LM5160QPWPTQ1 [TI]

65V 宽输入、2A 同步降压/Fly-Buck™ 转换器 | PWP | 14 | -40 to 125;
LM5160QPWPTQ1
型号: LM5160QPWPTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

65V 宽输入、2A 同步降压/Fly-Buck™ 转换器 | PWP | 14 | -40 to 125

转换器
文件: 总38页 (文件大小:1826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
LM5160-Q1 宽输入 65V2A 同步降压/Fly-Buck™ 直流/直流转换器  
1 特性  
2 应用  
1
符合适用于汽车应用的 AEC-Q100 标准  
汽车直流/直流转换器  
IGBT 栅极驱动偏置电源  
温度等级 1–40°C TA 125°C  
HBM ESD 分类等级 2  
低功耗隔离式直流/直流 (Fly-Buck)  
CDM ESD 分类等级 C5  
3 说明  
4.5V 65V 宽输入电压范围  
LM5160-Q1 是一款具有集成式高侧和低侧 MOSFET  
65V 2A 同步降压转换器。自适应恒定导通时间控制  
方案无需环路补偿,可在快速瞬态响应下支持高降压  
比。内部反馈放大器保持着整体工作温度范围 ±1% 的  
输出电压调节度。导通时间与输入时间成反比,其结果  
是切换频率接近恒定。  
集成高侧和低侧开关  
无需外部肖特基二极管  
2A 最大负载电流  
符合 CISPR 25 EMI 标准  
自适应恒定导通时间控制  
无外部环路补偿  
快速瞬态响应  
峰谷电流限制电路可防御过载情况。欠压锁定  
(EN/UVLO) 电路提供可独立调节的输入欠压阈值和迟  
滞。LM5160-Q1 通过 FPWM 引脚进行编程,以在从  
空载到满载过程中采用连续传导模式 (CCM) 或在轻负  
载时自动切换至断续传导模式 (DCM),从而实现更高  
的效率。强制 CCM 运行支持使用耦合电感器的多输出  
隔离式 Fly-Buck 应用 。  
可选强制 PWM DCM 运行  
FPWM 支持多输出 Fly-Buck™  
近似恒定的开关频率  
可通过电阻器调节至最高 1MHz  
可编程软启动时间  
预偏置启动  
±1% 反馈电压基准  
固有保护 特性 可实现稳健设计  
LM5160-Q1 符合汽车 AEC-Q100 1 级标准,并且可采  
用引脚间距为 0.65mm 14 引脚 HTSSOP 封装。  
峰值电流限制保护  
器件信息(1)  
可调输入欠压闭锁 (UVLO) 和滞后  
VCC 和栅极驱动 UVLO 保护  
具有迟滞的热关断保护  
器件型号  
LM5160-Q1  
封装  
封装尺寸(标称值)  
HTSSOP (14)  
4.40mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
14 引脚 HTSSOP 封装,0.65mm 间距  
使用 LM5160-Q1 及其 WEBENCH® 电源设计器创  
建定制设计  
典型同步降压应用电路  
典型 Fly-Buck 应用电路  
VIN  
VOUT(SEC)  
VIN  
BST  
VIN  
VOUT  
LM5160-Q1  
VIN  
BST  
SW  
RON  
LM5160-Q1  
SW  
VOUT(PRI)  
RON  
FB  
EN/UVLO  
VCC  
FB  
EN/UVLO  
VCC  
SS  
FPWM  
FPWM  
SS  
AGND PGND  
AGND PGND  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAE4  
 
 
 
 
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics ............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................ 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description ................................................ 11  
7.4 Device Functional Modes ....................................... 14  
8
9
Application and Implementation ........................ 15  
8.1 Application Information............................................ 15  
8.2 Typical Applications ................................................ 16  
8.3 Do's and Don'ts ...................................................... 24  
Power Supply Recommendations...................... 25  
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................ 26  
10.2 Layout Example ................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 器件支持................................................................ 27  
11.2 文档支持................................................................ 27  
11.3 接收文档更新通知 ................................................. 28  
11.4 社区资源................................................................ 28  
11.5 ....................................................................... 28  
11.6 静电放电警告......................................................... 28  
11.7 术语表 ................................................................... 28  
12 机械、封装和可订购信息....................................... 29  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (November 2017) to Revision C  
Page  
已更改 特性 ............................................................................................................................................................................ 1  
已更改 首页原理.................................................................................................................................................................. 1  
Changed Pinout Drawing........................................................................................................................................................ 3  
Changed ESD Ratings ........................................................................................................................................................... 4  
Changed Function Block Diagram........................................................................................................................................ 10  
Changed Power Supply Recommendations......................................................................................................................... 25  
已更改 相关文档 .................................................................................................................................................................. 27  
Changes from Revision A (November 2015) to Revision B  
Page  
更新了与符合 AEC-Q100 标准相关的要点.............................................................................................................................. 1  
Deleted the lead temperature from the Absolute Maximum Ratings table ............................................................................ 4  
Moved the Ripple Configuration section to the Application Information section .................................................................. 15  
Changed the Application Performance Plots title to Application Curves in both typical application sections...................... 20  
Added layout details with LM5160-Q1 HTSSOP-14 package ............................................................................................. 26  
已更改 静电放电注意事项.............................................................................................................................................. 28  
Changes from Original (July 2015) to Revision A  
Page  
Changed current limit off-timer in the Electrical Characteristics to 16.................................................................................... 5  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
5 Pin Configuration and Functions  
PWP PowerPAD™ Package  
14-Pin HTSSOP  
Top View  
AGND  
PGND  
VIN  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
NC  
SW  
LM5160-Q1  
SW  
EN/UVLO  
RON  
BST  
VCC  
FB  
THERMAL  
PAD  
SS  
NC  
8
FPWM  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
1
NAME  
AGND  
PGND  
VIN  
P
P
I
Analog Ground. Ground connection of internal control circuits.  
2
Power Ground. Ground connection of the internal synchronous rectifier FET.  
Input supply connection. Operating input range is 4.5 V to 65 V.  
Precision enable. Input pin of undervoltage lockout (UVLO) comparator.  
3
4
EN/UVLO  
On-time programming pin. A resistor between this pin and VIN sets the switch on-time as a function of  
input voltage.  
5
6
8
RON  
SS  
I
I
I
Soft-start. Connect a capacitor from SS to AGND to control output rise time and limit overshoot.  
Forced PWM logic input pin. Connect to AGND for discontinuous conduction mode (DCM) with light  
loads. Connect to VCC for continuous conduction mode (CCM) at all loads and Fly-Buck configuration.  
FPWM  
9
FB  
I
Feedback input of voltage regulation comparator.  
10  
VCC  
O
Internal high voltage start-up regulator bypass capacitor pin.  
Bootstrap capacitor pin. Connect a capacitor between BST and SW to bias gate driver of high-side buck  
FET.  
11  
BST  
SW  
P
P
Switch node. Source connection of high-side buck FET and drain connection of low-side synchronous  
rectifier FET.  
12,13  
7,14  
NC  
EP  
No Connection.  
Exposed Pad. Connect to AGND and printed-circuit board ground plane to improve power dissipation.  
(1) P = Power, G = Ground, I = Input, O = Output.  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature of –40°C to 150°C (unless otherwise noted).(1)(2)  
MIN  
MAX  
70  
70  
70  
84  
14  
14  
7
UNIT  
VIN to AGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
EN/UVLO to AGND  
RON to AGND  
BST to AGND  
VCC to AGND  
FPWM to AGND  
SS to AGND  
Input voltages  
V
FB to AGND  
7
BST to SW  
14  
70  
70  
BST to VCC  
Output voltages  
V
SW to AGND  
–1.5  
–3  
SW to AGND (20-ns transient)  
(3)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) High junction temperatures degrade operating lifetimes. Operating lifetime is derated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
All pins  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature of –40°C to 150°C (unless otherwise noted).(1)  
MIN  
MAX  
65  
UNIT  
V
VIN input voltage  
4.5  
IOUT output current  
2
A
Operating junction temperature  
-40  
150  
°C  
(1) Recommended Operating Ratings are conditions under the device is intended to be functional. For specifications and test conditions,  
see Electrical Characteristics.  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
6.4 Thermal Information  
LM5160-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
14 PINS  
39.3  
2.0  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCbot  
ψJB  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal characteristic parameter  
Junction-to-board thermal resistance  
19.3  
19.6  
22.8  
0.5  
RθJB  
RθJCtop  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-top thermal characteristic parameter  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report.  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = –40°C to 125°C. Unless otherwise  
stated, VIN = 24 V.(1)(2)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISD  
Input shutdown current  
Input operating current  
VIN = 24 V, VEN/UVLO = 0 V  
50  
90.7  
2.84  
µA  
IOP  
VIN = 24 V, VFB = 3 V, non-switching  
2.3  
mA  
VCC SUPPLY  
VCC  
Bias regulator output  
VIN = 24 V, ICC = 20 mA  
VIN = 24 V  
6.47  
30  
7.5  
8.52  
4.1  
V
VCC  
Bias regulator current limit  
VCC undervoltage threshold  
VCC undervoltage hysteresis  
VIN – VCC dropout voltage  
mA  
V
VCC(UV)  
VCC(HYS)  
VCC(LDO)  
VVCC rising  
3.98  
185  
165  
VVCC falling  
mV  
mV  
VIN = 4.5 V, IVCC = 20 mA  
260  
HIGH-SIDE FET  
RDS(ON)  
High-side on-state resistance  
VBST – VSW = 7 V, ISW = 1 A  
VBST – VSW rising  
0.29  
2.93  
200  
Ω
V
BST(UV)  
Bootstrap gate drive UV  
Gate drive UV hysteresis  
3.6  
BST(HYS)  
LOW-SIDE FET  
RDS(ON)  
VBST – VSW falling  
mV  
Low-side on-state resistance  
ISW = 1 A  
0.13  
Ω
HIGH-SIDE CURRENT LIMIT  
ILIM (HS) High-side current limit threshold  
TRES  
TOFF1  
TOFF2  
2.125  
2.5  
100  
29  
2.875  
A
Current limit response time  
Current limit forced off-time  
Current limit forced off-time  
ILIM (HS) threshold detect to FET turnoff  
VFB = 0 V, VIN = 65 V  
ns  
µs  
µs  
16  
39.8  
5.12  
VFB = 1 V, VIN = 24 V  
2.18  
3.5  
LOW-SIDE CURRENT LIMIT  
ISOURCE(LS) Sourcing current limit  
ISINK(LS) Sinking current limit  
DIODE EMULATION  
1.9  
2.5  
5.4  
3
1
A
A
VFPWM(LOW)  
VFPWM(HIGH)  
IZX  
FPWM input logic low  
VIN = 24 V  
V
V
FPWM input logic high  
VIN = 24 V  
3
Zero cross detect current  
FPWM = AGND (diode emulation)  
0
mA  
REGULATION COMPARATOR  
VREF  
I(Bias)  
FB regulation level  
VIN = 24 V  
VIN = 24 V  
1.975  
1.995  
2.015  
100  
V
FB input bias current  
nA  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
(2) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows:  
TJ = TA + (PD • RθJA) where RθJA (in °C/W) is the package thermal impedance provided in Thermal Information.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = –40°C to 125°C. Unless otherwise  
stated, VIN = 24 V.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ERROR CORRECTION AMPLIFIER and SOFT START  
GM  
Error amp transconductance  
Error amp source current  
Error amp sink current  
VFB = VREF ± 10 mV  
105  
10.2  
10  
µA/V  
µA  
IEA(Source)  
IEA(Sink)  
V(SS-FB)  
ISS  
VFB = 1 V, VSS = 1 V  
VFB = 5 V, VSS = 2.25 V  
VFB = 1.75 V, CSS= 1 nF  
VSS = 0.5 V  
7.62  
7.46  
12.51  
12.2  
µA  
VSS – VFB clamp voltage  
Soft-start charging current  
135  
10.2  
mV  
µA  
7.63  
12.5  
ENABLE/UVLO  
VUVLO (TH)  
IUVLO(HYS)  
VSD(TH)  
UVLO threshold  
VEN/UVLO rising  
VEN/UVLO = 1.4 V  
VEN/UVLO falling  
VEN/UVLO rising  
1.213  
15  
1.24  
20  
1.277  
25  
V
µA  
V
UVLO hysteresis current  
Shutdown mode threshold  
Shutdown threshold hysteresis  
0.28  
0.35  
47  
VSD(HYS)  
mV  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
175  
20  
°C  
°C  
TSD(HYS)  
6.6 Switching Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = –40°C to 125°C. Unless otherwise  
stated, VIN = 24 V.(1)  
MIN  
TYP  
MAX  
UNIT  
MINIMUM OFF-TIME  
TOFF-MIN  
Minimum off-time, VFB = 0 V  
170  
ns  
ON-TIME GENERATOR  
TON1  
TON2  
TON3  
TON4  
VIN = 24 V, RON = 100 kΩ  
312  
625  
937  
132  
428  
818  
520  
1040  
1563  
220  
ns  
ns  
ns  
ns  
VIN = 24 V, RON = 200 kΩ  
VIN = 8 V, RON = 100 kΩ  
VIN = 65 V, RON = 100 kΩ  
1247  
176  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
6.7 Typical Characteristics  
TA = 25°C, unless otherwise noted. Please refer to Typical Applications for circuit designs.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin = 18V  
Vin = 24V  
Vin = 48V  
Vin = 12V  
Vin = 24V  
Vin = 48V  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
Load Current (A)  
Load Current (A)  
VOUT = 10 V  
L = 47 µH  
RON = 200 kΩ  
VOUT = 5 V  
L = 100 µH  
RON = 215 kΩ  
Figure 1. Efficiency at 500 kHz  
Figure 2. Efficiency at 250 kHz  
100  
90  
80  
70  
60  
100  
FPWM = 0  
50  
FPWM = 1  
Vin = 12V  
Vin = 24V  
Vin = 48V  
IO = 0.5A  
IO = 1A  
IO = 1.5A  
20  
0.005 0.01  
0.05  
0.1  
0.5  
1
1.5  
5
15  
25  
35  
45  
55  
65  
Load Current (A)  
Input Voltage (V)  
VOUT = 5 V  
L = 47 µH  
RON = 169 kΩ  
VOUT = 5 V  
L = 47 µH  
RON = 169 kΩ  
Figure 3. Efficiency CCM vs DCM at 300 kHz  
Figure 4. Efficiency vs Input Voltage at 300 kHz  
8
7
6
5
4
3
2
1
8
6
4
2
0
0
0
0
2
4
6
8
10  
12  
14  
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
Input Voltage (V)  
Icc Current (A)  
VIN = 24 V  
Figure 5. VCC vs VIN  
Figure 6. VCC vs ICC  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, unless otherwise noted. Please refer to Typical Applications for circuit designs.  
27.5  
2000  
1000  
500  
Vin = 12V  
Vin = 24V  
Vin = 48V  
Vin = 65V  
25  
22.5  
20  
17.5  
15  
12.5  
10  
7.5  
5
100  
50  
Ron = 200kW  
Ron = 169kW  
Ron = 100kW  
2.5  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Feedback Voltage (V)  
Input Voltage (V)  
VOUT = 5 V  
Figure 7. TOFF (ILIM) vs VFB  
Figure 8. TON vs VIN  
4
3.5  
3
750  
650  
550  
450  
350  
250  
150  
50  
2.5  
2
Ron = 169kW  
Ron = 100kW  
Ron = 200kW  
1.5  
1
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 5 V  
VFB = 3 V  
Figure 9. Switching Frequency vs VIN  
Figure 10. IIN vs VIN (Operating, Non-Switching)  
4
2.05  
2.025  
2
3.25  
2.5  
1.75  
1
1.975  
Falling  
Rising  
1.95  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 24 V  
VIN = 24 V  
Figure 11. Gate Drive UVLO vs Temperature  
Figure 12. Reference Voltage vs Temperature  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
Typical Characteristics (continued)  
TA = 25°C, unless otherwise noted. Please refer to Typical Applications for circuit designs.  
2.5  
2.25  
2
60  
55  
50  
45  
40  
35  
30  
1.75  
1.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 24 V  
VIN = 24 V  
Figure 13. Input Operating Current vs Temperature  
Figure 14. Input Shutdown Current vs Temperature  
4.25  
3
4.1  
3.95  
3.8  
2.75  
2.5  
2.25  
2
3.65  
Falling  
Rising  
High Side FET  
Low Side FET  
3.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (oC)  
Junction Temperature (oC)  
VIN = 24 V  
VIN = 24 V  
Figure 15. VCC UVLO vs Temperature  
Figure 16. Current Limit vs Temperature  
0.45  
0.35  
0.25  
0.15  
0.05  
3
2.5  
2
1.5  
High Side FET  
Low Side FET  
Rising  
Falling  
1
-50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (oC)  
Junction Temperature (oC)  
D001  
ISW = 200 mA  
VIN = 24 V  
VIN = 24 V  
Figure 18. Switch Resistance vs Temperature  
Figure 17. FPWM Threshold vs Temperature  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM5160-Q1 step-down synchronous switching regulator features all the functions needed to implement a  
low-cost, efficient buck converter capable of supplying 2 A to the load. This high voltage regulator contains 65-V  
N-channel buck and synchronous rectifier switches and is available in a 14-pin HTSSOP package with 0.65-mm  
pin pitch. The regulator operation is based on an adaptive constant on-time control architecture where the on-  
time is inversely proportional to input voltage VIN. This feature maintains a relatively constant operating frequency  
with load and input voltage variations. A constant on-time switching regulator requires no loop compensation  
resulting in fast load transient response. Peak current limit detection circuit is implemented with a forced off-time  
during current limiting which is inversely proportional to voltage at the feedback pin, VFB and directly proportional  
to VIN. Varying the current limit off-time with VFB and VIN ensures short-circuit protection with minimal current limit  
foldback. The LM5160-Q1 can be applied in numerous end equipment systems requiring efficient step-down  
regulation from higher input voltages. This regulator is well-suited for 24-V industrial systems as well as 48-V  
telecom and PoE voltage ranges. The LM5160-Q1 integrates an undervoltage lockout (EN/UVLO) circuit to  
prevent faulty operation of the device at low input voltages and features intelligent current limit and thermal  
shutdown to protect the device during overload or short circuit.  
7.2 Functional Block Diagram  
LM5160-Q1  
VIN  
VCC  
VIN  
VCC  
REGULATOR  
VCC UVLO  
RUV2  
20µA  
CVCC  
CIN  
EN/UVLO  
STANDBY  
THERMAL  
SHUTDOWN  
VIN  
RUV1  
1.24V  
SHUTDOWN  
BIAS  
BST  
REGULATOR  
0.35V  
RON  
VIN  
RON  
SS  
ON/OFF  
TIMERS  
CBST  
DISABLE  
COT  
CONTROL  
LOGIC  
VOUT  
L
VOUT  
SW  
FEEDBACK  
COMPARATOR  
CSS  
VCC  
RESR  
COUT  
RFB2  
GM  
ERROR  
AMP  
PGND  
FB  
CURRENT LIMIT  
COMPARATOR  
2V  
CURRENT  
LIMIT TIMER  
+
-
RFB1  
AGND  
VILIM  
FPWM  
DIODE  
EMULATION  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
7.3 Feature Description  
7.3.1 Control Circuit  
The LM5160-Q1 step-down switching regulator employs a control principle based on a comparator and a one-  
shot timer, with the output voltage feedback (FB) compared to the voltage at the soft-start (SS) pin (VSS). If the  
FB voltage is below VSS, the internal buck switch is turned on for a conduction time determined by the input  
voltage and the one-shot programming resistor (RON). Following the on-time, the buck switch must stay off for the  
off-time forced by the minimum off-time one-shot. The buck switch remains off until the FB voltage falls below the  
SS voltage again, when it turns back on for another on-time interval.  
During a rapid start-up or when the load current increases suddenly, the regulator operates with minimum off-  
time per cycle. When regulating the output in steady-state operation, the off-time automatically adjusts to  
produce the SW voltage duty cycle required for output voltage regulation.  
When in regulation, the LM5160-Q1 operates in continuous conduction mode at heavy load currents. If FPWM is  
connected to ground or left floating, the regulator operates in discontinuous conduction mode at light load with  
the synchronous rectifier FET in diode emulation. With sufficient load, the LM5160-Q1 operates in continuous  
conduction mode with the inductor current never reaching zero during the off-time of the high-side FET. In this  
mode the operating frequency remains relatively constant with load and line variations. The minimum load  
current for continuous conduction mode is one-half the inductor’s ripple current amplitude. The operating  
frequency is programmed by the resistor connected from VIN to RON and can be calculated from Equation 1  
with RON expressed in Ohms.  
VOUT  
RON ì1ì10-10  
F
=
Hz  
sw  
(1)  
In discontinuous conduction mode, current through the inductor ramps up from zero to a peak value during the  
on-time, then ramps back to zero before the end of the off-time. The next on-time interval starts when the voltage  
at FB falls below VSS. When the inductor current is zero during the high-side FET off-time, the load current is  
supplied by the output capacitor. In this mode, the operating switching frequency is lower than the continuous  
conduction mode switching frequency and the frequency varies with load. Discontinuous conduction mode  
maintains conversion efficiency at light loads because the switching losses reduce with the decrease in load and  
frequency.  
The output voltage is set by two external resistors (RFB1, RFB2). Calculate the regulated output voltage from  
Equation 2.  
VREF ì(RFB2 + RFB1  
)
VOUT  
=
V
RFB1  
where  
VREF = 2 V (typical) is the feedback reference voltage.  
(2)  
7.3.2 VCC Regulator  
The LM5160-Q1 contains an internal high-voltage linear regulator with a nominal output voltage of 7.5 V (typical).  
The VCC regulator is internally current limited to 30 mA (minimum). This regulator supplies power to internal  
circuit blocks including the synchronous FET gate driver and the logic circuits. When the VCC voltage reaches  
the undervoltage lockout (VCC(UV)) threshold of 3.98 V (typical), the IC is enabled. An external capacitor at the  
VCC pin stabilizes the regulator and supplies transient VCC current to the gate drivers. An internal diode  
connected from VCC to BST replenishes the charge in the high-side gate drive bootstrap capacitor when the SW  
voltage is low.  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.3 Regulation Comparator  
The feedback voltage at the FB pin is compared to the SS pin voltage VSS. In normal operation when the output  
voltage is in regulation, an on-time interval is initiated when the voltage at FB pin falls below VSS. The high-side  
buck switch stays on for a pre-defined on-time causing the FB voltage to rise. After the on-time interval expires,  
the high-side switch remains off until the FB voltage falls below VSS. During start-up, the FB voltage is below VSS  
at the end of each on-time interval and the high-side switch turns on again after the minimum forced off-time of  
170 ns (typical). When the output is shorted to ground (VFB = 0 V), the high-side peak current limit is triggered,  
the high-side FET is turned off and remains off for a period determined by the current limit off-timer. See Current  
Limit for additional information.  
7.3.4 Soft Start  
The soft-start feature of the LM5160-Q1 allows the converter to gradually reach a steady-state operating point,  
thereby reducing start-up stresses and current surges. When the EN/UVLO voltage is above the EN/UVLO  
standby threshold VUVLO(TH) = 1.24 V (typical) and the VCC voltage exceeds the VCC undervoltage threshold,  
VCC(UV) = 3.98 V (typical) , an internal 10-µA current source charges the external capacitor at the SS pin (CSS  
)
from 0 V to 2 V. The voltage at SS is the noninverting input of the internal FB comparator. The soft-start interval  
ends when the SS capacitor is charged to the 2-V reference level. The ramping voltage at SS produces a  
controlled, monotonic output voltage start-up. Use a minimum soft-start capacitance of 1 nF for all applications.  
7.3.5 Error Amplifier  
The LM5160-Q1 provides a transconductance (GM) error amplifier that minimizes the difference between the  
reference voltage (VREF) and the average feedback (FB) voltage. This amplifier reduces the load and line  
regulation errors that are common in constant on-time regulators. The soft-start capacitor CSS provides  
compensation for this error correction loop. The soft-start capacitor must be greater than 1 nF to ensure stability.  
7.3.6 On-Time Generator  
The on-time of the LM5160-Q1 high-side MOSFET is determined by the RON resistor and is inversely  
proportional to the input voltage (VIN). The inverse relationship with VIN results in a nearly constant frequency as  
VIN is varied. Calculate the on-time from Equation 3 with RON expressed in Ohms.  
RON ì1ì10-10  
TON  
=
s
V
IN  
(3)  
To set a specific continuous conduction mode switching frequency (FSW expressed in Hz), determine the RON  
resistor from Equation 4.  
VOUT  
FSW ì1ì10-10  
RON  
=
W
(4)  
RON must be selected for a minimum on-time (at maximum VIN) greater than 150 ns for proper operation. This  
minimum on-time requirement limits the maximum switching frequency of applications with relatively high VIN and  
low VOUT  
.
7.3.7 Current Limit  
The LM5160-Q1 provides an intelligent current limit off-timer that adjusts the off-time to reduce the foldback in  
the current limit. If the peak value of the current in the buck switch exceeds 2.5 A (typical), the present on-time  
interval is immediately terminated and a non-resettable off-timer is initiated. The length of the off-time is  
controlled by the FB voltage and the input voltage VIN. As an example, when VFB = 0 V and VIN = 24 V, the off-  
time is set to 10 µs. This condition occurs if the output is shorted or during the initial phase of start-up. In cases  
of output overload where the FB voltage is greater than zero volts (a soft short), the current limit off-time is  
reduced. Decreasing the off-time during less severe overloads reduces the current limit foldback, overload  
recovery time, and start-up time. Calculate the current limit off-time using Equation 5.  
5V  
IN  
TOFF(CL)  
=
ms  
24VFB +12  
(5)  
12  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
Feature Description (continued)  
7.3.8 N-Channel Buck Switch and Driver  
The LM5160-Q1 integrates an N-channel buck switch and associated floating high-side gate driver. The gate  
driver circuit works in conjunction with an external bootstrap capacitor and an internal high voltage bootstrap  
diode. A 10-nF or larger ceramic capacitor connected between BST and SW provides the voltage to the high-side  
driver during the buck switch on-time. During the off-time, the SW node is pulled down to approximately 0 V and  
the bootstrap capacitor charges from VCC through the internal bootstrap diode. The minimum off-time of 170 ns  
(typical) provides a minimum time each cycle to recharge the bootstrap capacitor.  
7.3.9 Synchronous Rectifier  
The LM5160-Q1 provides an internal low-side synchronous rectifier N-channel FET. This low-side FET provides  
a low resistance path for the inductor current when the high-side FET is turned off.  
With the FPWM pin connected to ground or left floating, the LM5160-Q1 synchronous rectifier operates in diode  
emulation mode. Diode emulation enables the pulse-skipping during light load conditions. This leads to a  
reduction in the average switching frequency at light loads. Switching losses and FET gate driver losses, both of  
which are proportional to switching frequency, are significantly reduced and efficiency is improved. This pulse-  
skipping mode also reduces the circulating inductor currents and losses associated with a continuous conduction  
mode (CCM).  
When FPWM is pulled high, diode emulation is disabled. The inductor current can flow in either direction through  
the low-side FET, resulting in CCM operation with nearly constant switching frequency. A negative sink current  
limit circuit limits the current that can flow into SW and through the low-side FET to ground. In a buck regulator  
application, large negative current typically only flows from VOUT to SW if VOUT is lifted above the output  
regulation setpoint.  
7.3.10 Enable / Undervoltage Lockout (EN/UVLO)  
The LM5160-Q1 contains a dual-level undervoltage lockout (EN/UVLO) circuit. When the EN/UVLO voltage is  
below 0.35 V, the regulator is in a low-current shutdown mode. When the EN/UVLO voltage is greater than 0.35  
V (typical) but less than 1.24 V (typical), the regulator is in standby mode. In standby mode, the VCC bias  
regulator is active but converter switching remains disabled. When the voltage at the VCC exceeds the VCC  
rising threshold, VCC(UV) = 3.98 V (typical), and the EN/UVLO voltage is greater than 1.24 V, normal switching  
operation begins. Use an external resistor voltage divider from VIN to GND to set the minimum operating voltage  
of the regulator.  
EN/UVLO hysteresis is implemented with an internal 20 µA (typical) current source (IUVLO(HYS)) that is switched  
on or off into the impedance of the EN/UVLO pin resistor divider. When the EN/UVLO threshold is exceeded, the  
current source is activated to effectively raise the voltage at the EN/UVLO pin. The hysteresis is equal to the  
value of this current times the upper resistance of the resistor divider, RUV2. See Functional Block Diagram.  
7.3.11 Thermal Protection  
The LM5160-Q1 must be operated such that the junction temperature does not exceed 150°C during normal  
operation. An internal thermal shutdown circuit is provided to protect the LM5160-Q1 in the event of higher than  
normal junction temperature. When activated, typically at 175°C, the controller is forced into a low-power reset  
state, disabling the high-side buck switch and the VCC regulator. This feature prevents catastrophic failures from  
accidental device overheating. When the junction temperature falls below 155°C (typical hysteresis of 20°C), the  
VCC regulator is enabled and operation resumes.  
Copyright © 2015–2018, Texas Instruments Incorporated  
13  
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Forced Pulse Width Modulation (FPWM) Mode  
The Synchronous Rectifier section gives a brief introduction to the LM5160-Q1 diode emulation feature. The  
FPWM pin allows the power supply designer to select either CCM or DCM operation at light loads. When FPWM  
is connected to ground or left floating (FPWM = 0), a pulse-skipping mode and a zero-cross current detector  
circuit are enabled. The zero-cross detector turns off the low-side FET when the inductor current falls to zero (IZX  
,
see Electrical Characteristics). This feature allows the LM5160-Q1 regulator to operate in DCM mode at light  
loads. In the DCM state, the switching frequency decreases with lighter loads.  
If FPWM is pulled high (FPWM connected to VCC), the LM5160-Q1 operates in CCM even at light loads. This  
option allows the synchronous rectifier FET to conduct until the start of the next high-side switch cycle. The  
inductor current drops to zero and then reverse direction (negative direction through inductor), passing from drain  
to source of the low-side FET. The current flows continuously until the FB comparator initiates another high-side  
switch on-time. CCM operation reduces efficiency at light load but improves the transient response to step load  
changes and provides nearly constant switching frequency.  
Table 1. FPWM Pin Mode Summary  
FPWM PIN CONNECTION  
LOGIC STAGE  
DESCRIPTION  
The FPWM pin is grounded or left floating. DCM enabled at light  
loads.  
GND or Floating (High Z)  
0
The FPWM pin is connected to VCC. The LM5160-Q1 then  
operates in CCM mode at light loads.  
VCC  
1
7.4.2 Undervoltage Detector  
The following table summarizes the dual threshold levels of the undervoltage lockout (EN/UVLO) circuit  
explained in Enable / Undervoltage Lockout (EN/UVLO).  
Table 2. UVLO Pin Mode Summary  
EN/UVLO PIN  
VOLTAGE  
VCC REGULATOR  
MODE  
Shutdown  
Standby  
DESCRIPTION  
VCC regulator disabled. High-side and low-  
side FETs disabled.  
< 0.35 V  
Off  
On  
VCC regulator enabled. High-side and low-  
side FETs disabled.  
0.35 V to 1.24 V  
> 1.24 V  
VCC regulator enabled. High-side and low-  
side FETs disabled.  
VCC < VCC(UV)  
VCC > VCC(UV)  
Standby  
Operating  
VCC regulator enabled. Switching enabled.  
If input UVLO is not required, EN/UVLO can be driven by a logic signal as an enable input or connected directly  
to VIN. If EN/UVLO is directly connected to VIN, the regulator begins switching when VCC(UV) = 3.98 V (typical) is  
satisfied.  
14  
Copyright © 2015–2018, Texas Instruments Incorporated  
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM5160-Q1 is a synchronous buck or Fly-Buck DC/DC converter designed to operate over wide input  
voltage and output current ranges. LM5160-Q1 quick-start calculator tools are available for download to design a  
single-output synchronous buck converter or an isolated dual-output Fly-Buck converter. For a detailed design  
guide of the Fly-Buck converter, refer to AN-2292 Designing an Isolated Buck (Fly-Buck) Converter application  
report (SNVA674). Alternatively, use online WEBENCH software to create a complete buck or Fly-Buck design  
and generate the bill of materials, estimated efficiency, solution size and cost of the complete solution.  
Typical Applications describes a few application circuits using the LM5160-Q1 with detailed, step-by-step design  
procedures.  
8.1.1 Ripple Configuration  
The LM5160-Q1 uses an adaptive constant on-time (COT) control scheme in which the PWM on-time is set by a  
one-shot timer and the off-time is set by the feedback voltage (VFB) falling below the reference voltage.  
Therefore, for stable operation, the feedback voltage must decrease monotonically in phase with the inductor  
current during the off-time. Furthermore, this change in feedback voltage (VFB) during the off-time must be large  
enough to dominate any noise present at the feedback node.  
Table 3 presents three different methods for generating appropriate voltage ripple at the feedback node. Type 1  
and Type 2 ripple circuits couple the ripple from the output of the converter to the feedback node (FB). The  
output voltage ripple has two components:  
1. Capacitive ripple caused by the inductor ripple current charging or discharging the output capacitor.  
2. Resistive ripple caused by the inductor ripple current flowing through the ESR of the output capacitor and  
R3.  
Table 3. Ripple Configurations  
TYPE 1  
TYPE 2  
TYPE 3  
Lowest Cost  
Reduced Ripple  
Minimum Ripple  
VOUT  
VOUT  
VOUT  
L1  
Cff  
L1  
L1  
RA  
C
R
R
CA  
OUT  
FB2  
R3  
FB2  
R3  
R
FB2  
CB  
To FB  
To FB  
GND  
C
C
OUT  
OUT  
To FB  
R
R
FB1  
FB1  
R
FB1  
GND  
GND  
5
Cff  
í
(V  
- VO )ì TON(@V  
IN, min  
IN, min  
)
FSW ì(RFB2 IIRFB1  
25 mV  
)
25 mV ì VO  
VREF ì DIL1, min  
RACA  
Ç
R3 í  
25mV  
(6)  
R3 í  
(8)  
DIL1, min  
(7)  
Copyright © 2015–2018, Texas Instruments Incorporated  
15  
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
The capacitive ripple is out-of-phase with the inductor current. As a result, the capacitive ripple does not  
decrease monotonically during the off-time. The resistive ripple is in phase with the inductor current and  
decreases monotonically during the off-time. The resistive ripple must exceed the capacitive ripple at output  
(VOUT) for stable operation. If this condition is not satisfied, unstable switching behavior is observed in COT  
converters with multiple on-time bursts in close succession followed by a long off-time.  
Type 3 ripple method uses a ripple injection circuit with RA, CA and the switch-node (SW) voltage to generate a  
triangular ramp. This ramp is then AC-coupled into the feedback node (FB) using coupling capacitor CB. Because  
this circuit does not use the output voltage ripple, it is suited for applications where low output voltage ripple is  
imperative. For more information on each ripple generation method, refer to the AN-1481 Controlling Output  
Ripple & Achiev ESR Indep Constant On-Time Regulator Designs application note.  
8.2 Typical Applications  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation and test results of  
an LM5160-powered implementation, refer to Wide-Input Isolated IGBT Gate-Drive Fly-Buck Power Supply for  
Three-Phase Inverters reference design.  
8.2.1 LM5160-Q1 Synchronous Buck (10-V to 60-V Input, 5-V Output, 1.5-A Load)  
A typical application example is a synchronous buck converter operating from a wide input voltage range of 10 V  
to 65 V and providing a stable 5-V output voltage with output current capability of 1.5 A. Figure 19 shows the  
complete schematic for a typical synchronous buck application circuit. The components are labeled by numbers  
instead of the descriptive name used in the previous sections. For example, R3 represents RON and so forth.  
Figure 19. LM5160-Q1 Synchronous Buck Application Circuit  
NOTE  
This and subsequent design examples are provided herein to showcase the LM5160-Q1  
converter in several different applications. Depending on the source impedance of the  
input supply bus, an electrolytic capacitor may be required at the input to ensure stability,  
particularly at low input voltage and high output current operating conditions. See Power  
Supply Recommendations for more detail.  
16  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
8.2.1.1 Design Requirements  
Table 4 summarizes the operating parameters:  
Table 4. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output  
EXAMPLE VALUE  
10 V to 65 V  
5 V  
Load current  
1.5 A  
Nominal switching frequency  
Light-load operating mode  
300 kHz  
CCM, FPWM = VCC  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5160-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Feedback Resistor Divider - RFB1, RFB2  
With the required output voltage setpoint at 5 V and VFB = 2 V (typical), calculate the ratio of R6 (RFB1) to R5  
(RFB2) using Equation 9.  
RFB2 VOUT  
=
-1  
RFB1 VREF  
(9)  
The resistor ratio calculates to be 3:2. Choose standard values of R6 (RFB1) = 2 kand R5 (RFB2 ) = 3.01 k.  
Higher or lower values can be used as long as a ratio of the 3:2 is maintained.  
8.2.1.2.3 Switching Frequency - RON  
The duty cycle required to maintain output regulation at the minimum input voltage restricts the maximum  
switching frequency of the LM5160-Q1. The maximum value of the minimum forced off-time, TOFF,min, limits the  
duty cycle and therefore the switching frequency. Calculate the maximum frequency that avoids output dropout at  
minimum input voltage using Equation 10.  
V
- VOUT  
IN, min  
FSW, max (@V  
=
)
IN, min  
V
IN, min ì TOFF, min(ns)  
(10)  
For this design example, the maximum frequency based on the minimum off-time limitation of TOFF,min (typical) =  
170 ns is calculated as FSW,max(@VIN,min) = 2.9 MHz. This value is well above 1 MHz, the maximum possible  
operating frequency of the LM5160-Q1.  
At maximum input voltage the maximum switching frequency of the LM5160-Q1 is restricted by the minimum on-  
time, TON,min which limits the minimum duty cycle of the converter. Calculate the maximum frequency at  
maximum input voltage using Equation 11.  
Copyright © 2015–2018, Texas Instruments Incorporated  
17  
 
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
VOUT  
FSW, max (@V  
=
)
IN, max  
V
IN, max ì TON, min(ns)  
(11)  
Using Equation 11 and TON,min (typical) = 150 ns, the maximum achievable switching frequency is  
FSW,max(@VIN,min) = 514 kHz. Taking this value as the maximum possible switching frequency over the input  
voltage range for this application, choose a nominal switching frequency of FSW = 300 kHz for this design. The  
value of resistor RON sets the nominal switching frequency based on Equation 12.  
VOUT  
FSW ì1ì10-10  
RON  
=
W
(12)  
For this particular application with FSW = 300 kHz, RON calculates to be 167 k. Selecting a standard value for  
R3 (RON) = 169 k(±1%) results in a nominal frequency of 296 kHz. The resistor value may need to adjusted  
further in order to achieve the required switching frequency as the switching frequency in COT converters varies  
slightly (±10%) with input voltage and/or output current. Operation at a lower nominal switching frequency results  
in higher efficiency but increases the inductor and capacitor values leading to a larger total solution size.  
8.2.1.2.4 Inductor - L  
Select the inductor to limit the inductor ripple current between 20 and 40 percent of the maximum load current.  
Calculate the minimum value of the inductance required in this application from Equation 13.  
VO ì(V  
- VO )  
IN, max  
Lmin  
=
V
IN, max ìFSW ìIO, max ì0.4  
(13)  
Based on Equation 13, determine the minimum value of the inductance as 26 µH for VIN = 65 V (maximum) and  
inductor ripple current equal to 40 percent of the maximum load current. Allowing some margin for inductance  
variation with current, select a higher standard value of L1 (L) = 47 µH for this design.  
The peak inductor current at maximum load must be smaller than the minimum current limit threshold of the high-  
side FET, as given in Electrical Characteristics table. Determine the inductor ripple current at any input voltage  
using Equation 14.  
VO ì(VIN - VO )  
DIL =  
V ìFSW ìL  
IN  
(14)  
Calculate the peak-to-peak inductor ripple current as 180 mA and 332 mA at the minimum and maximum input  
voltages, respectively. Determine the maximum peak inductor current in the buck FET using Equation 15.  
DIL, max  
IL(peak) = IO, max  
+
2
(15)  
In this design with an output current of 1.5 A, the maximum peak inductor current is calculated to be  
approximately 1.67 A, which is less than the high-side FET minimum current limit threshold.  
The saturation current of the inductor must also be carefully considered. The peak value of the inductor current is  
bound by the high-side FET current limit during overload or short circuit conditions. Based on the high-side FET  
current limit specification in Electrical Characteristics, select an inductor with saturation current rating above  
2.875 A.  
8.2.1.2.5 Output Capacitor - COUT  
Select the output capacitor to limit the capacitive ripple at the output of the regulator. Maximum capacitive ripple  
is observed at maximum input voltage. The output capacitance required for a ripple voltage VO across the  
capacitor is given by Equation 16.  
DIL, max  
COUT  
=
8ìFSW ì DVO, ripple  
(16)  
Substituting VO, ripple = 10 mV gives COUT = 14 µF. Two standard 10-µF ceramic capacitors in parallel (C8, C9)  
are selected. An X7R type capacitor with a voltage rating 16 V or higher must be used for COUT (C8, C9) to limit  
the reduction of capacitance due to DC bias voltage.  
18  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
8.2.1.2.6 Series Ripple Resistor - RESR  
Select the series resistor such that sufficient ripple is injected at the feedback node (FB). The ripple voltage  
produced by RESR is proportional to the inductor ripple current. Therefore, select RESR based on the lowest  
inductor ripple current occurring at minimum input voltage. Calculate RESR usingEquation 17.  
25 mV ì VO  
RESR  
í
VREF ì DIL, min  
(17)  
With VO = 5 V, VREF = 2 V and ΔIL, min = 180 mA (at VIN, min= 10 V) as calculated in Equation 14, Equation 17  
requires an RESR greater than or equal to 0.35 . Selecting R7 (RESR) = 0.47 results in approximately 150 mV  
of maximum output voltage ripple at VIN,max. For applications requiring lower output voltage ripple, use Type II or  
Type III ripple injection circuits as described in Ripple Configuration.  
8.2.1.2.7 VCC and Bootstrap Capacitors - CVCC, CBST  
The VCC capacitor charges the bootstrap capacitor during the off-time of the high-side switch and powers  
internal logic circuits and the low-side sync FET gate driver. The bootstrap capacitor biases the high-side gate  
driver during the high-side FET on-time. Recommended values for C5 (CVCC) and C4 (CBST) are 1 µF and 10 nF,  
respectively. Both must be high-quality X7R ceramic capacitors.  
8.2.1.2.8 Input Capacitor - CIN  
The input capacitor must be large enough to limit the input voltage ripple to an acceptable level. Equation 18  
provides the input capacitance CIN required for a worst-case input ripple of VIN, ripple  
.
IO, max ì D ì (1-D)  
CIN  
=
DVIN, ripple ìFSW  
(18)  
CIN (C1, C10) supplies most of the switch current during the on-time to limit the voltage ripple at the VIN pin. At  
maximum load current, when the buck switch turns on, the current into the VIN pin quickly increases to the valley  
current of the inductor ripple and then ramps up to the peak of the inductor ripple during the on-time of the high-  
side FET. The average current during the on-time is the output load current. For a worst-case calculation, CIN  
must supply this average load current during the maximum on-time, without letting the voltage at VIN drop more  
than the desired input ripple. For this design, the input voltage drop is limited to 0.5 V and the value of CIN is  
calculated using Equation 18.  
Based on Equation 18, the value of the input capacitor is determined as approximately 2.5 µF at D = 0.5. Taking  
into account the decrease in capacitance with applied voltage, two standard value 2.2-µF, 100-V, X7R ceramic  
capacitors are selected for C1 and C10. The input capacitors must be rated for the maximum input voltage under  
all operating and transient conditions.  
A third input capacitor C2 may be needed in this design as a bypass path for the high-frequency components of  
input switching current. The value of C2 is 0.1 µF and this bypass capacitor must be placed directly across VIN  
and PGND (pins 3 and 2) near the IC. The CIN values and location are critical to reducing switching noise and  
transients.  
8.2.1.2.9 Soft-Start Capacitor - CSS  
The capacitor at the SS pin determines the soft-start time, that is, the time for the output voltage to reach its final  
steady-state value. Determine the SS capacitor value from Equation 19:  
ISS ì TStartup  
CSS  
=
VSS  
(19)  
With C3 (CSS) set at 22 nF and VSS = 2 V, ISS = 10 µA, TStartup is approximately 4 ms.  
8.2.1.2.10 EN/UVLO Resistors - RUV1, RUV2  
The UVLO resistors R1 (RUV2) and R2 (RUV1) set the input undervoltage lockout threshold and hysteresis  
according to Equation 20 and Equation 21.  
V
= IUVLO(HYS) ìRUV2  
IN(HYS)  
(20)  
Copyright © 2015–2018, Texas Instruments Incorporated  
19  
 
 
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
÷
RUV2  
V
= VUVLO(TH) 1+  
IN,UVLO(rising)  
RUV1 ◊  
«
(21)  
From the Electrical Characteristics table, IUVLO(HYS) = 20 µA (typical). To design for a VIN rising threshold (VIN,  
UVLO(rising)) of 10 V and hysteresis of 2.5 V, Equation 20 and Equation 21 yield RUV1 = 17.98 kand RUV2 = 125  
k. Selecting 1% standard values of R2 (RUV1) = 18.2 kand R1 (RUV2) = 127 kresult in UVLO rising  
threshold and hysteresis voltages of 9.89 V and 2.54 V, respectively.  
8.2.1.3 Application Curves  
5.025  
5.015  
5.005  
4.995  
4.985  
4.975  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin = 12V  
Vin = 24V  
Vin = 48V  
Vin = 12V  
Vin = 24V  
Vin = 48V  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
0.00  
0.25  
0.50  
0.75  
Load Current (A)  
Figure 21. Efficiency vs IOUT  
1.00  
1.25  
1.50  
1.75  
Load Current (A)  
C002  
C001  
Figure 20. Load Regulation  
Figure 23. Prebias Start-Up at VIN= 48 V and RLOAD = 3 Ω  
Figure 22. EN/UVLO Start-Up at VIN= 24 V and IOUT = 1 A  
20  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
Figure 25. Start-Up at VIN= 48 V and RLOAD = 10 Ω  
Figure 24. EN/UVLO Start-Up at VIN= 24 V and  
RLOAD = 100 Ω  
iLIND (500 mA/div)  
VSW (20 V/div)  
VSS (2 V/div)  
VOUT (5 V/div)  
Time = 50 µs/div)  
Figure 26. Load Transient (300 mA – 1.5 A) at VIN = 24 V  
With Type 3 Ripple Configuration  
Figure 27. Output Short-Circuit at VIN = 48 V  
Copyright © 2015–2018, Texas Instruments Incorporated  
21  
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
8.2.2 LM5160-Q1 Isolated Fly-Buck (18-V to 32-V Input, 12-V, 4.5-W Isolated Output)  
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's  
Power House blog series.  
Below is an application example of an isolated Fly-Buck converter that operates over an input voltage range of  
18 V to 32 V. It provides a stable 12-V isolated output voltage with an output power capability of 4.5 W. Figure 28  
shows the complete schematic of the Fly-Buck application circuit.  
Figure 28. LM5160-Q1 12-V, 4.5-W Fly-Buck Converter Schematic  
8.2.2.1 LM5160-Q1 Fly-Buck Design Requirements  
This LM5160-Q1 Fly-Buck application example is designed to operate from a 24-V DC supply with line variations  
from 18 V to 32 V. The example provides a space-optimized and efficient 12-V isolated output solution with  
secondary load current capability from 0 mA to 400 mA. The primary side remains unloaded in this application.  
The switching frequency is set at 300 kHz (nominal). This design achieves greater than 88% peak efficiency.  
Table 5. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
18 V to 32 V  
12 V  
Isolated output  
Isolated load current range  
Nominal switching frequency  
Peak Efficiency  
0 mA to 400 mA  
300 kHz  
88%  
8.2.2.2 Detailed Design Procedure  
The Fly-Buck converter design procedure closely follows the buck converter design outlined in LM5160-Q1  
Synchronous Buck (10-V to 60-V Input, 5-V Output, 1.5-A Load). The selection of primary output voltage,  
transformer turns ratio, rectifier diode, and output capacitors are covered here.  
8.2.2.2.1 Selection of VOUT1 and Turns Ratio  
The primary-side output voltage of a Fly-Buck converter must be no more than one half of the minimum input  
voltage. For a minimum VIN of 18 V, the primary output voltage (VOUT) must be no higher than 9 V. To generate  
an isolated output voltage of VOUT(ISO) = 12 V, a transformer turns ratio of 1 : 1.5 (N1 : N2) is selected. Using this  
turns ratio, calculate the required primary output voltage VOUT using Equation 22.  
22  
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
VOUT(ISO) + 0.7 V  
VOUT  
=
= 8.47 V  
1.5  
(22)  
The 0.7 V subtracted from VOUT(ISO) represents the forward voltage drop of the secondary rectifier diode. Fine  
tuning the primary side VOUT1 may be required to account for voltage errors due to the leakage inductance of the  
transformer and the resistance of the transformer windings and the low-side MOSFET of the LM5160-Q1.  
8.2.2.2.2 Secondary Rectifier Diode  
The secondary rectifier diode must block the maximum input voltage multiplied by the transformer turns ratio.  
Determine the minimum diode reverse voltage VR(diode) rating from Equation 23.  
N2  
VR(diode) = VIN(max) ì  
+ VOUT(ISO) = 32 V ì1.5 +12 V = 60 V  
N1  
(23)  
Select a diode with 60 V or higher reverse voltage rating for this application. If the input voltage (VIN) has  
transients above the normal operating maximum input voltage of 32 V, then the worst-case transient input  
voltage must be used in the diode voltage calculation given by Equation 23.  
8.2.2.2.3 External Ripple Circuit  
A Type 3 ripple circuit is required for Fly-Buck converter applications. The design procedure for ripple  
components is identical to that in a buck converter. See Ripple Configuration for ripple design information.  
8.2.2.2.4 Output Capacitor - COUT2  
The Fly-Buck output capacitor conducts higher ripple current than a buck converter output capacitor. Calculate  
the capacitive ripple for the isolated output capacitor based on the time the rectifier diode is off. During this time  
the entire output current is supplied by the output capacitor. Calculate the required capacitance for a worst-case  
VOUT2 (VOUT(ISO)) ripple voltage using Equation 24.  
IOUT2  
VOUT1  
1
COUT2  
=
ì
«
÷
÷
DVOUT2  
V
fsw  
IN(MIN)  
where  
ΔVOUT2 is the target ripple at the secondary output.  
(24)  
Equation 24 is an approximation and ignores the ripple components associated with ESR and ESL of the output  
capacitor. For a ΔVOUT2 = 100 mV, Equation 24 requires COUT2 = 6.5 µF. When selecting a ceramic capacitor,  
consider its voltage coefficient to ensure sufficient capacitance at the output voltage operating point.  
8.2.2.3 Application Curves  
14  
13  
12  
11  
10  
Vin = 18V  
9
8
Vin = 24V  
Vin = 32V  
0.0  
0.1  
0.2  
Secondary Load Current (A)  
Figure 29. Load Regulation  
0.3  
0.4  
0.5  
C002  
Figure 30. Efficiency vs IOUT2  
Copyright © 2015–2018, Texas Instruments Incorporated  
23  
 
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
VSW (20 V/div)  
VD1-ISOGND (20 V/div)  
iLSEC (500 mA/div)  
iLPRI (500 mA/div)  
Time = 1 µs/div  
Figure 32. Load Transient at IOUT2 = 100 mA - 300mA  
Figure 31. Primary Switch Node at VIN = 24 V  
and IOUT2 = 200 mA  
VOUT1 (10 V/div)  
VOUT2 (10 V/div)  
iLPRI (2 A/div)  
Time = 100 µs/div  
Figure 34. Secondary Short at IOUT2 = 600mA  
and IOUT1 = 200mA  
Figure 33. VIN Start-Up at IOUT2 = 200 mA  
8.3 Do's and Don'ts  
As mentioned earlier in Soft Start, the SS capacitor CSS must always be more than 1 nF in both buck and Fly-  
Buck converter applications. Apart from determining the start-up time, this capacitor serves as the external  
compensation of the internal GM error amplifier. A minimum value of 1 nF is necessary to maintain stability. The  
SS pin must not be left floating.  
The VCC pin of the LM5160-Q1 must not be biased with an external voltage source. When an improved  
efficiency requirement warrants an external VCC bias, the LM5160A must be used.  
24  
Copyright © 2015–2018, Texas Instruments Incorporated  
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
9 Power Supply Recommendations  
The LM5160-Q1 DC/DC converter is designed to operate from a wide input voltage range of 4.5 V to 65 V. The  
characteristics of the input supply must be compatible with the Absolute Maximum Ratings and Recommended  
Operating Conditions tables. In addition, the input supply must be capable of delivering the required input current  
to the fully-loaded regulator. Estimate the average input current with Equation 25.  
POUT  
I
=
IN  
V  
h
IN  
where  
η is the efficiency  
(25)  
If the regulator is connected to an input supply through long wires or PCB traces with a large impedance, take  
special care to achieve stable performance. The parasitic inductance and resistance of the input cables may  
have an adverse affect on converter operation, particularly during operation at low input voltage. The parasitic  
inductance in combination with the low-ESR ceramic input capacitors form an underdamped resonant circuit.  
This circuit can cause overvoltage transients at VIN each time the input supply is cycled on and off. The parasitic  
resistance causes the input voltage to dip during a load transient. The best way to solve such issues is to reduce  
the distance from the input supply to the regulator and use an aluminum or tantalum input capacitor in parallel  
with the ceramics. The moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and  
reduce any voltage overshoots. A capacitance in the range of 10 µF to 47 µF is usually sufficient to provide input  
parallel damping and helps to hold the input voltage steady during large load transients.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for  
DC-DC Converters (SNVA489) provides helpful suggestions when designing an input filter for any switching  
regulator.  
Copyright © 2015–2018, Texas Instruments Incorporated  
25  
 
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
A proper layout is essential for optimum performance of the circuit. In particular, observe the following guidelines:  
CIN: The loop consisting of input capacitor (CIN), VIN pin and PGND pin carries the switching current. The  
input capacitor must be placed close to the IC, directly across VIN and PGND pins, and the connections to  
these two pins must be direct to minimize the switching power loop area. In general, it is not possible to place  
all of input capacitances near the IC. A good layout practice includes placing the bulk capacitor(s) as close as  
possible to the VIN pin (see Figure 35). A bypass capacitor measuring 0.1 µF must be placed directly across  
VIN and PGND (pin 3 and 2, respectively), as close as possible to the IC while complying with all layout  
design rules.  
CVCC and CBST: The VCC and bootstrap (BST) bypass capacitors supply switching currents to the high-side  
and low-side gate drivers. These two capacitors must also be placed as close to the IC as possible, and the  
connecting trace length and loop area must be minimized (see Figure 35).  
The feedback trace carries the output voltage information and a small ripple component that is necessary for  
proper operation of the LM5160-Q1. Therefore, take care while routing the feedback trace to avoid coupling  
any noise into this pin. In particular, the feedback trace must be short and not run close to magnetic  
components, or parallel to any other switching trace.  
SW trace: The SW node switches rapidly between VIN and GND every cycle and is therefore a source of  
noise. The SW node copper area must be minimized. In particular, the SW node must not be inadvertently  
connected to a copper plane or pour.  
10.2 Layout Example  
VIN  
AGND  
PGND  
VIN  
SW  
CIN  
CIN  
SW  
CBST  
LM5160  
BST  
VOUT  
EN/  
UVLO  
VCC  
FB  
THERMAL  
PAD  
CVCC  
RFB2  
RON  
SS  
RFB1  
FPWM  
Figure 35. Placement of Bypass Capacitors  
26  
版权 © 2015–2018, Texas Instruments Incorporated  
 
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
相关开发支持,请参见以下文档:  
LM5160 降压转换器快速入门计算器  
LM5160 Fly-Buck 转换器快速入门计算器  
LM5160 PSpice 瞬态模型》  
LM5160 未加密 PSpice 瞬态模型》  
LM5160 TINA-TI Fly-Buck 参考设计》  
有关 TI 的参考设计库,请访问 TIDesigns  
有关 TI WEBENCH 设计环境,请访问 WEBENCH® 设计中心  
要查看本产品的相关器件,请参阅 LM5161-Q1 100V 1A 同步降压转换器  
11.1.2.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用 LM5160-Q1 器件及其 WEBENCH® 电源设计器创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
如需相关文档,请参阅以下内容:  
LM5160ALM5160 降压 EVM 用户指南》(SNVU441)  
LM5160 Fly-Buck(隔离降压)用户指南》(SNVU408)  
AN-2292:设计隔离式降压 (Fly-buck) 转换器》(SNVA674)  
AN-1481:在恒定导通时间稳压器设计中控制输出纹波并获得 ESR 非相关性》(SNVA166)  
TI Designs:  
《适用于空气断路器的高分辨率、快速启动模拟前端参考设计》(TIDUB80)  
《适用于三相逆变器的宽输入隔离式 IGBT 栅极驱动 Fly-Buck 电源》(TIDU670)  
《适用于 25W PLC 控制器单元的输入保护和备用电源参考设计》(TIDUCC7)  
《采用 24V 交流电源的非隔离式 RS-485 Wi-Fi 桥接器》(TIDUA48)  
《采用 24V 交流电源的隔离式 RS-485 Wi-Fi 桥接器参考设计》(TIDUA49)  
《具有超小型耦合电感器的双路输出隔离式 Fly-Buck 参考设计》(TIDUC31)  
2.5W 双极隔离型 Fly-Buck 超紧凑参考设计》(TIDUCA3)  
《适用于模拟输入模块的小型隔离式直流/直流转换器参考设计》(TIDUBR7)  
版权 © 2015–2018, Texas Instruments Incorporated  
27  
LM5160-Q1  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
www.ti.com.cn  
文档支持 (接下页)  
《适用于超声波的 2.3nV/Hz 差动、时间增益控制 (TGC) DAC 参考设计》(TIDUD38)  
《用于确定绝缘电阻的泄漏电流测量参考设计》(TIDU873)  
《适用于 PoE 应用的第 3 类隔离式 Fly-Buck 电源模块参考设计》(TIDU779)  
《适用于 HEV/EV 牵引逆变器的 IGBT 模块热保护参考设计》(TIDUBJ2)  
白皮书:  
《使用 Fly-Buck 转换器设计隔离式动态轨》  
《评估适用于具有成本效益的严苛应用的宽 VIN、低 EMI 同步降压 电路》  
《电源的传导 EMI 规格概述》  
《电源的辐射 EMI 规格概述》  
Power House 博客:  
Fly-Buck:常见问题解答 (FAQ)  
借助 Fly-Buck 拓扑降低 EMI 并实现安静切换  
Fly-Buck 转换器 PCB 布局提示  
Fly-Buck 在何种情况下会成为满足您隔离式电源需求的最佳选择?  
如何利用 Fly-Buck 转换器实现 EMC 和隔离设计  
WEBENCH® 电源设计器创建 Fly-Buck 转换器  
AN-2162:轻松解决直流/直流转换器的传导 EMI 问题》(SNVA489)  
《汽车启动仿真器用户指南》(SLVU984)  
《使用新的热指标》(SBVA025)  
《半导体和 IC 封装热指标》(SPRA953)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
Fly-Buck, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
28  
版权 © 2015–2018, Texas Instruments Incorporated  
LM5160-Q1  
www.ti.com.cn  
ZHCSDV5C JULY 2015REVISED OCTOBER 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2018, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5160QPWPQ1  
LM5160QPWPRQ1  
LM5160QPWPTQ1  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
14  
14  
14  
94  
RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
5160  
QPWPQ1  
ACTIVE  
ACTIVE  
PWP  
2500 RoHS & Green  
250 RoHS & Green  
SN  
SN  
5160  
QPWPQ1  
PWP  
5160  
QPWPQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5160QPWPRQ1  
LM5160QPWPTQ1  
HTSSOP PWP  
HTSSOP PWP  
14  
14  
2500  
250  
330.0  
178.0  
12.4  
12.4  
6.9  
6.9  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5160QPWPRQ1  
LM5160QPWPTQ1  
HTSSOP  
HTSSOP  
PWP  
PWP  
14  
14  
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM5160QPWPQ1  
14  
94  
495  
8
2514.6  
4.06  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
4X (0.2)  
NOTE 5  
4X (0.05)  
NOTE 5  
8
7
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.255  
3.205  
15  
1.2 MAX  
0.15  
0.05  
0 - 8  
14  
1
0.75  
0.50  
DETAIL A  
(1)  
TYPICAL  
3.155  
3.105  
4214867/A 09/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
(3.155)  
SYMM  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
14X (1.5)  
1
14  
14X (0.45)  
(1.1)  
TYP  
15  
SYMM  
(3.255)  
(5)  
NOTE 9  
12X (0.65)  
8
7
(
0.2) TYP  
VIA  
(R0.05) TYP  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-14  
4214867/A 09/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.155)  
BASED ON  
0.125 THICK  
STENCIL  
14X (1.5)  
(R0.05) TYP  
1
14  
14X (0.45)  
15  
(3.255)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
12X (0.65)  
8
7
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.8)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.53 X 3.64  
3.155 X 3.255 (SHOWN)  
2.88 X 2.97  
0.125  
0.15  
0.175  
2.67 X 2.75  
4214867/A 09/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY