  
LDO4  
BT MODULE  
MINT  
I2C  
LDO5  
I2C  
LDO6  
CAM_I/O  
LDO7(HILO)  
PW_CVDD  
t4(t0+32μs)  
CONFIG = GND (AP-PMU Mode)  
Max Output  
Current (mA)  
Outputs  
Default  
Voltage (V)  
Start-up Sequence  
Loads  
Buck1  
Buck2  
700  
700  
400  
200  
400  
200  
200  
200  
20  
1.2  
1.8  
1.8  
2.6  
2.8  
3.3  
3.3  
2.8  
1.5  
t0  
I2C  
TCC Core  
VT CAM I/O  
TCC 1.8 I/O  
MIC BIAS  
LDO1  
t4 (t0 + 256)  
I2C  
LDO2  
LDO3  
t4 (t0 + 256)  
I2C  
TCC 2.8 I/O  
DC MOTOR  
USB  
LDO4  
LDO5  
t4 (t0 + 256)  
t4 (t0 + 256)  
t4 (t0 + 256)  
LDO6  
TFLASH  
LDO7(HILO)  
AP LDO ON(Memory)  
CONFIG = NC (CAM Application Mode)  
Max Output  
Current (mA)  
Outputs  
Default  
Voltage (V)  
Start-up Sequence  
Loads  
Buck1  
Buck2  
700  
700  
400  
200  
400  
200  
200  
200  
20  
1.2  
1.2  
1.8  
2.8  
2.8  
1.8  
2.8  
2.8  
1.2  
t0  
ISP_CORE  
t0  
SENSOR_CORE  
CAM SQRAM  
LDO1  
t5(t0 + 320)  
t4 (t0 + 256)  
t3(t0 + 192)  
t5(t0 + 320)  
t4 (t0 + 256)  
t4 (t0 + 256)  
OVR  
LDO2  
CAM DIGITAL & PLL  
CAM AF (PIEZO)  
CAM DIGITAL  
LDO3  
LDO4  
LDO5  
CAM ANALOG  
HOST I/F  
LDO6  
LDO7(HILO)  
OTHERS (1.2V)  
5
www.ti.com  
Table of Contents  
1.0 General Description ......................................................................................................................... 1  
2.0 Applications .................................................................................................................................... 1  
3.0 Key Specifications ........................................................................................................................... 1  
4.0 Features ........................................................................................................................................ 1  
5.0 LM49360 Overview .......................................................................................................................... 2  
6.0 Typical Application ........................................................................................................................... 3  
7.0 Connection Diagrams ..................................................................................................................... 10  
7.1 PIN TYPE DEFINITIONS ........................................................................................................ 13  
8.0 State Machine Description .............................................................................................................. 14  
8.1 PMU STATE MACHINE DESCRIPTION .................................................................................... 14  
8.2 AUDIO PMC STATE MACHINE DESCRIPTION ......................................................................... 16  
8.2.1 State_0 (OFF) .............................................................................................................. 16  
8.2.2 State_1 (BIAS) ............................................................................................................. 16  
8.2.3 State_2 (AMPS ON) ..................................................................................................... 17  
8.2.3.1 AMPLIFIER CONTROL FSM ............................................................................... 17  
8.2.4 State_3 (UNMUTE) ...................................................................................................... 17  
8.2.5 State_4 (ON) ............................................................................................................... 17  
8.2.6 State_5 (MUTE) ........................................................................................................... 17  
8.2.7 State_6 (AMPS_OFF) ................................................................................................... 17  
8.2.8 State_7 (OFF) .............................................................................................................. 17  
9.0 Absolute Maximum Ratings ............................................................................................................ 18  
10.0 Operating Ratings ........................................................................................................................ 18  
11.0 Total Shutdown Current Consumption ............................................................................................ 18  
12.0 PMU Current Consumption ........................................................................................................... 18  
13.0 Thermal Shutdown ....................................................................................................................... 19  
14.0 Under Voltage Lock Out ............................................................................................................... 19  
15.0 Logic and Control ........................................................................................................................ 19  
16.0 Electrical Characteristics / Buck Converters ..................................................................................... 20  
17.0 Electrical Characteristics / General LDOs 1 to 6 ............................................................................... 20  
18.0 Electrical Characteristics / High Input Low Output LDO 7 .................................................................. 21  
19.0 Electrical Characteristics / Audio CODEC: A_VDD = LS_VDD = 3.6V; HP_VDD = D_VDD = I/O_VDD  
=
1.8V .............................................................................................................................................. 22  
20.0 Timing Characteristics: DVDD = I/OVDD = 1.8V ................................................................................ 27  
21.0 Typical Performance Characteristics .............................................................................................. 29  
22.0 System Control ............................................................................................................................ 38  
22.1 INPUT POWER SEQUENCING .............................................................................................. 38  
22.2 I2C SIGNALS ....................................................................................................................... 38  
22.3 I2C DATA VALIDITY ............................................................................................................. 38  
22.4 I2C START AND STOP CONDITIONS ..................................................................................... 38  
22.5 TRANSFERRING DATA ........................................................................................................ 38  
22.6 I2C TIMING PARAMETERS .................................................................................................. 40  
22.7 POWER ON SEQUENCE ...................................................................................................... 40  
23.0 Device Register Map .................................................................................................................... 46  
24.0 Sleep Enables ............................................................................................................................ 51  
25.0 LDO Flags and Bypass Pulse Control ............................................................................................. 52  
26.0 Sequence and Voltage Programming (Banks 0 to 2) ........................................................................ 53  
27.0 Basic PMC Setup Register ........................................................................................................... 64  
28.0 PMC Clocks Register ................................................................................................................... 65  
29.0 PMC Clock Divide Register ........................................................................................................... 65  
30.0 LM49360 Clock Network .............................................................................................................. 66  
31.0 PLL Setup Registers .................................................................................................................... 68  
32.0 Analog Mixer Control Registers ..................................................................................................... 72  
33.0 ADC Control Registers ................................................................................................................. 80  
34.0 DAC Control Registers ................................................................................................................. 82  
35.0 Digital Mixer Control Registers ...................................................................................................... 83  
36.0 Audio Port Control Registers ......................................................................................................... 87  
37.0 Digital Effects Engine ................................................................................................................... 94  
38.0 DAC Effects Registers ................................................................................................................ 110  
39.0 GPIO Registers ......................................................................................................................... 125  
40.0 Schematic Diagram .................................................................................................................... 127  
41.0 Demonstration Board Layout ....................................................................................................... 129  
42.0 Revision History ........................................................................................................................ 133  
43.0 Physical Dimensions .................................................................................................................. 134  
www.ti.com  
6
List of Figures  
FIGURE 1. LM49360 Block Diagram ............................................................................................................. 2  
FIGURE 2. Sub PMU System Diagram .......................................................................................................... 3  
FIGURE 3. AP PMU System Diagram ........................................................................................................... 4  
FIGURE 4. PMU State Machine .................................................................................................................. 15  
FIGURE 5. LM49360 Audio PMC Sequencer Overview with Typical Timing. ............................................................ 16  
FIGURE 6. Zero Cross Detect Comparator (ZXD) ............................................................................................ 17  
FIGURE 7. I2C Signals: Data Validity ............................................................................................................ 38  
FIGURE 8. I2C Start and Stop Conditions ...................................................................................................... 38  
FIGURE 9. I2C Chip Address ..................................................................................................................... 38  
FIGURE 10. Example I2C Write Cycle .......................................................................................................... 39  
FIGURE 11. Example I2C Read Cycle .......................................................................................................... 39  
FIGURE 12. I2C Timing Diagram ................................................................................................................ 39  
FIGURE 13. Simplified Startup Sequence if CONFIG = H or Z (SUB_PMU) ............................................................. 40  
FIGURE 14. Simplified Startup Sequence if CONFIG = L (PMU) .......................................................................... 41  
FIGURE 15. LM493060A CONFIG = H Start-up Sequence ................................................................................. 42  
FIGURE 16. LM49360A CONFIG = L Start-up Sequence ................................................................................... 43  
FIGURE 17. LM49360A CONFIG = Z Start-up Sequence ................................................................................... 44  
FIGURE 18. Typical PWM Operation ............................................................................................................ 54  
FIGURE 19. Typical ECO Operation ............................................................................................................ 55  
FIGURE 20. Internal Clock Network ............................................................................................................. 67  
FIGURE 21. PLL Loop ............................................................................................................................ 68  
FIGURE 22. Application Circuit for Headphone Detection ................................................................................... 78  
FIGURE 23. Digital Mixer .......................................................................................................................... 83  
FIGURE 24. I2S Serial Data Format (24 bit example) ........................................................................................ 87  
FIGURE 25. Left Justified Data Format (24 bit example) .................................................................................... 87  
FIGURE 26. Right Justified Data Format (24 bit example) .................................................................................. 87  
FIGURE 27. PCM Serial Data Format (16 bit example) ...................................................................................... 87  
FIGURE 28. Timing for I2S Master ............................................................................................................... 88  
FIGURE 29. Timing for I2S Slave ................................................................................................................ 88  
FIGURE 30. ADC DSP Effects Chain ........................................................................................................... 94  
FIGURE 31. DAC DSP Effects Chain ........................................................................................................... 94  
FIGURE 32. ALC Example ........................................................................................................................ 96  
FIGURE 33. ALC Limiter ........................................................................................................................... 97  
FIGURE 34. Audio Compressor Effect ........................................................................................................ 105  
FIGURE 35. Soft Knee Example with Compression Ratio Setting of 1:3.4 ............................................................. 106  
FIGURE 36. Demo Board Schematic .......................................................................................................... 127  
FIGURE 37. Demo Board Schematic .......................................................................................................... 128  
FIGURE 38. Top Silkscreen ..................................................................................................................... 129  
FIGURE 39. Top Layer ........................................................................................................................... 129  
FIGURE 40. Inner Layer 2 ....................................................................................................................... 130  
FIGURE 41. Inner Layer 3 ....................................................................................................................... 130  
FIGURE 42. Inner Layer 4 ....................................................................................................................... 131  
FIGURE 43. Inner Layer 5 ....................................................................................................................... 131  
FIGURE 44. Bottom Layer ...................................................................................................................... 132  
FIGURE 45. Bottom Silkscreen ................................................................................................................. 132  
List of Tables  
TABLE 1. PMU Register Map .................................................................................................................... 46  
TABLE 2. Audio Register Map .................................................................................................................... 47  
TABLE 3. Nonzero I2C Default Registers ....................................................................................................... 50  
TABLE 4. 0x00h PMU Setup ...................................................................................................................... 51  
TABLE 5. NV BANK (0x01h) ...................................................................................................................... 51  
TABLE 6. SLEEP 1 (0x02h) ....................................................................................................................... 51  
TABLE 7. FLAGS 1 (0x03h) ....................................................................................................................... 52  
TABLE 8. FLAGS 2 (0x04h) ....................................................................................................................... 52  
TABLE 9. BYPASS (0x05h) ....................................................................................................................... 52  
TABLE 10. SWOVR 1 (0x06h) .................................................................................................................... 52  
TABLE 11. SWOVR 2 (0x07h) .................................................................................................................... 53  
TABLE 12. ENB1Bank 0: CONFIG = Z (0x10h) Bank 1: CONFIG = H (0x20h)Bank 2: CONFIG = L (0x30h) ...................... 53  
TABLE 13. Buck 1 and Buck 2 Operation ...................................................................................................... 55  
TABLE 14. ENB2 Bank 0: CONFIG = Z (0x11h) Bank 1: CONFIG = H (0x21h)Bank 2: CONFIG = L (0x31h) ..................... 55  
TABLE 15. BK1VBank 0: CONFIG = Z (0x12h)Bank 1: CONFIG = H (0x22h)Bank 2: CONFIG = L (0x32h) ....................... 56  
TABLE 16. BK2V Bank 0: CONFIG = Z (0x13h)Bank 1: CONFIG = H (0x23h)Bank 2: CONFIG = L (0x33h) ...................... 56  
TABLE 17. LDO1 — 6 Bank 0: CONFIG = Z (0x14h:LDO1) (0x19h:LDO6)Bank 1: CONFIG = H (0x24h:LDO1) →  
(0x29h:LDO6)Bank 2: CONFIG = L (0x34h:LDO1) (0x39h:LDO6) ............................................................... 59  
TABLE 18. LDO7 Bank 0: CONFIG = Z (0x1Ah) Bank 1: CONFIG = H (0x2Ah)Bank 2: CONFIG = L (0x3Ah) .................... 60  
7
www.ti.com  
TABLE 19. THRESBank 0: CONFIG = Z (0x1Bh)Bank 1: CONFIG = H (0x2Bh)Bank 2: CONFIG = L (0x3Bh) ................... 61  
TABLE 20. PLDWNBank 0: CONFIG = Z (0x1Ch)Bank 1: CONFIG = H (0x2Ch)Bank 2: CONFIG = L (0x3Ch) .................. 61  
TABLE 21. OVRBank 0: CONFIG = Z (0x1Dh)Bank 1: CONFIG = H (0x2Dh)Bank 2: CONFIG = L (0x3Dh) ...................... 61  
TABLE 22. SUBOVRBank 0: CONFIG = Z (0x1Eh)Bank 1: CONFIG = H (0x2Eh) ..................................................... 62  
TABLE 23. I2C1 (0x40h) ........................................................................................................................... 62  
TABLE 24. I2C2 (0x41h) ........................................................................................................................... 63  
TABLE 25. BK1_FPWM (0x5Ah) ................................................................................................................. 63  
TABLE 26. BK2_FPWM (0x5Eh) ................................................................................................................. 64  
TABLE 27. PMC_SETUP (0x00h) ............................................................................................................... 64  
TABLE 28. PMC_SETUP (0x01h) ............................................................................................................... 65  
TABLE 29. PMC_SETUP (0x02h) ............................................................................................................... 65  
TABLE 30. DAC Clock Requirements ........................................................................................................... 66  
TABLE 31. ADC Clock Requirements ........................................................................................................... 66  
TABLE 32. PLL Settings for Common System Clock Frequencies ......................................................................... 69  
TABLE 33. PLL_CLOCK_SOURCE (0x03h) ................................................................................................... 70  
TABLE 34. PLL_M (0x04h) ........................................................................................................................ 70  
TABLE 35. PLL_N (0x05h) ........................................................................................................................ 70  
TABLE 36. PLL_N_MOD (0x06h) ................................................................................................................ 71  
TABLE 37. PLL_P1 (0x07h) ....................................................................................................................... 71  
TABLE 38. PLL_P2 (0x08h) ....................................................................................................................... 71  
TABLE 39. CLASS_D_OUTPUT (0x10h) ....................................................................................................... 72  
TABLE 40. LEFT HEADPHONE_OUTPUT (0x11h) .......................................................................................... 72  
TABLE 41. RIGHT HEADPHONE_OUTPUT (0x12h) ........................................................................................ 73  
TABLE 42. AUX_OUTPUT (0x13h) .............................................................................................................. 73  
TABLE 43. OUTPUT_OPTIONS (0x14h) ....................................................................................................... 74  
TABLE 44. ADC_INPUT (0x15h) ................................................................................................................. 74  
TABLE 45. MIC_INPUT (0x16h) ................................................................................................................. 75  
TABLE 46. AUX_LEVEL (0x18h) ................................................................................................................. 76  
TABLE 47. MONO_LEVEL (0x19h) .............................................................................................................. 77  
TABLE 48. HP_SENSE (0x1Bh) ................................................................................................................. 79  
TABLE 49. ADC Basic (0x20h) ................................................................................................................... 80  
TABLE 50. ADC_CLK_DIV (0x21h) ............................................................................................................. 80  
TABLE 51. ADC_MIXER (0x23h) ................................................................................................................ 81  
TABLE 52. DAC Basic (0x30h) .................................................................................................................. 82  
TABLE 53. DAC_CLK_DIV (0x31h) ............................................................................................................. 82  
TABLE 54. Input Levels 1 (0x40h) ............................................................................................................... 84  
TABLE 55. Input Levels 2 (0x41h) ............................................................................................................... 84  
TABLE 56. Audio Port 1 Input (0x42h) .......................................................................................................... 85  
TABLE 57. Audio Port 2 Input (0x43h) .......................................................................................................... 85  
TABLE 58. DAC Input Select (0x44h) ........................................................................................................... 86  
TABLE 59. Decimator Input Select (0x45h) .................................................................................................... 86  
TABLE 60. BASIC_SETUP (0x50h/0x60h) ..................................................................................................... 89  
TABLE 61. CLK_GEN_1 (0x51h/0x61h) ........................................................................................................ 89  
TABLE 62. CLK_GEN_1 (0x52h/62h) ........................................................................................................... 90  
TABLE 63. CLK_GEN_1 (0x53h/63h) ........................................................................................................... 90  
TABLE 64. DATA_WIDTHS (0x54h/64h) ....................................................................................................... 91  
TABLE 65. RX_MODE (0x55h/x65h) ............................................................................................................ 92  
TABLE 66. TX_MODE (0x56h/x66h) ............................................................................................................ 93  
TABLE 67. ADC EFFECTS (0x70h) ............................................................................................................. 95  
TABLE 68. DAC EFFECTS (0x71h) ............................................................................................................. 95  
TABLE 69. HPF MODE (0x80h) .................................................................................................................. 95  
TABLE 70. ADC_ALC_1 (0x81h) ................................................................................................................. 98  
TABLE 71. ADC_ALC_2 (0x82h) ................................................................................................................. 98  
TABLE 72. ADC_ALC_3 (0x83h) ................................................................................................................. 99  
TABLE 73. ADC_ALC_4 (0x84h) ............................................................................................................... 100  
TABLE 74. ADC_ALC_5 (0x85h) ............................................................................................................... 101  
TABLE 75. ADC_ALC_6 (0x86h) .............................................................................................................. 102  
TABLE 76. ADC_ALC_7 (0x87h) .............................................................................................................. 102  
TABLE 77. ADC_ALC_8 (0x88h) ............................................................................................................... 102  
TABLE 78. ADC_L_LEVEL (0x89h) .......................................................................................................... 103  
TABLE 79. ADC_R_LEVEL (0x8Ah) ........................................................................................................... 104  
TABLE 80. SOFTCLIP1 (0x90h) ............................................................................................................... 107  
TABLE 81. SOFTCLIP2 (0x91h) ............................................................................................................... 108  
TABLE 82. SOFTCLIP3 (0x92h) ............................................................................................................... 109  
TABLE 83. DAC_ALC_1 (0xA0h) .............................................................................................................. 109  
TABLE 84. DAC_ALC_2 (0xA1h) .............................................................................................................. 110  
TABLE 85. DAC_ALC_3 (0xA2h) .............................................................................................................. 111  
TABLE 86. DAC_ALC_4 (0xA3h) ............................................................................................................. 112  
TABLE 87. DAC_ALC_5 (0xA4h) ............................................................................................................. 113  
www.ti.com  
8
TABLE 88. DAC_ALC_6 (0xA5h) ............................................................................................................. 114  
TABLE 89. DAC_ALC_7 (0xA6h) ............................................................................................................. 114  
TABLE 90. DAC_ALC_8 (0xA7h) .............................................................................................................. 114  
TABLE 91. DAC_L_LEVEL (0xA8h) .......................................................................................................... 115  
TABLE 92. DAC_R_LEVEL (0xA9h) .......................................................................................................... 116  
TABLE 93. EQ_BAND_1 (0xABh) ............................................................................................................. 117  
TABLE 94. EQ_BAND_2 (0xACh) ............................................................................................................. 118  
TABLE 95. EQ_BAND_3 (0xADh) ............................................................................................................. 119  
TABLE 96. EQ_BAND_4 (0xAEh) ............................................................................................................. 120  
TABLE 97. EQ_BAND_5 (0xAFh) .............................................................................................................. 121  
TABLE 98. SOFTCLIP1 (0xB0h) ............................................................................................................... 122  
TABLE 99. SOFTCLIP2 (0xB1h) ............................................................................................................... 123  
TABLE 100. SOFTCLIP3 (0xB2h) ............................................................................................................. 124  
TABLE 101. GPIO1 (0xE0h) .................................................................................................................... 125  
TABLE 102. GPIO2 (0xE1h) .................................................................................................................... 126  
TABLE 103. RESET (0xF0h) .................................................................................................................... 126  
TABLE 104. Spread Spectrum (0xF1h) ....................................................................................................... 126  
TABLE 105. FORCE (0xFE) .................................................................................................................... 126  
9
www.ti.com  
7.0 Connection Diagrams  
64 Bump micro SMD  
64 Bump micro SMD Marking  
301282q7  
Top View  
XY — Date Code  
TT — Die Traceability  
G — Boomer  
30128250  
Order Number LM49360RL  
See NS Package Number RLA64JBA  
N6 — LM49360RL  
LM49360RL Pinout Diagram  
30128251  
Top View (Bump Side Down)  
www.ti.com  
10  
 
Ordering Information  
Order Number  
Package  
Package DWG #  
Transport Media  
MSL Level  
Green Status  
64 Bump micro  
SMDxt  
RoHS and  
no Sb/Br  
LM49360RL  
RLA64JBA  
RLA64JBA  
250 units on tape and reel  
1
64 Bump micro  
SMDxt  
RoHS and  
no Sb/Br  
LM49360RLX  
1000 units on tape and reel  
1
11  
www.ti.com  
Pin Descriptions  
Pin  
Pin Name  
VINL1  
Type  
Direction  
Input  
Description  
A1  
A2  
Supply  
Supply  
Input for LDO1 and LDO2  
LDO3 Output  
LDO3  
Output  
OVR allows hardware override of the enabling of LDO1 thru LDO7, Buck 1 and Buck  
2. The OVR control is enabled in the OVR and ENB2 registers. When bits in these  
registers are set, a high on OVR enables the corresponding voltage source. If  
CONFIG pin is high, the Bank 1 OVR register has LDO4_OVR bit set, via the  
EEPROM after power-up, allowing OVR enabling of LDO4. The functionality of OVR  
override is available in all modes (ie CONFIG pin L, H or Z). The OVR pin has an  
internal 500Kpull-down resistor.  
A3  
OVR  
Digital  
Input  
A4  
A5  
A6  
LDO5  
VINL3  
PGND  
Supply  
Supply  
Supply  
Output  
Input  
LDO5 Output  
Inputs for LDO5, LDO6, LDO7(HILO)  
PMU and LDO ground  
Input  
CONFIG = Low: In AP_PMU mode, PS_HOLD is a power control input from an  
external processor. CONFIG = High or High Z: In sub-PMU mode, setting the  
SUBOVR/(BUCK2_EN) pin high enables BUCK2 and any combination of LDO1, 4,  
5, 7 or Buck 1 that has its SUBOVR I2C register bit set to 1. In this configuration the  
A7 PS_HOLD/SUBOVR Digital  
Input  
SUBOVR(BUCK2_EN) pin has an internal 500kpull-down resistor.  
A8  
B1  
B2  
B3  
B4  
B5  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Input  
Output  
Output  
Input  
μPWR  
LDO1  
LDO2  
VINL2  
LDO4  
LDO6  
Filter point for internal μPWR LDO  
LDO1 Output  
LDO2 Output  
Input for LDO3 and LDO4  
LDO4 Output  
Output  
Output  
LDO6 Output  
LDO7 low current output used primarily for powering an external module's standby  
power input.  
B6  
LDO7  
Supply  
Output  
Input  
CONFIG = Low: In AP-PMU mode, PWR_ON = low enables standby mode and  
PWR_ON = high turns on the BUCK and LDO outputs. The PWR_ON pin expects  
to be driven by Vbatt via an external switch. CONFIG = High or High Z: In sub-PMU  
mode EN = low enables standby mode and EN = high turns on the BUCK and LDO  
outputs. The EN pin expects to be driven by an external processor. PWR_ON/EN  
has an internal 500kpull-down resistor.  
B7  
PWR_ON / EN  
Supply  
RESET_N is an open drain output that indicates that the BUCK and LDO supplies  
are stable. This pin can also be programmed as a general purpose output, GPO, in  
sub-PMU mode when CONFIG = High or High Z.  
B8  
RESET_N / GPO  
Digital  
Output  
C1  
C2  
HPR  
Analog  
Supply  
Output  
Input  
Headphone right output  
DAC (Analog), ADC (Analog), PLL (Analog), input stages, analog mixer (AUX and  
class D), and Earpiece amplifier power supply input  
A_VDD  
DAC (Analog), ADC (Analog), PLL (Analog), input stages, analog mixer (AUX and  
class D), and Earpiece amplifier ground  
C3  
AGND  
Supply  
Input  
C4  
C5  
C6  
DAC REF  
ADC REF  
SDA  
Analog Input/Output Filter point for the DAC reference  
Filter point for the ADC reference. Connect this pin to A_VDD  
I2C interface data line  
.
Analog  
Input  
Digital Input/Output  
Hardwire to DGND for Bank 2 AP-PMU operation. Hardwire to Vbatt for Bank 1 sub-  
PMU operation. Leave floating for Bank 0 sub-PMU operation.  
C7  
CONFIG  
Supply  
Input  
C8  
D1  
D2  
D3  
D4  
D5  
DGND  
HPL  
Supply  
Analog  
Analog  
Analog  
Input  
Output  
Input  
Reserved pin, connect to DGND  
Headphone left output  
AUX_R/AUX+  
AUX_L/AUX-  
PORT2_SYNC  
PORT2_SDI  
Right analog input or positive differential auxiliary input  
Left analog input or negative differential auxiliary input  
Input  
Digital Input/Output Audio Port 2 sync signal (can be master or slave)  
Digital  
Input  
Audio Port 2 serial data input  
www.ti.com  
12  
Pin  
D6  
D7  
D8  
E1  
E2  
E3  
Pin Name  
SCL  
Type  
Digital  
Supply  
Supply  
Analog  
Supply  
Analog  
Direction  
Input  
Description  
I2C interface clock line  
PVDD  
Input  
PMU power supply input  
Reserved pin, connect to DGND  
DGND  
Input  
HP_VSS  
HP_VDD  
EP-/AUXOUT-  
Output  
Input  
Negative power supply pin for the headphone amplifier  
Headphone amplifier power supply pin  
Output  
Earpiece negative output or Auxiliary negative output  
E4 PORT2_SDO / GPIO Digital Input / Output Audio port 2 serial data output or General Purpose Input Output  
E5  
E6  
E7  
E8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
G1  
G2  
G3  
G4  
G5  
PORT2_CLK  
MCLK  
Digital Input/Output Audio port 2 clock signal (can be master or slave)  
Digital  
Supply  
Supply  
Input  
Output  
Input  
Input clock from 0.5MHz to 50 MHz  
Buck2 feedback. Active pull-down when Buck2 is off.  
Input for Buck2  
FB2  
VINB2  
CP-  
Analog Input/Output Fly capacitor negative input  
Analog Input/Output Fly capacitor positive input  
CP+  
EP+/AUXOUT+  
PORT1_SYNC  
PORT1_SDO  
DGND  
Analog  
Output  
Earpiece positive output or Auxiliary positive output  
Digital Input/Output Audio Port 1 sync signal (can be master or slave)  
Digital  
Supply  
Supply  
Supply  
Supply  
Supply  
Analog  
Analog  
Digital  
Output  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Audio Port 1 serial data output  
Digital ground  
B2_GND  
SW2  
Buck2 ground  
Buck2 switch output  
LSGND  
LSVDD  
Loudspeaker ground  
Loudspeaker amplifier supply input  
MONO-  
MIC-  
Mono differential negative input  
Microphone negative input  
PORT1_SDI  
Audio Port 1 serial data input  
DAC (Digital), ADC (Digital), PLL (Digital), digital mixer, DSP core, and I2C register  
power supply input  
D_VDD  
G6  
Supply  
Input  
G7  
G8  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
FB1  
VINB1  
Supply  
Supply  
Analog  
Analog  
Analog  
Analog  
Output  
Input  
Buck1 feedback. Active pull-down when Buck1 is off.  
Input for Buck1  
LS -  
Output  
Output  
Input  
Loudspeaker negative output  
LS +  
Loudspeaker positive output  
MONO+  
MIC +  
Mono differential positive input  
Input  
Microphone positive input  
PORT1_CLK  
I/O_VDD  
B1_GND  
SW1  
Digital Input/Output Audio Port 1 clock signal (can be master or slave)  
Digital I/O (MCLK, I2S/PCM, I2C) interface power supply input  
Supply  
Supply  
Supply  
Input  
Input  
Buck1 ground  
Output  
Buck1 switch output  
7.1 PIN TYPE DEFINITIONS  
sive components can be connected  
to these pins.  
Analog Input —  
A pin that is used by the analog and  
is never driven by the device. Sup-  
plies are part of this classification.  
Digital Input —  
A pin that is used by the digital but is  
never driven by the device.  
Analog Output —  
A pin that is driven by the device and  
should not be driven by external  
sources.  
Digital Output —  
A pin that is driven by the device and  
should not be driven by another de-  
vice to avoid contention.  
Analog Input/Output — A pin that is typically used for filtering  
a DC signal within the device. Pas-  
Digital Input/Output —  
A pin that is either open drain (SDA)  
or a bidirectional CMOS in/out. In  
the latter case the direction is se-  
lected by a control register within the  
LM49360.  
13  
www.ti.com  
 
is programmable, 8μs, 64μs, 128μs, and 256μs. The timing  
for each output can be set individually and can be different for  
each of the 3 modes. The output voltage is also pro-  
grammable for each power output and can also be different  
for each of the 3 modes. In addition, the device supports var-  
ious override modes if the user wants to optionally control an  
output or leave an output on when the rest of the device is  
disabled:  
8.0 State Machine Description  
8.1 PMU STATE MACHINE DESCRIPTION  
The device is based around a power sequencer with 8 se-  
lectable stages for powering up and down outputs. There are  
3 modes of operation that use this sequencer with different  
settings, set by the config pin. Outputs are powered down in  
the opposite order from power up. The time between stages  
www.ti.com  
14  
 
 
301282h9  
FIGURE 4. PMU State Machine  
15  
www.ti.com  
 
8.2 AUDIO PMC STATE MACHINE DESCRIPTION  
device to reach the ON state. A command to disable the de-  
vice takes 0.75k clock cycles (2.2ms) to reach the OFF state.  
The stated times are based on using the low power internal  
oscillator, which is typically 350kHz but can vary by as much  
as 30%.  
The basic premise of the audio section is that it should be  
configured in shutdown and enabled via the ENABLE register  
in 0x00h bit[0]. Once it has been enabled the CHIP_ACTIVE  
bit is set in 0x00h bit[7]. To disable the device the user should  
clear the ENABLE bit (0x00h bit[0]) and wait for the CHIP_AC-  
TIVE(0x00h bit [7]) bit to clear before re-enabling the device.  
Sufficient time must be given for the state transitions to com-  
plete before issuing another command via I2C. A device en-  
able command takes 8.5k clock cycles (typically 25ms) for the  
The ENABLE bit drives a sequencer that is responsible for  
controlling bias circuits, clocking, click and pop and clean op-  
eration of the volume controls without requiring manual I2C  
commands, a simplified overview is shown below:  
30128259  
FIGURE 5. LM49360 Audio PMC Sequencer Overview with Typical Timing.  
The Finite State Machine (FSM) can be clocked from a divid-  
ed down MCLK, an I2S PORT or an internal 350kHz oscillator.  
The device will automatically control the internal clock gating  
of the MCLK and Oscillator clocks. The I2S clock inputs are  
not automatically gated to allow to digital bypass modes when  
the analog codec circuits are disabled. The FSM can be  
clocked faster if required - the maximum clock speed to the  
PMC is 14MHz.  
8.2.1 State_0 (OFF)  
In this state the internal clocks and oscillators are disabled  
(unless an OVR bit in register 0x00 is set). The device is un-  
biased and only leakage current is drawn from the supplies.  
The I2C port is controllable and all control registers are free  
to be changed.  
When the ENABLE bit is set the device enables either the  
MCLK pad or low power oscillator and waits 2 clock cycles  
before rechecking the ENABLE bit. If it is still set the device  
proceeds to STATE_1, otherwise the device remains in  
STATE_0 and the deglitching digital flip-flops are disabled  
and reset.  
The user can use the internal oscillator for the PMC and it will  
only enable the oscillator when required (the low power os-  
cillator is reused by many circuits in the device that require  
delays, the PMC controls when it should be enabled). If the  
PMC is not using the oscillator (i.e. PMC_CLK_SEL is set to  
MCLK) it will remain off unless another circuit requires it. The  
PMC will also automatically control the MCLK input buffer to  
reduce power on chip but the power spent driving the PCB  
trace to the MCLK pin makes the oscillator the preferred so-  
lution. The only advantage to using an external pin is where  
precise timing of the sequencer is needed. When an external  
clock is required it should not be removed until the device has  
reached the OFF condition. The function and timing of each  
stage is detailed below:  
8.2.2 State_1 (BIAS)  
In state 1 the device enables its internal references and com-  
mon mode points. The preamplifiers to analog inputs are  
enabled and the PMC starts to inject current into decoupling  
caps. The PMC clock is started and the clocking circuits are  
readied. The mixer and amplifiers remain muted.  
The device waits 8192 clock cycles (typically 23 to 24ms using  
the internal oscillator, enough time for the common mode  
points to reach vcm and start to settle without any audible click  
and pop or coupling back to driving circuits) before moving to  
the next stage.  
www.ti.com  
16  
 
 
 
 
8.2.3 State_2 (AMPS ON)  
ondary state machine notes a change in the requested state  
for each amplifier and requests a clock and a 10ms count-  
down from the PMC clock domain so it can proceed to safely  
change the gain of the amplifier.  
Once the common mode points have settled, the amplifiers  
power up with their inputs muted. Any calibration takes place  
at this stage. Protection circuits enable and the I/O amplifiers  
(not the analog mixer yet) are allowed to unmute once vcm  
has settled, ensuring better settling of the common mode  
throughout the muted mixer.  
The amp control FSM checks the current gain and signal  
routing and if required (if zipper or click and pop is a risk) en-  
ables a small differential comparator on the output of the amp.  
8.2.3.1 AMPLIFIER CONTROL FSM  
The muting, unmuting and volume control is always handled  
by a separate state machine for each amplifier. This sec-  
301282i0  
FIGURE 6. Zero Cross Detect Comparator (ZXD)  
The controller waits 1ms for this comparator to stabilize then  
monitors the output of the comparator for a Zero Crossing  
Event. At this exact moment the new gain or mute/unmute  
condition is applied to the amplifier (in conjunction with any  
changes required to the rest of the analog mixer to ensure  
click and pop free operation). The comparator is then pow-  
ered down. If no zero crossing occurs after 11ms (assume  
audio content at frequencies above 36Hz) the changes are  
applied regardless and the controller returns to a zero power  
state.  
monitored for a falling edge. Once a deglitched falling edge is  
seen the FSM moves to state 5.  
8.2.6 State_5 (MUTE)  
The output stages are muted first using the amplifier control  
FSM for each channel. The digital logic circuits are also muted  
and cleared at this stage. Once the amplifiers are muted and  
1ms has passed (256 clock cycles) the PMU moves to state  
6. CHIP_ACTIVE is cleared at this stage.  
8.2.7 State_6 (AMPS_OFF)  
The PMC leaves STATE_2 after 256 clock cycles (about  
1ms).  
With the output stages muted the I/O amplifiers can be dis-  
abled, only the ADCs and DACs remain enabled, flushing out  
any residual data from their filters. The device waits another  
256 clock cycles.  
8.2.4 State_3 (UNMUTE)  
In state 3 the audio DACs and ADCs have been cleared and  
are unmuted then the digital and analog mixers are unmuted.  
8.2.8 State_7 (OFF)  
The PMC leaves STATE_3 after 256 clock cycles (about  
1ms).  
The Bias circuits are disabled and the common mode and  
reference bypass points are allowed to discharge. The MCLK  
and oscillator are disabled and power is leakage only.  
8.2.5 State_4 (ON)  
The PMC now sets the CHIP_ACTIVE flag (0x00h bit[7]). The  
internal timers are all powered down. The ENABLE pin is  
17  
www.ti.com  
 
 
 
 
 
 
 
 
Human Body Model (Note 4)  
Machine Model (Note 5)  
Charged Device Model  
Junction Temperature  
Thermal Resistance  
2kV  
150V  
500V  
150°C  
9.0 Absolute Maximum Ratings (Note  
1, Note 2)  
If Military/Aerospace specified devices are required,  
please contact the Texas Instruments Sales Office/  
Distributors for availability and specifications.  
ꢀθJA – RLA64 (soldered down  
to PCB with 2in2 1oz. copper plane)  
Analog Supply Voltage  
60°C/W  
(A_VDD and LS_VDD  
)
6.0V  
2.2V  
5.5V  
3.0V  
6.0V  
Soldering Information  
See Applications Note AN-1112.  
Digital Supply Voltage  
D_VDD  
I/O Supply Voltage  
I/O_VDD  
10.0 Operating Ratings  
Ambient Temperature Range  
TA  
Headphone Supply Voltage  
HP_VDD  
−40°C to +85°C  
Supply Voltage  
A_VDD, ADCREF  
D_VDD  
I/O_VDD  
HP_VDD  
Buck Input Supply Voltage  
VINB1, VINB2  
2.8V to 5.5V  
1.6V to 2.0V  
1.6V to 4.5V  
1.7V to 2.8V  
LDO Input Supply Voltage  
VINL1, VINL2, VINL3  
6.0V  
−65°C to +150°C  
Storage Temperature  
Maximum Continuous Power  
PVDD, LSVDD, VINB1  
VINB2,VINL1,VINL2,VINL3  
3.0V to 5.5V  
Dissipation (Note 3)  
2.0W  
ESD Ratings  
11.0 Total Shutdown Current Consumption  
Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF, CVIN1 = CVIN2 = CVIN3 = 10µF,  
A_VDD = LS_VDD = 3.6V, HP_VDD = D_VDD = IO_VDD = 1.8V. Typical values and limits appearing in boldface type apply over the  
entire ambient temperature range for operation, TA = –40 to +85°C. (Note 7).  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
PMU Standby Conditions: All outputs  
disabled, (Note 12)  
Total  
IQ (SHUTDOWN)  
Total Shutdown Current  
9.1  
20  
Audio CODEC Conditions:  
Shutdown Mode, fMCLK = 13MHz,  
PLL Off  
μA  
12.0 PMU Current Consumption  
Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF, CVIN1 = CVIN2 = CVIN3 = 10µF.  
Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the ambient  
junction temperature range for operation, TA = –40 to +85°C. (Note 7).  
Symbol  
Parameter  
Standby Current  
Condition  
Min  
Typ  
Max  
Units  
IQ (STANDBY)  
All outputs disabled, (Note 12)  
4.5  
10.2  
µA  
Current in SLEEP Mode  
at no load  
I
All outputs enabled  
105  
150  
µA  
Q(SLEEP)  
IQ (IDLE)  
Current at no load  
Current at no load  
All outputs enabled  
Only Buck 1 enabled  
365  
145  
450  
170  
µA  
IQ (IDLE 1)  
μA  
Only Buck 1, LDO1, LDO2, LDO3,  
and LDO6 enabled  
IQ (IDLE 2)  
Current at no load  
250  
300  
μA  
www.ti.com  
18  
 
 
 
 
13.0 Thermal Shutdown  
The Thermal Shutdown (TSD) function monitors the chip temperature to protect the chip from temperature damage caused by  
excessive power dissipation. There are a total of three thermal monitors on the LM49360, with one monitoring the upper limit audio  
section, another acting as an early warning flag for the PMU section, and a third monitoring the upper limit of the PMU section.  
(Note 7).  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Upper Limit (Automatic)  
160  
°C  
TSDPMU  
PMU Thermal Shutdown  
Lower Limit  
(Acts as an early warning flag)  
120  
°C  
TSDAUDIO  
TSDHYST  
Audio Codec Thermal Shutdown (Automatic)  
TSD Hysteresis  
155  
20  
°C  
°C  
14.0 Under Voltage Lock Out  
This device has Under Voltage Lock Out (UVLO) that checks the PVDD pin voltage before enabling any of the PMU outputs (LDO’s  
1 thru 7, Buck 1 and Buck 2), this occurs during the PMU state machine DELAY (state 6). If the PVDD is below the UVLO threshold  
the PMU state machine returns to the STANDBY (state 3) and the PMU outputs remain disabled. If PVDD is greater than the UVLO  
threshold than the selected PMU outputs are enabled. Upon enabling the PMU outputs the PVDD pin voltage is continuously  
monitored to determine if it is above the UVLO threshold. If the PVDD drops below the UVLO threshold an UVLO_EVENT occurs  
and the PMU state machine returns to the STANDBY state and the PMU outputs are disabled.  
Symbol  
Parameter  
UVLO threshold  
Hysteresis  
Condition  
Min  
Typ  
2.8  
80  
Max  
Units  
V
UVLO_VSEL = 1010b  
mV  
15.0 Logic and Control  
Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF, CVIN1 = CVIN2 = CVIN3 = 10µF.  
Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire  
ambient temperature range for operation, TA = –40 to +85°C. (Note 7).  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Logic and Control Inputs  
MCLK, PORT1_CLK, PORT1_WS,  
PORT1 _SDI, PORT2_CLK,  
PORT2_WS, PORT2_SDI,  
PORT2_SDO/GPIO  
0.3 x I/  
O_VDD  
V
V
VIL  
Input Low Level  
Input High Level  
0.3 x  
VBATT  
SCL, SDA CONFIG  
SCL, SDA, MCLK, PORT1_CLK,  
PORT1_WS, PORT1 _SDI,  
PORT2_CLK, PORT2_WS,  
0.7x I/  
O_VDD  
VIH  
V
PORT2_SDI, PORT2_SDO/GPIO  
0.7 x  
VBATT  
CONFIG  
V
SCL, SDA, PS_HOLD / SUBOVR  
(BUCK2_EN), PWR_ON / EN, OVR  
(LDO4_EN), CONFIG  
IIL  
Input Low Level Current  
0.1  
0.5  
6.0  
µA  
VIL = 0V  
PS_HOLD / SUBOVR (BUCK2_EN),  
PWR_ON  
IIH  
Input High Level Current  
Pull Down Resistance  
4.7  
µA  
VIH = VIN1  
From PWR_ON / EN, PS_HOLD /  
SUBOVR (BUCK2_EN), OVR  
(LDO4_EN)  
RPD  
800  
kΩ  
Logic and Control Outputs  
19  
www.ti.com  
 
 
 
Symbol  
VOL  
Parameter  
Output Low Level  
Condition  
Min  
Typ  
Max  
Units  
SDA, RESET_N, IOUT = 2mA  
0.4  
V
0.3 x I/  
O_VDD  
PORT1_SDO, PORT2_SDO/GPIO  
SDA, RESET_N  
V
Open  
Drain  
VOH  
Output High Level  
0.7 x  
I/O_VDD  
PORT1_SDO, PORT2_SDO/GPIO  
V
16.0 Electrical Characteristics / Buck Converters  
Unless otherwise noted, PVDD= VINB1 = VINB2 = 3.6V, CVINB1 = CVINB2 = 4.7µF. Typical values and limits appearing in normal type  
apply for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to  
+85°C. (Note 7, Note 8)  
Symbol  
Parameter  
Condition  
PWM Mode, No load  
Min  
Typ  
Max  
Units  
-3  
3
%
VOUT = 1.1V to 1.8V  
PWM Mode, No load  
VOUT = 0.6V to 1.0V  
VFB  
Feedback Voltage  
-3.7  
3.7  
229  
630  
200  
%
ECO Mode, FB = VIN,  
No Switching  
IQ_ECO  
ECO Mode IQ  
60  
µA  
µA  
PWM Mode, FB = VIN,  
No Switching  
IQ_PWM  
RDSON(P)  
PWM Mode IQ  
465  
170  
VIN = VGS = 3.6V  
IOUT = 200mA  
Pin-Pin resistance for NMOS  
mΩ  
mΩ  
VIN = VGS = 3.6V  
IOUT = -200mA  
RDSON(N)  
Pin-Pin resistance for NMOS  
100  
120  
ILIM  
Switch Peak Current Limit  
Start Up Time  
Open-loop, programmable  
IOUT = 0mA to 100mA  
PWM Mode  
1020  
3.8  
1200  
50  
1360  
mA  
µs  
tSTARTUP  
fSW  
Switching frequency  
4
4.2  
MHz  
17.0 Electrical Characteristics / General LDOs 1 to 6  
Unless otherwise noted, PVDD = VIN1 = VIN2 = VIN3 = 3.6V, GND = 0V, CVIN1 = CVIN2 = CVIN3 = 10µF. Typical values and limits  
appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range  
for operation, TA = –40 to +85°C. (Note 7)  
Symbol  
Parameter  
Condition  
Min  
-2  
Typ  
Max  
2
Units  
%
VOUT  
IOUT = 1mA, VOUT = 2.85V  
Output Voltage Accuracy  
-3  
3
%
VOUT = 0V  
780  
mA  
LDO1, LDO3  
ISC  
Output Current Limit  
VOUT = 0V  
400  
140  
mA  
mV  
LDO2, LDO4, LDO5, LDO6  
IOUT = IMAX (Note 9)  
VDO  
Dropout Voltage  
Line Regulation  
250  
VOUT + 0.5V VIN 4.5V  
IOUT = IMAX  
1.0  
mV  
ΔVOUT  
(Note 10)  
1mA < IOUT < IMAX  
Load Regulation  
4
mV  
mA  
mA  
mA  
LDO1, LDO3  
400  
200  
440  
250  
20  
IMAX  
Max Output Current  
LDO2, LDO4, LDO5, LDO6  
ISLEEP  
Max Output Current in sleep Mode  
www.ti.com  
20  
 
 
Symbol  
eN  
Parameter  
Condition  
10Hz < f < 100kHz  
Min  
Typ  
Max  
Units  
IOUT = IMAX  
µVRMS  
Output Voltage Noise  
13  
COUT = 1µF  
f = 10KHz, COUT = 1µF  
IOUT = 20mA  
PSRR  
Power Supply Rejection Ratio  
36  
dB  
tSTARTUP  
IOUT = IMAX, COUT = 1µF  
IOUT = IMAX (Note 11)  
Start-up Time from Shutdown  
Start-up Transient Overshoot  
25  
20  
µs  
VTRANSIENT  
mV  
External Output Capacitance for  
Stability  
COUT  
(Note 11)  
0.6  
1
20  
µF  
18.0 Electrical Characteristics / High Input Low Output LDO 7  
Unless otherwise noted, PVDD = VIN3 = 3.6V, GND = 0V, CVIN3 = 10µF. Typical values and limits appearing in normal type apply  
for TJ = 25°C. Limits appearing in boldface type apply over the entire ambient temperature range for operation, TA = –40 to +85°  
C. (Note 7)  
Symbol  
Parameter  
Condition  
IOUT = 1mA, VOUT = 1.2V  
IOUT = 1mA, VOUT = 1.2V,  
over temperature  
Min  
Typ  
Max  
Units  
-2  
2
%
VOUT  
Output Voltage Accuracy  
-3  
3
%
IOUT  
ISC  
VOUT + 0.5V < VIN3 < 5.5V  
Max Output Current  
Output Current Limit  
20  
40  
mA  
mA  
VOUT = 0V  
IOUT = 20mA  
(Note 9)  
110  
VDO  
Dropout Voltage  
54  
65  
mV  
VOUT + 0.5V VIN3 5.5V,  
IOUT = 20mA (Note 10)  
Line Regulation  
Load Regulation  
0.5  
0.5  
53  
mV  
mV  
ΔVOUT  
1mA < IOUT < 20mA  
10Hz = f = 100kHz  
IOUT = 20mA; No COUT  
10Hz = f = 100kHz  
IOUT = 20mA; COUT = 10µF  
f = 10kHz, COUT = 1µF  
IOUT = 2mA  
µVRMS  
eN  
Output Voltage Noise  
µVRMS  
dB  
90  
35  
35  
PSRR  
Power Supply Rejection Ratio  
f = 10kHz, COUT = 1µF  
IOUT = 20mA  
dB  
tSTARTUP  
IOUT = 20mA ; COUT = 1µF  
IOUT = 0mA to 2mA  
IOUT = 2mA to 0mA  
Start-up Time from Shutdown  
Load Transient Overshoot  
Start-up Transient Overshoot  
60  
–55  
55  
µs  
mV  
mV  
mV  
VLOADTRANS  
VTRANSIENT  
COUT  
IOUT = 20mA; COUT = 1μF(Note 11)  
(Note 11)  
20  
External Output Capacitance for  
Stability  
0.6  
1
20  
µF  
21  
www.ti.com  
 
19.0 Electrical Characteristics / Audio CODEC: A_VDD = LS_VDD = 3.6V;  
HP_VDD = D_VDD = I/O_VDD = 1.8V (Note 1, Note 2) The following specifications apply for RL(LS) = 8Ω,  
RL(HP) = 32Ω, f = 1kHz, unless otherwise specified. Limits apply for TA = 25°C.  
LM49360  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
(Note 6) (Note 7)  
DC CHARACTERISTICS (Digital current combines D_VDD and I/O_VDD. Analog current combines A_VDD, HP_VDD  
,
and LS_VDD  
)
Shutdown Mode,  
fMCLK = 13MHz, PLL Off  
DISD  
Digital Shutdown Current  
4
10  
1.4  
0.5  
1.5  
µA  
fMCLK = 11.2896MHz, fS = 44.1kHz,  
Stereo DAC On, OSRDAC = 64,  
PLL Off, HP On  
Digital Active Current (MP3 Mode)  
Digital Active Current (FM Mode)  
1.2  
0.2  
1.3  
mA (max)  
mA (max)  
mA (max)  
fMCLK = 13MHz  
Analog Audio modes  
fMCLK = 12.288MHz, fS = 48kHz,  
Stereo ADC On, OSRADC = 128,  
PLL Off, Stereo Analog Inputs On  
DIDD  
Digital Active Current  
(FM Record Mode)  
fMCLK = 12.288MHz, fS = 8kHz,  
Mono ADC On, Mono DAC On,  
OSRDAC = 64  
Digital Active Current  
(CODEC Mode)  
0.7  
0.1  
0.8  
9
mA (max)  
OSRADC = 128, PLL Off, MIC On  
AISD  
Analog Shutdown Current  
Shutdown Mode  
μA (max)  
fMCLK = 11.2896MHz, fS = 44.1kHz, Stereo DAC On,  
OSRDAC = 64, PLL Off, Stereo HP On  
Analog Supply Current (MP3 Mode)  
From A_VDD  
4.6  
1.7  
6
mA (max)  
mA (max)  
From HP_VDD  
2.7  
fMCLK = 13MHz, PLL Off  
Stereo Auxiliary Inputs On,  
PLL Off, Stereo HP On  
Analog Supply Current (FM Mode)  
From A_VDD  
1.8  
1.6  
2.6  
2.7  
mA (max)  
mA (max)  
AIDD  
From HP_VDD  
fMCLK = 12.288MHz, fS = 48kHz,  
Stereo ADC On, OSRADC = 128,  
PLL Off, Stereo Analog Inputs On  
Analog Supply Current  
(FM Record Mode)  
7.3  
9.3  
mA (max)  
fMCLK = 12.288MHz, fS = 8kHz,  
Mono ADC On, Mono DAC On,  
OSRDAC = 64  
Analog Supply Current  
(CODEC Mode)  
7.0  
8.7  
mA (max)  
OSRADC = 128, PLL Off, MIC On,  
EP On  
fMCLK = 13MHz, fPLLOUT = 12MHz, PLL On only  
PLLIDD  
From A_VDD  
PLL Total Active Current  
1.9  
1.4  
1.6  
2.4  
0.4  
2.7  
2
mA (max)  
mA (max)  
mA  
From D_VDD  
Stereo HP On only  
LS On only  
HPIDD  
LSIDD  
Headphone Quiescent Current  
Loudspeaker Quiescent Current  
Microphone Quiescent Current  
mA  
MICIDD  
Mono MIC  
mA  
fs = 48kHz, Stereo  
From A_VDD  
ADCIDD  
DACIDD  
ADC Total Active Current  
DAC Total Active Current  
6.5  
1.4  
mA  
mA  
From D_VDD  
fS = 48kHz, Stereo  
From A_VDD  
3.5  
1.0  
mA  
mA  
From D_VDD  
www.ti.com  
22  
 
LM49360  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
Mono/Auxiliary Input Amplifier  
Quiescent Current  
Mono and AUX Input Amplifiers  
enabled  
AUXINIDD  
0.6  
mA  
AUXOUT enabled  
Earpiece Mode  
0.5  
1.2  
mA  
mA  
Auxiliary Output Amplifier Quiescent  
Current  
AUXOUTIDD  
LOUDSPEAKER AMPLIFIER  
PO = 940mW, RL = 8Ω,  
LS_VDD = 4.2V  
LSEFF  
Loudspeaker Efficiency  
87  
%
%
PO = 300mW, f = 1kHz,  
RL = 8Ω, Mono Input Signal  
THD+N  
Total Harmonic Distortion + Noise  
0.06  
RL = 8Ω, f = 1kHz, THD+N = 1%, Mono Input Signal  
LS_VDD = 5V  
LS_VDD = 4.2V  
LS_VDD = 3.6V  
1.3  
900  
595  
W
mW  
555  
mW (min)  
PO  
Output Power  
RL = 4Ω, f = 1kHz, THD+N = 1%, Mono Input Signal  
LS_VDD = 5V  
LS_VDD = 4.2V  
LS_VDD = 3.6V  
2.2  
1.6  
W
W
950  
mW  
VRIPPLE = 200mVP-P  
fRIPPLE = 217Hz  
Mono Input Terminated  
VREF = 1.0μF, Input Referred  
LS Gain = 12dB  
82  
65  
dB (min)  
dB  
PSRR  
Power Supply Rejection Ratio  
VRIPPLE = 200mVP-P  
fRIPPLE = 217Hz  
80  
From DAC, DAC gain = 0dB  
Reference = VOUT (1% THD+N ), Mono gain = 0dB  
A-weighted, Mono Input Terminated, LS Gain = 8dB  
LS_VDD = 4.2V  
LS_VDD = 3.6V  
92  
91  
dB  
85  
dB (min)  
SNR  
Signal-to-Noise Ratio  
Reference = VOUT (1% THD+N ), DAC Gain = 0dB, A-weighted  
fS = 48kHz, OSR = 128 LS Gain = 8dB  
LS_VDD = 4.2V  
LS_VDD = 3.6V  
84  
83  
dB  
dB  
eOS  
VOS  
Mono gain = 0dB, A-weighted,  
Mono Input Terminated, Input Referred  
Output Noise  
Offset Voltage  
90  
10  
µV  
Mono gain = 0dB, from Mono Input  
50  
mV (max)  
HEADPHONE AMPLIFIERS  
PO = 15mW, f = 1kHz,  
RL = 32Ω  
THD+N Total Harmonic Distortion + Noise  
0.03  
0.1  
% (max)  
Stereo Analog Input Signal  
RL = 32Ω, f = 1kHz, THD+N = 1%,  
Stereo Analog Input Signal, In phase  
HP_VDD = 2.8V  
70  
23  
mW  
HP_VDD = 1.8V  
18.5  
mW (min)  
PO  
Headphone Output Power  
RL = 16Ω, f = 1kHz, THD+N = 1%,  
Stereo Analog Input Signal, In phase  
HP_VDD = 2.8V  
70  
25  
mW  
mW  
HP_VDD = 1.8V  
23  
www.ti.com  
LM49360  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz, Mono Input Terminated  
Mono gain = 0dB VREF = 1.0μF, Mono Differential Input Mode,  
Ripple applied to AVDD only  
100  
92  
82  
dB (min)  
dB  
Ripple applied to AVDD and HPVDD  
PSRR  
Power Supply Rejection Ratio  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
From DAC, DAC gain = 0dB  
Ripple applied to AVDD  
90  
95  
dB  
HPVDD, and DVDD  
Reference = VOUT (1% THD+N )  
Gain = 0dB, A-weighted  
Stereo Inputs Terminated  
90  
92  
dB (min)  
SNR  
Signal to Noise Ratio  
Output Noise  
Reference = VOUT (1% THD+N),  
Gain = 0dB,  
97  
dB (min)  
A-weighted, I2S Input = Digital Zero  
Gain = 0dB, A-weighted,  
Stereo Inputs Terminated  
12  
13  
µV  
µV  
eOS  
Gain = 0dB, A-weighted,  
I2S Input = Digital Zero  
PO = 7.5mW, f = 1kHz, RL = 32Ω  
Stereo Analog Input Signal  
XTALK  
Crosstalk  
85  
dB  
dB  
ΔACH-CH  
Channel-to-Channel Gain Matching  
0.03  
0.25  
AUX Gain = 0dB  
From mono Input  
1
1
mV (max)  
VOS  
Output Offset Voltage (Note 13)  
DAC Gain = 0dB  
From DAC Input, fMCLK = 12.288MHz  
0.25  
mV (max)  
%
AUXILIARY OUTPUT/EARPIECE AMPLIFIER  
AUX_LINE_OUT, f = 1kHz  
From Mono In  
0.006  
RL = 5k, VOUT = 1VRMS  
THD+N  
Total Harmonic Distortion  
Output Power  
Earpiece mode, f = 1kHz,  
From Mono In  
0.03  
60  
%
mW (min)  
dB  
RL = 32Ω BTL, POUT = 20mW  
Earpiece mode, f = 1kHz  
POUT  
50  
85  
RL = 32Ω BTL, THD+N = 1%  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input terminated, CREF = 1.0μF  
AUX_LINE_OUT  
80  
PSRR  
SNR  
Power Supply Rejection Ratio  
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz  
Mono Input terminated, CREF = 1.0μF  
Earpiece mode,  
–6dB cut enabled  
100  
dB  
dB  
Gain = 0dB, VREF = VOUT (1% THD+N)  
A-weighted, Mono Input Terminated  
Gain = 0dB, VREF = VOUT (1% THD+N)  
A-weighted, Mono Input Terminated  
Signal to Noise Ratio  
Output Noise  
101  
11.4  
4.2  
μV  
OUT  
MONO gain = 0dB, From Mono Input  
AUX_LINE_OUT  
mV  
VOS  
Output Offset Voltage  
Turn-On time  
Gain = 0dB, From Mono Input  
Earpiece mode  
3
10  
mV (max)  
ms  
TWU  
PMC Clock = 300kHz  
29  
www.ti.com  
24  
LM49360  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
STEREO ADC  
THD+NADC  
Mono Differential Input  
VIN = 1VRMS, f = 1kHz  
Gain = 0dB, fS = 48kHz  
ADC Total Harmonic Distortion  
+ Noise  
0.008  
220  
%
HPF On, fS = 48kHz  
Lower -3dB Point  
Hz  
PBADC  
ADC Passband  
ADC Ripple  
0.41*fS  
0.1  
HPF On, Upper -3dB Point  
OSRDAC = 128  
kHz  
dB  
RADC  
Reference = VOUT (0dBFS )  
Gain = 6dB  
96  
dB  
A-weighted From MIC, fS = 8kHz  
SNRADC  
ADC Signal to Noise Ratio  
ADC Full Scale Input Level  
Reference = VOUT (0dBFS )  
Gain = 0dB  
A-weighted From Stereo Input,  
fS = 48kHz  
98  
dB  
ADCLEVEL  
VRMS  
1.65  
STEREO DAC  
I2S Input, AUXOUT, OSRDAC = 64  
VIN = 500mFFSRMS, f = 1kHz  
Gain = 0dB  
DAC Total Harmonic Distortion  
+ Noise  
THD+NDAC  
0.015  
%
DACLEVEL  
RDAC  
VRMS  
dB  
DAC Full Scale Output Level  
DAC Ripple  
1.1  
0.1  
PBDAC  
0.45*fS  
96  
DAC Passband  
Upper –3dB Point  
kHz  
dB  
SNRDAC  
fS = 48kHz, A-weighted, AUXOUT  
DAC Signal to Noise Ratio  
VOLUME CONTROL  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
Minimum Gain  
Maximum Gain  
–46.5  
18  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
VCRAUX  
VCRMONO  
VCRDAC  
VCRADC  
VCRMIC  
VCRLS  
Stereo Input Volume Control Range  
MONO Input Volume Control Range  
DAC Volume Control Range  
–46.5  
18  
–76.5  
18  
–76.5  
18  
ADC Volume Control Range  
6
MIC Volume Control Range  
36  
0
Loudspeaker Amplifier Volume  
Control Range  
12  
–18  
0
Headphone Amplifier Volume  
Control Range  
VCRHP  
SSLS  
Loudspeaker Amplifier Volume  
Control Stepsize  
4
dB  
Headphone Amplifier Volume  
Control Stepsize  
Refer to  
Table 45  
SSHP  
dB  
dB  
dB  
SSAUX  
SSMONO  
AUX Input Volume Control Stepsize  
1.5  
MONO Input Volume Control  
Stepsize  
1.5  
SSDAC  
SSADC  
SSMIC  
DAC Volume Control Stepsize  
ADC Volume Control Stepsize  
MIC Volume Control Stepsize  
1.5  
1.5  
2
dB  
dB  
dB  
25  
www.ti.com  
LM49360  
Typical Limit  
(Note 6) (Note 7)  
Units  
(Limit)  
Symbol  
SVAUX  
Parameter  
Conditions  
AUX Volume Setting Variation  
MONO Volume Setting Variation  
MIC Volume Setting Variation  
±1  
±1  
±1  
dB (max)  
dB (min)  
dB (max)  
SVMONO  
SVMIC  
ANALOG INPUTS  
AUX Gain = 18dB  
10  
38  
64  
10  
38  
64  
50  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
AUX_RIN  
Auxiliary Input Impedance  
AUX Gain = 0dB  
AUX Gain = –46.5dB  
MONO Gain = 18dB  
MONO Gain = 0dB  
MONO Gain = –46.5dB  
All MIC gain settings  
MONO_RIN  
MIC_RIN  
Mono Input Impedance  
Microphone Input Impedance  
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability  
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in  
the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the  
device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified. LSVDD must always  
be the highest input power supply, LSVDD PVDD, AVDD, IOVDD, Vin and must be supplied first during initial power-up.  
Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified  
or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.  
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum  
allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings, whichever is lower.  
Note 4: Human body model, applicable std. JESD22-A114C.  
Note 5: Machine model, applicable std. JESD22-A115-A.  
Note 6: Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of product  
characterization and are not guaranteed.  
Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.  
Note 8: The parameters in the electrical characteristic table are tested under open loop conditions at VIN = 3.6V unless otherwise specified. For performance  
over the input voltage range and closed loop condition, refer to the datasheet curves.  
Note 9: Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its nominal value.  
Note 10: The minimum input voltage equals Vout (nom) + 0.5V or 3.0V, which ever is greater.  
Note 11: This specification is guaranteed by design.  
Note 12: If CONFIG = L, the device can be placed in the standby state by de-asserting the PS_HOLD and PWR_ON pins as shown in Figure 14. If CONFIG =  
H or Z, the device can be placed in the standby state by de-asserting the EN pin as shown in Figure 13. None of the software Override (SWOVR) bits can be set  
or the device will not be in the standby state.  
Note 13: VOS is reduced through auto-calibration. The procedure to start auto-calibration is to make sure the audio section is disabled by setting chip enable = 0  
in audio register 0x00. Select the audio path. Enable audio with chip enable = 1. Wait 500 microseconds for the calibration to complete.  
www.ti.com  
26  
 
 
 
 
 
 
 
 
 
 
 
 
 
20.0 Timing Characteristics: DVDD = I/OVDD = 1.8V (Note 1, Note 2) The following specifications  
apply for RL(SP) = 8Ω, RL(HP) = 32Ω, f = 1kHz, unless otherwise specified. Limits apply for TA = 25°C.  
LM49360  
Units  
Symbol  
PLL  
fIN  
Parameter  
Conditions  
Typical  
Limit  
(Limit)  
(Note 6)  
(Note 7)  
Minimum MCLK Frequency  
Maximum MCLK Frequency  
0.5  
50  
MHz (min)  
MHz (max)  
PLL Input Frequency Range  
I2S MASTER TIMING  
I2S_CLKPER  
tCLK_L  
I2S Master  
I2S Master  
I2S Master  
I2S_CLK Period  
81.38  
37  
ns  
ns  
ns  
I2S_CLK Low Time  
I2S_CLK High Time  
tCLK_H  
37  
WS Propagation Delay from I2S_CLK  
falling edge  
tWS_DLY  
tSDO_DLY  
tDST  
I2S Master  
I2S Master  
I2S Master  
I2S Master  
21  
21  
20  
20  
ns  
ns  
ns  
ns  
SDO Propagation Delay from I2S_CLK  
falling edge  
SDI Setup Time to I2S_CLK Rising  
Edge  
SDI Hold Time to I2S_CLK Rising  
Edge  
tDHT  
I2S SLAVE TIMING  
I2S_CLKPER  
tCLK_L  
I2S Slave  
I2S Slave  
I2S Slave  
I2S_CLK Period  
81.38  
37  
ns (min)  
ns (min)  
ns (min)  
I2S_CLK Low Time  
I2S_CLK High Time  
tCLK_H  
37  
SDO Propagation Delay from I2S_CLK  
falling edge  
tSDO_DLY  
tDST  
I2S Slave  
I2S Slave  
I2S Slave  
I2S Slave  
I2S Slave  
21  
ns  
SDI Setup Time to I2S_CLK Rising  
Edge  
20  
20  
20  
20  
ns (min)  
ns (min)  
ns (min)  
ns (min)  
SDI Hold Time to I2S_CLK Rising  
Edge  
tDHT  
WS Setup Time to I2S_CLK Rising  
Edge  
tWS_ST  
tWS_HT  
WS Hold Time to I2S_CLK Rising  
Edge  
CONTROL INTERFACE TIMING  
SCL Frequency  
400  
0.6  
kHz (max)  
Hold Time (repeated START  
Condition)  
1
μs (min)  
2
3
Clock Low Time  
Clock High Time  
1.3  
μs (min)  
ns (min)  
600  
Setup Time for a Repeated START  
Condition  
4
600  
50  
ns (min)  
ns (min)  
ns (min)  
Output  
(LM49360 generated)  
5
Data Hold Time  
Input  
(Master generated)  
50  
6
7
8
9
Data Setup Time  
100  
300  
300  
600  
ns (min)  
ns (max)  
ns (max)  
ns (min)  
Rise Time of SDA and SCL  
Fall Time SDA and SCL  
Setup Time for STOP Condition  
27  
www.ti.com  
 
LM49360  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
Typical  
(Note 6)  
Limit  
(Note 7)  
Bus Free Time Between a STOP and  
START Condition  
10  
CB  
1.3  
μs (min)  
Bus Capacitance  
200  
pF (max)  
www.ti.com  
28  
21.0 Typical Performance Characteristics  
Class D Loudspeaker Amplifier Efficiency  
vs Output Power  
DAC Frequency Response  
fS = 48kHz  
Blue >> OSR = 64  
THD+N < 10%, RL = 8Ω  
Green >> LSVDD = 3.6V  
Gray >> LSVDD = 4.2V  
Light Blue >> OSR = 128  
Blue >> LSVDD = 5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
301282b3  
0
400  
800  
1200 1600  
2000  
OUTPUT POWER (mW)  
301282b2  
DAC Frequency Response  
fS = 8kHz  
DAC THD+N vs Frequency  
fS = 48kHz, OSR = 128  
I2S Input = 500mFFS  
Blue >> OSR = 64  
Light Blue >> OSR = 128  
30128277  
301282b4  
29  
www.ti.com  
 
DAC THD+N vs Frequency  
fS = 48kHz, OSR = 64  
I2S Input = 500mFFS  
DAC THD+N vs Input Level  
fS = 48kHz, OSR = 64  
I2S Input = 1kHz  
30128285  
301282b8  
Stereo Audio ADC Frequency Response  
fS = 48kHz, OSR = 64  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Stereo Audio ADC Frequency Response  
fS = 8kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
301282b9  
301282c0  
Mono Voice ADC Frequency Response  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Mono Voice ADC Frequency Response  
fS = 8kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
301282a0  
30128222  
www.ti.com  
30  
Stereo Audio HPF ADC Frequency Response  
fS = 48kHz, OSR = 128  
From MONO/AUX, MONO>AUX Gain = 0dB, CIN = 1µF  
Gray >> No HPF  
Mono Voice HPF ADC Frequency Response  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Gray >> No HPF  
Yellow >> HPF Mode = '000'  
Light Green >> HPF Mode = '001'  
Green >> HPF Mode = '010'  
Light Blue >> HPF Mode = '011'  
Blue >> HPF Mode = '100'  
Green >> HPF Mode = '101'  
Light Blue >> HPF Mode = '110'  
Blue >> HPF Mode = '111'  
301282a4  
301282a5  
Mono Voice HPF ADC Frequency Response  
fS = 8kHz, OSR = 128  
ADC THD+N vs Frequency  
fS = 48kHz, OSR = 128  
From MONO/AUX, MONO/AUX Gain = 0dB, VIN = 1VRMS  
From MIC, MIC Gain = 6dB, CIN = 1µF  
Gray >> No HPF  
Yellow >> HPF Mode = '000'  
Light Green >> HPF Mode = '001'  
Green >> HPF Mode = '010'  
Light Blue >> HPF Mode = '011'  
Blue >> HPF Mode = '100'  
301282c5  
301282a6  
31  
www.ti.com  
ADC THD+N vs Frequency  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, VIN = 500mVRMS  
ADC THD+N vs Input Voltage  
fS = 48kHz, OSR = 128  
From MONO/AUX, MONO/AUX Gain = 0dB, fIN = 1kHz  
301282h6  
301282a2  
ADC THD+N vs Input Voltage  
fS = 48kHz, OSR = 128  
From MIC, MIC Gain = 6dB, fIN = 1kHz  
Loudspeaker THD+N vs Frequency  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, POUT = 400mW, RL = 8Ω  
Blue >> LSVDD = 3.6V  
Light Blue >> LSVDD = 4.2V  
Green >> LSVDD = 5V  
301282a3  
301282h0  
Loudspeaker THD+N vs Frequency  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, POUT = 400mW, RL = 4Ω  
Blue >> LSVDD = 3.6V  
Loudspeaker THD+N vs Output Power  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, fIN = 1kHz, RL = 8Ω  
Blue >> LSVDD = 3.6V  
Light Blue >> LSVDD = 4.2V  
Light Blue >> LSVDD = 4.2V  
Green >> LSVDD = 5V  
Green >> LSVDD = 5V  
301282h1  
301282h2  
www.ti.com  
32  
Loudspeaker THD+N vs Output Power  
From MONO/AUX Input, MONO/AUX Gain = 0dB  
LS Gain = 8dB, fIN = 1kHz, RL = 4Ω  
Blue >> LSVDD = 3.6V  
Loudspeaker PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB  
LSVDD = 3.6V, VRIPPLE = 200mVPP, Input Referred  
Light Blue >> LSVDD = 4.2V  
Green >> LSVDD = 5V  
30128274  
301282h3  
Loudspeaker PSRR vs Frequency  
fS = 48kHz, OSR = 128  
Loudspeaker PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB  
LSVDD = 5V, VRIPPLE = 200mVPP, Input Referred  
MONO/AUX Input, MONO/AUX Gain = 0dB, LS Gain = 12dB  
LSVDD = 4.2V, VRIPPLE = 200mVPP, Input Referred  
30128276  
30128275  
Headphone PSRR vs Frequency  
DAC Input, DAC Gain = 0dB, LS Gain = 12dB  
LSVDD = 3.6V, AVDD = 3.6V,  
HeadphoneTHD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 3.3V, POUT = 15mW, RL = 32Ω  
Stereo In Phase  
DVDD = 1.8V, VRIPPLE = 200mVPP  
Ripple on LSVDD, AVDD, DVDD, Input Referred  
30128267  
30128261  
33  
www.ti.com  
Headphone THD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 2.8V, POUT = 15mW, RL = 32Ω  
Stereo In Phase  
Headphone THD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, POUT = 15mW, RL = 16Ω  
Stereo In Phase  
30128262  
30128263  
Headphone THD+N vs Frequency  
MONO/AUX, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 2.8V, POUT = 15mW, RL = 16Ω  
Stereo in Phase  
Headphone PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.6V, VRIPPLE = 200mVPP  
Ripple on HPVDD, AVDD  
30128268  
30128264  
Headphone PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.6V, VRIPPLE = 200mVPP  
Ripple on AVDD only  
Headphone PSRR vs Frequency  
DAC Input, DAC Gain = 0dB, HP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.6V,  
DVDD = 1.8V, VRIPPLE = 200mVPP  
Ripple on HPVDD, AVDD, DVDD  
30128269  
30128273  
www.ti.com  
34  
Headphone Crosstalk vs Frequency  
Earpiece THD+N vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, HP Gain = 0dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB  
HPVDD = 1.8V, AVDD = 3.6V, POUT = 15mW, RL = 32Ω  
AVDD = 3.6V, POUT = 20mW, RL = 32Ω  
Earpiece Mode  
301282e4  
30128265  
Earpiece PSRR vs Frequency  
Auxiliary Output THD+N vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = –6dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB  
AVDD = 3.6V, VRIPPLE = 200mVPP, Earpiece Mode  
AVDD = 3.6V, VOUT = 1VRMS, RL = 5kΩ  
AUXOUT Mode  
301282e6  
301282e7  
Auxiliary Output THD+N vs Output Voltage  
Auxiliary Output PSRR vs Frequency  
MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB MONO/AUX Input, MONO/AUX Gain = 0dB, EP Gain = 0dB  
AVDD = 3.6V, VRIPPLE = 200mVPP, AUXOUT Mode  
AVDD = 3.6V, fIN = 1kHz, RL = 5kΩ  
AUXOUT Mode  
301282e8  
30128266  
35  
www.ti.com  
Buck Load Transient  
VIN = 3.6V, VOUT = 2.0V, 1–400mA Load  
LDO Load Transient  
VIN = 3.6V, VOUT = 2.0V, 1–400mA Load  
COUT = 1μF LDO1, LDO3  
301282g0  
301282g1  
LDO Load Transient  
VIN = 3.6V, VOUT = 2.0V, 1–400mA Load  
LDO Load Transient  
VIN = 3.6V, VOUT = 2.0V, 1–200mA Load  
COUT = 10μF LDO1, LDO3  
COUT = 1μF LDO2, LDO4, LDO5, LDO6  
301282g2  
301282g3  
LDO Load Transient  
VIN = 3.6V, VOUT = 2.0V, 1–200mA Load  
Buck Turn On Time  
VIN = 3.6V, Config = VBATT  
COUT = 10μF LDO2, LDO4, LDO5, LDO6  
301282g5  
301282g4  
www.ti.com  
36  
Reset Timing  
VIN = 3.6V  
LDO Turn On Time  
VIN = 3.6V, Config = VBATT  
301282g6  
301282g7  
LDO Output Ripple  
VIN = 3.6V, Buck 1 and 2 On  
LDO Output Ripple  
VIN = 3.6V, Buck 1 and 2 Off  
301282g9  
301282g8  
37  
www.ti.com  
22.4 I2C START AND STOP CONDITIONS  
22.0 System Control  
START and STOP conditions classify the beginning and the  
end of the I2C session. START condition is defined as SDA  
signal transitioning from HIGH to LOW while SCL line is  
HIGH. STOP condition is defined as the SDA transitioning  
from LOW to HIGH while SCL is HIGH. The I2C master always  
generates START and STOP bits. The I2C bus is considered  
to be busy after START condition and free after STOP con-  
dition. During data transmission, I2C master can generate  
repeated START conditions. First START and repeated  
START conditions are equivalent, function-wise.  
22.1 INPUT POWER SEQUENCING  
The following input power supplies are normally connected to  
the battery voltage VBAT: LS_VDD, P_VDD, VIN_B1,  
VIN_B2, VIN_L1, VIN_L2, VIN_L3. The power to these sup-  
plies should always be the highest voltage and applied first.  
The remaining supplies: A_VDD, HP_VDD, D_VDD, and I/  
O_VDD must be powered after the VBAT supplies or exces-  
sive current may be consumed.  
22.2 I2C SIGNALS  
For I2C control the LM49360's SCL pin is used for the I2C  
clock and the SDA pin is used for the I2C data signal. Both of  
these signals require a pull-up resistor according to the I2C  
specification. The LM49360 requires two unique I2C slave  
addresses, with one address accessing the PMU related I2C  
registers and the other address accessing the audio related  
I2C registers. Since the LM49360 has three modes of PMU  
operation depending on the status of the CONFIG pin, the  
I2C address that accesses the PMU related I2C registers also  
depends on the status of the CONFIG pin.  
30128224  
FIGURE 8. I2C Start and Stop Conditions  
If CONFIG is tied to ground, the LM49360 operates in AP-  
PMU mode and the PMU related registers are accessed via  
the I2C chip address that is defined by 'PMU_L_I2C_ADDR'  
of I2C register 0x41h with a default address of 11111012.  
If CONFIG is tied to VBATTERY, the LM49360 operates in sub-  
PMU mode and the PMU related registers are accessed via  
the I2C address that is defined by 'PMU_H_I2C_ADDR' of  
I2C register 0x40h with a default address of 11111112.  
If CONFIG is left floating, the LM49360 operates in CAM  
mode and the PMU related registers are accessed via the  
I2C chip address that is defined by 'PMU_Z_I2C_ADDR' of  
I2C register 0x40h with a default address of 11111002.  
The audio related I2C registers are accessed via the I2C chip  
address that is defined by 'AUD_I2C_ADDR' of I2C register  
0x41h with a default address of 00110102, independent of the  
status of the CONFIG pin.  
22.5 TRANSFERRING DATA  
Every byte put on the SDA line must be eight bits long, with  
the most significant bit (MSB) being transferred first. Each  
byte of data has to be followed by an acknowledge bit. The  
acknowledge related clock pulse is generated by the master.  
The transmitter releases the SDA line (HIGH) during the ac-  
knowledge clock pulse. The receiver pulls down the SDA line  
during the 9th clock pulse, signifying an acknowledge. A re-  
ceiver which has been addressed must generate an acknowl-  
edge after each byte has been received.  
After the START condition, the I2C master sends a chip ad-  
dress. This address is seven bits long followed by an eighth  
bit which is a data direction bit (R/W). For the eighth bit, a “0”  
indicates a WRITE and a “1” indicates a READ. The second  
byte selects the register to which the data will be written. The  
third byte contains data to write to the selected register.  
All of the LM49360's I2C chip addresses are selectable via  
I2C registers 0x40h and 0x41h in the PMU register space.  
22.3 I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period  
of the clock signal (SCL). In other words, state of the data line  
can only be changed when SCL is LOW.  
30128225  
FIGURE 9. I2C Chip Address  
30128223  
FIGURE 7. I2C Signals: Data Validity  
www.ti.com  
38  
 
 
 
 
 
 
 
 
Register changes take effect at the SCL rising edge during the last ACK from slave.  
30128226  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by slave)  
rs = repeated start  
FIGURE 10. Example I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in the Read Cycle  
waveform.  
30128227  
FIGURE 11. Example I2C Read Cycle  
30128228  
FIGURE 12. I2C Timing Diagram  
39  
www.ti.com  
 
 
 
22.6 I2C TIMING PARAMETERS  
Symbol  
Parameter  
Limit  
Units  
Min  
0.6  
1.3  
600  
600  
300  
0
Max  
1
2
Hold Time (repeated) START Condition  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
pF  
Clock Low Time  
Clock High Time  
3
4
Setup Time for a Repeated START Condition  
Data Hold Time (Output direction, delay generated by LM49360)  
Data Hold Time (Input direction, delay generated by the Master)  
Data Setup Time  
5
900  
900  
5
6
100  
20+0.1CB  
15+0.1CB  
600  
7
Rise Time of SDA and SCL  
300  
300  
8
Fall Time of SDA and SCL  
9
Set-up Time for STOP condition  
10  
CB  
Bus Free Time between a STOP and a START Condition  
Capacitive Load for Each Bus Line  
1.3  
10  
200  
NOTE: Data guaranteed by design  
22.7 POWER ON SEQUENCE  
30128206  
FIGURE 13. Simplified Startup Sequence if CONFIG = H or Z (SUB_PMU)  
www.ti.com  
40  
 
 
 
30128207  
FIGURE 14. Simplified Startup Sequence if CONFIG = L (PMU)  
Note 1 : See detailed on/off sequence diagrams for the CONFIG options.  
Note 2 : To initiate the shutdown sequence PS_HOLD needs to be held low greater than 30ms before RESET_N is asserted  
low. The PMU then starts the shutdown sequence in the opposite order of the startup sequence.  
Note 3 : If PS_HOLD is not asserted within 1.5 seconds of the assertion of PWR_ON, the PMU will start the shutdown sequence  
and assert RESET_N.  
41  
www.ti.com  
 
30128253  
FIGURE 15. LM493060A CONFIG = H Start-up Sequence  
tON : 256μs – Reference and bias turn ON.  
tS : Programmable time steps. (Typically 8μs.) time step accuracy is defined by OSC frequency accuracy.  
Note 1: START UP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the registers  
are not rewritten via I2C.  
Note 2: The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling / disabling process  
duration depends on voltages and loading conditions. Buck startup duration is typically 40μs, LDO startup duration is typically  
50μs, and LDO7(HILO) startup duration is typically 70μs. For details please see LDOs and BUCK electrical specifications.  
Note 3: LDO4, LDO5 and LDO6 are enabled via I2C. These outputs will be disabled at ts = 0, when EN goes from High to Low.  
Note 4: Buck 2 is enabled by SUBOVR or I2C. If this input is high when EN goes to high then this output turns on after tS7.  
Note 5: Upon initial power-up the PMU registers are loaded with default values. Changes to the default values will be retained  
until device power is removed. Register values are retained when PMU outputs are disabled via EN going low.  
www.ti.com  
42  
 
30128256  
FIGURE 16. LM49360A CONFIG = L Start-up Sequence  
tBON : 256μs – Reference and bias turn ON.  
tS : Programmable time steps. (Typically 64μs) time step accuracy is defined by OSC frequency accuracy.  
Note 1: START UP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the registers  
are not rewritten via I2C.  
Note 2: The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling / disabling process  
duration depends on voltages and loading conditions. Buck startup duration is typically 40μs, LDO startup duration is typically  
50μs, and LDO7(HILO) startup duration is typically 70μs. For details please see LDOs and BUCK electrical specifications.  
Note 3: Buck 2, LDO2, and LDO4 are enabled via I2C.  
Note 4: Upon initial power-up the PMU registers are loaded with default values. Changes to the default values will be retained  
until device power is removed. Register values are retained when PMU outputs are disabled via PS_HOLD going low.  
43  
www.ti.com  
 
30128255  
FIGURE 17. LM49360A CONFIG = Z Start-up Sequence  
tBON : 256μs – Reference and bias turn ON  
tS : Programmable time steps. (Typically 64μs.) time step accuracy is defined by OSC frequency accuracy.  
Note 1: START UP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the registers  
are not rewritten via I2C.  
Note 2: The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling / disabling process  
duration depends on voltages and loading conditions. Buck startup duration is typically 40μs, LDO startup duration is typically  
50μs, and LDO7(HILO) startup duration is typically 70μs. For details please see LDOs and BUCK electrical specifications.  
Note 3: LDO7 is enabled via I2C.  
www.ti.com  
44  
 
Note 4: Buck 2 is enabled by SUBOVR or I2C. If this input is high when EN goes to high then this output turn on after tS = 7.  
Note 5: Upon initial power-up the PMU registers are loaded with default values. Changes to the default values will be retained  
until device power is removed. Register values are retained when PMU outputs are disabled via EN going low.  
45  
www.ti.com  
23.0 Device Register Map  
TABLE 1. PMU Register Map  
De-  
Address Register  
fault  
7
6
5
4
3
2
1
0
Value  
Basic Setup  
PMU  
0x00h  
SWOVR  
FORCE_ENABLE  
RESERVED  
SETUP  
NV  
0x01h  
RESERVED  
BANKS  
0x02h  
0x03h  
SLEEP1  
FLAGS1  
LDO6SLP LDO5SLP LDO4SLP LDO3SLP LDO2SLP  
LDO1SLP BK2SLP  
BK1SLP  
LDO1  
LDO6  
LDO5  
LDO4  
LDO3  
LDO2  
UVLO  
_EVENT  
BK2  
WAKE  
BK1  
WAKE  
0x04h  
FLAGS2  
BK2_RDY BK1_RDY  
UVLO  
TSDL  
TSDH  
UVLO  
RSVD  
0x05h BYPASS  
0x06h SWOVR1  
0x07h SWOVR2  
LDO6_BY LDO5_BY LDO4_BY  
LDO3_BY LDO2_BY  
LDO1_BY  
_MASK  
SW  
LDO7  
LDO6  
LDO5  
LDO4  
LDO3  
LDO2  
LDO1  
SWOVR  
PSHOLD SWOVR  
SWOVR  
SWOVR  
SWOVR  
SWOVR  
SWOVR  
BK2  
_SWOVR  
BK1  
_SWOVR  
RSVD  
RSVD  
RSVD  
RSVD  
BANK 0 CONFIG = Z (subPMU)  
0xFFh LDO6_EN LDO5_EN LDO4_EN LDO3_EN LDO2_EN  
0x10h  
0x11h  
0x12h  
0x13h  
0x14h  
0x15h  
0x16h  
0x17h  
0x18h  
0x19h  
0x1Ah  
0x1Bh  
0x1Ch  
ENB1  
ENB2  
BK1V  
BK2V  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
THRES  
LDO1_EN BK2_EN  
BK1_DLY  
BK1_EN  
0x00h BK2OVR LDO7_EN  
BK2_DLY  
BK1_VSEL  
BK2_VSEL  
0x67h  
0x67h  
0xACh  
0x99h  
0x79h  
0xACh  
0x99h  
0x99h  
0x07h  
LDO1_DLY  
LDO2_DLY  
LDO3_DLY  
LDO4_DLY  
LDO5_DLY  
LDO6_DLY  
LDO7_DLY  
LDO1_VSEL  
LDO2_VSEL  
LDO3_VSEL  
LDO4_VSEL  
LDO5_VSEL  
LDO6_VSEL  
LDO7_VSEL  
UVLO_VSEL  
LDO1_PD BK2_PD  
RSVD  
TIMESTEP  
0x9Ah LDO7_PD RSVD  
PLDWN 0xFFh LDO6_PD LDO5_PD LDO4_PD LDO3_PD LDO2_PD  
LDO7OV  
BK1_PD  
0x1Dh  
OVR  
0x80h  
LDO6OVR LDO5OVR LDO4OVR LDO3OVR LDO2OVR LDO1OVR BK1OVR  
R
LDO7  
LDO5  
LDO4  
LDO1  
BK1  
0x1Eh SubOVR 0x00h  
RESET_MODE  
SubOVR SubOVR  
SubOVR  
SubOVR  
SubOVR  
BANK 1 CONFIG = H (subPMU)  
0x1Dh LDO6_EN LDO5_EN LDO4_EN LDO3_EN LDO2_EN  
0x20h  
0x21h  
0x22h  
0x23h  
0x24h  
0x25h  
0x26h  
0x27h  
0x28h  
0x29h  
0x2Ah  
0x2Bh  
ENB1  
ENB2  
BK1V  
BK2V  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
THRES  
LDO1_EN BK2_EN  
BK1_DLY  
BK1_EN  
0x41h BK2OVR LDO7_EN  
BK2_DLY  
BK1_VSEL  
BK2_VSEL  
0x45h  
0x9Ah  
0x0Ch  
0x1Bh  
0x3Fh  
0x0Ch  
0x15h  
0x19h  
0x2Bh  
LDO1_DLY  
LDO2_DLY  
LDO3_DLY  
LDO4_DLY  
LDO5_DLY  
LDO6_DLY  
LDO7_DLY  
LDO1_VSEL  
LDO2_VSEL  
LDO3_VSEL  
LDO4_VSEL  
LDO5_VSEL  
LDO6_VSEL  
RSVD  
TIMESTEP  
LDO7_VSEL  
UVLO_VSEL  
0x8Ah LDO7_PD RSVD  
www.ti.com  
46  
 
 
De-  
fault  
Value  
Address Register  
7
6
5
4
3
2
1
0
0x2Ch  
0x2Dh  
PLDWN 0xFFh LDO6_PD LDO5_PD LDO4_PD LDO3_PD LDO2_PD  
LDO7  
LDO1_PD BK2PD  
BK1PD  
OVR  
0x00h  
LDO6OVR LDO5OVR LDO4OVR LDO3OVR LDO2OVR LDO1OVR BK1OVR  
OVR  
LDO7  
LDO5  
LDO4  
LDO1  
BK1  
SubOVR  
/RESET  
0x2Eh  
0x00h  
RESET_MODE  
SubOVR SubOVR  
SubOVR  
SubOVR  
SubOVR  
BANK 2 CONFIG = L (PMU Mode)  
0xD5h LDO6_EN LDO5_EN LDO4_EN LDO3_EN LDO2_EN  
0x30h  
0x31h  
0x32h  
0x33h  
0x34h  
0x35h  
0x36h  
0x37h  
0x38h  
0x39h  
0x3Ah  
0x3Bh  
0x3Ch  
ENB1  
ENB2  
BK1V  
BK2V  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
THRES  
LDO1_EN BK2_EN  
BK1_DLY  
BK1_EN  
0x40h BK2OVR LDO7_EN  
BK2_DLY  
BK1_VSEL  
BK2_VSEL  
0x67h  
0xCDh  
0x8Ch  
0x15h  
0x99h  
0x1Fh  
0x9Fh  
0x99h  
0x81h  
LDO1_DLY  
LDO2_DLY  
LDO3_DLY  
LDO4_DLY  
LDO5_DLY  
LDO6_DLY  
LDO7_DLY  
LDO1_VSEL  
LDO2_VSEL  
LDO3_VSEL  
LDO4_VSEL  
LDO5_VSEL  
LDO6_VSEL  
RSVD  
TIMESTEP  
LDO7_VSEL  
0x9Ah LDO7_PD RSVD  
UVLO_VSEL  
PLDWN 0xFFh LDO6_PD LDO5_PD LDO4_PD LDO3_PD LDO2_PD  
LDO7OV  
LDO1_PD BK2PD  
BK1PD  
0x3Dh  
OVR  
0x00h  
LDO6OVR LDO5OVR LDO4OVR LDO3OVR LDO2OVR LDO1OVR BK1OVR  
R
I2C DEVICE ADDRESSES  
0x40h  
0x41h  
I2C1  
I2C2  
RSVD  
RSVD  
RSVD  
RSVD  
PMU_Z_I2C_ADDR  
AUD_I2C_ADDR  
PMU_H_I2C_ADDR  
PMU_L_I2C_ADDR  
BUCK MODE SELECTION  
BK1_  
FPWM  
FORCE_  
PWM  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
0x5Ah  
0x5Eh  
BK2_  
FPWM  
FORCE_  
PWM  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
RE-  
SERVED  
TABLE 2. Audio Register Map  
Address  
Register  
7
6
5
4
3
2
1
0
BASIC SETUP  
PMC  
CHIP  
PORT2  
PORT1  
CLK OVR  
MCLK  
OVR  
OSC  
ENB  
PLL  
CHIP  
PLL_P2  
ENB  
0x00h  
0x01h  
0x02h  
SETUP  
ACTIVE  
CLK OVR  
ENB  
ENABLE  
PMC  
CLOCKS  
PMC_CLK_SEL  
PMC  
CLK_DIV  
PMC_CLK_DIV(R)  
PLL  
0x03h  
0x04h  
0x05h  
PLL_CLK_SEL  
PLL M  
PLL N  
PLL M  
PLL N  
PLL  
N_MOD  
0x06h  
PLL P2[8]  
PLL P1[8]  
PLL N_MOD  
0x07h  
0x08h  
PLL P  
PLL P1 [7:0]  
PLL P2[7:0]  
PLL P2  
ANALOG MIXER  
AUX_LS MONO_LS  
0x10h  
CLASSD  
DACL_LS DACR_LS  
www.ti.com  
47  
 
Address  
Register  
HEAD  
7
6
5
4
3
2
1
0
MONO  
_HPL  
0x11h  
AUX_HPL  
DACL_HPL DACR_HPL  
PHONESL  
HEAD  
MONO  
_HPR  
DACL  
_HPR  
DACR  
_HPR  
0x12h  
0x13h  
0x14h  
0x15h  
AUX_HPR  
AUX_AUX  
PHONESR  
MONO  
_AUX  
DACR  
_AUX  
AUX_OUT  
MIC_AUX DACL_AUX  
OUTPUT  
OPTIONS  
AUX_LINE AUX_NEG  
_OUT  
LS_LEVEL  
LR_HP_LEVEL  
DACL  
RSVD  
_6dB  
MONO  
_ADCL  
AUX  
_ADCR  
DACR  
_ADCR  
ADC  
MIC_ADCL MIC_ADCR  
_ADCL  
0x16h  
0x18h  
MIC_LVL  
MUTE  
SE/DIFF  
MIC_LEVEL  
AUXL_LVL  
SE/DIFF  
SE/DIFF  
AUX_LEVEL  
AUXL_MON  
O_IN  
0x19h  
0x1Bh  
MONO_LV  
MONO_LEVEL  
HP  
_SENSE  
HP SENSE HP SENSE  
HP  
HP SENSE  
MONO  
_AUX_D  
_AUX  
SENSE_D  
ADC  
ADC_CLK_SEL  
0x20h  
0x21h  
ADC BASIC DSPONLY  
MUTE_R  
MUTE_L  
ADC_OSR  
ADC  
CLOCK  
ADC_CLK_DIV (T)  
ADC  
_MIXER  
STEREO  
_LINK  
0x23h  
ADC_MIX_LEVEL_R  
ADC_MIX_LEVEL_L  
DAC_OSR  
DAC  
DAC_CLK_SEL  
DAC  
0x30h  
0x31h  
DSPONLY  
_BASIC  
MUTE_R  
DAC_CLK_DIV (S)  
DIGITAL MIXER  
MUTE_L  
DAC  
_CLOCK  
0x40h  
0x41h  
0x42h  
0x43h  
0x44h  
0x45h  
IPLVL1  
IPLVL2  
PORT2_RX_R_LVL  
INTERP_L_LVL  
PORT2_RX_L_LVL  
INTERP_R_LVL  
PORT1_RX_R_LVL  
ADC_R_LVL  
R_SEL  
PORT1_RX_L_LVL  
ADC_L_LVL  
L_SEL  
OPPORT1  
OPPORT2  
OPDAC  
MONO  
MONO  
ADCR  
SWAP  
SWAP  
R_SEL  
L_SEL  
SWAP  
PORT2R  
PORT1R  
R_SEL  
ADCL  
PORT2L  
PORT1L  
OPDECI  
MXRCLK_SEL  
AUDIO PORT 1  
L_SEL  
STEREO  
_SYNC  
_MODE  
STEREO  
_SYNC  
_PHASE  
0x50h  
BASIC  
CLK_PH  
SYNC_MS CLK_MS  
TX_ENB  
RX_ENB  
STEREO  
0x51h  
0x52h  
CLK_GEN1  
CLK_GEN2  
CLK_SEL  
HALF_CYCLE_DIVIDER  
SYNTH  
_DENOM  
SYNTH_NUM  
SYNC_RATE  
RX_WIDTH  
SYNC  
_GEN  
0x53h  
0x54h  
SYNC_WIDTH(MONO MODE)  
TX_WIDTH  
DATA  
_WIDTH  
TX_EXTRA_BITS  
0x55h  
0x56h  
RX_MODE  
TX_MODE  
A/ULAW  
A/ULAW  
COMPAND  
COMPAND  
MSB_POSITION  
MSB_POSITION  
RX_MODE  
TX_MODE  
AUDIO PORT 2  
CLK_PH SYNC_MS CLK_MS  
HALF_CYCLE_DIVDER  
STEREO  
_SYNC  
_MODE  
STEREO  
_SYNC  
_PHASE  
0x60h  
0x61h  
BASIC  
TX_ENB  
RX_ENB  
STEREO  
CLK_GEN1  
CLK_SEL  
www.ti.com  
48  
Address  
Register  
7
6
5
4
3
2
1
0
SYNTH_  
DENOM  
0x62h  
CLK_GEN2  
SYNTH_NUM  
SYNC  
_GEN  
0x63h  
0x64h  
SYNC_WIDTH(MONO MODE)  
TX_WIDTH  
SYNC_RATE  
RX_WIDTH  
DATA  
_WIDTH  
TX_EXTRA_BITS  
0x65h  
0x66h  
RX_MODE  
TX_MODE  
A/ULAW  
A/ULAW  
COMPAND  
MSB_POSITION  
RX_MODE  
TX_MODE  
COMPAND  
MSB_POSITION  
EFFECTS ENGINE  
ADC  
ADC  
PK ENB  
DAC  
ADC  
ADC  
0x70h  
0x71h  
ADC FX  
DAC FX  
RSVD  
RSVD  
SCLP ENB  
DAC  
ALC ENB HPF_ENB  
DAC  
DAC  
SCLP ENB  
ADC EFFECTS  
EQ ENB  
PK ENB  
ALC ENB  
0x80h  
0x81h  
HPF  
ADC  
HPF MODE  
SOURCE  
OVR  
SOURCE  
RSEL  
SOURCE  
LSEL  
STEREO  
LINK  
LIMITER  
ADC_SAMPLE  
ALC 1  
ADC  
0x82h  
0x83h  
0x84h  
0x85h  
0x86h  
0x87h  
0x88h  
0x89h  
0x8Ah  
0x90h  
0x91h  
0x92h  
NG_ENB  
NOISE_FLOOR  
ALC 2  
ADC  
ALC_TARGET_LEVEL  
ATTACK_RATE  
DECAY_RATE/RELEASE_RATE  
HOLDTIME  
ALC 3  
ADC  
ALC 4  
ADC  
PK_DECAY_RATE  
ALC 5  
ADC  
ALC 6  
ADC  
MAX_LEVEL  
ALC 7  
ADC  
MIN_LEVEL  
ALC 8  
ADC L  
LEVEL  
ADC R  
LEVEL  
STEREO  
LINK  
ADC_L_LEVEL  
ADC_R_LEVEL  
THRESHOLD  
SOFTCLIP  
1
SOFT  
KNEE  
SOFTCLIP  
2
RATIO  
SOFTCLIP  
3
LEVEL  
ADC EFFECT MONITORS  
ADC LEFT LEVEL MONITOR  
0x98h  
0x99h  
LVLMONL  
LVLMONR  
ADC RIGHT LEVEL MONITOR  
SCLP_R  
CLIP  
SCLP_L  
CLIP  
GAIN  
_R CLIP  
GAIN  
_L CLIP  
ADC_R  
CLIP  
ADC_L  
CLIP  
0x9Ah  
0x9Bh  
0x9Ch  
FXCLIP  
SCLP_R  
DISTORT  
SCLP_L  
SCLP_L  
DISTORT  
SCLP_R  
DISTORT  
ALCMONL  
ALCMONR  
ADC LEFT ALC MONITOR  
ADC RIGHT ALC MONITOR  
DISTORT  
DAC EFFECTS  
49  
www.ti.com  
Address  
Register  
DAC  
7
6
5
4
3
2
1
0
STEREO  
LINK  
0xA0h  
LIMITER  
DAC_SAMPLE  
ALC 1  
DAC  
0xA1h  
0xA2h  
0xA3h  
0xA4h  
0xA5h  
0xA6h  
0xA7h  
0xA8h  
0xA9h  
NG_ENB  
NOISE_FLOOR  
ALC 2  
DAC  
AGC_TARGET_LEVEL  
ATTACK_RATE  
ALC 3  
DAC  
ALC 4  
DAC  
PK_DECAY_RATE  
DECAY_RATE/RELEASE_RATE  
HOLDTIME  
ALC 5  
DAC  
ALC 6  
DAC  
MAX_LEVEL  
ALC 7  
DAC  
MIN_LEVEL  
ALC 8  
DAC L  
LEVEL  
DAC R  
LEVEL  
EQ BAND 1  
EQ BAND 2  
EQ BAND 3  
EQ BAND 4  
EQ BAND 5  
STEREO  
LINK  
DAC_L_LEVEL  
DAC_R_LEVEL  
0xABh  
0xACh  
0xADh  
0xAEh  
0xAFh  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
LEVEL  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
Q
Q
Q
SOFTCLIP  
1
SOFT  
KNEE  
0xB0h  
0xB1h  
0xB2h  
THRESHOLD  
RATIO  
SOFTCLIP  
2
SOFTCLIP  
3
LEVEL  
DAC EFFECT MONITORS  
DAC LEFT LEVEL MONITOR  
0xB8h  
0xB9h  
LVLMONL  
LVLMONR  
DAC RIGHT LEVEL MONITOR  
SCLP_R  
CLIP  
SCLP_L  
CLIP  
EQ_R  
CLIP  
EQ_L  
RSVD  
CLIP  
GAIN  
_R CLIP  
GAIN  
_L CLIP  
0xBAh  
0xBBh  
0xBCh  
FXCLIP  
RSVD  
SCLP_R  
DISTORT  
SCLP_L  
SCLP_L  
DISTORT  
SCLP_R  
DISTORT  
ALCMONL  
ALCMONR  
DAC LEFT ALC MONITOR  
DAC RIGHT ALC MONITOR  
DISTORT  
GPIO  
0xE0h  
0xE1h  
GPIO1  
GPIO2  
GPIO_RX  
GPIO_TX  
GPIO_MODE  
TEMP  
RSVD  
SHORT  
RSVD  
SPREAD SPECTRUM  
SOFT  
RSVD  
0xF0h  
RESET  
RSVD  
RSVD  
_RESET  
SS  
_DISABLE  
0xF1h  
0xFEh  
SS  
RSVD  
RSVD  
RSVD  
FORCE  
CPFORCE  
DACREF  
Unless otherwise specified, the default values of the I2C registers is 0x00H.  
www.ti.com  
50  
TABLE 3. Nonzero I2C Default Registers  
Address  
0x02h  
0x30h  
0x31h  
0x84h  
0x85h  
0x86h  
0x87h  
0x89h  
0x8Ah  
0xA3h  
0xA4h  
0xA5h  
0xA6h  
0xA8h  
0xA9h  
0xF0h  
Register  
PMC_CLK_DIV  
DAC_BASIC  
DAC_CLOCK  
ADC_ALC_4  
ADC_ALC_5  
ADC_ALC_6  
ADC_ALC_7  
ADC_L_LEVEL  
ADC_R_LEVEL  
DAC_ALC_4  
DAC_ALC_5  
DAC_ALC_6  
DAC_ALC_7  
DAC_L_LEVEL  
DAC_R_LEVEL  
RESET  
Default Data Value  
0x50h  
0x02h  
0x03h  
0x0Ah  
0x0Ah  
0x0Ah  
0x1Fh  
0x33h  
0x33h  
0x0Ah  
0x0Ah  
0x0Ah  
0x33h  
0x33h  
0x33h  
0x02h  
TABLE 4. 0x00h PMU Setup  
Description  
Bits  
Field  
4:0  
6:5  
RSVD  
Reserved  
FORCE  
_ENABLE  
This determines the startup mode of the LM49360.  
FORCE_ENABLE  
MODE  
00  
01  
10  
11  
Selected by the CONFIG pin  
Force Bank 0 (CAM)  
Force Bank 1 (SUB_PMU)  
Force Bank 2 (AP_PMU)  
7
SWOVR  
If SWOVR (Software Override) is set, it allows PMU outputs to be enabled under I2C control of the  
SWOVR (Software Override) bits in I2C registers SWOVR 1 (0x06h) and SWOVR 2 (0x07h)  
TABLE 5. NV BANK (0x01h)  
Bits  
Field  
Description  
7:0  
RSVD  
Reserved  
24.0 Sleep Enables  
TABLE 6. SLEEP 1 (0x02h)  
Description  
Bits  
0
Field  
BK1_SLEEP If set, Buck 1 is set to sleep state.  
BK2_SLEEP If set, Buck 2 is set to sleep state.  
LDO1_SLEEP If set, LDO 1 is set to sleep state.  
LDO2_SLEEP If set, LDO 2 is set to sleep state.  
LDO3_SLEEP If set, LDO 3 is set to sleep state.  
LDO4_SLEEP If set, LDO 4 is set to sleep state.  
LDO5_SLEEP If set, LDO 5 is set to sleep state.  
LDO6_SLEEP If set, LDO 6 is set to sleep state.  
1
2
3
4
5
6
7
51  
www.ti.com  
 
 
 
 
 
25.0 LDO Flags and Bypass Pulse Control  
TABLE 7. FLAGS 1 (0x03h)  
Bits  
0
Field  
Description  
LDO1_ERROR  
LDO2_ERROR  
LDO3_ERROR  
LDO4_ERROR  
LDO5_ERROR  
LDO6_ERROR  
If 1 an error is present on this LDO.  
If 1 an error is present on this LDO.  
If 1 an error is present on this LDO.  
If 1 an error is present on this LDO.  
If 1 an error is present on this LDO.  
If 1 an error is present on this LDO.  
1
2
3
4
5
TABLE 8. FLAGS 2 (0x04h)  
Bits  
0
Field  
TSDH  
TSDL  
Description  
Set if TSDH is reported from the analog. >160 degrees  
Set if TSDL is reported from the analog. >120 degrees  
1
Output from BK1 - should toggle in sleep mode when the BUCK wakes up  
momentarily to step back above the threshold.  
2
3
BK1_WAKEUP  
BK2_WAKEUP  
Output from BK2 - should toggle in sleep mode when the BUCK wakes up  
momentarily to step back above the threshold.  
4
5
6
7
RESERVED  
UVLO_EVENT  
BK1_RDY  
Reserved bit  
1 = debounced UVLO event detected, 0 = UVLO not currently triggered.  
Reports if BK1 is above 90% of it's programmed output voltage.  
Reports if BK2 is above 90% of it's programmed output voltage.  
BK2_RDY  
TABLE 9. BYPASS (0x05h)  
Description  
Bits  
0
Field  
LDO1_BY  
LDO2_BY  
LDO3_BY  
LDO4_BY  
LDO5_BY  
LDO6_BY  
RSVD  
If set, the internal reference filter is bypassed. Set this bit high for 1ms after  
changing VSEL if the output voltage needs to be adjusted while the LDO is  
enabled. Otherwise the internal filter will slow the transition time to over a second.  
This is performed automatically every time the LDO is enabled, only use the filter  
bypass when adjusting VSEL when the LDO is enabled."  
1
2
3
4
5
6
Reserved  
If set, the effects of the UVLO trigger are Ignored by the state machine. This can  
be useful if the user wishes to determine the current battery voltage without  
powering up an ADC. The UVLO trigger level can be increased until the I2C  
reports a UVLO event, the level can then be changed back and the mask cleared  
to return to normal operation.  
7
UVLO_MASK  
TABLE 10. SWOVR 1 (0x06h)  
Description  
Bits  
Field  
If set, LDO1 will enable when SWOVR is set and the device is in Standby state or  
above.  
0
LDO1_SWOVR  
If set, LDO2 will enable when SWOVR is set and the device is in Standby state or  
above.  
1
2
3
4
LDO2_SWOVR  
LDO3_SWOVR  
LDO4_SWOVR  
LDO5_SWOVR  
If set, LDO3 will enable when SWOVR is set and the device is in Standby state or  
above.  
If set, LDO4 will enable when SWOVR is set and the device is in Standby state or  
above.  
If set, LDO5 will enable when SWOVR is set and the device is in Standby state or  
above.  
www.ti.com  
52  
 
 
 
 
 
Bits  
Field  
Description  
If set, LDO6 will enable when SWOVR is set and the device is in Standby state or  
above.  
5
LDO6_SWOVR  
If set, the LDO7 will enable when SWOVR is set and the device is in Standby state  
or above.  
6
7
LDO7_SWOVR  
SW_PSHOLD  
Can be used in AP_PMU mode as an alternative to raising the PS_HOLD pin.  
TABLE 11. SWOVR 2 (0x07h)  
Description  
Bits  
Field  
If set, Buck 1 will enable when SWOVR is set and the device is in Standby state  
or above.  
0
BK1_SWOVR  
If set, Buck 2 will enable when SWOVR is set and the device is in Standby state  
or above.  
1
BK2_SWOVR  
RSVD  
5:2  
Reserved  
26.0 Sequence and Voltage Programming (Banks 0 to 2)  
TABLE 12. ENB1  
Bank 0: CONFIG = Z (0x10h)  
Bank 1: CONFIG = H (0x20h)  
Bank 2: CONFIG = L (0x30h)  
Bits  
0
Field  
Description  
If set, Buck 1 is enabled at timestep BUCK1_DLY.  
If set, Buck 2 is enabled at timestep BUCK2_DLY.  
If set, LDO 1 is enabled at timestep LDO1_DLY.  
If set, LDO 2 is enabled at timestep LDO2_DLY.  
If set, LDO 3 is enabled at timestep LDO3_DLY.  
If set, LDO 4 is enabled at timestep LDO4_DLY.  
If set, LDO 5 is enabled at timestep LDO5_DLY.  
If set, LDO 6 is enabled at timestep LDO6_DLY.  
BK1_ENABLE  
BK2_ENABLE  
LDO1_ENABLE  
LDO2_ENABLE  
LDO3_ENABLE  
LDO4_ENABLE  
LDO5_ENABLE  
LDO6_ENABLE  
1
2
3
4
5
6
7
Note: Do not set these registers to 0x00. At least one regulator must remain enabled for proper operation.  
BUCK INFORMATION  
The LM49360 has two integrated high efficiency step-down DC-DC switching buck converters that deliver a constant voltage from  
a single cell battery to portable devices. Using voltage mode architecture with synchronous rectification, the buck has the ability  
to deliver up to 800mA depending on the input voltage and output voltage, ambient temperature, and the inductor chosen.  
There are two modes of operation depending on the current required - PWM (Pulse Width Modulation), ECO (ECOnomy) mode.  
The device operates in PWM mode at load currents of approximately 50mA (typ.) or higher. Lighter output current loads cause the  
device to automatically switch into ECO mode for reduced current consumption and a longer battery life. Additional features include  
soft-start, under voltage protection, current overload protection, and thermal shutdown protection. Only three external power com-  
ponents are required for implementation.  
Buck Circuit Operation  
The switching buck converter operates as follows. During the first portion of each switching cycle, the control block in the LM49360  
turns on the internal PMOS switch. This allows current to flow from the input through the inductor to the output filter capacitor and  
load. The inductor limits the current to a ramp with a slope of (VIN–VOUT)/L, by storing energy in a magnetic field. During the second  
portion of each cycle, the controller turns the PMOS switch off, blocking current flow from the input, and then turns the NMOS  
synchronous rectifier on. The inductor draws current from ground through the NMOS to the output filter capacitor and load, which  
ramps the inductor current down with a slope of –VOUT/L.  
The output filter stores charge when the inductor current is high, and releases it when low, smoothing the voltage across the load.  
The output voltage is regulated by modulating the PMOS switch on time to control the average current sent to the load. The effect  
is identical to sending a duty-cycle modulated rectangular wave formed by the switch and synchronous rectifier at the SW pin to  
a low-pass filter formed by the inductor and output filter capacitor. The output voltage is equal to the average voltage at the SW  
pin.  
53  
www.ti.com  
 
 
 
ENABLING AND DISABLING VOUT  
Do not power down all voltage outputs via the I2C register ENB1 (LDO1, 2, 3, 4, 5, 6, Buck 1 and Buck 2) and I2C register ENB2  
(LDO 7). It is recommended to place the LM49360 in the standby mode to disable all the VOUT outputs. If CONFIG = L the device  
can be placed in the standby state by de-asserting the PS_HOLD and PWR_ON pins as shown in Figure 14. If CONFIG = H or Z  
the device can be placed in the standby state by de-asserting the EN pin as shown in Figure 13. Each individual VOUT can be  
disabled and enabled via the I2C registers ENB1 and ENB2, however one VOUT must remained enabled for the proper device  
operation. Prior to change a VOUT voltage selection (ie. VSEL) it is recommended to disable the VOUT voltage prior to the VOUT  
voltage selection change, then re-enable after making the VOUT voltage selection.  
PWM Operation  
During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This allows the con-  
verter to achieve excellent load and line regulation. The DC gain of the power stage is proportional to the input voltage. To eliminate  
this dependence, feed forward inversely proportional to the input voltage is introduced. While in PWM mode, the output voltage is  
regulated by switching at a constant frequency and then modulating the energy per cycle to control power to the load. At the  
beginning of each clock cycle the PMOS switch is turned on and the inductor current ramps up until the comparator trips and the  
control logic turns off the switch. The current limit comparator can also turn off the switch in case the current limit of the PMOS is  
exceeded. Then the NMOS switch is turned on and the inductor current ramps down. The next cycle is initiated by the clock turning  
off the NMOS and turning on the PMOS.  
30128232  
FIGURE 18. Typical PWM Operation  
Internal Synchronous Operation  
While in PWM mode, the buck uses an internal NMOS as a synchronous rectifier to reduce rectifier forward voltage drop and  
associated power loss. Synchronous rectification provides a significant improvement in efficiency whenever the output voltage is  
relatively low compared to the voltage drop across an ordinary rectifier diode.  
Current Limiting  
A current limit feature allows the device to protect itself and external components during overload conditions. PWM mode imple-  
ments current limit using an internal comparator that trips at 1200mA (typ.). If the output is shorted to ground and output voltage  
becomes lower than 0.3V (typ.), the device enters a timed current limit mode where the switching frequency will be one fourth, and  
NMOS synchronous rectifier is disabled, thereby preventing excess current and thermal runaway.  
ECO Mode Operation  
The buck switches from ECO state to PWM state based on output load current. At light loads (less than 50mA), the converter  
enters ECO mode. In this mode the part operates with low Iq. During ECO operation, the converter positions the output voltage  
slightly higher (+30mV typ.) than the nominal output voltage in PWM operation. Because the reference is set higher, the output  
voltage increases to reach the target voltage when the part goes from idle state to switching state. Once this voltage is reached  
the converter stops switching, thereby reducing switching losses and improving light load efficiency. The output voltage ripple is  
slightly higher in ECO mode (30mV peak–peak ripple typ.).  
www.ti.com  
54  
 
30128233  
FIGURE 19. Typical ECO Operation  
Inductor Selection for Buck 1 and Buck 2 Operation  
A 1.0μH inductor should be selected. The inductor should be able to handle the maximum current without significant degradation  
on inductance and it’s saturation current should not be significantly lower than 1.2A. Additionally the inductors DC Resistance  
should not be greater than 100m. The table below shows the possible selection of inductor types and suppliers.  
TABLE 13. Buck 1 and Buck 2 Operation  
Model  
Vendor  
FDK  
Dimensions LxWXH (mm)  
2.0 x 1.25 x 1  
DCR (mΩ)  
MIPSZ2012D1R0  
CBC2016T1R0M  
EPL2010-102ML  
90  
100  
99  
Taiyo Yuden  
Coilcraft  
2.0 x 1.6 x 1.6  
2.0 x 2.0 x 1.05  
Buck Output Voltage Selection  
The selection of the bucks’ output voltages can be done by writing a specific code into the control registers (addr. 0x12, 0x22, 0x32  
for Buck1… addr. 0x13, 0x23, 0x33 for Buck2). The required voltage can be calculated from the following equation.  
VOUT (V) = 0.6V + code(dec) x 0.00588V  
TABLE 14. ENB2  
Bank 0: CONFIG = Z (0x11h)  
Bank 1: CONFIG = H (0x21h)  
Bank 2: CONFIG = L (0x31h)  
Bits  
Field  
Description  
2:0  
BK1_DELAY  
This sets the time slot when Buck1 enables and disables.  
000  
001  
010  
011  
100  
101  
110  
111  
Power up in slot 0, Power down in slot 0  
Power up in slot 1, Power down in slot 1  
Power up in slot 2, Power down in slot 2  
Power up in slot 3, Power down in slot 3  
Power up in slot 4, Power down in slot 4  
Power up in slot 5, Power down in slot 5  
Power up in slot 6, Power down in slot 6  
Power up in slot 7, Power down in slot 7  
55  
www.ti.com  
 
 
 
Bits  
Field  
Description  
5:3  
BK2_DELAY  
This sets the time slot when Buck2 enables and disables.  
000  
001  
010  
011  
100  
101  
110  
111  
Power up in slot 0, Power down in slot 0  
Power up in slot 1, Power down in slot 1  
Power up in slot 2, Power down in slot 2  
Power up in slot 3, Power down in slot 3  
Power up in slot 4, Power down in slot 4  
Power up in slot 5, Power down in slot 5  
Power up in slot 6, Power down in slot 6  
Power up in slot 7, Power down in slot 7  
6
7
LDO7_ENABLE  
BK2_OVR  
If set, LDO 7 is enabled and disabled at time slot LDO7_DLY.  
If set, BUCK2 will enable when the OVR pin is asserted.  
TABLE 15. BK1V  
Bank 0: CONFIG = Z (0x12h)  
Bank 1: CONFIG = H (0x22h)  
Bank 2: CONFIG = L (0x32h)  
Bits  
Field  
Description  
Sets the Buck 1 output voltage.  
Vout(V) = 0.6 + (BK1_VSEL*0.00588)  
7:0  
BK1_VSEL  
TABLE 16. BK2V  
Bank 0: CONFIG = Z (0x13h)  
Bank 1: CONFIG = H (0x23h)  
Bank 2: CONFIG = L (0x33h)  
Bits  
Field  
Description  
Sets the Buck 2 output voltage.  
Vout(V) = 0.6 + (BK2_VSEL*0.00588)  
7:0  
BK2_VSEL  
LDO INFORMATION  
There are 8 LDOs in LM49360 grouped as:  
6 General type “PERFECT” LDOs  
1 HILO LDO  
1 µPWR LDO  
All LDOs can be programmed through serial interface for different output voltage values, which are summarized in the LDO output  
voltage selection register tables.  
For stability all LDOs need to have an external capacitor Cout connected to the output with the recommended value of 1μF. It is  
important that the capacitance is within the specified value across voltage and temperature.  
PMU Enabled  
The PMU allows four major methods of enabling and disabling the PMU outputs.  
The first method is to use the I2C registers ENB1 and ENB2. Then set the Timestep and Delay for the required power sequence.  
The second method is via the OVR pin and the OVR register bits to enable any of the PMU outputs under hardware control. This  
mode is available in AP_PMU, SUB-PMU and CAM modes.  
The third method is via the SUBOVR pin and the SUBOVR register bits to enable any of the SUB-PMU outputs Buck 1, LDO1,  
LDO4, LDO5 and LDO7 under hardware control. This mode is available in SUB-PMU and CAM modes. A subset of this mode is  
that the SUBOVR pin can be used to enable Buck 2 without setting a SUBOVR register bit. This means that Buck 2 will always be  
enabled when the SUBOVR pin is high.  
The fourth method is software control via I2C access to the ENB2, SWOVR 1 and SWOVR 2 registers. This mode is available in  
AP_PMU, SUB-PMU and CAM modes.  
The PMU outputs are enabled on an “OR” condition of the 4 methods. If the enable bits in the I2C registers ENB1 and ENB2 are  
cleared, one of the other three methods can be used to enable and disable the PMU outputs. If the Timestep and Delays are  
programmed but the Enables (ENB1, ENB2) are cleared, then the initial enabling of the PMU output via hardware and software  
www.ti.com  
56  
 
 
occurs immediately upon the hardware or software override. Subsequently if the PMU is disabled via PWR_ON and PS_HOLD  
the (and the enable condition still exist, hardware or software) the subsequent powering of the PMU output will be based upon the  
programmed Timestep and Delays.  
OVR  
Hardware  
Override  
SUBOVR  
Hardware  
Override  
SWOVR  
Software  
Override  
ENB1 & ENB2  
Default  
CONFIG  
Pin Sate  
PMU  
Enabled  
Mode  
Buck1, Buck2,  
LDO1, LDO2,  
LDO3, LDO4,  
LDO5, LDO6,  
LDO7  
OVR Pin = H &&  
OVR Reg bit = 1b  
L, H, Z  
Buck1, LDO1,  
LDO4, LDO5,  
LDO7  
SUBOVR Pin = H  
&& SUBOVR Reg  
bit = 1b  
H, Z  
H, Z  
Buck2 Only  
SUBOVR Pin = H  
Buck 1, Buck 2,  
LDO1, LDO2,  
LDO3, LDO4,  
LDO5, LDO6,  
LDO7  
PMU Setup Reg  
SWOVR = 1b &&  
{SWOVR 1 Reg bit  
= 1b || SWOVR 2  
Reg bit = 1b}  
L, H, Z  
L, H, Z  
Buck 1, Buck 2,  
LDO1, LDO2,  
LDO3, LDO4,  
LDO5, LDO6,  
LDO7  
ENABLE = 1b,  
PMU enabled at  
the specified  
timestep.  
The OVR register bits for Buck 1 and LDO1 thru LDO7 are located in the following I2C OVR registers:  
- Bank 0: CONFIG = Z (0x1Dh), bits 0 – 7.  
- Bank 1: CONFIG = H (0x2Dh), bits 0 – 7.  
- Bank 2: CONFIG = L (0x3Dh), bits 0 – 7.  
The OVR register bit for Buck 2 is located in the following ENB2 registers:  
- Bank 0: CONFIG = Z (0x11h), bit 7.  
- Bank 1: CONFIG = H (0x21h), bit 7.  
- Bank 2: CONFIG = L (0x31h), bit 7.  
The SUBOVR register bits for Buck 1, LDO1, LDO4, LDO5 and LDO7 are located in the following I2C SUBOVR registers  
- Bank 0: CONFIG = Z (0x1Eh), bits 3 – 7.  
- Bank 0: CONFIG = Z (0x1Eh), bits 3 – 7.  
The SWOVR register bits for LDO1, LDO2, LDO3, LDO4, LDO5 and LDO7 (HILO) are located in the I2C SWOVR 1(0x06h). The  
SWOVR register bits for Buck 1 and Buck 2 are located I2C SWOVR 2(0x07h). The SWOVR register bit in the I2C PMU Setup  
(0x00h) must be set for the register bits in SWOVR 1 and SWOVR 2 to be enabled.  
The I2C SWOVR 1(0x06h) register also supports a software PS_HOLD, bit 7.  
The enable register bits for Buck 1, Buck 2, LDO1, LDO2, LDO3, LDO4, LDO5 and LDO6 are located in the following I2C ENB1  
registers:  
- Bank 0: CONFIG = Z (0x10h), bits 0 – 7.  
- Bank 1: CONFIG = H (0x20h), bits 0 – 7.  
- Bank 2: CONFIG = L (0x30h), bits 0 – 7.  
The enable register bit for LDO7 is located in the following I2C ENB2 registers:  
- Bank 0: CONFIG = Z (0x11h), bit 6.  
- Bank 1: CONFIG = H (0x21h), bits 6.  
- Bank 2: CONFIG = L (0x31h), bits 6.  
57  
www.ti.com  
PMU Sleep  
The SLEEP state(s) can be enabled and disabled for each of the voltage outputs independently in the I2C register SLEEP (0x02h).  
PMU Under Voltage Lock Out (UVLO)  
The PMU registers that support the UVLO are listed in the table below. See individual register descriptions for the details.  
I2C Register  
Name  
I2C Register  
Address  
0x04h  
Bit #  
Bit Name  
FLAGS 2  
BYPASS  
5
7
UVLO_EVENT  
UVLO_MASK  
0x05h  
CONFIG = Z  
(0x1Bh)  
CONFIG = H  
(0x2Bh)  
UVLO voltage  
selection  
THRES  
[3:0]  
[2:0]  
CONFIG = L  
(0x3Bh)  
CONFIG = Z  
(0x1Eh)  
RESET_MODE.  
Allows UVLO or  
UVLO to be output  
onto RESET_N  
SUBOVR  
CONFIG = H  
(0x2Eh)  
PMU Thermal Shutdown (TSD)  
The PMU registers that support the TSD are listed in the table below. See individual register descriptions for the details.  
I2C Register  
Name  
I2C Register  
Address  
Bit #  
Bit Name  
0
1
TSDH  
TSDL  
FLAGS 2  
0x04h  
CONFIG = Z  
(0x1Eh)  
RESET_MODE.  
Allows TSDL,  
SUBOVR  
[2:0]  
TSDH, TSDL or  
TSDH to be output  
onto RESET_N  
CONFIG = H  
(0x2Eh)  
Power Savings  
The PMU registers that support the power savings are listed in the table below. See individual register descriptions for the details.  
The power saving features are under software control, the setting and clearing of these bits are not control by hardware.  
I2C Register  
Name  
I2C Register  
Address  
0x5Ah  
Bit #  
Bit Name  
BK1_FPWM  
BK2_FPWM  
7
7
FORCE_PWM  
FORCE_PWM  
0x5Eh  
www.ti.com  
58  
General Type LDOS  
The general “PERFECT” LDOs are optimized for supplying both analog and digital loads having ULTRA LOW NOISE (10µVRMS  
for IOUT>5mA) and excellent PSRR (75dB at 10kHz) performance. They can be programmed through the serial interface for different  
output voltage values.  
For fast discharging of output capacitors in shut down, the LDOs can connect a 300pull-down resistor to the output. This resistor  
is only connected when the LDO is disabled. See Table 20 for the register description.  
In sleep mode, quiescent current is reduced to 30µA for energy saving. In this mode these LDOs should not be loaded with more  
than 3-5mA of output current.  
HILO LDO  
LDO7 (HILO) has lowered output voltage range from 0.8V to 1.55V (step 50mV) controlled by 4 bit control signal as shown in LDO7  
(HILO) output voltage selection table below. Typical output current is 2mA but maximum current can reach 20mA. For proper  
operation, an input voltage of more than 2V is necessary. Hence, voltage drop on the pass transistor (dropout voltage) always  
exceeds 0.45V and is not dependent on output current (in specified current range).  
For fast discharging of output capacitors in shut down, the LDO7 (HILO) can connect a 300pull-down resistor to the output. This  
resistor is only connected when the LDO is disabled. See Table 20 for the register description.  
Since the LDO7 (HILO) is based on the micro power LDO, no extra output capacitor is needed. However, for better dynamic  
performance it is recommended that a capacitor in the 100nF to 1μF range be used.  
µPWR LDO  
This LDO is primarily used for internal supply purposes and fixed to 1.8V, but may deliver up to 30mA of current also externally.  
This LDO is ON even in Standby mode (with total PMU current consumption about 2uA) and the user may use it to supply some  
backup/always on system(s).  
TABLE 17. LDO1 — 6  
Bank 0: CONFIG = Z (0x14h:LDO1) (0x19h:LDO6)  
Bank 1: CONFIG = H (0x24h:LDO1) (0x29h:LDO6)  
Bank 2: CONFIG = L (0x34h:LDO1) (0x39h:LDO6)  
Bits  
Field  
Description  
4:0  
LDO(1-6)*_VSEL  
This sets the output voltage of the corresponding LDO.  
LDO*_VSEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
Vout (V)  
1.2  
LDO*_VSEL  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Vout (V)  
2.1  
1.25  
1.3  
2.2  
2.3  
1.35  
1.4  
2.4  
2.5  
1.45  
1.5  
2.6  
2.65  
2.7  
1.55  
1.6  
2.75  
2.8  
1.65  
1.7  
2.85  
2.9  
1.75  
1.8  
2.95  
3
1.85  
1.9  
3.1  
2
3.3  
59  
www.ti.com  
 
Bits  
Field  
Description  
7:5  
LDO(1-6)_DLY  
This sets the time slot when the LDO enables and disables.  
LDO(1–6)_DLY  
Power Up/Down Time Slot  
000  
001  
010  
011  
100  
101  
110  
111  
Power up in slot 0, Power down in slot 0  
Power up in slot 1, Power down in slot 1  
Power up in slot 2, Power down in slot 2  
Power up in slot 3, Power down in slot 3  
Power up in slot 4, Power down in slot 4  
Power up in slot 5, Power down in slot 5  
Power up in slot 6, Power down in slot 6  
Power up in slot 7, Power down in slot 7  
TABLE 18. LDO7  
Bank 0: CONFIG = Z (0x1Ah)  
Bank 1: CONFIG = H (0x2Ah)  
Bank 2: CONFIG = L (0x3Ah)  
Bits  
Field  
Description  
3:0  
LDO7_VSEL  
Selects the output voltage.  
LDO*_VSEL  
0000  
Vout (V)  
1.55  
1.5  
LDO*_VSEL  
Vout (V)  
1.15  
1.1  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0001  
0010  
1.45  
1.4  
1.05  
1
0011  
0100  
1.35  
1.3  
0.95  
0.9  
0101  
0110  
1.25  
1.2  
0.85  
0.8  
0111  
4
RESERVED  
LDO7_DLY  
Reserved bit, this bit must remain cleared.  
Sets the time slot when the LDO enables and disables.  
7:5  
LDO7_DLY  
000  
Power Up/Down Time Slot  
Power up in slot 0, Power down in slot 0  
001  
Power up in slot 1, Power down in slot 1  
Power up in slot 2, Power down in slot 2  
Power up in slot 3, Power down in slot 3  
Power up in slot 4, Power down in slot 4  
Power up in slot 5, Power down in slot 5  
Power up in slot 6, Power down in slot 6  
Power up in slot 7, Power down in slot 7  
010  
011  
100  
101  
110  
111  
www.ti.com  
60  
 
TABLE 19. THRES  
Bank 0: CONFIG = Z (0x1Bh)  
Bank 1: CONFIG = H (0x2Bh)  
Bank 2: CONFIG = L (0x3Bh)  
Bits  
Field  
Description  
3:0  
UVLO_VSEL  
Input on PVDD.  
The PVDD voltage level is monitored and if it falls below this value, the PMU will enter  
into the STANDBY state.  
UVLO_VSEL  
0000  
PVDD (V)  
2.3  
UVLO_VSEL  
1000  
PVDD (V)  
2.7  
0001  
2.35  
2.4  
1001  
2.75  
2.8  
0010  
1010  
0011  
2.45  
2.5  
1011  
2.85  
2.9  
0100  
1100  
0101  
2.55  
2.6  
1101  
2.95  
3
0110  
1110  
0111  
2.65  
1111  
3.05  
5:4  
TIMESTEP  
Time per Step  
(microseconds)  
TIMESTEP  
00  
01  
10  
11  
8
64  
128  
256  
6
7
RESERVED  
LDO7_PD  
Reserved bit, this bit must remain cleared.  
If set, the LDO7 output will be pulled down by a 300resistor when the LDO is disabled,  
speeding the discharge of attached decoupling capacitors.  
TABLE 20. PLDWN  
Bank 0: CONFIG = Z (0x1Ch)  
Bank 1: CONFIG = H (0x2Ch)  
Bank 2: CONFIG = L (0x3Ch)  
Bits  
0
Field  
Description  
BK1_PD  
If set, the Buck1 output will be pulled down by a 300resistor when disabled.  
If set, the Buck2 output will be pulled down by a 300resistor when disabled.  
If set, the LDO1 output will be pulled down by a 300resistor when disabled.  
If set, the LDO2 output will be pulled down by a 300resistor when disabled.  
If set, the LDO3 output will be pulled down by a 300resistor when disabled.  
If set, the LDO4 output will be pulled down by a 300resistor when disabled.  
If set, the LDO5 output will be pulled down by a 300resistor when disabled.  
If set, the LDO6 output will be pulled down by a 300resistor when disabled.  
1
BK2_PD  
2
LDO1_PD  
LDO2_PD  
LDO3_PD  
LDO4_PD  
LDO5_PD  
LDO6_PD  
3
4
5
6
7
TABLE 21. OVR  
Bank 0: CONFIG = Z (0x1Dh)  
Bank 1: CONFIG = H (0x2Dh)  
Bank 2: CONFIG = L (0x3Dh)  
This sets the Function of OVR pin mode. If all are zero only Buck2 is enabled by the pin (this pin always forces Buck2 on). Other  
outputs can be set by setting the relevant bit here.  
Bits  
0
Field  
Description  
If set, the Buck 1 output is enabled when OVR is set.  
If set, the LDO 1 output is enabled when OVR is set.  
If set, the LDO 2 output is enabled when OVR is set.  
If set, the LDO 3 output is enabled when OVR is set.  
BK1_OVR  
LDO1_OVR  
LDO2_OVR  
LDO3_OVR  
1
2
3
61  
www.ti.com  
 
 
 
Bits  
4
Field  
Description  
If set, the LDO 4 output is enabled when OVR is set.  
If set, the LDO 5 output is enabled when OVR is set.  
If set, the LDO 6 output is enabled when OVR is set.  
If set, the LDO 7 output is enabled when OVR is set.  
LDO4_OVR  
LDO5_OVR  
LDO6_OVR  
LDO7_OVR  
5
6
7
TABLE 22. SUBOVR  
Bank 0: CONFIG = Z (0x1Eh)  
Bank 1: CONFIG = H (0x2Eh)  
Bits  
Field  
Description  
2:0  
RESERVED  
Reserved bits, this bit field must remain at 000b.  
RESERVED  
000  
Function of RESET_N Pin  
RESET_N (Default)  
RESET  
001  
010  
TSDL or UVLO  
TSDL or UVLO  
TSDH or TSDL  
TSDH or TSDL  
0
011  
100  
101  
110  
111  
1
If set, the Buck1 output enables when SUBOVR is set  
(i.e. PS_HOLD in a subPMU mode).  
3
4
5
6
7
BK1_SUBOVR  
LDO1_SUBOVR  
LDO4_SUBOVR  
LDO5_SUBOVR  
LDO7_SUBOVR  
If set, the LDO1 output enables when SUBOVR is set  
(i.e. PS_HOLD in a subPMU mode).  
If set, the LDO4 output enables when SUBOVR is set  
(i.e. PS_HOLD in a subPMU mode).  
If set, the LDO5 output enables when SUBOVR is set  
(i.e. PS_HOLD in a subPMU mode).  
If set, the LDO7 output enables when SUBOVR is set  
(i.e. PS_HOLD in a subPMU mode).  
TABLE 23. I2C1 (0x40h)  
Bits  
Field  
Description  
2:0  
PMU_H_I2C_ADDR  
The I2C Address for the Power Management CONFIG “H”  
PMU_H_I2C  
_ADDR  
000  
I2C_ADDR  
1111111  
1111110  
1111101  
1111100  
1111011  
1111010  
1111001  
1111000  
001  
010  
011  
100  
101  
110  
111  
www.ti.com  
62  
 
 
Bits  
Field  
Description  
5:3  
PMU_Z_I2C_ADDR  
The I2C Address for the Power Management CONFIG “Z”  
PMU_Z_I2C_ADDR  
I2C_ADDR  
1111100  
1111101  
1111110  
1111111  
1111000  
1111001  
1111010  
1111011  
000  
001  
010  
011  
100  
101  
110  
111  
6
7
RESEREVED  
RESEREVED  
Reserved bit, this bit must remain cleared.  
Reserved bit, this bit must remain cleared.  
TABLE 24. I2C2 (0x41h)  
Bits  
Field  
Description  
2:0  
PMU_L_I2C_ADDR  
The I2C Address for the Power Management CONFIG “L”  
PMU_L_I2C  
I2C_ADDR  
_ADDR  
000  
1111101  
1111100  
1111111  
1111110  
1111001  
1111000  
1111011  
1111010  
001  
010  
011  
100  
101  
110  
111  
5:3  
AUD_I2C_ADDR  
The I2C Address for the Audio Subsystem  
AUD_I2C_ADDR  
I2C_ADDR  
0011010  
0011011  
0011000  
0011001  
0011110  
0011111  
0011100  
0011101  
000  
001  
010  
011  
100  
101  
110  
111  
6
7
RESERVED  
RESERVED  
Reserved bit, this bit must remain cleared.  
Reserved bit, this bit must remain cleared.  
TABLE 25. BK1_FPWM (0x5Ah)  
Description  
Bits  
Field  
6:0  
Reserved  
Do not change the value of these bits, read the value of these bits and write back when  
updating bit 7, FORCE_PWM.  
7
FORCE_PWM  
If set, forces the Buck 1 converter into PWM mode. If cleared, the Buck 1 converter will  
switch between ECO and PWM mode depending on the load current.  
63  
www.ti.com  
 
 
TABLE 26. BK2_FPWM (0x5Eh)  
Bits  
Field  
Reserved  
Description  
6:0  
Do not change the value of these bits, read the value of these bits and write back when  
updating bit 7, FORCE_PWM.  
7
FORCE_PWM  
If set, forces the Buck 2 converter into PWM mode. If cleared, the Buck 2 converter will  
switch between ECO and PWM mode depending on the load current.  
27.0 Basic PMC Setup Register  
The LM49360's Power Management Circuit (PMC) controls the basic power management setup for the audio section of the device.  
TABLE 27. PMC_SETUP (0x00h)  
Bits  
Field  
Description  
When this bit is set, the power management will enable the MCLK I/O or internal  
oscillator1. It will then use this clock to sequence the enabling of the analog references and  
bias points. When this bit is cleared, the PMC will bring the analog down gently and disable  
the MCLK or oscillator.  
0
CHIP_ENABLE  
CHIP _ENABLE  
Chip Status  
Turn Chip Off  
Turn Chip On  
0
1
This enables the PLL.  
PLL_ENABLE  
PLL Status  
PLL Off  
1
2
PLL_ENB  
0
1
PLL On  
This enables the P2 output of the PLL.  
PLL_P2ENB  
PLL P2 Status  
PLL P2 Off  
PLL_P2ENB  
0
1
PLL P2 On  
This enables the internal 300kHz Oscillator. For analog only chip modes, the oscillator can  
be used instead of an external system clock to drive the chip's power management (PMC).  
OSC_ENABLE  
Oscillator Status  
Oscillator Off  
Oscillator On  
3
OSC_ENB  
0
1
This forces the MCLK input to enable, regardless of requirement. If set, the audio ports and  
digital mixer can be activated even if the chip is in shutdown mode. This assumes that MCLK  
is selected as the PMC clock source (reg 0x01h) and that there is an active clock signal  
driving the MCLK pin. Setting this bit reduces power consumption by allowing audio ports  
and digital mixer to operate while the analog sections of the chip are powered down.  
4
5
MCLK_OVR  
MCLK_OVR  
Comment  
0
1
I/O control is automatic  
MCLK input forced on.  
This forces the clock input of Audio Port 1 input to enable, regardless of other port settings.  
PORT1_CLK_OVR  
Comment  
PORT1_CLK_OVR  
0
1
I/O control is automatic  
PORT_CLK input forced on  
This forces the clock input of Audio Port 2 input to enable regardless of other port settings.  
PORT2_CLK_OVR  
Comment  
6
7
PORT2_CLK_OVR  
CHIP_ACTIVE  
0
1
I/O control is automatic  
PORT_CLK input forced on  
This bit is used to read back the enable status of the chip.  
1. If the PMC is set to operate from one of the audio ports, then it will wait for the port to be enabled or the relevant override bit to  
be set, forcing the port clock input to enable.  
www.ti.com  
64  
 
 
 
28.0 PMC Clocks Register  
This register is used to control the LM49360's Basic Power Management Clock.  
TABLE 28. PMC_SETUP (0x01h)  
Bits  
Field  
Description  
This selects the source of the PMC input clock.  
1:0  
PMC_CLK_SEL  
PMC_CLK_SEL  
PMC Input Clock Source  
MCLK (Default divide is 40.5)  
Internal 300kHz Oscillator  
DAC SOURCE CLOCK  
00  
01  
10  
11  
ADC SOURCE CLOCK  
29.0 PMC Clock Divide Register  
This register is used to control the LM49360's Power Management Circuit Clock Divider.  
TABLE 29. PMC_SETUP (0x02h)  
Bits  
Field  
Description  
7:0  
PMC_CLK_DIV  
This programs the half cycle divider that precedes the PMC. The PMC should run from a  
300kHz clock. The default of this divider is 0x50h (divide by 40.5) to get a 300kHz PMC  
clock from a 12MHz or 12.288MHz MCLK.  
Program this divider with the required division, multiplied by 2, and subtract 1.  
PMC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
Divide by  
1
1
1.5  
2
2.5  
3
11111101  
11111110  
11111111  
126  
127.5  
128  
65  
www.ti.com  
 
 
 
 
30.0 LM49360 Clock Network  
(Refer to Figure 20)  
The audio DAC and ADC operate at a clock frequency of 2*OSR*fS where OSR is the oversampling ratio and fS is the sampling  
frequency of the DAC or ADC. The DAC can operate at three different OSR settings (128, 125, 64). The ADC can operate at two  
different OSR settings (128, 125). For example, if the stereo DAC or ADC is set at OSR = 128, a 12.288MHz clock is required for  
48kHz data. If a 12.288MHz clock is not available, then the internal PLL can be used to generate the desired clock frequency.  
Otherwise, if a 12.288MHz is available, the PLL can be bypassed to reduce power consumption. The DAC clock divider or ADC  
clock divider can also be used to generate the correct clock. If an 18.432 MHz clock is available, the DAC or ADC clock divider  
could be set to 1.5 in order to generate a 12.288MHz clock from 18.432MHz without using a PLL.  
The DAC path clock (DAC_SOURCE_CLK) and ADC path clock (ADC_SOURCE_CLK) can be driven directly by the MCLK input,  
the PORT1_CLK input, the PORT2_CLK input, or PLL output.  
For instances where a PLL must be used, the PLL input clock can come from three sources. The clock input to the PLL can come  
from the MCLK input, the PORT1_CLK input, or the PORT2_CLK input.  
The LM49360's Power Management Circuit (PMC) requires a clock of 300kHz that is independent from the DAC or ADC. The  
PMC clock divider is available to generate the correct clock to the PMC block. The PMC clock path can be driven directly by the  
MCLK input, the internal 300kHz oscillator, the DAC_SOURCE_CLK, or the ADC_SOURCE_CLK.  
TABLE 30. DAC Clock Requirements  
DAC Sample Rate  
(kHz)  
Clock Required at A  
(OSR = 128)  
Clock Required at A  
(OSR = 125)  
Clock Required at A  
(OSR = 64)  
8
11.025  
12  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
8.192 MHz  
11.2896 MHz  
12.288 MHz  
24.576 MHz  
2 MHz  
2.75625 MHz  
3 MHz  
1.024 MHz  
1.4112 MHz  
1.536 MHz  
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
12.288 MHz  
16  
4 MHz  
22.05  
24  
5.5125 MHz  
6 MHz  
32  
8 MHz  
44.1  
48  
11.025 MHz  
12 MHz  
96  
24 MHz  
TABLE 31. ADC Clock Requirements  
ADC Sample Rate  
Clock Required at B  
(OSR = 128)  
Clock Required at B  
(kHz)  
(OSR = 125)  
8
2.048 MHz  
2.8224 MHz  
3.072 MHz  
4.096 MHz  
5.6448 MHz  
6.144 MHz  
8.192 MHz  
11.2896 MHz  
12.288 MHz  
2 MHz  
11.025  
12  
2.75625 MHz  
3 MHz  
16  
4 MHz  
22.05  
24  
5.5125 MHz  
6 MHz  
32  
8 MHz  
44.1  
48  
11.025 MHz  
12 MHz  
www.ti.com  
66  
 
 
 
30128213  
FIGURE 20. Internal Clock Network  
67  
www.ti.com  
 
31.0 PLL Setup Registers  
30128230  
FIGURE 21. PLL Loop  
The LM49360 contains a PLL for flexible operation of its dual audio ports. The PLL has a P1 and P2 output divider thereby allowing  
the PLL to generate two distinct clock outputs. The equations for the PLL's generated output clocks are as follows:  
fOUT1 = (fIN . N / M . P1)  
fOUT2 = (fIN . N / M . P2)  
where:  
N = PLL_N + PLL_N_MOD  
M = (PLL_M + 1) / 2  
P1 = (PLL_P1 + 1) / 2  
P2 = (PLL_P2 + 1) / 2  
www.ti.com  
68  
 
 
TABLE 32. PLL Settings for Common System Clock Frequencies  
fIN (MHz)  
12  
fOUT (Hz)  
12288000  
12287970  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
12288000  
11289600  
11289600  
11289603  
11289600  
11289600  
11289600  
11289600  
11289600  
11289600  
11289602.1  
12289600  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
12000000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
11025000  
M
2.5  
15.5  
12.5  
13.5  
3.5  
12.5  
20.5  
16.5  
32.5  
22.5  
12.5  
10  
N
N_MOD  
P
12.5  
12  
Error (Hz)  
32  
0
26  
0
0
–30  
0
13  
175  
128  
128  
32  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
12  
0
12.5  
12.5  
12  
0
0
0
96  
0
0
160  
128  
192  
128  
147  
147  
144  
147  
196  
126  
147  
147  
196  
144  
196  
195  
125  
102  
68  
0
12.5  
12.5  
12.5  
12.5  
12.5  
16  
0
0
0
0
0
27  
0
0
12  
0
0
12.288  
13  
0
0
9
19  
0
18.5  
15  
+3  
0
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
12.5  
22.5  
12.5  
20  
0
12.5  
15  
0
0
0
0
12.5  
12.5  
12.5  
18  
0
20.5  
27.5  
18.5  
37.5  
10.5  
8
0
0
0
0
19  
0
2.1  
0
27  
12.5  
17.5  
16  
11.2896  
12.288  
13  
0
0
0
0
6.5  
4.5  
6
0
17  
0
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
0
17  
0
85  
0
17  
0
13.5  
7
170  
85  
0
17  
0
0
17  
0
8
85  
0
17  
0
20.5  
16.5  
6.5  
8
200  
170  
36  
0
16  
0
0
17  
0
0
12  
0
11.2896  
12  
125  
147  
114  
96  
0
16  
0
10  
0
16  
0
12.288  
13  
8
27  
15  
0
16  
0
6.5  
10  
17.5  
18  
0
13.5  
14.4  
16.2  
16.8  
19.2  
19.68  
19.8  
26  
147  
49  
0
4
0
16  
0
4
49  
0
18  
0
16  
189  
147  
189  
147  
27  
0
18  
0
16  
0
16  
0
16  
0
18  
0
16  
0
16.5  
13  
0
5
18  
0
69  
www.ti.com  
 
TABLE 33. PLL_CLOCK_SOURCE (0x03h)  
Description  
Bits  
Field  
1:0  
PLL_CLK_SEL  
This selects the source of the input clock to the PLL.  
PLL_CLK_SEL  
PLL Input Clock Source  
MCLK  
00  
01  
10  
11  
PORT1_CLK  
PORT2_CLK  
RESERVED  
TABLE 34. PLL_M (0x04h)  
Bits  
Field  
Description  
6:0  
PLL_M  
This programs the PLL's M divider to divide from 1 to 64.  
PLL_M  
000000  
000001  
000010  
000011  
000100  
000101  
PLL Input Divider Value  
1
1
1.5  
2
2.5  
3
63  
63.5  
64  
1111101  
1111110  
1111111  
TABLE 35. PLL_N (0x05h)  
Bits  
Field  
Description  
7:0  
PLL_N  
This programs the PLL N divider to divide from 1 to 250.  
PLL_N  
00000000 to 00001010  
00001011  
Feedback Divider Value  
10  
11  
00001100  
12  
00001101  
13  
00001110  
14  
00001111  
15  
11111000  
248  
249  
250  
11111001  
11111010 to 11111111  
www.ti.com  
70  
 
 
 
TABLE 36. PLL_N_MOD (0x06h)  
Description  
Bits  
Field  
4:0  
PLL_N_MOD  
This programs the sigma-delta modulator in the PLL.  
PLL_N_MOD  
00000  
00001  
00010  
00011  
00100  
00101  
Fractional Part of N  
0
1/32  
2/32  
3/32  
4/32  
5/32  
11101  
11110  
11111  
20/32  
30/32  
31/32  
5
6
PLL_P1[8]  
PLL_P2[8]  
This sets the MSB of the 1st P Divider on the PLL which is part of a standard half-cycle divider  
control.  
This sets the MSB of the 2nd P Divider on PLL which is part of a standard half-cycle divider  
control.  
TABLE 37. PLL_P1 (0x07h)  
Description  
Bits  
Field  
7:0  
PLL_P1[7:0]  
This programs the 8 LSBs of the PLL's P1 Divider. These LSBs combine with PL1_P1[8] which  
allows the P1 divider to divide by up to 256.  
PLL_P1 [8:0]  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P1 Divider Value  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
TABLE 38. PLL_P2 (0x08h)  
Bits  
Field  
Description  
7:0  
PLL_P2[7:0]  
This programs 8 LSBs of the PLL's P2 Divider. These LSBs combine with PLL_P2[8] which  
allows the P2 divider to divide by up to 256.  
PLL_P2 [8:0]  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
P2 Divider Value  
1
1
1.5  
2
2.5  
3
111111101  
111111110  
111111111  
255  
255.5  
256  
71  
www.ti.com  
 
 
 
32.0 Analog Mixer Control Registers  
This register is used to control the LM49360's Analog Mixer:  
TABLE 39. CLASS_D_OUTPUT (0x10h)  
Description  
Bits  
0
Field  
DACR_LS  
DACL_LS  
RSVD  
The right DAC output is added to the loudspeaker output.  
The left DAC output is added to the loudspeaker output.  
Reserved  
1
2
3
RSVD  
Reserved  
4
MONO_LS  
AUX_LS  
The MONO input is added to the loudspeaker output.  
The AUX input is added to the loudspeaker output.  
5
Class D Loudspeaker Amplifier  
The LM49360 features a filterless modulation scheme. The differential outputs of the device switch at 300kHz from VDD to GND.  
When there is no input signal applied, the two outputs (LS+ and LS-) switch with a 50% duty cycle, with both outputs in phase.  
Because the outputs of the LM49360 are differential, the two signals cancel each other. This results in no net voltage across the  
speaker, thus there is no load current during an idle state, conserving power.  
With an input signal applied, the duty cycle (pulse width) of the LM49360 outputs changes. For increasing output voltages, the duty  
cycle of LS+ increases, while the duty cycle of LS- decreases. For decreasing output voltages, the converse occurs, the duty cycle  
of LS- increases while the duty cycle of LS+ decreases. The difference between the two pulse widths yields the differential output  
voltage.  
Spread Spectrum Modulation  
The LM49360 features a fitlerless spread spectrum modulation scheme that eliminates the need for output filters, ferrite beads or  
chokes. The switching frequency varies by ±30% about a 300kHz center frequency, reducing the wideband spectral content,  
improving EMI emissions radiated by the speaker and associated cables and traces. Where a fixed frequency class D exhibits  
large amounts of spectral energy at multiples of the switching frequency, the spread spectrum architecture of the LM49360 spreads  
that energy over a larger bandwidth. The cycle-to-cycle variation of the switching period does not affect the audio reproduction or  
efficiency.  
Class D Power Dissipation and Efficiency  
In general terms, efficiency is considered to be the ratio of useful work output divided by the total energy required to produce it  
with the difference being the power dissipated, typically, in the IC. The key here is “useful” work. For audio systems, the energy  
delivered in the audible bands is considered useful including the distortion products of the input signal. Sub-sonic (DC) and super-  
sonic components (>22kHz) are not useful. The difference between the power flowing from the power supply and the audio band  
power being transduced is dissipated in the LM49360 and in the transducer load. The amount of power dissipation in the LM49360's  
class D amplifier is very low. This is because the ON resistance of the switches used to form the output waveforms is typically less  
than 0.25. This leaves only the transducer load as a potential "sink" for the small excess of input power over audio band output  
power. The LM49360 dissipates only a fraction of the excess power requiring no additional PCB area or copper plane to act as a  
heat sink.  
TABLE 40. LEFT HEADPHONE_OUTPUT (0x11h)  
Bits  
0
Field  
DACR_HPL  
DACL_HPL  
RSVD  
Description  
The right DAC output is added to the left headphone output.  
The left DAC output is added to the left headphone output.  
Reserved  
1
2
3
RSVD  
Reserved  
4
MONO_HPL  
AUX_HPL  
The MONO input is added to the left headphone output.  
The AUX input is added to the left headphone output.  
5
www.ti.com  
72  
 
 
 
TABLE 41. RIGHT HEADPHONE_OUTPUT (0x12h)  
Bits  
0
Field  
DACR_HPR  
DACL_HPR  
RSVD  
Description  
The right DAC output is added to the right headphone output.  
The left DAC output is added to the right headphone output.  
Reserved  
1
2
3
RSVD  
Reserved  
4
MONO_HPR  
AUX _HPR  
The MONO input is added to the right headphone output.  
The AUX input is added to the right headphone output.  
5
Headphone Amplifier Function  
The LM49360 headphone amplifier features National’s ground referenced architecture that eliminates the large DC-blocking ca-  
pacitors required at the outputs of traditional headphone amplifiers. A low-noise inverting charge pump creates a negative supply  
(HP_VSS) from the positive supply voltage (LS_VDD). The headphone amplifiers operate from these bipolar supplies, with the  
amplifier outputs biased about GND, instead of a nominal DC voltage (typically VDD/2), like traditional amplifiers. Because there is  
no DC component to the headphone output signals, the large DC-blocking capacitors (typically 220μF) are not necessary, con-  
serving board space and system cost, while improving frequency response.  
Charge Pump Capacitor Selection  
Use low ESR ceramic capacitors (less than 100m) for optimum performance.  
Charge Pump Flying Capacitor (C38)  
The flying capacitor (C38) affects the load regulation and output impedance of the charge pump. A C38 value that is too low results  
in a loss of current drive, leading to a loss of amplifier headroom. A higher valued C38 improves load regulation and lowers charge  
pump output impedance to an extent. Above 2.2μF, the RDS(ON) of the charge pump switches and the ESR of C38 and C61 dominate  
the output impedance. A lower value capacitor can be used in systems with low maximum output power requirements. Please refer  
to the demonstration board schematic shown in Figure 36.  
Charge Pump Flying Capacitor (C61)  
The value and ESR of the hold capacitor (C61) directly affects the ripple on CPVSS. Increasing the value of C61 reduces output  
ripple. Decreasing the ESR of C61 reduces both output ripple and charge pump output impedance. A lower value capacitor can  
be used in systems with low maximum output power requirements. Please refer to the demonstration board schematic shown in  
Figure 36.  
TABLE 42. AUX_OUTPUT (0x13h)  
Bits  
0
Field  
Description  
The right DAC output is added to the AUX output.  
The left DAC output is added to the AUX output.  
The MIC input is added to the AUX output.  
Reserved  
DACR_AUX  
DACL_AUX  
MIC_AUX  
RSVD  
1
2
3
4
MONO_AUX  
AUX_AUX  
The MONO input is added to the AUX output.  
The AUX input is added to the AUX output.  
5
73  
www.ti.com  
 
 
Auxiliary Output Amplifier  
The LM49360’s auxiliary output (AUXOUT) amplifier provides differential drive capability to loads that are connected across its  
outputs. This results in output signals at the AUX_OUT+ and AUX_OUT- pins that are 180 degrees out of phase with respect to  
each other. This effectively doubles the maximum possible output swing for a specific supply voltage when compared to single-  
ended output configurations. The differential output configuration also allows the load to be isolated from ground since both the  
AUX_OUT+ and AUX_OUT- pins are biased at the same DC potential. This eliminates the need for any large and expensive DC  
blocking capacitors at the AUXOUT amplifier outputs. The load can then be directly connected to the positive and negative outputs  
of the AUXOUT amplifier which then isolates it from any ground noise, thereby improving signal-to-noise-ratio (SNR) and power  
supply rejection ratio (PSRR).  
The AUXOUT amplifier has two modes of operation. The primary mode of operation is high current drive mode (Earpiece Mode)  
where the AUXOUT amplifier can be used to differentially drive a mono earpiece speaker. The secondary mode of operation is  
low current drive mode where the AUXOUT amplifier operates in a power saving mode (AUX_LINE_OUT Mode) to provide a  
differential output that is used as a mono differential line level input to a standalone mono differential input class D amplifier  
(LM4675) for stereo loudspeaker applications.  
TABLE 43. OUTPUT_OPTIONS (0x14h)  
Bits  
0
Field  
RSVD  
Description  
Reserved  
3:1  
LR_HP_LEVEL  
This sets the gain of the left and right headphone amplifiers. The gain of the left and right headphone  
amplifiers are always set to the same level.  
LR_HP_LEVEL  
Gain (dB)  
0
000  
001  
–1.5  
–3  
010  
011  
–6  
100  
–9  
101  
–12  
–15  
–18  
110  
111  
4
5
AUX_NEG_6dB  
AUX_LINE_OUT  
LS_LEVEL  
This sets the gain of the Auxiliary output amplifier.  
AUX_NEG_6dB  
Gain (dB)  
0
0
1
–6  
This sets the Auxiliary output amplifier mode of operation.  
AUX_LINE_OUT  
Auxiliary Output Mode  
Earpiece Amplifier  
AUX_LINE_OUT  
0
1
7:6  
This sets the gain of the Class D loudspeaker amplifier.  
LS_LEVEL  
Gain (dB)  
00  
01  
10  
11  
0
4
8
12  
TABLE 44. ADC_INPUT (0x15h)  
Bits  
0
Field  
Description  
The right DAC output is added to the ADC right input.  
The left DAC output is added to the ADC left input.  
The MIC input is added to the ADC right input.  
The MIC input is added to the ADC left input.  
The AUX input is added to the ADC right input.  
The MONO input is added to the ADC left input.  
DACR_ADCR  
DACL_ADCL  
MIC_ADCR  
MIC_ADCL  
AUX_ADCR  
MONO_ADCL  
1
2
3
4
5
www.ti.com  
74  
 
 
TABLE 45. MIC_INPUT (0x16h)  
Description  
Bits  
Field  
3:0  
MIC_LEVEL  
This sets the gain of the microphone preamp.  
MIC_LEVEL  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Gain  
6dB  
8dB  
10dB  
12dB  
14dB  
16dB  
18dB  
20dB  
22dB  
24dB  
26dB  
28dB  
30dB  
32dB  
34dB  
36dB  
4
5
SE_DIFF  
MUTE  
If set, the MIC negative input is ignored. In single-ended mode, the MIC negative input pin should  
be left floating.  
If set, the microphone preamp is muted.  
75  
www.ti.com  
 
TABLE 46. AUX_LEVEL (0x18h)  
Description  
Bits  
Field  
5:0  
AUX_LEVEL This programs the AUX input level. All gain changes are performed at zero crossings.  
AUX_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011000  
011001  
011010  
011100  
011101  
011110  
011111  
Level  
–46.5dB  
–45dB  
–43.5dB  
–42dB  
–40.5dB  
–39dB  
–37.5dB  
–36dB  
–34.5dB  
–33dB  
–31.5dB  
–30dB  
–28.5dB  
–27dB  
–25.5dB  
–24dB  
–22.5dB  
–21dB  
–19.5dB  
–18dB  
–16.5dB  
–15dB  
–13.5dB  
–12dB  
–10.5dB  
–9dB  
AUX_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
Level  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
–7.5dB  
–6dB  
–4.5dB  
–3dB  
–1.5dB  
0dB  
6
SE/DIFF  
If set, the AUXL input is ignored. In single-ended mode, the AUXL input pin should be left  
floating.  
www.ti.com  
76  
 
TABLE 47. MONO_LEVEL (0x19h)  
Description  
Bits  
Field  
5:0  
MONO_LEVEL This programs the MONO input level. All gain changes are performed at zero crossings.  
MONO_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011000  
011001  
011010  
011100  
011101  
011110  
011111  
Level  
–46.5dB  
–45dB  
–43.5dB  
–42dB  
–40.5dB  
–39dB  
–37.5dB  
–36dB  
–34.5dB  
–33dB  
–31.5dB  
–30dB  
–28.5dB  
–27dB  
–25.5dB  
–24dB  
–22.5dB  
–21dB  
–19.5dB  
–18dB  
–16.5dB  
–15dB  
–13.5dB  
–12dB  
–10.5dB  
–9dB  
MONO_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
Level  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
–7.5dB  
–6dB  
–4.5dB  
–3dB  
–1.5dB  
0dB  
6
7
SE/DIFF  
If set, the MONO– input is ignored. In single-ended mode, the MONO- input pin should  
be left floating.  
AUXL_MONO If set, AUXL is routed to the MONO Input Amplifier.  
77  
www.ti.com  
 
Headphone Detection Circuit  
The LM49360 features a headphone detection circuit (HDC) that automatically enables the headphone amplifier whenever the  
insertion of a headphone plug is detected and disables the headphone amplifier during the removal of a headphone plug. The HDC  
optimizes power management by automatically disabling any output amplifier that is not in use. The HDC eliminates the necessity  
of polling the I2C bus for status changes. However, since the HDC requires the use of the GPIO pin, the PORT2_SDO functionality  
sensing is required.  
The HDC requires a headphone jack with a normally closed mechanical switch and a pull-up resistor, RPU, tied between the  
mechanical switch and I/O_VDD (refer to Figure 22). Choosing a RPU value of at least 500kensures minimal current draw through  
the pull-up resistor. When the headphone amplifier is disabled, an internal 50kpull-down, RPD, is connected to each headphone  
amplifier output. Without the presence of a headphone plug, the headphone jack’s mechanical switch is closed thereby connecting  
the right headphone amplifier output to RPU. The GPIO pin detects a logic low level due to the voltage division between RPU and  
RPD. When the GPIO pin is set to HPSENSE mode, a logic low voltage reading causes the HDC to disable the headphone amplifier.  
When a headphone plug is inserted, the mechanical connection between RPU and RPD is broken, resulting in a logic high level  
detected by the GPIO pin. A logic high voltage reading causes the HDC to enable the headphone amplifier.  
The HDC has four modes of operation that automatically enable/disable different combinations of the audio output amplifiers  
contained within the LM49360. Having the choice of four different HDC settings maximizes power management flexibility to suit a  
particular application. Please refer to the HP_SENSE (reg 0x1Bh) register table for a detailed discussion on the different HDC  
modes of operation.  
30128293  
FIGURE 22. Application Circuit for Headphone Detection  
www.ti.com  
78  
 
TABLE 48. HP_SENSE (0x1Bh)  
Description  
Bits  
Field  
0
HP SENSE  
This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on. If a headphone removal is detected, the headphone amplifier will  
automatically turn off.  
HPSENSE  
Headphone Sense Status  
0
1
Off  
On  
1
2
3
HPSENSE_D  
This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on and the Class D loudspeaker amplifier will turn off. If a headphone removal is  
detected, the headphone amplifier will automatically turn off and the Class D loudspeaker amplifier  
will turn on. This bit overrides bit 0 of this register.  
HPSENSE_D  
Headphone Sense Status  
0
1
Off  
On  
HPSENSE_AUX  
This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on and the Earpiece / Auxout amplifier will turn off. If a headphone removal is  
detected, the headphone amplifier will automatically turn off and the Earpiece / Auxout amplifier will  
turn on. This bit overrides bit 0 and bit 1 of this register.  
HPSENSE_AUX  
Headphone Sense Status  
0
1
Off  
On  
HPSENSE_AUX_D This bit enables the headphone sense circuit. If enabled, the headphone amplifier will automatically  
turn on/off based on the logic level of the GPIO pin whenever GPIO is selected as a headphone  
sense input. If the presence of a headphone insertion is detected, the headphone amplifier will  
automatically turn on and the Class D loudspeaker amplifier along with the Earpiece / Auxout  
amplifier will turn off. If a headphone removal is detected, the headphone amplifier will automatically  
turn off and the Class D loudspeaker amplifier along with the Earpiece / Auxout amplifier will turn  
on. This bit overrides bit 0, bit 1, and bit 2 of this register.  
HPSENSE_AUX_D  
Headphone Sense Status  
0
1
Off  
On  
79  
www.ti.com  
 
33.0 ADC Control Registers  
This register is used to control the LM49360's ADC:  
TABLE 49. ADC Basic (0x20h)  
Description  
Bits  
Field  
0
MONO  
This sets mono or stereo operation of the ADC.  
MONO  
0
ADC Operation  
Stereo Audio  
1
Mono Voice (Right ADC channel disabled, Left ADC channel active)  
1
OSR  
This sets the oversampling ratio of the ADC.  
Stereo Audio ADC  
OSR  
Mono Voice ADC Oversampling Ratio  
Oversampling Ratio  
0
1
128  
128  
125  
128  
2
3
MUTE_L  
MUTE_R  
If set, a digital mute is applied to the Left (or mono) ADC output.  
If set, a digital mute is applied to the Right ADC output.  
6:4  
ADC_CLK_SEL  
This selects the source of the ADC clock domain, ADC_SOURCE_CLK.  
ADC_CLK_SEL  
Source  
000  
001  
010  
011  
100  
MCLK  
PORT1_RX_CLK  
PORT2_RX_CLK  
PLL_OUTPUT1  
PLL_OUTPUT2  
7
ADC_DSP_ONLY  
If set, the ADC's analog circuitry is disabled to reduce power consumption, however, ADC DSP  
functionality is maintained. This can be used to perform asynchronous re-sampling between audio  
rates of a common family. Setting this bit is also useful whenever applying Automatic Level Control  
(ALC) to an analog only audio path.  
TABLE 50. ADC_CLK_DIV (0x21h)  
Description  
Bits  
Field  
7:0  
ADC_CLK_DIV  
This programs the half cycle divider that precedes the ADC. The input of this divider should be  
around 12MHz. The default of this divider is 0x00.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
ADC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
Divides by  
1
1
1.5  
2
11111101  
11111110  
11111111  
127  
127.5  
128  
www.ti.com  
80  
 
 
 
TABLE 51. ADC_MIXER (0x23h)  
Description  
Bits  
Field  
1:0  
ADC_MIX_LEVEL_L This sets the input level to the left ADC channel.  
ADC_MIX_LEVEL_L  
Level  
0dB  
00  
01  
1.35dB  
3.5dB  
6dB  
10  
11  
3.2  
ADC_MIX_LEVEL_R This sets the input level to the right ADC channel.  
ADC_MIX_LEVEL_R  
Level  
0dB  
00  
01  
10  
11  
1.35dB  
3.5dB  
6dB  
4
STEREO_LINK  
If set, this links ADC_MIX_LEVEL_R with ADC_MIX_LEVEL_L.  
STEREO_LINK  
Status  
Off  
0
1
On  
81  
www.ti.com  
 
34.0 DAC Control Registers  
This register is used to control the LM49360's DAC.  
TABLE 52. DAC Basic (0x30h)  
Description  
Bits  
Field  
1:0  
MODE  
This programs the over sampling ratio of the stereo DAC.  
MODE  
DAC Oversampling Ratio  
00  
125  
128  
01  
10  
11  
64 (Default)  
RSVD  
2
3
MUTE_L  
MUTE_R  
This digitally mutes the Left DAC output.  
This digitally mutes the Right DAC output.  
6:4  
DAC_CLK_SEL  
This selects the source of the DAC clock domain, DAC_SOURCE_CLK.  
DAC_CLK_SEL  
Source  
000  
001  
010  
011  
100  
MCLK  
PORT1_RX_CLK  
PORT2_RX_CLK  
PLL_OUTPUT1  
PLL_OUTPUT2  
7
DSP_ONLY  
If set, the DAC's analog circuitry is disabled to reduce power consumption, however DAC DSP  
functionality is maintained. This can be used to perform asynchronous re-sampling between audio  
rates of a common family.  
TABLE 53. DAC_CLK_DIV (0x31h)  
Description  
Bits  
Field  
7:0  
DAC_CLK_DIV  
This programs the half cycle divider that precedes the DAC. The input of this divider should be  
around 12MHz. The default of this divider is 0x03 which gives a division by 2.  
Program this divider with the division you want, multiplied by 2, and subtract 1.  
DAC_CLK_DIV  
00000000  
00000001  
00000010  
00000011  
Divides by  
1
1
1.5  
2 (Default)  
11111101  
11111110  
11111111  
127  
127.5  
128  
www.ti.com  
82  
 
 
 
35.0 Digital Mixer Control Registers  
Digital Mixer  
The LM49360’s digital mixer allows for flexible routing of digital audio signals between both audio ports, DAC, and ADC. This mixer  
handles which digital data path (Port1 RX data, Port2 RX data, or ADC output) is routed to the DAC input. The digital mixer also  
selects the appropriate digital data path (Port1 RX data, Port2 RX data, ADC output, DAC DSP output, or ADC DSP output) that  
is used for data transmission on Audio Port 1 and 2. Audio inputs to the digital mixer can be attenuated down to -18dB to avoid  
clipping conditions.  
Another key feature of the digital mixer is sample rate conversion (SRC) between audio ports. This allows simultaneous operation  
of the dual audio ports even if each port is operating at a different sample rate. The LM49360 can be used as an audio port bridge  
with SRC capability. The digital mixer allows either straight pass through between audio ports or, if desired, DSP effects can be  
added to the digital audio signal during audio port bridge operation. The digital mixer automatically handles stereo I2S to mono  
PCM conversion between audio ports and vice versa.  
30128237  
FIGURE 23. Digital Mixer  
The LM49360 includes two separate and independent DSP blocks, one for the DAC and the other for the ADC. The digital mixer  
also allows both DSP blocks to be cascaded together in either order so that the DSP effects from both blocks can be combined  
into the same signal path.  
83  
www.ti.com  
 
 
This register is used to control the LM49360's digital mixer.  
TABLE 54. Input Levels 1 (0x40h)  
Bits  
Field  
Description  
1:0  
PORT1_RX_L  
_LVL  
This programs the input level of the data arriving from the left receive channel of Audio Port 1.  
PORT1_RX_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
3:2  
5:4  
7:6  
PORT1_RX_R  
_LVL  
This programs the input level of the data arriving from the right receive channel of Audio Port 1.  
PORT1_RX_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
PORT2_RX_L  
_LVL  
This programs the input level of the data arriving from the left receive channel of Audio Port 2.  
PORT2_RX_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
PORT2_RX_R  
_LVL  
This programs the input level of the data arriving from the right receive channel of Audio Port 2.  
PORT2_RX_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
TABLE 55. Input Levels 2 (0x41h)  
Bits  
Field  
Description  
1:0  
3:2  
5:4  
ADC_L_LVL  
This programs the input level of the data arriving from the left ADC channel.  
ADC_L_LVL  
Level  
0dB  
00  
01  
–6dB  
–12dB  
–18dB  
10  
11  
ADC_R_LVL  
This programs the input level of the data arriving from the right ADC channel.  
ADC_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
INTERP_L_LVL This programs the input level of the data arriving from the left DAC's interpolator output.  
INTERP_L_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
www.ti.com  
84  
 
 
Bits  
Field  
Description  
7:6  
INTERP_R_LVL This programs the input level of the data arriving from the right DAC's interpolator output.  
INTERP_R_LVL  
Level  
0dB  
00  
01  
10  
11  
–6dB  
–12dB  
–18dB  
TABLE 56. Audio Port 1 Input (0x42h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to the Left TX Channel of Audio Port 1.  
L_SEL  
Selected Input  
None  
00  
01  
ADC_L  
10  
PORT2_RX_L  
DAC_INTERP_L  
11  
3:2  
R_SEL  
This selects which input is fed to the Right TX Channel of Audio Port 1.  
R_SEL  
Selected Input  
None  
00  
01  
ADC_R  
10  
PORT2_RX_R  
DAC_INTERP_R  
11  
4
5
SWAP  
MONO  
If set, this swaps the Left and Right outputs to Audio Port 1.  
If set, the right channel is ignored and the left channel becomes (left+right) / 2.  
TABLE 57. Audio Port 2 Input (0x43h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to Audio Port 2's Left TX Channel.  
L_SEL  
Selected Input  
00  
None  
01  
ADC_L  
10  
PORT1_RX_L  
DAC_INTERP_L  
11  
3:2  
R_SEL  
This selects which input is fed to Audio Port 2's Right TX Channel.  
R_SEL  
Selected Input  
None  
00  
01  
ADC_R  
10  
PORT1_RX_R  
DAC_INTERP_R  
11  
4
5
SWAP  
MONO  
If set, this swaps the Left and Right outputs to Audio Port 2.  
If set, the right channel is ignored and the left channel becomes (left+right) / 2.  
85  
www.ti.com  
 
 
TABLE 58. DAC Input Select (0x44h)  
Bits  
0
Field  
Description  
This adds Audio Port 1's left RX channel to the DAC's left input.  
This adds Audio Port 2's left RX channel to the DAC's left input.  
This adds the ADC's left output to the DAC's left input  
PORT1_L  
PORT2_L  
ADC_L  
1
2
3
PORT1_R  
PORT2_R  
ADC_R  
This adds Audio Port 1's right RX channel to the DAC's right input.  
This adds Audio Port 2's right RX channel to the DAC's right input.  
This adds the ADC's right output to the DAC's right input.  
If set, this swaps the Left and Right inputs to the DAC.  
4
5
6
SWAP  
TABLE 59. Decimator Input Select (0x45h)  
Bits  
Field  
Description  
1:0  
L_SEL  
This selects which input is fed to the left ADC's decimator input.  
L_SEL  
Selected Input  
None  
00  
01  
PORT1_RX_L  
PORT2_RX_L  
DAC_INTERP_L  
10  
11  
3:2  
5:4  
R_SEL  
This selects which input is fed to the right ADC's decimator input.  
R_SEL  
00  
Selected Input  
None  
01  
PORT1_RX_R  
PORT2_RX_R  
DAC_INTERP_R  
10  
11  
MXR_CLK_SEL This selects the source of the Digital Mixer Clock. The 'Auto' setting will automatically select the source  
with the highest clock frequency. If the DAC interpolator output (DAC_OSR_L or DAC_OSR_R) is  
selected, then MXR_CLK_SEL should be set to '10'.  
MXR_CLK_SEL  
Selected Input  
Auto  
00  
01  
10  
11  
MCLK  
DAC  
ADC  
www.ti.com  
86  
 
 
36.0 Audio Port Control Registers  
30128271  
FIGURE 24. I2S Serial Data Format (24 bit example)  
30128272  
FIGURE 25. Left Justified Data Format (24 bit example)  
30128270  
FIGURE 26. Right Justified Data Format (24 bit example)  
30128234  
FIGURE 27. PCM Serial Data Format (16 bit example)  
87  
www.ti.com  
 
 
 
 
 
301282i1  
FIGURE 28. Timing for I2S Master  
301282i2  
FIGURE 29. Timing for I2S Slave  
www.ti.com  
88  
 
 
The following registers are used to control the LM49360's audio ports. Audio Port 1 and Audio Port 2 are identical. Port 1 is  
programmed through the (0x5Xh) registers. Port 2 is programmed through the (0x6Xh) registers.  
TABLE 60. BASIC_SETUP (0x50h/0x60h)  
Bits  
0
Field  
Description  
STEREO  
If set, the audio port will receive and transmit stereo data.  
1
RX_ENABLE  
If set, the input is enabled (enables the SDI port and input shift register and any clock  
generation required).  
2
TX_ENABLE  
If set, the output is enabled (enables the SDO port and output shift register and any clock  
generation required).  
3
4
5
CLOCK_MS  
SYNC_MS  
If set, the audio port will transmit the clock when either the RX or TX is enabled.  
If set, the audio port will transmit the sync signal when either the RX or TX is enabled.  
This sets how data is clocked by the Audio Port.  
CLOCK_PHASE  
CLOCK_PHASE  
Audio Data Mode  
0
1
I2S (TX on falling edge, RX on rising edge)  
PCM (TX on rising edge, RX on falling edge)  
6
7
STEREO_SYNC_PHASE  
If set, this reverses the left and right channel data of the Audio Port.  
STEREO_SYNC_PHASE  
0
Audio Port Data Orientation  
Left channel data goes to left channel output.  
Right channel data goes to right channel output.  
1
Right channel data goes to left channel output.  
Left channel data goes to right channel output.  
SYNC_INVERT  
If this bit is set, the SYNC is inverted before the receiver and transmitter.  
SYNC_INVERT  
SYNC ORIENTATION  
0
1
SYNC Low = Left, SYNC High = Right  
SYNC Low = Right, SYNC High = Left  
TABLE 61. CLK_GEN_1 (0x51h/0x61h)  
Bits  
Field  
Description  
5:0  
HALF_CYCLE_CLK_ This programs the half-cycle divider that generates the master clocks in the audio port. The default  
DIV  
of this divider is 0x00, i.e. bypassed.  
Program this divider with the required division multiplied by 2, and subtract 1.  
HALF_CYCLE_CLK_DIV  
Divides By  
000000  
000001  
000010  
000011  
BYPASS  
1
1.5  
2
111101  
111110  
11111  
31  
31.5  
32  
6
CLOCK_SEL  
This selects the clock source of the master mode Audio Port Clock generator's half-cycle divider.  
0 = DAC_SOURCE_CLK  
1 = ADC_SOURCE_CLK  
89  
www.ti.com  
 
 
TABLE 62. CLK_GEN_1 (0x52h/62h)  
Description  
Bits  
Field  
2:0  
SYNTH_NUM  
Along with SYNTH_DENOM, this sets the clock divider that generates the Port 1 or Port 2 clock in  
master mode.  
SYNTH_NUM  
Numerator  
000  
001  
010  
011  
100  
101  
110  
111  
SYNTH_DENOM (1/1)  
100/SYNTH_DENOM  
96/SYNTH_DENOM  
80/SYNTH_DENOM  
72/SYNTH_DENOM  
64/SYNTH_DENOM  
48/SYNTH_DENOM  
0/SYNTH_DENOM  
3
SYNTH_DENOM  
Along with SYNTH_NUM, this sets the clock divider that generates the Port 1 or Port 2 clock in master  
mode.  
SYNTH_DENOM  
Denominator  
128  
0
1
125  
TABLE 63. CLK_GEN_1 (0x53h/63h)  
Description  
Bits  
Field  
2:0  
SYNC_RATE  
This sets the number of clock cycles before the sync pattern repeats. This depends if the audio port  
data is mono or stereo.  
In MONO mode:  
SYNC_RATE  
Number of Clock Cycles  
000  
8
001  
12  
16  
18  
20  
24  
25  
32  
010  
011  
100  
101  
110  
111  
In STEREO mode:  
SYNC_RATE  
000  
Number of Clock Cycles  
16  
24  
32  
36  
40  
48  
50  
64  
001  
010  
011  
100  
101  
110  
111  
www.ti.com  
90  
 
 
Bits  
Field  
Description  
5:3  
SYNC_WIDTH  
In MONO mode, this programs the width (in number of bits) of the SYNC signal.  
SYNC_WIDTH  
Width of SYNC (in bits)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
7
8
11  
15  
16  
TABLE 64. DATA_WIDTHS (0x54h/64h)  
Bits  
Field  
Description  
2:0  
RX_WIDTH  
This programs the expected bits per word of the serial data input SDI.  
RX_WIDTH  
Bits  
24  
20  
18  
16  
14  
13  
12  
8
000  
001  
010  
011  
100  
101  
110  
111  
5:3  
TX_WIDTH  
This programs the bits per word of the serial data output SDO.  
TX_WIDTH  
000  
Description  
24  
20  
18  
16  
14  
13  
12  
8
001  
010  
011  
100  
101  
110  
111  
7:6  
TX_EXTRA_BITS This programs the TX data output padding.  
TX_EXTRA_BITS  
Description  
00  
01  
10  
11  
0
1
High-Z  
High-Z  
91  
www.ti.com  
 
TABLE 65. RX_MODE (0x55h/x65h)  
Bits  
Field  
Description  
0
RX_MODE  
This sets the RX data input justification with respect to the SYNC signal.  
RX_MODE  
Description  
MSB Justified  
LSB Justified  
0
1
5:1  
MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of  
the frame (LSB Justified).  
MSB_POSITION  
Description  
00000  
0(Left Justified/PCM Long)  
00001  
1(I2S/PCM Short)  
00010  
2
00011  
3
00100  
4
00101  
5
00110  
6
00111  
7
01000  
8
01001  
9
01010  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
6
7
COMPAND  
If set, received audio data will be companded.  
This sets the audio companding mode.  
μLaw/A-Law  
Compand Mode  
μLaw/A-Law  
0
μLaw  
1
A-Law  
www.ti.com  
92  
 
TABLE 66. TX_MODE (0x56h/x66h)  
Bits  
Field  
Description  
0
TX_MODE  
This sets the TX data input justification with respect to the SYNC signal.  
TX_MODE  
Description  
MSB Justified  
LSB Justified  
0
1
5:1  
MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of  
the frame (LSB Justified).  
MSB_POSITION  
Description  
00000  
0(Left Justified/PCM Long)  
1(I2S/PCM Short)  
00001  
00010  
2
00011  
3
00100  
4
00101  
5
00110  
6
00111  
7
01000  
8
01001  
9
01010  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
6
7
COMPAND  
If set, transmitted audio data will be companded.  
This sets the audio companding mode.  
μLaw/A-Law  
Compand Mode  
μLaw/A-Law  
0
μLaw  
1
A-Law  
93  
www.ti.com  
 
37.0 Digital Effects Engine  
Digital Signal Processor (DSP)  
The LM49360 is designed to handle the entire audio signal conditioning and processing within the audio system, thereby freeing  
up the workload of any other applications processor contained within the system. The LM49360 features two independent DSPs,  
one for the DAC and the other for the ADC. The DAC DSP features digital volume control, automatic level control (ALC), digital  
soft clip compression and a 5-band parametric EQ. The ADC DSP features digital volume control, automatic level control (ALC)  
and digital soft clip compression. The effects chain of each DSP engine is shown by the diagrams below.  
30128257  
FIGURE 30. ADC DSP Effects Chain  
30128236  
FIGURE 31. DAC DSP Effects Chain  
The ADC and DAC DSP engines can be cascaded together in any order via the digital mixer to combine different audio effects to  
the same signal path. For example, a signal can be processed with high-pass filtering from the ADC effects engine with ALC from  
the DAC effects engine.  
www.ti.com  
94  
 
 
 
TABLE 67. ADC EFFECTS (0x70h)  
Description  
Bits  
0
Field  
ADC_HPF_ENB  
ADC_ALC_ENB  
ADC_PK_ENB  
RSVD  
This enables the ADC's High Pass Filter.  
This enables the ADC's Automatic Level Control.  
This enables the ADC's Peak Detector.  
Reserved  
1
2
3
4
ADC_SCLP_ENB  
This enables the ADC's Soft Clip Feature.  
TABLE 68. DAC EFFECTS (0x71h)  
Bits  
0
Field  
Description  
DAC_ALC_ENB  
DAC_PK_ENB  
DAC_EQ_ENB  
RSVD  
This enables the DAC's Automatic Level Control.  
This enables the DAC's Peak Detector.  
This enables the DAC's 5-band Parametric EQ.  
Reserved  
1
2
3
4
ADC_SCLP_ENB  
This enables the DAC's Soft Clip Feature.  
TABLE 69. HPF MODE (0x80h)  
Bits  
Field  
Description  
2:0  
HPF_MODE  
This configures the ADC's High Pass Filter.  
HPF_MODE  
000  
FILTER CHARACTERISTICS  
8kHz Voice  
001  
12kHz Voice  
010  
16kHz Voice  
011  
24kHz Voice  
100  
32kHz Voice  
101  
32kHz Audio  
110  
48kHz Audio  
111  
96kHz Audio  
95  
www.ti.com  
 
 
 
ALC Overview  
The Automatic Level Control (ALC) system can be used to regulate the audio output level to a user defined target level. The ALC  
feature is especially useful whenever the level of the audio input is unknown, unpredictable, or has a large dynamic range. The  
main purpose of the ALC is to optimize the dynamic range of the audio input to audio output path.  
There are two separate and independent ALC circuits in the LM49360. One of the ALC circuits is located within the DAC DSP  
effects block. The other ALC circuit is integrated into the ADC DSP effects block. The DAC ALC controls the DAC digital gain. The  
ADC ALC controls the mono/auxiliary input amplifier gain or microphone preamplifier gain. The dual ALCs can be used to regulate  
the level of the analog (AUX, MONO, MIC) and digital (Port1 Data In, Port2 Data In) audio inputs. The ALC regulated output can  
be routed to any of the LM49360’s amplifier outputs for playback. The ALC regulated output can also be routed to Audio Port1 or  
Audio Port2 for digital data transmission via I2S or PCM.  
Only audio inputs that are considered signals (rather than noise) are sent to the ALC’s peak detector block. The peak detector  
compares the level of the audio input versus the ALC target level (TARGET_LEVEL). Signals lower than the target level will be  
amplified and signals higher than the target level will be attenuated. Any audio input that is lower than the level specified by the  
noise floor level (NOISE_FLOOR) will be considered as noise and will be gated from the ALC’s peak detector in order to avoid  
noise pumping. So it is important to set NOISE_FLOOR to correlate with the signal to noise ratio of the corresponding audio path.  
In some instances (ie. Conference calls), it may be desirable to mute audio input signals that consist solely of background noise  
from the audio output. This is accomplished by enabling the ALC’s noise gate (NG_ENB). When the noise gate is enabled, signals  
lower than the noise floor level will be muted from the audio output.  
If the audio input signal is below the target level, the ALC will increase the gain of the corresponding volume control until the signal  
reaches the target level. The rate at which the ALC performs gain increases is known as decay rate (DECAY RATE). But before  
each ALC gain increase the ALC must wait a predetermined amount of time (HOLD TIME). If the audio input signal is above the  
target level, the ALC will decrease the gain of the corresponding volume control until the signal reaches the target level. The rate  
at which the ALC performs attenuation is known as attack rate (ATTACK RATE). The ALC’s peak detector tracks increases in  
audio input signal amplitude instantaneously, but tracks decreases in audio input signal amplitude at programmable rate (PEAK  
DECAY TIME). ATTACK RATE, DECAY RATE, HOLD TIME, and PEAK DECAY TIME are fully adjustable which allows flexible  
operation of the ALC circuit. The ALC’s timers are based on the sample rate of the DAC or ADC, so the closest corresponding  
sample rate must be programmed into the DAC SAMPLE setting (for DAC ALC) or the ADC SAMPLE (for ADC ALC).  
30128291  
FIGURE 32. ALC Example  
www.ti.com  
96  
 
Limiter  
The LM49360’s ALC features a limiter function. The purpose of the limiter is to limit the maximum level of the audio signal to the  
specified ALC target level. When the limiter is enabled, the ALC will decrease the gain of the volume control whenever the audio  
signal is higher than the specified target level. The programmed I2C gain setting when the limiter is first enabled is the maximum  
gain setting that the ALC limiter will apply to the audio signal. Gain increases beyond the original I2C gain setting are disabled.  
This is in contrast to ALC operation with the limiter disabled, where the ALC may increase gain of audio signals below target level  
using gain settings beyond the original I2C gain setting. Therefore, it is important to set the gain of the audio path to the desired  
setting before enabling the ALC limiter function.  
The limiter’s target level can be set just below the clipping level of the output amplifier or ADC in order to prevent harsh distortions  
delivered to the loudspeaker or headphone on the receiving end. This method of ALC limiter operation is also known as “no clip”  
mode. Operating the ALC limiter in “no clip” mode maximizes the dynamic range of the audio amplifier or ADC while ensuring that  
the audio signal will never clip. Utilizing the ALC limiter in “no clip” mode also protects the loudspeaker from damage due to harmful  
overdriven conditions.  
The ALC limiter’s target level can also be set for a predetermined maximum output power or voltage level. This method of ALC  
limiter operation is known as “power limit” mode. Operating the ALC limiter in “power limit” mode prevents the speaker or headphone  
from playing at unsafe hearing levels that can permanently damage the end user’s ears. “Power limit” operation is especially useful  
for applications such as listening to music through a set of headphones. Another benefit of using the ALC limit in “power limit” mode  
is to extend battery life by reducing power consumption of the output amplifiers during audio playback.  
30128292  
FIGURE 33. ALC Limiter  
97  
www.ti.com  
 
TABLE 70. ADC_ALC_1 (0x81h)  
Description  
This programs the timers on the ALC with the closest sample rate of the ADC.  
Bits  
Field  
2:0  
ADC_SAMPLE  
ADC_SAMPLE  
Expected ADC fS  
000  
001  
010  
011  
100  
101  
110  
111  
8kHz  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
192kHz  
3
4
LIMITER  
If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the  
signal as soon as it reaches target and release it at the decay rate, once signal level reduces below  
target. The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC  
will apply. Care should be taken when choosing the optimum I2C gain setting whenever enabling  
the Limiter.  
STEREO LINK  
If set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo  
output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual  
mono.  
5
6
7
SOURCE_RSEL  
SOURCE_LSEL  
SOURCE_OVR  
If both SOURCE_OVR and this bit is set, the right ADC ALC channel will be active.  
If both SOURCE_OVR and this bit is set, the left ADC ALC channel will be active.  
If set, the active channel of the ADC ALC is determined by SOURCE_RSEL and SOURCE_LSEL.  
If cleared, the active channel of the ADC ALC is determined by the selected input to the ADC.  
MONO enables left ALC, AUX enables right ALC, MIC enables left and / or right ALC depending  
on which ADC channel MIC is selected to.  
TABLE 71. ADC_ALC_2 (0x82h)  
Description  
Bits  
Field  
3:0  
NOISE_FLOOR  
This sets the anticipated noise floor. Signals lower than the noise floor specified will be gated from  
the ALC to avoid noise pumping.  
NOISE_FLOOR  
0000  
Noise Floor (dB)  
–39  
–42  
–45  
–48  
–51  
–54  
–57  
–60  
–63  
–66  
–69  
–72  
–75  
–78  
–81  
–84  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
NG_ENB  
This enables the Noise Gate.  
www.ti.com  
98  
 
 
TABLE 72. ADC_ALC_3 (0x83h)  
Description  
Bits  
Field  
4:0  
TARGET_LEVEL  
This sets the desired target output level. Signals lower than this will be amplified and signals larger  
than this will be attenuated.  
TARGET_LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Target Level (dB)  
–1.5  
–3  
–4.5  
–6  
–7.5  
–9  
–10.5  
–12  
–13.5  
–15  
–16.5  
–18  
–19.5  
–21  
–22.5  
–24  
–25.5  
–27  
–28.5  
–30  
–31.5  
–33  
–34.5  
–36  
–37.5  
–39  
–40.5  
–42  
–43.5  
–45  
–46.5  
–48  
99  
www.ti.com  
 
TABLE 73. ADC_ALC_4 (0x84h)  
Description  
This sets the rate at which the ALC will reduce gain if it detects the input signal is large.  
Bits  
Field  
4:0  
ATTACK_RATE  
ATTACK_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps (μs)  
21  
42  
83  
167  
250  
333  
417  
542  
729  
958  
1250 (Default)  
1604  
1896  
2208  
2792  
3708  
4792  
5688  
6563  
8396  
11000  
14167  
17083  
20000  
25000  
32000  
45000  
60000  
75000  
87500  
100000  
114583  
www.ti.com  
100  
 
TABLE 74. ADC_ALC_5 (0x85h)  
Description  
Bits  
Field  
4:0  
DECAY_RATE  
This sets the rate at which the ALC will increase gain if it detects the input signal is too  
small.  
DECAY_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
PK_DECAY_RATE  
000  
Time between gain steps (μs)  
104  
125  
167  
250  
292  
396  
500  
708  
896  
1250  
1396 (Default)  
2000  
2708  
3500  
4750  
6250  
8000  
11000  
14000  
18500  
25000  
32000  
42000  
55000  
72500  
100000  
125000  
160000  
225000  
300000  
375000  
500000 (0.5s)  
Max Time to track decay  
1.3ms (Default)  
2.6ms  
7:5  
PK_DECAY_RATE  
001  
010  
5.3ms  
011  
10.6ms  
21.3ms  
42.6.3ms  
85.5ms  
2.73 secs  
100  
101  
110  
111  
101  
www.ti.com  
 
TABLE 75. ADC_ALC_6 (0x86h)  
Description  
This sets how long the ALC circuit waits before increasing the gain.  
Bits  
Field  
4:0  
HOLD_TIME  
HOLD_TIME  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time (ms)  
1
1.25  
1.6  
2
2.5  
3.2  
4
5
6.25  
8
10 (Default)  
12.5  
16  
20  
25  
32  
40  
50  
64  
80  
100  
125  
160  
200  
250  
320  
400  
500  
640  
800  
1000  
1250  
TABLE 76. ADC_ALC_7 (0x87h)  
Bits  
Field  
Description  
5:0  
MAX_LEVEL  
This sets the maximum allowed gain of the volume control to the output amplifier  
whenever the ALC is use. If the volume control is less than 6 bits, the relevant LSBs are  
used as the limit and the MSBs are ignored.  
TABLE 77. ADC_ALC_8 (0x88h)  
Description  
Bits  
Field  
5:0  
MIN_LEVEL  
This sets the minimum allowed gain of the volume control to the output amplifier whenever  
the ALC is use. If the volume control is less than 6 bits, the relevant LSBs are used as  
the limit and the MSBs are ignored.  
www.ti.com  
102  
 
 
 
TABLE 78. ADC_L_LEVEL (0x89h)  
Description  
This sets the post ADC digital gain of the left channel.  
Bits  
Field  
5:0  
ADC_L_LEVEL  
ADC_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
ADC_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
6
STEREO_LINK  
If set, this links the ADC_R_LEVEL with ADC_L_LEVEL.  
103  
www.ti.com  
 
TABLE 79. ADC_R_LEVEL (0x8Ah)  
Description  
This sets the post ADC digital gain of the right channel.  
Bits  
Field  
5:0  
ADC_R_LEVEL  
ADC_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
ADC_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
www.ti.com  
104  
 
Digital Audio Compressor  
The LM49360 features a digital audio compressor on both the DAC and ADC paths. The compressor works by reducing the level  
of the audio signal that is higher than the level set by the audio compressor threshold level (THRESHOLD) by a fixed ratio (com-  
pressor output / compressor input) that is set by a predetermined audio compression ratio (RATIO). Higher compression ratios  
result in more compression as shown in Figure 34. The audio compressor can be used in conjunction with the ALC to limit audio  
peaks that the ALC may not be fast enough to react to.  
30128289  
FIGURE 34. Audio Compressor Effect  
105  
www.ti.com  
 
Soft Knee Function  
The LM49360’s audio compressor also features a soft knee function that smooths the harsh edges found during clipping of an  
audio signal. For audio signals higher than the compressor threshold level, the soft knee function gradually increases the com-  
pression ratio for increasing levels of audio signal beyond the compressor threshold. To achieve the smoothing effect to prevent  
hard clipping, the soft knee function initially compresses the audio signal at the smallest ratio and then incrementally increases the  
compression ratio if required. The highest level of compression applied by the soft knee function is set by the compressor ratio.  
The effect of the soft knee function is shown in Figure 35.  
30128290  
FIGURE 35. Soft Knee Example with Compression Ratio Setting of 1:3.4  
www.ti.com  
106  
 
TABLE 80. SOFTCLIP1 (0x90h)  
Field  
THRESHOLD  
Bits  
Description  
3:0  
This sets the threshold level of the audio compressor. Audio signals  
above the threshold will be compressed.  
THRESHOLD  
0000  
Threshold Level (dB)  
-36dB  
0001  
-30dB  
0010  
-24dB  
0011  
-20dB  
0100  
-18dB  
0101  
-17dB  
0110  
-16dB  
0111  
-15dB  
1000  
-14dB  
1001  
-12dB  
1010  
-10dB  
1011  
-8dB  
1100  
-6dB  
1101  
-4dB  
1110  
-2.5dB  
-1dB  
1111  
4
SOFT_KNEE  
If set, the audio compressor will automatically apply higher  
compression ratios to audio signals higher than the threshold level.  
As the audio signal approaches levels higher than the threshold,  
SOFT_KNEE will increase the compression RATIO. The highest  
compression that the SOFT_KNEE algorithm will apply is the  
compression that is set by RATIO.  
107  
www.ti.com  
 
TABLE 81. SOFTCLIP2 (0x91h)  
Field  
RATIO  
Bits  
Description  
4:0  
This sets the ratio at which the audio is compressed to when it  
passes beyond the threshold. In SOFT_KNEE mode this is the final  
level of compression.  
RATIO  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Ratio  
1:1 (Bypass)  
1:1.2  
1:1.4  
1:1.7  
1:2.0  
1:2.4  
1:2.8  
1:3.4  
1:4.0  
1:4.7  
1:5.7  
1:6.7  
1:8.0  
1:9.5  
1:11.3  
1:13.5  
1:16.0  
1:19.0  
1:22.8  
1:27.0  
1:32.0  
1:37.9  
1:45.5  
1:53.9  
1:64.0  
1:75.0  
1:91.0  
1:108  
1:128  
1:152  
1:182  
1:215  
www.ti.com  
108  
 
TABLE 82. SOFTCLIP3 (0x92h)  
Field  
LEVEL  
Bits  
Description  
3:0  
This sets the post compressor gain level.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Level (dB)  
-22.5dB  
-21dB  
-19.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-7.5dB  
-6dB  
-4.5dB  
-3dB  
-1.5dB  
0dB  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
19.5dB  
21dB  
22.5dB  
24dB  
109  
www.ti.com  
 
38.0 DAC Effects Registers  
TABLE 83. DAC_ALC_1 (0xA0h)  
Bits  
Field  
Description  
2:0  
DAC_SAMPLE  
This programs the timers on the ALC with the closest DAC sample  
rate.  
DAC_SAMPLE  
Expected DAC fS  
8kHz  
000  
001  
010  
011  
100  
101  
110  
111  
12kHz  
16kHz  
24kHz  
32kHz  
48kHz  
96kHz  
192kHz  
3
4
LIMITER  
If set, the circuit will never apply gain to the signal, no matter how  
small, but it will attenuate the signal as soon as it reaches target  
and release it at the decay rate, once signal level reduces below  
target. The I2C gain setting (at the time the LIMITER is enabled) is  
the maximum gain that the ALC will apply. Care should be taken  
when choosing the optimum I2C gain setting whenever enabling the  
Limiter.  
STEREO LINK  
If set, the ALC circuit uses the stereo average of the input signals  
to control the gain of the stereo output. This maintains stereo  
imaging. If this bit is cleared, then both channels operate as dual  
mono.  
TABLE 84. DAC_ALC_2 (0xA1h)  
Bits  
Field  
Description  
3:0  
NOISE_FLOOR  
This sets the anticipated noise floor. Signals lower than the  
specified noise floor will be gated from the ALC to avoid noise  
pumping.  
NOISE_FLOOR  
Noise Floor (dB)  
0000  
-39  
-42  
-45  
-48  
-51  
-54  
-57  
-60  
-63  
-66  
-69  
-72  
-75  
-78  
-81  
-84  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
NG_ENB  
This enables the Noise Gate.  
www.ti.com  
110  
 
 
 
TABLE 85. DAC_ALC_3 (0xA2h)  
Field  
TARGET_LEVEL  
Bits  
Description  
4:0  
This sets the desired output level. Signals lower than this will be  
amplified and signals larger than this will be attenuated.  
TARGET_LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Target Level (dB)  
-1.5  
-3  
-4.5  
-6  
-7.5  
-9  
-10.5  
-12  
-13.5  
-15  
-16.5  
-18  
-19.5  
-21  
-22.5  
-24  
-25.5  
-27  
-28.5  
-30  
-31.5  
-33  
-34.5  
-36  
-37.5  
-39  
-40.5  
-42  
-43.5  
-45  
-46.5  
-48  
111  
www.ti.com  
 
TABLE 86. DAC_ALC_4 (0xA3h)  
Field  
ATTACK_RATE  
Bits  
Description  
4:0  
This sets the rate at which the ALC will reduce gain if it detects the  
input signal is too large.  
ATTACK_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps(us)  
21  
42  
83  
167  
250  
333  
417  
542  
729  
958  
1250 (Default)  
1604  
1896  
2208  
2792  
3708  
4792  
5688  
6563  
8396  
11000  
14167  
17083  
20000  
25000  
32000  
45000  
60000  
75000  
87500  
100000  
114583  
www.ti.com  
112  
 
TABLE 87. DAC_ALC_5 (0xA4h)  
Bits  
Field  
Description  
4:0  
DECAY_RATE  
This sets the rate at which the ALC will increase gain if it detects the  
input signal is too small.  
DECAY_RATE  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time between gain steps(us)  
104  
125  
167  
250  
292  
396  
500  
708  
896  
1250  
1396 (Default)  
2000  
2708  
3500  
4750  
6250  
8000  
11000  
14000  
18500  
25000  
32000  
42000  
55000  
72500  
100000  
125000  
160000  
225000  
300000  
375000  
500000 (0.5s)  
7:5  
PK_DECAY_RATE  
This sets how precise the ALC will track amplitude reductions of the  
audio input. The shorter the length of time for PK_DECAY_RATE, the  
more responsive the ALC will be when applying gain increases  
whenever the audio falls below target level.  
PK_DECAY_RATE  
Time  
1.3ms (Default)  
2.6ms  
000  
001  
010  
011  
100  
101  
110  
111  
5.3ms  
10.6ms  
21.3ms  
42.6ms  
85.5ms  
2.73secs  
113  
www.ti.com  
 
TABLE 88. DAC_ALC_6 (0xA5h)  
Field  
HOLD_TIME  
Bits  
Description  
4:0  
This sets how long the ALC circuit waits before increasing the gain.  
HOLDTIME  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Time (ms)  
1
1.25  
1.6  
2
2.5  
3.2  
4
5
6.25  
8
10 (Default)  
12.5  
16  
20  
25  
32  
40  
50  
64  
80  
100  
125  
160  
200  
250  
320  
400  
500  
640  
800  
1000  
1250  
TABLE 89. DAC_ALC_7 (0xA6h)  
Bits  
Field  
Description  
5:0  
MAX_LEVEL  
This sets the maximum allowed gain to the digital level control  
when the ALC is used.  
TABLE 90. DAC_ALC_8 (0xA7h)  
Bits  
Field  
Description  
5:0  
MIN_LEVEL  
This sets the minimum allowed gain to the digital level control  
when the ALC is used.  
www.ti.com  
114  
 
 
 
TABLE 91. DAC_L_LEVEL (0xA8h)  
Description  
Bits  
Field  
5:0  
DAC_L_LEVEL  
This sets the pre DAC digital gain.  
DAC_L_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
DAC_L_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
6
STEREO_LINK  
If set, this links DAC_R_LEVEL with DAC_L_LEVEL.  
115  
www.ti.com  
 
TABLE 92. DAC_R_LEVEL (0xA9h)  
Description  
Bits  
Field  
5:0  
DAC_R_LEVEL  
This sets the pre DAC digital gain.  
DAC_R_LEVEL  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
Level  
-76.5dB  
-75dB  
DAC_R_LEVEL  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Level  
-28.5dB  
-27dB  
-25.5dB  
-24dB  
-22.5dB  
-21dB  
-20.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-73.5dB  
-72dB  
-70.5dB  
-69dB  
-67.5dB  
-66dB  
-64.5dB  
-63dB  
-61.5dB  
-60dB  
-58.5dB  
-57dB  
-55.5dB  
-54dB  
-7.5dB  
-6dB  
-52.5dB  
-51dB  
-4.5dB  
-3dB  
-49.5dB  
-48dB  
-1.5dB  
0dB  
-46.5dB  
-45dB  
1.5dB  
3dB  
-43.5dB  
-42dB  
4.5dB  
6dB  
-40.5dB  
-39dB  
7.5dB  
9dB  
-37.5dB  
-36dB  
10.5dB  
12dB  
-34.5dB  
-33dB  
13.5dB  
15dB  
-31.5dB  
-30dB  
16.5dB  
18dB  
www.ti.com  
116  
 
TABLE 93. EQ_BAND_1 (0xABh)  
Field  
Bits  
Description  
1:0  
FREQ  
This sets the Sub-bass shelving filter's cut-off frequency.  
FREQ  
00  
Frequency (Hz)  
60  
80  
01  
10  
100  
120  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
117  
www.ti.com  
 
TABLE 94. EQ_BAND_2 (0xACh)  
Field  
Bits  
Description  
1:0  
FREQ  
This sets the Bass peak filter's center frequency.  
FREQ  
Frequency (Hz)  
00  
150  
200  
250  
300  
01  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.ti.com  
118  
 
TABLE 95. EQ_BAND_3 (0xADh)  
Field  
Bits  
Description  
1:0  
FREQ  
This sets the Mid peak filter's center frequency.  
FREQ  
Frequency (Hz)  
00  
600  
800  
1k  
01  
10  
11  
1.2k  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
119  
www.ti.com  
 
TABLE 96. EQ_BAND_4 (0xAEh)  
Field  
Bits  
Description  
1:0  
FREQ  
This sets the Treble peak filter's center frequency.  
FREQ  
Frequency (Hz)  
00  
2k  
01  
2.7k  
3.4k  
4.1k  
10  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
1dB  
10010  
2dB  
10011  
3dB  
10100  
4dB  
10101  
5dB  
10110  
6dB  
10111  
7dB  
11000  
8dB  
11001  
9dB  
11010  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
11011  
11100  
11101  
11110  
11111  
7
Q
This programs the width of the peak filter.  
Q
0
Bandwidth  
2/3 Octave  
4/3 Octave  
1
www.ti.com  
120  
 
TABLE 97. EQ_BAND_5 (0xAFh)  
Field  
Bits  
Description  
1:0  
FREQ  
This sets the presence shelving filter's cut-off frequency.  
FREQ  
00  
Frequency (Hz)  
7k  
9k  
01  
10  
11k  
20k  
11  
6:2  
LEVEL  
This sets the gain at fC.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Effect  
Off (0dB)  
-15dB  
-14dB  
-13dB  
-12dB  
-11dB  
-10dB  
-9dB  
-8dB  
-7dB  
-6dB  
-5dB  
-4dB  
-3dB  
-2dB  
-1dB  
0dB  
1dB  
2dB  
3dB  
4dB  
5dB  
6dB  
7dB  
8dB  
9dB  
10dB  
11dB  
12dB  
13dB  
14dB  
15dB  
121  
www.ti.com  
 
TABLE 98. SOFTCLIP1 (0xB0h)  
Field  
TRESHOLD  
Bits  
Description  
3:0  
This sets the threshold level of the audio compressor. Audio signals  
above the threshold will be compressed.  
THRESHOLD  
0000  
Threshold Level (dB)  
-36dB  
0001  
-30dB  
0010  
-24dB  
0011  
-20dB  
0100  
-18dB  
0101  
-17dB  
0110  
-16dB  
0111  
-15dB  
1000  
-14dB  
1001  
-12dB  
1010  
-10dB  
1011  
-8dB  
1100  
-6dB  
1101  
-4dB  
1110  
-2.5dB  
-1dB  
1111  
4
SOFT_KNEE  
If set, the audio compressor will automatically apply higher  
compression ratios to audio signals higher than the threshold level.  
As the audio signal approaches levels higher than the threshold,  
SOFT_KNEE will increase the compression RATIO. The highest  
compression that the SOFT_KNEE algorithm will apply is the  
compression that is set by RATIO.  
www.ti.com  
122  
 
TABLE 99. SOFTCLIP2 (0xB1h)  
Field  
RATIO  
Bits  
Description  
4:0  
This sets the ratio at which the audio is compressed to when it  
passes beyond the threshold. In soft clip mode, this is the final level  
of compression.  
RATIO  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Ratio  
1:1 (Bypass)  
1:1.2  
1:1.4  
1:1.7  
1:2.0  
1:2.4  
1:2.8  
1:3.4  
1:4.0  
1:4.7  
1:5.7  
1:6.7  
1:8.0  
1:9.5  
1:11.3  
1:13.5  
1:16.0  
1:19.0  
1:22.8  
1:27.0  
1:32.0  
1:37.9  
1:45.5  
1:53.9  
1:64  
1:75.9  
1:91.0  
1:108  
1:128  
1:152  
1:182  
1:215  
123  
www.ti.com  
 
TABLE 100. SOFTCLIP3 (0xB2h)  
Field  
LEVEL  
Bits  
Description  
4:0  
This sets the post compressor gain level.  
LEVEL  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Level (dB)  
-22.5dB  
-21dB  
-19.5dB  
-18dB  
-16.5dB  
-15dB  
-13.5dB  
-12dB  
-10.5dB  
-9dB  
-7.5dB  
-6dB  
-4.5dB  
-3dB  
-1.5dB  
0dB  
1.5dB  
3dB  
4.5dB  
6dB  
7.5dB  
9dB  
10.5dB  
12dB  
13.5dB  
15dB  
16.5dB  
18dB  
19.5dB  
21dB  
22.5dB  
24dB  
www.ti.com  
124  
 
39.0 GPIO Registers  
TABLE 101. GPIO1 (0xE0h)  
Bits  
Field  
Description  
5:0  
GPIO_MODE  
This sets the mode of the GPIO pin.  
GPIO_MODE  
GPIO STATUS  
If GPIO Mode is disabled, PORT2_SDO is controlled by  
the Port2 serial interface configuration. In all the other  
modes, PORT2_SDO is configured as the GPIO pin.  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
GPIO_RX (in)  
CHIP ENABLE (in)  
CHIP ENABLE (in)  
ADC MUTE (in)  
ADC MUTE (in)  
HP SENSE (in)  
HP SENSE (in)  
SPARE (in)  
SPARE (in)  
GPIO TX (out)  
CHIP ACTIVE (out)  
CHIP ACTIVE (out)  
HP ENABLE (out)  
HP ENABLE (out)  
LS ENABLE (out)  
LS ENABLE (out)  
EP ENABLE (out)  
EP ENABLE (out)  
ADC CLIPPED (out)  
ADC CLIPPED (out)  
DAC CLIPPED (out)  
DAC CLIPPED (out)  
SOMETHING CLIPPED (out)  
SOMETHING CLIPPED (out)  
ADC NG ACTIVE (out)  
ADC NG ACTIVE (out)  
DAC NG ACTIVE (out)  
DAC NG ACTIVE (out)  
THERMAL (out)  
THERMAL (out)  
LS SHORT CCT (out)  
LS SHORT CCT (out)  
ANALOG ERROR  
Thermal or LS CCT condition (out)  
100001  
100010  
ANALOG ERROR (out)  
ERROR (out)  
Thermal or LS CCT  
or Clipping  
100011  
100100  
ERROR (out)  
RESERVED  
100101 – 111111  
6
7
Whenever GPIO_MODE is set to '001010', the GPIO pin will output a logic level based on  
this bit setting. Setting this bit high will result in a logic high GPIO output.  
GPIO_TX  
GPIO_RX  
This bit reports the logic level is present on the GPIO pin.  
125  
www.ti.com  
 
 
TABLE 102. GPIO2 (0xE1h)  
Bits  
Field  
Description  
0
SHORT  
This bit will go high whenever a short circuit condition occurs on the Class  
D loudspeaker amplifier outputs. Once triggered by a short circuit event,  
an I2C write of 1 to this bit clear this bit.  
1
TEMP  
This bit will go high whenever the temperature of the LM49360 reaches  
a critical temperature. Once triggered by a thermal event, an I2C write of  
1 to this bit clear this bit.  
TABLE 103. RESET (0xF0h)  
Bits  
4:0  
5
Field  
RSVD  
Description  
Reserved.  
SOFT_RESET  
Setting this bit resets the digital core of LM49360. SOFT_RESET does  
not affect the current I2C register settings.  
TABLE 104. Spread Spectrum (0xF1h)  
Bits  
1:0  
2
Field  
RSVD  
Description  
Reserved  
SS_DISABLE  
If this bit is set, Spread Spectrum mode will be disabled from the Class  
D amplifier.  
TABLE 105. FORCE (0xFE)  
Bits  
0
Field  
RSVD  
Description  
Reserved  
1
DACREF  
This bit determines whether the DAC reference voltage is internally  
generated or externally driven.  
DACREF  
STATUS  
DACREF uses an internal bandgap  
reference.  
0
DACREF is driven by an external  
voltage reference.  
1
2
CP_FORCE  
If set, a -LS_VDD rail will be generated on HP_VSS, even if the  
headphone output stage is not required.  
www.ti.com  
126  
 
 
 
 
40.0 Schematic Diagram  
127  
www.ti.com  
 
 
www.ti.com  
128  
 
41.0 Demonstration Board Layout  
30128243  
FIGURE 38. Top Silkscreen  
30128244  
FIGURE 39. Top Layer  
129  
www.ti.com  
 
 
 
30128238  
FIGURE 40. Inner Layer 2  
30128239  
FIGURE 41. Inner Layer 3  
www.ti.com  
130  
 
 
30128240  
FIGURE 42. Inner Layer 4  
30128241  
FIGURE 43. Inner Layer 5  
131  
www.ti.com  
 
 
30128231  
FIGURE 44. Bottom Layer  
30128242  
FIGURE 45. Bottom Silkscreen  
www.ti.com  
132  
 
 
42.0 Revision History  
Rev  
1.0  
Date  
Description  
11/14/11  
12/01/11  
Initial WEB released.  
1.01  
Changed the Vdo Max limit in the “EC LDOs 1 to 6” table from (200 to 250).  
133  
www.ti.com  
 
43.0 Physical Dimensions inches (millimeters) unless otherwise noted  
micro SMD–64 Package  
Order Number LM49360RL  
NS Package Number RLA64JBA  
X1 = 4.169±.03mm, X2 = 3.99±.03mm, X3 = 0.65±.075mm  
www.ti.com  
134  
 
Notes  
135  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

LM4936MHX

IC 2 CHANNEL(S), VOLUME CONTROL CIRCUIT, PDSO28, TSSOP-28, Audio Control IC
NSC

LM4937

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression
NSC

LM49370

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier
NSC

LM49370RL/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX

IC SPECIALTY CONSUMER CIRCUIT, PBGA49, 4 X 4 MM, MICRO, SMDXT-49, Consumer IC:Other
NSC

LM49370RLX-NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370RLX/NOPB

Boomer® Audio Power Amplifier Series Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode Stereo Headphone Amplifier, and a Dedicated PCM Interface for Bluetooth Transceivers
TI

LM49370_08

Audio Sub-System with an Ultra Low EMI, Spread Spectrum, Class D Loudspeaker Amplifier, a Dual-Mode
NSC

LM4937RL

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, MICRO, SMD-36, Consumer IC:Other
NSC

LM4937TL

Audio Sub-System with OCL Stereo Headphone Output and RF Suppression
NSC

LM4937TL/NOPB

IC SPECIALTY CONSUMER CIRCUIT, PBGA36, ROHS COMPLIANT, MICRO, SMD-36, Consumer IC:Other
NSC