LM5113-Q1 [TI]

适用于 GaNFET 的汽车类 1.2A/5A、100V 半桥栅极驱动器;
LM5113-Q1
型号: LM5113-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 GaNFET 的汽车类 1.2A/5A、100V 半桥栅极驱动器

栅极驱动 驱动器
文件: 总28页 (文件大小:2791K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
LM5113-Q1 汽车 90V1.2A/5A 半桥 GaN 驱动器  
1 特性  
3 说明  
1
符合汽车应用 标准  
具有符合 AEC-Q100 标准的下列特性:  
LM5113-Q1 专为同时驱动采用同步降压、升压或半桥  
配置的高侧和低侧增强模式氮化镓 (GaN) FET 或硅质  
MOSFET 而设计,适用于汽车 应用。此器件具有一个  
集成于内部的 100V 自举二极管,还为高侧和低侧输出  
分别提供了独立的输入,可实现最大程度的灵活控制。  
高侧偏置电压在内部被钳位为 5.2V,可防止栅极电压  
超过增强模式 GaN FET 的最大栅极/源极电压额定  
值。器件的输入与 TTL 逻辑兼容,无论 VDD 电压多  
高,它都能够承受高达 14V 的输入电压。LM5113-Q1  
具有分栅输出的能力,可独立灵活地调节开通和关断强  
度。  
器件温度 1 级:–40°C 125°C 的环境工作温  
度范围  
器件 HBM ESD 分类等级 1C  
器件带电器件模型 (CDM) ESD 分类等级 C6  
独立的高侧和低侧TTL 逻辑输入  
1.2A 峰值拉电流能力,5A 峰值灌电流能力  
高侧浮动偏置电压轨  
工作电压高达 100VDC  
内部自举电源电压钳位  
分离输出实现可调的  
开通和关断应力  
此外,LM5113-Q1 具有非常可靠的灌电流能力,使栅  
极保持低电平,从而防止开关操作期间发生误导通。  
LM5113-Q1 的工作频率最高可达数 MHzLM5113-  
Q1 采用带有裸露焊盘的标准 10 引脚 WSON 封装,  
可改善功耗。  
0.6下拉电阻,2.1上拉电阻  
快速传播时间(典型值为 28ns)  
优异的传播延迟  
(典型值为 1.5ns)  
电源轨欠压锁定  
低功耗  
器件信息(1)  
器件型号  
LM5113-Q1  
封装  
封装尺寸(标称值)  
WSON (10)  
4.00mm x 4.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
移动无线充电器  
音频功率放大器  
音频电源  
电流馈入型推挽式转换器  
半桥和全桥转换器  
同步降压转换器  
简化应用示意图  
0.1 F  
VIN  
HB  
HOH  
VDD  
HI  
HOL  
1 F  
Input  
Filter 1  
HS  
Load  
LM5113-Q1  
Input  
Filter 2  
LI  
LOH  
LOL  
EP  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAR1  
 
 
 
 
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application ................................................. 15  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics .......................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 文档支持................................................................ 21  
11.2 接收文档更新通知 ................................................. 21  
11.3 社区资源................................................................ 21  
11.4 ....................................................................... 21  
11.5 静电放电警告......................................................... 21  
11.6 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (November 2017) to Revision B  
Page  
将数据表标题从“LM5113-Q1 汽车 90V1.2A/5A 半桥 GaN 驱动器更改成了“LM5113-Q1 汽车 90V1.2A/5A 半桥  
GaN 驱动器” ........................................................................................................................................................................... 1  
简化应用图 中添加了输入滤波器......................................................................................................................................... 1  
Added EXT HI and EXT LO references to the Functional Block Diagram ........................................................................... 11  
Changed the last paragraph and add new images to the Input and Output section ........................................................... 11  
Changes from Original (March 2017) to Revision A  
Page  
将数据表标题从“LM5113-Q1 汽车 80V1.2A/5A 半桥 GaN 驱动器更改成了“LM5113-Q1 汽车 90V1.2A/5A 半桥  
GaN 驱动器” ........................................................................................................................................................................... 1  
更改了简化应用图表 ............................................................................................................................................................... 1  
Changed the Functional Block Diagram............................................................................................................................... 11  
Added content to the Input and Output section.................................................................................................................... 11  
Added content to the Start-up and UVLO section ................................................................................................................ 12  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
5 Pin Configuration and Functions  
DPR Package  
10-Pin WSON With Exposed Thermal Pad  
Top View  
VDD  
HB  
1
2
3
4
5
10 LOH  
LOL  
VSS  
9
8
7
6
HOH  
Thermal Pad  
HOL  
HS  
LI  
HI  
Pin Functions  
PIN  
(1)  
TYPE  
DESCRIPTION  
NO.  
NAME  
5-V positive gate drive supply: locally decouple to VSS using low-ESR/ESL capacitor  
located as close as possible to the IC.  
1
VDD  
P
High-side gate driver bootstrap rail: connect the positive terminal of the bootstrap capacitor  
to HB and the negative terminal to HS. The bootstrap capacitor must be placed as close to  
the IC as possible.  
2
HB  
P
High-side gate driver turnon output: connect to the gate of high-side GaN FET with a short,  
low inductance path. A gate resistor can be used to adjust the turnon speed.  
3
4
5
6
HOH  
HOL  
HS  
O
O
P
I
High-side gate driver turnoff output: connect to the gate of high-side GaN FET with a short,  
low inductance path. A gate resistor can be used to adjust the turnoff speed.  
High-side GaN FET source connection: connect to the bootstrap capacitor negative  
terminal and the source of the high-side GaN FET.  
High-side driver control input. The LM5113-Q1 inputs have TTL type thresholds. Unused  
inputs must be tied to ground and not left open.  
HI  
Low-side driver control input. The LM5113-Q1 inputs have TTL type thresholds. Unused  
inputs must be tied to ground and not left open.  
7
8
9
LI  
I
VSS  
LOL  
G
O
Ground return: all signals are referenced to this ground.  
Low-side gate driver sink-current output: connect to the gate of the low-side GaN FET with  
a short, low inductance path. A gate resistor can be used to adjust the turnoff speed.  
Low-side gate driver source-current output: connect to the gate of high-side GaN FET with  
a short, low inductance path. A gate resistor can be used to adjust the turnon speed.  
10  
LOH  
O
Exposed pad: TI recommends that the exposed pad on the bottom of the package be  
soldered to ground plane on the printed-circuit board to aid thermal dissipation.  
EP  
(1) I = Input, O = Output, G = Ground, P = Power  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
VHS – 0.3  
–5  
MAX  
7
UNIT  
VDD to VSS  
V
V
V
HB to HS  
7
LI or HI input  
15  
LOH, LOL output  
HOH, HOL output  
HS to VSS  
VDD + 0.3  
VHB + 0.3  
93  
V
V
V
HB to VSS  
0
100  
V
Operating junction temperature  
Storage temperature, Tstg  
150  
°C  
°C  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±1000  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
5.5  
UNIT  
VDD  
V
V
LI or HI input  
0
14  
HS  
–5  
90  
V
HB  
VHS + 4  
VHS + 5.5  
50  
V
HS slew rate  
V/ns  
°C  
Operating junction temperature  
–40  
125  
6.4 Thermal Information  
LM5113-Q1  
DPR (WSON)  
10 PINS  
37.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
35.8  
14.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
14.9  
RθJC(bot)  
4.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
6.5 Electrical Characteristics  
Specifications are TJ = 25°C. Unless otherwise specified: VDD = VHB = 5 V, VSS = VHS = 0 V.  
No load on LOL and HOL or HOH and HOL(1)  
PARAMETER  
.
TEST CONDITIONS  
MIN  
TYP  
0.07  
2
MAX  
UNIT  
SUPPLY CURRENTS  
TJ = 25°C  
IDD  
VDD quiescent current  
LI = HI = 0 V  
f = 500 kHz  
mA  
mA  
mA  
mA  
µA  
TJ = –40°C to 125°C  
TJ = 25°C  
0.1  
3
IDDO  
VDD operating current  
TJ = –40°C to 125°C  
TJ = 25°C  
0.08  
1.5  
0.1  
0.4  
IHB  
Total HB quiescent current  
Total HB operating current  
HB to VSS quiescent current  
LI = HI = 0 V  
f = 500 kHz  
TJ = –40°C to 125°C  
TJ = 25°C  
0.1  
2.5  
10  
1
IHBO  
TJ = –40°C to 125°C  
TJ = 25°C  
IHBS  
HS = HB = 90 V  
f = 500 kHz  
TJ = –40°C to 125°C  
TJ = 25°C  
IHBSO HB to VSS operating current  
mA  
TJ = –40°C to 125°C  
INPUT PINS  
TJ = 25°C  
2.06  
1.66  
VIR  
VIF  
Input voltage threshold  
Input voltage threshold  
Rising edge  
Falling edge  
V
TJ = –40°C to 125°C  
TJ = 25°C  
1.89  
1.48  
2.18  
1.76  
V
TJ = –40°C to 125°C  
VIHYS Input voltage hysteresis  
RI Input pulldown resistance  
400  
200  
mV  
k  
TJ = 25°C  
TJ = –40°C to 125°C  
100  
3.2  
2.5  
300  
4.5  
3.9  
UNDERVOLTAGE PROTECTION  
VDDR VDD rising threshold  
TJ = 25°C  
3.8  
V
V
V
V
TJ = –40°C to 125°C  
VDDH VDD threshold hysteresis  
0.2  
3.2  
TJ = 25°C  
VHBR  
VHBH  
HB rising threshold  
TJ = –40°C to 125°C  
HB threshold hysteresis  
0.2  
0.45  
0.90  
1.85  
5.2  
BOOTSTRAP DIODE  
TJ = 25°C  
VDL  
VDH  
RD  
Low-current forward voltage  
IVDD-HB = 100 µA  
IVDD-HB = 100 mA  
IVDD-HB = 100 mA  
V
V
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.65  
1
High-current forward voltage  
Dynamic resistance  
TJ = –40°C to 125°C  
TJ = 25°C  
TJ = –40°C to 125°C  
TJ = 25°C  
3.60  
5.45  
HB-HS clamp regulation voltage  
TJ = –40°C to 125°C  
4.7  
(1) Parameters that show only a typical value are ensured by design and may not be tested in production.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Specifications are TJ = 25°C. Unless otherwise specified: VDD = VHB = 5 V, VSS = VHS = 0 V.  
No load on LOL and HOL or HOH and HOL(1)  
PARAMETER  
.
TEST CONDITIONS  
MIN  
TYP  
0.06  
0.21  
MAX  
UNIT  
LOW- AND HIGH-SIDE GATE DRIVER  
TJ = 25°C  
VOL  
Low-level output voltage  
IHOL = ILOL = 100 mA  
IHOH = ILOH = 100 mA  
V
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.10  
0.31  
High-level output voltage  
VOH = VDD – LOH  
VOH  
TJ = –40°C to 125°C  
or VOH = HB – HOH  
IOHL  
IOLL  
Peak source current  
Peak sink current  
HOH, LOH = 0 V  
HOL, LOL = 5 V  
HOH, LOH = 0 V  
HOL, LOL = 5 V  
1.2  
5
A
A
IOHLK High-level output leakage current  
IOLLK Low-level output leakage current  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
1.5  
1.5  
µA  
µA  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
45  
UNIT  
TJ = 25°C  
26.5  
tLPHL  
tLPLH  
tHPHL  
tHPLH  
tMON  
tMOFF  
LO turnoff propagation delay  
LI falling to LOL falling  
LI rising to LOH rising  
HI falling to HOL falling  
HI rising to HOH rising  
ns  
TJ = –40°C to 125°C  
TJ = 25°C  
28.0  
26.5  
28  
LO turnon propagation delay  
HO turnoff propagation delay  
HO turnon propagation delay  
ns  
ns  
ns  
ns  
ns  
TJ = –40°C to 125°C  
TJ = 25°C  
45  
TJ = –40°C to 125°C  
TJ = 25°C  
45  
TJ = –40°C to 125°C  
45.0  
8
TJ = 25°C  
1.5  
Delay matching  
LO on and HO off  
TJ = –40°C to 125°C  
TJ = 25°C  
1.5  
Delay matching  
LO off and HO on  
TJ = –40°C to 125°C  
CL = 1000 pF  
CL = 1000 pF  
CL = 1000 pF  
CL = 1000 pF  
8
tHRC  
tLRC  
tHFC  
tLFC  
HO rise time (0.5 V – 4.5 V)  
LO rise time (0.5 V – 4.5 V)  
HO fall time (0.5 V – 4.5 V)  
LO fall time (0.5 V – 4.5 V)  
7
7
ns  
ns  
ns  
ns  
3.5  
3.5  
Minimum input pulse width  
that changes the output  
tPW  
tBS  
10  
40  
ns  
ns  
Bootstrap diode  
reverse recovery time  
IF = 100 mA, IR = 100 mA  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
LI  
LI  
HI  
HI  
t
HPLH  
t
LPLH  
t
HPHL  
t
LPHL  
LO  
LO  
HO  
HO  
t
t
MON  
MOFF  
Figure 1. Timing Diagram  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
Figure 2. Peak Source Current vs Output Voltage  
Figure 3. Peak Sink Current vs Output Voltage  
Figure 4. IDDO vs Frequency  
Figure 5. IHBO vs Frequency  
Figure 6. IDD vs Temperature  
Figure 7. IHB vs Temperature  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
Typical Characteristics (continued)  
Figure 8. UVLO Rising Thresholds vs Temperature  
Figure 9. UVLO Falling Thresholds vs Temperature  
Figure 10. Input Thresholds vs Temperature  
Figure 11. Input Threshold Hysteresis vs Temperature  
Figure 12. Bootstrap Diode Forward Voltage  
Figure 13. Propagation Delay vs Temperature  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Note: Unless otherwise specified, VDD = VHB = 5 V,  
VSS = VHS = 0 V.  
Figure 14. LO and HO Gate Drive – High/Low Level  
Output Voltage vs Temperature  
Figure 15. HB Regulation Voltage vs Temperature  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
7 Detailed Description  
7.1 Overview  
The LM5113-Q1 is a high-frequency, high- and low- side gate driver for enhancement mode Gallium Nitride  
(GaN) FETs in a synchronous buck, boost, or half bridge configuration. The high-side bias voltage is generated  
using a bootstrap technique and is internally clamped at 5.2 V, which prevents the gate voltage from exceeding  
the maximum gate-source voltage rating of enhancement mode GaN FETs. The LM5113-Q1 has split-gate  
outputs with strong sink capability, providing flexibility to adjust the turnon and turnoff strength independently.  
The LM5113-Q1 can operate up to several MHz, and is available in a standard 10-pin WSON package that  
contains an exposed pad to aid power dissipation.  
7.2 Functional Block Diagram  
HB  
UVLO  
& CLAMP  
HOH  
LEVEL  
SHIFT  
HOL  
HS  
EXT HI  
HI  
VDD  
UVLO  
LOH  
LOL  
EXT LI  
LI  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Input and Output  
The input pins of the LM5113-Q1 are independently controlled with TTL input thresholds and can withstand  
voltages up to 12 V regardless of the VDD voltage. This allows the inputs to be directly connected to the outputs  
of an analog PWM controller with up to 12-V power supply, eliminating the need for a buffer stage  
The output pulldown and pullup resistance of LM5113-Q1 is optimized for enhancement mode GaN FETs to  
achieve high frequency and efficient operation. The 0.6-Ω pulldown resistance provides a robust low impedance  
turnoff path necessary to eliminate undesired turnon induced by high dv/dt or high di/dt. The 2.1-Ω pullup  
resistance helps reduce the ringing and over-shoot of the switch node voltage. The split outputs of the LM5113-  
Q1 offer flexibility to adjust the turnon and turnoff speed by independently adding additional impedance in either  
the turnon path, the turnoff path, or both.  
If the input signal for either of the two channels, HI or LI, is not used, the control pin must be tied to either VDD  
or VSS. These inputs must not be left floating.  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
Feature Description (continued)  
Additionally, the input signals avoid pulses shorter than 3 ns by using the input filter to the HI and LI input pins.  
The values and part numbers of the circuit components are shown in the Figure 16.  
1 k  
EXT HI  
HI  
22 pF  
Figure 16. Input Filter 1 (High-Side Input Filter)  
If short pulses or short delays are required, the circuit in Figure 17 is recommended.  
SN74LVC2G32YZP  
HI  
EXT HI  
100 k  
50 pF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Input Filter 1 for Short Pulses (High-Side Input Filter)  
7.3.2 Start-Up and UVLO  
The LM5113-Q1 has an undervoltage lockout (UVLO) on both the VDD and bootstrap supplies. When the VDD  
voltage is below the threshold voltage of 3.8 V, both the HI and LI inputs are ignored to prevent the GaN FETs  
from being partially turned on. Also, if there is insufficient VDD voltage, the UVLO actively pulls the LOL and HOL  
low. When the VDD voltage is above its UVLO threshold, but the HB to HS bootstrap voltage is below the UVLO  
threshold of 3.2 V, only HOL is pulled low. Both UVLO threshold voltages have 200 mV of hysteresis to avoid  
chattering.  
The startup voltage sequencing for this device is as follows: VDD voltage first, with the VIN voltage present  
thereafter.  
The LM5113-Q1 requires an external bootstrap diode with a 100 series resistor from VDD to HB to charge the  
high side supply on a cycle by cycle basis. The recommended bootstrap diode options are BAT46, BAT41, or  
LL4148.  
Table 1. VDD UVLO Feature Logic Operation  
CONDITION (VHB-HS > VHBR for all cases below)  
VDD – VSS < VDDR during device start-up  
VDD – VSS < VDDR during device start-up  
VDD – VSS < VDDR during device start-up  
VDD – VSS < VDDR during device start-up  
VDD – VSS < VDDR – VDDH after device start-up  
VDD – VSS < VDDR – VDDH after device start-up  
VDD – VSS < VDDR – VDDH after device start-up  
VDD – VSS < VDDR – VDDH after device start-up  
HI  
H
L
LI  
L
HO  
L
LO  
L
H
H
L
L
L
H
L
L
L
L
L
H
L
L
L
L
H
H
L
L
L
H
L
L
L
L
L
12  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
Table 2. VHB-HS UVLO Feature Logic Operation  
CONDITION (VDD > VDDR for all cases below)  
HI  
H
L
LI  
L
HO  
L
LO  
L
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR – VHBH after device start-up  
VHB-HS < VHBR – VHBH after device start-up  
VHB-HS < VHBR – VHBH after device start-up  
VHB-HS < VHBR – VHBH after device start-up  
H
H
L
L
H
H
L
H
L
L
L
H
L
L
L
L
H
H
L
L
H
H
L
H
L
L
L
7.3.3 HS Negative Voltage and Bootstrap Supply Voltage Clamping  
Due to the intrinsic nature of enhancement mode GaN FETs, the source-to-drain voltage of the bottom switch is  
usually higher than a diode forward voltage drop when the gate is pulled low. This causes negative voltage on  
HS pin. Moreover, this negative voltage transient may become even more pronounces due to the effects of board  
layout and device drain/source parasitic inductances. With high-side driver using the floating bootstrap  
configuration, negative HS voltage can lead to an excessive bootstrap voltage, which can damage the high-side  
GaN FET. The LM5113-Q1 solves this problem with an internal clamping circuit that prevents the bootstrap  
voltage from exceeding 5.2 V typical.  
7.3.4 Level Shift  
The level-shift circuit is the interface from the high-side input to the high-side driver stage, which is referenced to  
the switch node (HS). The level shift allows control of the HO output, which is referenced to the HS pin and  
provides excellent delay matching with the low-side driver. Typical delay matching between LO and HO is around  
1.5 ns.  
7.4 Device Functional Modes  
Table 3 shows the device truth table.  
Table 3. Truth Table  
HI  
L
LI  
L
HOH  
Open  
Open  
H
HOL  
L
LOH  
Open  
H
LOL  
L
L
H
L
L
Open  
L
H
H
Open  
Open  
Open  
H
H
H
Open  
Copyright © 2017–2018, Texas Instruments Incorporated  
13  
 
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
To operate GaN transistors at very high switching frequencies and to reduce associated switching losses, a  
powerful gate driver is employed between the PWM output of controller and the gates of the GaN transistor.  
Also, gate drivers are indispensable when the outputs of the PWM controller do not meet the voltage or current  
levels needed to directly drive the gates of the switching devices. With the advent of digital power, this situation  
is often encountered because the PWM signal from the digital controller is often a 3.3-V logic signal, which  
cannot effectively turn on a power switch. A level-shift circuit is needed to boost the 3.3-V signal to the gate-drive  
voltage (such as 12 V) to fully turn on the power device and minimize conduction losses. Traditional buffer-drive  
circuits based on NPN/PNP bipolar transistors in totem-pole arrangement prove inadequate with digital power  
because they lack level-shifting capability. Gate drivers effectively combine both the level-shifting and buffer-drive  
functions. Gate drivers also address other needs such as minimizing the effect of high-frequency switching noise  
(by placing the high-current driver IC physically close to the power switch), driving gate-drive transformers and  
controlling floating power-device gates, reducing power dissipation and thermal stress in controllers by moving  
gate-charge power losses from the controller into the driver.  
The LM5113-Q1 is a MHz high- and low-side gate driver for enhancement mode GaN FETs in a synchronous  
buck, boost, or half-bridge configuration. The high-side bias voltage is generated using a bootstrap technique  
and is internally clamped at 5.2 V, which prevents the gate voltage from exceeding the maximum gate-source  
voltage rating of enhancement mode GaN FETs. The LM5113-Q1 has split gate outputs with strong sink  
capability, providing flexibility to adjust the turnon and turnoff strength independently.  
14  
Copyright © 2017–2018, Texas Instruments Incorporated  
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
8.2 Typical Application  
The circuit in Figure 18 shows a synchronous buck converter to evaluate the LM5113-Q1 device. Detailed  
synchronous buck converter specifications are listed in Design Requirements. The active clamping voltage mode  
controller LM5025 is used for close-loop control and generates the PWM signals of the buck switch and the  
synchronous switch. For more information, see Figure 18.  
5
2
1 1  
9
0 1  
8
6
4
7
5
3
2
1
E P  
2
Input 15 V to 60 V, output 10 V, 800 kHz  
Figure 18. LP5113-Q1 Application Circuit  
Copyright © 2017–2018, Texas Instruments Incorporated  
15  
 
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 4 lists the design requirements for the typical application.  
Table 4. Design Parameters  
PARAMETER  
Input operating range  
Output voltage  
SPECIFICATION  
15 – 60 V  
10 V  
Output current, 48-V input  
Output current, 60-V input  
Efficiency at 48 V, 10 A  
Frequency  
10 A  
7 A  
>90%  
800 kHz  
8.2.2 Detailed Design Procedure  
This procedure outlines the design considerations of LM5113-Q1 in a synchronous buck converter with  
enhancement mode GaN FET. Refer to Figure 18 for component names and network locations. For additional  
design help, see Figure 18.  
8.2.2.1 VDD Bypass Capacitor  
The VDD bypass capacitor provides the gate charge for the low-side and high-side transistors and to absorb the  
reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated with  
Equation 1.  
QgH + QgL + Qrr  
CVDD  
>
DV  
where  
QgH and QgL are gate charge of the high-side and low-side transistors, respectively.  
Qrr is the reverse recovery charge of the bootstrap diode, which is typically around 4 nC.  
ΔV is the maximum allowable voltage drop across the bypass capacitor.  
(1)  
TI recommends a 0.1-µF or larger value, good quality, ceramic capacitor. The bypass capacitor must be placed  
as close as possible to the pins of the ICto minimize the parasitic inductance.  
8.2.2.2 Bootstrap Capacitor  
The bootstrap capacitor provides the gate charge for the high-side switch, DC bias power for HB UVLO circuit,  
and the reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated with  
Equation 2.  
QgH +IHB ì tON + Qrr  
CBST  
>
DV  
where  
IHB is the quiescent current of the high-side driver.  
ton is the maximum on-time period of the high-side transistor.  
(2)  
A good-quality, ceramic capacitor must be used for the bootstrap capacitor. TI recommends placement of the  
bootstrap capacitor as close as possible to the HB and HS pin.  
16  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
8.2.2.3 Power Dissipation  
The power consumption of the driver is an important measure that determines the maximum achievable  
operating frequency of the driver. It must be kept below the maximum power-dissipation limit of the package at  
the operating temperature. The total power dissipation of the LM5113-Q1 is the sum of the gate driver losses and  
the bootstrap diode power loss.  
The gate driver losses are incurred by charge and discharge of the capacitive load. It can be approximated as:  
P = CLoadH + CLoadL ì VD2D ì fSW  
(
)
where  
CLoadH and CLoadL are the high-side and the low-side capacitive loads, respectively.  
(3)  
(4)  
It can also be calculated with the total input gate charge of the high-side and the low-side transistors as:  
P = QgH + QgL ì VDD ì fSW  
(
)
There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and  
HO outputs. Figure 19 shows the measured gate-driver power dissipation versus frequency and load  
capacitance. At higher frequencies and load capacitance values, the power dissipation is dominated by the  
power losses driving the output loads and agrees well with the above equations. This plot can be used to  
approximate the power losses due to the gate drivers.  
Gate-driver power dissipation (LO+HO), VDD = +5 V  
Figure 19. Neglecting Bootstrap Diode Losses  
The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the  
bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Because each of these  
events happens once per cycle, the diode power loss is proportional to the operating frequency. Larger  
capacitive loads require more energy to recharge the bootstrap capacitor resulting in more losses. Higher input  
voltages (VIN) to the half bridge also result in higher reverse recovery losses.  
Figure 20 and Figure 21 show the forward bias power loss and the reverse bias power loss of the bootstrap  
diode, respectively. The plots are generated based on calculations and lab measurements of the diode reverse  
time and current under several operating conditions. The plots can be used to predict the bootstrap diode power  
loss under different operating conditions.  
Copyright © 2017–2018, Texas Instruments Incorporated  
17  
 
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
The load of high-side driver is a GaN FET with total gate charge of  
10 nC.  
The load of high-side driver is a GaN FET with total gate charge of  
10 nC.  
Figure 21. Reverse Recovery Power Loss of  
Figure 20. Forward Bias Power Loss of  
Bootstrap Diode VIN = 50 V  
Bootstrap Diode VIN = 50 V  
The sum of the driver loss and the bootstrap diode loss is the total power loss of the IC. For a given ambient  
temperature, the maximum allowable power loss of the IC can be defined as Equation 5.  
(TJ - TA)  
P =  
qJA  
(5)  
8.2.3 Application Curves  
Conditions:  
Conditions:  
Input Voltage = 48 V DC, Load Current = 5 A  
Traces:  
Input Voltage = 48 V DC,  
Load Current = 10 A  
Top Trace: Gate of Low-Side eGaN FET, Volt/div = 2 V  
Bottom Trace: LI of LM5113-Q1, Volt/div = 5 V  
Bandwidth Limit = 600 MHz  
Horizontal Resolution = 0.2 µs/div  
Figure 22. Low-Side Driver Input and Output  
Traces:  
Trace: Switch-Node Voltage, Volts/div = 20 V  
Bandwidth Limit = 600 MHz  
Horizontal Resolution = 50 ns/div  
Figure 23. Switch-Node Voltage  
18  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
9 Power Supply Recommendations  
The recommended bias supply voltage range for LM5113-Q1 is from 4.5 V to 5.5 V. The lower end of this range  
is governed by the internal undervoltage lockout (UVLO) protection feature of the VDD supply circuit. TI  
recommends keeping proper margin to allow for transient voltage spikes while not violating the LM5113-Q1  
absolute maximum VDD voltage rating and the GaN transistor gate breakdown voltage limit.  
The UVLO protection feature also involves a hysteresis function. This means that once the device is operating in  
normal mode, if the VDD voltage drops, the device continues to operate in normal mode as far as the voltage  
drop do not exceeds the hysteresis specification, VDDH. If the voltage drop is more than hysteresis specification,  
the device shuts down. Therefore, while operating at or near the 4.5-V range, the voltage ripple on the VDD  
power supply output must be smaller than the hysteresis specification of LM5113-Q1 UVLO to avoid triggering  
device shutdown.  
A local bypass capacitor must be placed between the VDD and VSS pins. This capacitor must be located as  
close as possible to the device. A low-ESR, ceramic surface-mount capacitor is recommended. TI recommends  
using 2 capacitors across VDD and GND: a 100-nF ceramic surface-mount capacitor for high frequency filtering  
placed very close to VDD and GND pin, and another surface-mount capacitor, 220-nF to 10-μF, for IC bias  
requirements.  
Copyright © 2017–2018, Texas Instruments Incorporated  
19  
LM5113-Q1  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Small gate capacitance and miller capacitance enable enhancement mode GaN FETs to operate with fast  
switching speed. The induced high dv/dt and di/dt, coupled with a low gate-threshold voltage and limited  
headroom of enhancement mode GaN FETs gate voltage, make the circuit layout crucial to the optimum  
performance. Following are some recommendations.  
1. The first priority in designing the layout of the driver is to confine the high peak currents that charge and  
discharge the GaN FETs gate into a minimal physical area. This decreases the loop inductance and  
minimize noise issues on the gate terminal of the GaN FETs. The GaN FETs must be placed close to the  
driver.  
2. The second high current path includes the bootstrap capacitor, the local ground referenced VDD bypass  
capacitor, and low-side GaN FET. The bootstrap capacitor is recharged on a cycle-by-cycle basis through  
the bootstrap diode from the ground referenced VDD capacitor. The recharging occurs in a short time interval  
and involves high peak current. Minimizing this loop length and area on the circuit board is important to  
ensure reliable operation.  
3. The parasitic inductance in series with the source of the high-side FET and the low-side FET can impose  
excessive negative voltage transients on the driver. TI recommends connecting the HS pin and VSS pin to  
the respective source of the high-side and low-side transistors with a short and low-inductance path.  
4. The parasitic source inductance, along with the gate capacitor and the driver pulldown path, can form an  
LCR resonant tank, resulting in gate voltage oscillations. An optional resistor or ferrite bead can be used to  
damp the ringing.  
5. Low ESR/ESL capacitors must be connected close to the IC, between VDD and VSS pins and between the  
HB and HS pins to support the high peak current being drawn from VDD during turnon of the FETs. Keeping  
guideline number 1 above (minimized GaN FETs gate driver loop) as the first priority, it is also desirable to  
place the VDD decoupling capacitor and the HB to HS bootstrap capacitor on the same side of the PC board  
as the driver. The inductance of vias can impose excessive ringing on the IC pins.  
6. To prevent excessive ringing on the input power bus, good decoupling practices are required by placing low-  
ESR ceramic capacitors adjacent to the GaN FETs.  
Figure 24 and Figure 25 show recommended layout patterns for the 10-pin WSON package. Two cases are  
considered: (1) Without any gate resistors, and (2) with an optional turnon gate resistor. Note that 0402 surface  
mount package is assumed for the passive components in Figure 24 and Figure 25.  
10.2 Layout Example  
Bootstrap  
Capacitor  
Bootstrap  
Capacitor  
HO  
HS  
To Hi-Side FET  
HO  
HS  
To Hi-Side FET  
Bypass  
Capacitor  
Bypass  
Capacitor  
LO  
GND  
To Low-Side FET  
LO  
GND  
To Low-Side FET  
Figure 24. 10-Pin WSON Without Gate Resistors  
Figure 25. 10-Pin WSON With HOH and LOH Gate  
Resistors  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LM5113-Q1  
www.ti.com.cn  
ZHCSG45B MARCH 2017REVISED MARCH 2018  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
相关文档如下:  
AN-2149 LM5113 评估板 (SNVA484)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5113QDPRRQ1  
ACTIVE  
WSON  
DPR  
10  
4500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
-40 to 125  
L5113Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Mar-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5113QDPRRQ1  
WSON  
DPR  
10  
4500  
330.0  
12.4  
4.3  
4.3  
1.3  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Mar-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DPR 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LM5113QDPRRQ1  
4500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DPR0010A  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
(0.2)  
4.1  
3.9  
PIN 1 INDEX AREA  
FULL R  
BOTTOM VIEW  
SIDE VIEW  
20.000  
ALTERNATIVE LEAD  
DETAIL  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
2.6 0.1  
(0.1) TYP  
SEE ALTERNATIVE  
LEAD DETAIL  
5
6
2X  
3.2  
11  
3
0.1  
8X 0.8  
1
10  
0.35  
0.25  
0.1  
10X  
0.5  
0.3  
PIN 1 ID  
10X  
C A B  
C
0.05  
4218856/B 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DPR0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
10X (0.6)  
SYMM  
10  
1
10X (0.3)  
(1.25)  
SYMM  
11  
(3)  
8X (0.8)  
6
5
(
0.2) VIA  
TYP  
(1.05)  
(R0.05) TYP  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EDGE  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218856/B 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DPR0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
10X (0.6)  
METAL  
TYP  
(0.68)  
10  
1
10X (0.3)  
(0.76)  
11  
SYMM  
8X (0.8)  
4X  
(1.31)  
5
6
(R0.05) TYP  
4X (1.15)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4218856/B 01/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY