LM5163H-Q1 [TI]

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器;
LM5163H-Q1
型号: LM5163H-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器

转换器
文件: 总36页 (文件大小:2912K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
LM5163H-Q1 165°C 结温100V0.5A10.5µA IQ 汽车类降压转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
动力总成系统中的冷却液可能很昂贵。随着制造商通过  
减少系统中冷却液水、空气的使用来降低成本的现  
实要求动力总成对环境温度的要求不断提高。此外,  
ADAS摄像头模块和动力总成中的耗电系统通常在  
小机壳中需要较高的输出功率。这些要求促使直流/直  
流转换器需要在高环境温度下工作从而导致结温超过  
150°CLM5163H-Q1 同步降压转换器设计用于在最  
165°C 的高温结温下工作可实现支持高环境温度  
和输出功率规格的高密度解决方案。LM5163H-Q1 可  
在较宽的输入电压范围内工作从而最大限度地减少了  
对外部浪涌抑制器件的需求。  
– 器件温度等140°C +125°C 的环境温  
度范围  
• 专为可靠耐用的应用而设计  
6V 100V 的宽输入电压范围  
– 结温范围-40°C +165°C  
165°C 的热关断保护  
– 峰值和谷值电流限制保护  
– 输UVLO 和固定3ms 软启动  
• 针对超EMI 要求进行了优化  
– 符CISPR 25 5 标准  
• 适用于可扩展的汽车电源  
50ns 的最短可控导通时间有助于实现较大的降压比,  
支持从 48V 标称输入到低电压轨的直接降压转换从  
而降低系统的复杂性并减少解决方案成本。LM5163H-  
Q1 够在输入电压突降至 6V 根据需要以接近  
100% 的占空比继续工作因而是高性能 48V 电池汽  
车应用MHEV/EV 系统的理想选择。  
– 最短导通时间和关闭时间低50ns  
– 高1MHz 的可调节开关频率  
– 可实现高轻负载效率的二极管仿真  
10.5µA 空载输入静态电流  
3µA 关断静态电流  
• 通过集成技术减小解决方案尺寸降低成本  
LM5163H-Q1 具有比汽车 AEC-Q100 1 级标准更高的  
温度曲线并采8 SO PowerPAD集成电路封  
装。该器件的 1.27mm 引脚间距可以为高电压应用提  
供足够的间距。  
COT 模式控制架构  
– 集成0.725ΩNFET 降压开关  
– 集成0.34ΩNFET 同步整流器省去了外部肖  
特基二极管  
1.2V 内部电压基准  
– 无环路补偿组件  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
– 内VCC 偏置稳压器和自举二极管  
• 使WEBENCH® Power Designer 创建定制稳压器  
设计  
DDASO PowerPAD,  
8)  
LM5163H-Q1  
4.89mm × 3.90mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
48V 轻混合动ECU 偏置电源  
HEV/EV 直流/直流转换器  
汽车高ADAS 应用  
100  
95  
90  
85  
80  
75  
VOUT = 12 V  
IOUT = 0.5 A  
LO  
U1  
120 µH  
VIN = 6 V...100 V  
VIN  
SW  
CBST  
2.2 nF  
LM5163H-Q1  
CIN  
RFB1  
2.2 µF  
EN/UVLO  
RON  
BST  
448 kW  
COUT  
22 µF  
70  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
FB  
RRON  
65  
60  
RFB2  
100 kW  
49.9 kW  
PGOOD  
GND  
0.001  
0.01  
0.1  
0.5  
D001  
Load (A)  
典型应用效率VOUT = 12V  
*VOUT tracks VIN if VIN < 12 V  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBN8  
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 17  
8.3 Power Supply Recommendations.............................24  
8.4 Layout....................................................................... 24  
9 Device and Documentation Support............................28  
9.1 Device Support......................................................... 28  
9.2 Documentation Support............................................ 28  
9.3 接收文档更新通知..................................................... 29  
9.4 支持资源....................................................................29  
9.5 Trademarks...............................................................29  
9.6 静电放电警告............................................................ 29  
9.7 术语表....................................................................... 29  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2019) to Revision A (April 2023)  
Page  
• 更新了数据表标题...............................................................................................................................................1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Remove maximum specifications for IQ-SHUTDOWN, IQ-SLEEP1, IQ-ACTIVE ............................................................ 5  
Updated trademark information.......................................................................................................................... 9  
Removed random color from image................................................................................................................. 12  
Removed random color in image......................................................................................................................27  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
2
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
SW  
1
8
VIN  
BST  
2
3
7
6
EP  
EN/UVLO  
PGOOD  
RON  
FB  
4
5
5-1. DDA Package 8-Pin SO PowerPAD™ Integrated Circuit Package Top View  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
1
GND  
G
Ground connection for internal circuits  
Regulator supply input pin to high-side power MOSFET and internal bias regulator. Connect directly  
to the input supply of the buck converter with short, low impedance paths.  
2
3
VIN  
P/I  
Precision enable and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is  
below 1.1 V, the converter is in shutdown mode with all functions disabled. If the UVLO voltage is  
greater than 1.1 V and below 1.5 V, the converter is in standby mode with the internal VCC  
regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up  
sequence begins.  
EN/UVLO  
I
4
5
RON  
FB  
I
I
On-time programming pin. A resistor between this pin and GND sets the buck switch on-time.  
Feedback input of voltage regulation comparator  
Power good indicator. This pin is an open-drain output pin. Connect to a source voltage through an  
external pullup resistor between 10 kΩto 100 kΩ.  
6
7
PGOOD  
BST  
O
Bootstrap gate-drive supply. Required to connect a high-quality 2.2-nF 50-V X7R ceramic capacitor  
between BST and SW to bias the internal high-side gate driver.  
P/I  
Switching node that is internally connected to the source of the high-side NMOS buck switch and  
the drain of the low-side NMOS synchronous rectifier. Connect to the switching node of the power  
inductor.  
8
SW  
EP  
P
Exposed pad of the package. No internal electrical connection. Solder the EP to the GND pin and  
connect to a large copper plane to reduce thermal resistance.  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of 40°C to +165°C (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
100  
100  
5.5  
UNIT  
VIN to GND  
EN to GND  
FB to GND  
RON to GND  
Input voltage  
V
5.5  
Bootstrap  
capacitor  
External BST to SW capacitance  
1.5  
2.5  
nF  
V
BST to GND  
105.5  
5.5  
0.3  
0.3  
1.5  
3  
BST to SW  
Output voltage  
SW to GND  
100  
SW to GND (20-ns transient)  
PGOOD to GND  
14  
165  
150  
0.3  
40  
65  
Operating junction temperature, TJ  
Storage temperature, Tstg  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC-Q100-002  
HBM ESD Classification Level 2, all pins (1)  
±2000  
V
Electrostatic  
discharge  
Charged device model (CDM), per AEC-Q100-011  
CDM ESD Classification level C4B. All pins except 1, 4, 5, and 8  
V(ESD)  
±500  
±750  
Charged device model (CDM), per AEC-Q100-011  
CDM ESD Classification level C4B. Pins 1, 4, 5, and 8  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to +165°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VIN  
Input voltage  
6
100  
VSW  
Switch node voltage  
Enable voltage  
100  
V
VEN/UVLO  
FSW  
CBST  
tON  
100  
V
Switching frequency  
External BST to SW capacitance  
Programmable on-time  
1000  
kHz  
nF  
ns  
2.2  
50  
10000  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
4
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
 
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
6.4 Thermal Information  
LM5163H-Q1  
THERMAL METRIC(1)  
DDA (SOIC)  
8 PINS  
43.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
59.5  
16.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.0  
ΨJT  
16.3  
ΨJB  
RθJC(bot)  
3.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the full 40°C to 165°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
SUPPLY CURRENT  
IQ-SHUTDOWN VIN shutdown current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VEN = 0 V  
3
10.5  
600  
µA  
µA  
µA  
IQ-SLEEP1  
IQ-ACTIVE  
EN/UVLO  
VSD-RISING  
VSD-FALLING  
VEN-RISING  
VEN-FALLING  
FEEDBACK  
VREF  
VIN sleep current  
VIN active current  
VEN = 2.5 V, VFB = 1.5 V  
VEN = 2.5 V  
Shutdown threshold  
Shutdown threshold  
Enable threshold rising  
Enable threshold falling  
VEN/UVLO rising  
VEN/UVLO falling  
VEN/UVLO rising  
VEN/UVLO falling  
1.1  
V
V
V
V
0.45  
1.45  
1.35  
1.5  
1.4  
1.55  
1.44  
FB regulation voltage  
VFB falling  
1.181  
1.2  
1.218  
V
TIMING  
tON1  
On-time1  
On-time2  
On-time3  
On-time4  
5000  
1650  
2550  
830  
ns  
ns  
ns  
ns  
VVIN = 6 V, RRON = 75 kΩ  
VVIN = 6 V, RRON = 25 kΩ  
VVIN = 12 V, RRON = 75 kΩ  
VVIN = 12 V, RRON = 25 kΩ  
tON2  
tON3  
tON4  
PGOOD  
FB upper threshold for PGOOD high to  
low  
VPG-UTH  
VPG-LTH  
VPG-HYS  
VFB rising  
VFB falling  
1.105  
1.055  
1.14  
1.08  
1.175  
1.1  
V
V
FB lower threshold for PGOOD high to  
low  
PGOOD upper and lower threshold  
hysteresis  
VFB falling  
VFB = 1 V  
60  
30  
mV  
RPG  
PGOOD pulldown resistance  
Ω
BOOTSTRAP  
VBST-UV  
Gate drive UVLO  
VBST rising  
2.7  
3.4  
V
POWER SWITCHES  
RDSON-HS High-side MOSFET RDSON  
RDSON-LS Low-side MOSFET RDSON  
0.725  
0.33  
ISW = 100 mA  
Ω
Ω
ISW = 100 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the full 40°C to 165°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
tSS  
Internal soft-start time  
1.75  
3
4.75  
ms  
CURRENT LIMIT  
IPEAK1  
Peak current limit threshold (HS)  
0.63  
0.63  
0.75  
0.75  
100  
0.6  
0.87  
0.87  
A
A
IPEAK2  
Peak current limit threshold (LS)  
Min of (IPEAK1 or IPEAK2) minus IVALLEY  
Valley current limit threshold  
IDELTA-ILIM  
IVALLEY  
mA  
A
0.5  
0.72  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
10  
°C  
°C  
TSD-HYS  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
6
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
At TA = 25°C, VOUT = 12 V, LO = 120 µH, RRON = 105 kΩ, unless otherwise specified.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
0.001  
0.01  
0.1  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Load (A)  
Load (A)  
D001  
D002  
6-1. Conversion Efficiency (Log Scale)  
6-2. Conversion Efficiency (Linear Scale)  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
Sleep  
Shutdown  
Sleep  
Shutdown  
0
0
-40  
-10  
20  
50  
80  
110  
140  
165  
0
10  
20  
30  
40  
Input Voltage (V)  
50  
60  
70  
80  
90 100  
Junction Temperature (èC)  
D005  
D006  
6-3. VIN Shutdown and Sleep Supply Current versus  
6-4. VIN Shutdown and Sleep Supply Current versus Input  
Temperature  
Voltage  
700  
675  
650  
625  
600  
575  
550  
525  
600  
580  
560  
540  
520  
500  
-40  
-10  
20  
50  
80  
110  
140  
165  
0
10  
20  
30  
40  
Input Voltage (V)  
50  
60  
70  
80  
90 100  
Junction Temperature (èC)  
D007  
D008  
6-5. VIN Active Current versus Temperature  
6-6. VIN Active Current versus Input Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
At TA = 25°C, VOUT = 12 V, LO = 120 µH, RRON = 105 kΩ, unless otherwise specified.  
1.21  
1.205  
1.2  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
1.195  
High-Side FET  
Low-Side FET  
1.19  
-40  
-10  
20  
50  
80  
110  
140  
165  
-40  
-10  
20  
50  
80  
110  
140  
165  
Junction Temperature (èC)  
Junction Temperature (èC)  
D009  
D010  
6-7. Feedback Comparator Threshold versus Temperature  
6-8. MOSFETs On-State Resistance versus Temperature  
6
0.8  
RRT = 105 kW  
RRT = 43.2 kW  
5
4
3
2
1
0
0.7  
0.6  
Peak Current  
Valley Current  
0
10  
20  
30  
40  
50  
60  
Input Voltage (V)  
70  
80  
90 100  
0.5  
-40  
D012  
-10  
20  
50  
80  
110 140 165  
6-10. COT On-Time versus VIN  
Junction Temperature (èC)  
D011  
6-9. Peak and Valley Current Limit versus Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
8
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM5163H-Q1 is an easy-to-use, ultra-low IQ constant on-time (COT) synchronous step-down buck regulator.  
With integrated high-side and low-side power MOSFETs, the LM5163H-Q1 is a low-cost, highly efficient buck  
converter that operates from a wide input voltage of 6 V to 100 V, delivering up to 0.5-A DC load current. The  
LM5163H-Q1 is available in an 8-pin SO PowerPAD integrated circuit package with 1.27-mm pin pitch for  
adequate spacing in high-voltage applications. This constant on-time (COT) converter is designed for low-noise,  
high-current, and fast load transient requirements, operating with a predictive on-time switching pulse. Over the  
input voltage range, input voltage feedforward is employed to achieve a quasi-fixed switching frequency. A  
controllable on-time as low as 50 ns permits high step-down ratios and a minimum forced off-time of 50 ns  
provides extremely high duty cycles, allowing VIN to drop close to VOUT before frequency foldback occurs. At light  
loads, the device transitions into an ultra-low IQ mode to maintain high efficiency and prevent draining battery  
cells connected to the input when the system is in standby. The LM5163H-Q1 implements a smart peak and  
valley current limit detection circuit to ensure robust protection during output short-circuit conditions. Control loop  
compensation is not required for this regulator, reducing design time and external component count.  
The LM5163H-Q1 incorporates additional features for comprehensive system requirements, including an open-  
drain power good circuit for the following:  
Power-rail sequencing and fault reporting  
Internally-fixed soft start  
Monotonic start-up into prebiased loads  
Precision enable for programmable line undervoltage lockout (UVLO)  
Smart cycle-by-cycle current limit for optimal inductor sizing  
Thermal shutdown with automatic recovery  
These features enable a flexible and easy-to-use platform for a wide range of applications. The LM5163H-Q1  
supports a wide range of end-equipment systems requiring a regulated output from a high input supply with the  
ability to support high output power at high ambient temperatures. The following are examples of such end  
equipment systems:  
48-V automotive mild-hybrid systems  
High-temperature Automotive ADAS and powertrain systems  
The pin arrangement is designed for a simple layout requiring only a few external components.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
7.2 Functional Block Diagram  
VIN  
VIN  
VDD  
BIAS  
REGULATOR  
CIN  
VDD UVLO  
RUV1  
EN/UVLO  
STANDBY  
œ
+
THERMAL  
RUV2  
SHUTDOWN  
1.5 V  
SHUTDOWN  
œ
+
BST  
LOGIC  
0.4 V  
VIN  
CBST  
RON  
ON/OFF  
TIMERS  
DISABLE  
CONSTANT  
ON-TIME  
CONTROL  
LOGIC  
VOUT  
LO  
VOUT  
SW  
VCC  
RFB1  
FEEDBACK  
COMPARATOR  
SLEEP  
COUT  
FB  
DETECT  
œ
+
ZC  
RRON  
VREF  
+
PGOOD  
ZX DETECT  
œ
RFB2  
PEAK/VALLEY  
CURRENT LIMIT  
FB  
œ
+
GND  
PGOOD  
COMPARATOR  
0.9*VREF  
7.3 Feature Description  
7.3.1 Control Architecture  
The LM5163H-Q1 step-down switching converter employs a constant on-time (COT) control scheme. The COT  
control scheme sets a fixed on-time tON of the high-side FET using a timing resistor (RON). The tON is adjusted as  
Vin changes and is inversely proportional to the input voltage to maintain a fixed frequency when in continuous  
conduction mode (CCM). After tON expires, the high-side FET remains off until the feedback pin is equal or below  
the reference voltage of 1.2 V. To maintain stability, the feedback comparator requires a minimal ripple voltage  
that is in phase with the inductor current during the off-time. Furthermore, this change in feedback voltage during  
the off-time must be large enough to dominate any noise present at the feedback node. The minimum  
recommended ripple voltage is 20 mV. See 7-1 for different types of ripple injection schemes that ensure  
stability over the full input voltage range.  
During a rapid start-up or a positive load step, the regulator operates with minimum off-times until regulation is  
achieved. This feature enables extremely fast load transient response with minimum output voltage undershoot.  
When regulating the output in steady-state operation, the off-time automatically adjusts itself to produce the SW-  
pin duty cycle required for output voltage regulation to maintain a fixed switching frequency. In CCM, the  
switching frequency FSW is programmed by the RRON resistor. Use 方程1 to calculate the switching frequency.  
V
V × 2500  
OUT  
R
F
kHz =  
(1)  
SW  
kΩ  
RON  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
10  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
7-1. Ripple Generation Methods  
TYPE 1  
TYPE 2  
TYPE 3  
Lowest Cost  
Reduced Ripple  
Minimum Ripple  
LO  
LO  
LO  
VOUT  
VOUT  
VIN  
VIN  
VOUT  
VIN  
VIN  
SW  
VIN  
SW  
VIN  
SW  
RA  
CA  
LM5163H-Q1  
LM5163H-Q1  
CBST  
CBST  
LM5163H-Q1  
CFF  
CIN  
CIN  
CBST  
RFB1  
RFB1  
RESR  
RESR  
EN/UVLO  
BST  
EN/UVLO  
BST  
EN/UVLO  
BST  
RFB1  
COUT  
CB  
FB  
FB  
RON  
RON  
FB  
RON  
RFB2  
COUT  
RFB2  
COUT  
RRON  
RRON  
RRON  
RFB2  
PGOOD  
PGOOD  
GND  
GND  
PGOOD  
GND  
10  
× R  
FB1  
C
(7)  
A
20mV  
∆ I  
F
R
SW  
FB2  
R
(4)  
ESR  
L nom  
20mV × V  
× ∆ I  
OUT  
R
R
(2)  
ESR  
R × C  
(8)  
V
A
A
FB1  
L nom  
V
OUT  
V
− V  
OUT  
× t  
R
C
(5)  
(6)  
IN − nom  
ON @V  
IN − nom  
ESR  
2 × V × F  
× C  
IN  
SW  
OUT  
V
20mV  
OUT  
(3)  
ESR  
2 × V × F  
IN SW  
× C  
OUT  
1
t
FF  
TR − settling  
2π × F  
SW  
× R  
FB1  
R
FB2  
C
(9)  
B
3 × R  
FB1  
7-1 presents three different methods for generating appropriate voltage ripple at the feedback node. The  
type-1 ripple generation method uses a single resistor, RESR, in series with the output capacitor. The generated  
voltage ripple has two components: capacitive ripple caused by the inductor ripple current charging and  
discharging the output capacitor and resistive ripple caused by the inductor ripple current flowing into the output  
capacitor and through series resistance RESR. The capacitive ripple component is out of phase with the inductor  
current and does not decrease monotonically during the off-time. The resistive ripple component is in phase with  
the inductor current and decreases monotonically during the off-time. The resistive ripple must exceed the  
capacitive ripple at VOUT for stable operation. If this condition is not satisfied, unstable switching behavior is  
observed in COT converters, with multiple on-time bursts in close succession followed by a long off time. 方程式  
2 and 方程3 define the value of the series resistance RESR to ensure sufficient in-phase ripple at the feedback  
node.  
Type-2 ripple generation uses a CFF capacitor in addition to the series resistor. As the output voltage ripple is  
directly AC-coupled by CFF to the feedback node, the RESR and ultimately the output voltage ripple are reduced  
by a factor of VOUT / VFB1  
.
Type-3 ripple generation uses an RC network consisting of RA and CA, and the switch node voltage to generate  
a triangular ramp that is in-phase with the inductor current. This triangular wave is the AC-coupled into the  
feedback node with capacitor CB. Because this circuit does not use output voltage ripple, it is suited for  
applications where low output voltage ripple is critical. The AN-1481 Controlling Output Ripple and Achieving  
ESR Independence in Constant On-time (COT) Regulator Designs Application Note provides additional details  
on this topic.  
Diode emulation mode (DEM) prevents negative inductor current, and pulse skipping maintains the highest  
efficiency at light load currents by decreasing the effective switching frequency. DEM operation occurs when the  
synchronous power MOSFET switches off as inductor valley current reaches zero. Here, the load current is less  
than half of the peak-to-peak inductor current ripple in CCM. Turning off the low-side MOSFET at zero current  
reduces switching loss, and preventing negative current conduction reduces conduction loss. Power conversion  
efficiency is higher in a DEM converter than an equivalent forced-PWM CCM converter. With DEM operation, the  
duration that both power MOSFETs remain off progressively increases as load current decreases. When this idle  
duration exceeds 15 μs, the converter transitions into an ultra-low IQ mode, consuming only 10-μA quiescent  
current from the input.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
7.3.2 Internal VCC Regulator and Bootstrap Capacitor  
The LM5163H-Q1 contains an internal linear regulator that is powered from VIN with a nominal output of 5 V,  
eliminating the need for an external capacitor to stabilize the linear regulator. The internal VCC regulator  
supplies current to internal circuit blocks including the synchronous FET driver and logic circuits. The input pin  
(VIN) can be connected directly to line voltages up to 100 V. Because the power MOSFET has a low total gate  
charge, use a low bootstrap capacitor value to reduce the stress on the internal regulator. It is required to select  
a high-quality 2.2-nF 50-V X7R ceramic bootstrap capacitor as specified in the 7.3.7 . Selecting a higher value  
capacitance stresses the internal VCC regulator and damages the device. A lower capacitance than required is  
not sufficient to drive the internal gate of the power MOSFET. An internal diode connects from the VCC regulator  
to the BST pin to replenish the charge in the high-side gate drive bootstrap capacitor when the SW voltage is  
low.  
7.3.3 Regulation Comparator  
The feedback voltage at FB is compared to an internal 1.2-V reference. The LM5163H-Q1 voltage regulation  
loop regulates the output voltage by maintaining the FB voltage equal to the internal reference voltage, VREF. A  
resistor divider programs the ratio from output voltage VOUT to FB.  
For a target VOUT setpoint, use 方程10 to calculate RFB2 based on the selected RFB1  
.
1.2V  
R
=
× R  
1.2V  
(10)  
FB2  
FB1  
V
OUT  
TI recommends selecting RFB1 in the range of 100 kΩ to 1 Mfor most applications. A larger RFB1 consumes  
less DC current, which is mandatory if light-load efficiency is critical. TI does not recommend RFB1 larger than 1  
MΩ as the feedback path becomes more susceptible to noise. Routing the feedback trace away from the noisy  
area of the PCB and keeping the feedback resistors close to the FB pin is important.  
7.3.4 Internal Soft Start  
The LM5163H-Q1 employs an internal soft-start control ramp that allows the output voltage to gradually reach a  
steady-state operating point, thereby reducing start-up stresses and current surges. The soft-start feature  
produces a controlled, monotonic output voltage start-up. The soft-start time is internally set to 3 ms.  
7.3.5 On-Time Generator  
The on-time of the LM5163H-Q1 high-side FET is determined by the RRON resistor and is inversely proportional  
to the input voltage, VIN. The inverse relationship with VIN results in a nearly constant frequency because VIN is  
varied. Use 方程11 to calculate the on-time.  
R
kΩ  
RON  
V × 2.5  
t
µs =  
(11)  
ON  
V
IN  
Use 方程12 to determine the RRON resistor to set a specific switching frequency in CCM.  
V
V × 2500  
OUT  
F
R
=  
(12)  
RON  
kHz  
SW  
Select RRON for a minimum on-time (at maximum VIN) greater than 50 ns for proper operation. In addition to this  
minimum on-time, the maximum frequency for this device is limited to 1 MHz.  
7.3.6 Current Limit  
The LM5163H-Q1 manages overcurrent conditions with cycle-by-cycle current limiting of the peak inductor  
current. The current sensed in the high-side MOSFET is compared every switching cycle to the current limit  
threshold (0.75 A). To protect the converter from potential current runaway conditions, the LM5163H-Q1 includes  
a foldback valley current limit feature set at 0.6 A that is enabled if a peak current limit is detected. As shown in  
7-1, if the peak current in the high-side MOSFET exceeds 0.75 A (typical), the present cycle is immediately  
terminated regardless of the programmed on-time (tON), the high-side MOSFET is turned off and the foldback  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
valley current limit is activated. The low-side MOSFET remains on until the inductor current drops below this  
foldback valley current limit, after which the next on-pulse is initiated. This method folds back the switching  
frequency to prevent overheating and limits the average output current to less than 0.75 A to ensure proper  
short-circuit and heavy-load protection of the LM5163H-Q1.  
VFB  
VREF  
iL  
Peak ILIM  
IAVG(ILIM)  
Valley ILIM  
IAVG1  
tON  
tSW  
<tON  
>tSW  
7-1. Current Limit Timing Diagram  
Current is sensed after a leading-edge blanking time following the high-side MOSFET turnon transition. The  
propagation delay of the current limit comparator is 100 ns. During high step-down conditions when the on-time  
is less than 100 ns, a back-up peak current limit comparator in the low-side FET also set at 0.75 A enables the  
foldback valley current limit set at 0.6 A. This innovative current limit scheme enables ultra-low duty-cycle  
operation, permitting large step-down voltage conversions while ensuring robust protection of the converter.  
7.3.7 N-Channel Buck Switch and Driver  
The LM5163H-Q1 integrates an N-channel buck switch and associated floating high-side gate driver. The gate-  
driver circuit works in conjunction with an external bootstrap capacitor and an internal high-voltage bootstrap  
diode. A high-quality 2.2-nF, 50-V X7R ceramic capacitor connected between the BST and SW pins provides the  
voltage to the high-side driver during the buck switch on-time. See the 7.3.2 section for limitations. During the  
off-time, the SW pin is pulled down to approximately 0 V, and the bootstrap capacitor charges from the internal  
VCC through the internal bootstrap diode. The minimum off-timer, set to 50 ns (typical), ensures a minimum time  
each cycle to recharge the bootstrap capacitor. When the on-time is less than 300 ns, the minimum off-timer is  
forced to 250 ns to ensure that the BST capacitor is charged in a single cycle. This is vital during wake up from  
sleep mode when the BST capacitor is most likely discharged.  
7.3.8 Synchronous Rectifier  
The LM5163H-Q1 provides an internal low-side synchronous rectifier N-channel MOSFET. This MOSFET  
provides a low-resistance path for the inductor current to flow when the high-side MOSFET is turned off.  
The synchronous rectifier operates in a diode emulation mode. Diode emulation enables the regulator to operate  
in a pulse-skipping mode during light-load conditions. This mode leads to a reduction in the average switching  
frequency at light loads. Switching losses and FET gate driver losses, both of which are proportional to switching  
frequency, are significantly reduced at very light loads and efficiency is improved. This pulse-skipping mode also  
reduces the circulating inductor current and losses associated with conventional CCM at light loads.  
7.3.9 Enable/Undervoltage Lockout (EN/UVLO)  
The LM5163H-Q1 contains a dual-level EN/UVLO circuit. When the EN/UVLO voltage is below 1.1 V (typical),  
the converter is in a low-current shutdown mode and the input quiescent current (IQ) is dropped down to 3 µA.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
When the voltage is greater than 1.1 V but less than 1.5 V (typical), the converter is in standby mode. In standby  
mode, the internal bias regulator is active while the control circuit is disabled. When the voltage exceeds the  
rising threshold of 1.5 V (typical), normal operation begins. Install a resistor divider from VIN to GND to set the  
minimum operating voltage of the regulator. Use 方程式 13 and 方程式 14 to calculate the input UVLO turnon  
and turnoff voltages, respectively.  
R
UV1  
V
= 1.5V × 1 +  
(13)  
(14)  
IN on  
R
UV2  
R
R
UV1  
UV2  
V
= 1.4V × 1 +  
IN off  
TI recommends selecting RUV1 in the range of 1 Mfor most applications. A larger RUV1 consumes less DC  
current, which is mandatory if light-load efficiency is critical. If input UVLO is not required, the power-supply  
designer can either drive EN/UVLO as an enable input driven by a logic signal or connect it directly to VIN. If EN/  
UVLO is directly connected to VIN, the regulator begins switching as soon as the internal bias rails are active.  
7.3.10 Power Good (PGOOD)  
The LM5163H-Q1 provides a PGOOD flag pin to indicate when the output voltage is within the regulation level.  
Use the PGOOD signal for start-up sequencing of downstream converters or for fault protection and output  
monitoring. PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater than 14 V.  
The typical range of pullup resistance is 10 kto 100 k. If necessary, use a resistor divider to decrease the  
voltage from a higher voltage pullup rail. When the FB voltage exceeds 95% of the internal reference VREF, the  
internal PGOOD switch turns off and PGOOD can be pulled high by the external pullup. If the FB voltage falls  
below 90% of VREF, an internal 25-Ω PGOOD switch turns on and PGOOD is pulled low to indicate that the  
output voltage is out of regulation. The rising edge of PGOOD has a built-in deglitch delay of 5 µs.  
7.3.11 Thermal Protection  
The LM5163H-Q1 includes an internal junction temperature monitor to protect the device in the event of a higher  
than normal junction temperature. If the junction temperature exceeds 175°C (typical), thermal shutdown occurs  
to prevent further power dissipation and temperature rise. The LM5163H-Q1 initiates a restart sequence when  
the junction temperature falls to 165°C, based on a typical thermal shutdown hysteresis of 10°C. This is a non-  
latching protection, so the device cycles into and out of thermal shutdown if the fault persists.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
14  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
EN/UVLO provides ON and OFF control for the LM5163H-Q1. When VEN/UVLO is below approximately 1.1 V, the  
device is in shutdown mode. Both the internal linear regulator and the switching regulator are off. The quiescent  
current in shutdown mode drops to 3 µA at VIN = 24 V. The LM5163H-Q1 also employs internal bias rail  
undervoltage protection. If the internal bias supply voltage is below the UV threshold, the regulator remains off.  
7.4.2 Active Mode  
The LM5163H-Q1 is in active mode when VEN/UVLO is above the precision enable threshold and the internal bias  
rail is above its UV threshold. In COT active mode, the LM5163H-Q1 is in one of three modes depending on the  
load current:  
CCM with fixed switching frequency when load current is above half of the peak-to-peak inductor current  
ripple  
Pulse skipping and diode emulation mode (DEM) when the load current is less than half of the peak-to-peak  
inductor current ripple in CCM operation  
Current limit CCM with peak and valley current limit protection when an overcurrent condition is applied at the  
output  
7.4.3 Sleep Mode  
The 7.3.1 section gives a brief introduction to the LM5163H-Q1 diode emulation (DEM) feature. The converter  
enters DEM during light-load conditions when the inductor current decays to zero and the synchronous MOSFET  
is turned off to prevent negative current in the system. In the DEM state, the load current is lower than half of the  
peak-to-peak inductor current ripple and the switching frequency decreases when the load is further decreased  
as the device operates in a pulse skipping mode. A switching pulse is set when VFB drops below 1.2 V.  
As the frequency of operation decreases and VFB remains above 1.2 V (VREF) with the output capacitor sourcing  
the load current for greater than 15 µs, the converter enters an ultra-low IQ sleep mode to prevent draining the  
input power supply. The input quiescent current (IQ) required by the LM5163H-Q1 decreases to 10 µA in sleep  
mode, improving the light-load efficiency of the regulator. In this mode, all internal controller circuits are turned  
off to ensure very low current consumption by the device. Such low IQ renders the LM5163H-Q1 as the best  
option to extend operating lifetime for off-battery applications. The FB comparator and internal bias rail are active  
to detect when the FB voltage drops below the internal reference VREF and the converter transitions out of sleep  
mode into active mode. There is a 9-µs wake-up delay from sleep to active states.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LM5163H-Q1 requires only a few external components to step down from a wide range of supply voltages to  
a fixed output voltage. Several features are integrated to meet system design requirements, including the  
following:  
Precision enable  
Input voltage UVLO  
Internal soft start  
Programmable switching frequency  
A PGOOD indicator  
To expedite and streamline the process of designing a LM5163H-Q1-based converter, a comprehensive  
LM5163H-Q1 quickstart calculator is available for download to assist the designer with component selection for a  
given application. This tool is complemented by the availability of an evaluation module (EVM), numerous  
PSPICE models, as well as TI's WEBENCH® Power Designer. To modify the LM5164-Q1EVM-041 for the  
LM5163H-Q1, change the inductor LO to 120 µH, the resistor RA to 226 kΩ, and the capacitance COUT to 22 µF.  
See the 8.2 section for the LM5163H-Q1 application circuit.  
8.1.1 High Temperature Specifications  
The LM5163H-Q1 is capable of ultra-high junction temperature operation up to 165°C. High ambient  
temperature applications with power dissipation on integrated chips often result in junction temperatures  
exceeding the typical AEC-Q100 Grade 1 specification. The LM5163H-Q1 is designed to sustain these high  
temperatures while maintaining performance and reliability. This is accomplished by ensured electrical  
specifications up to 165°C. In addition, extra tests performed on this device show it exceeds AEC-Q100 Grade 1  
requirements. For example, the LM5163H-Q1 passes the temperature profile displayed in 8-1. 8-1 shows  
an automotive profile of time and temperature for an LM5163H-Q1 converter application specified with 12 000  
POH at an input voltage of 100 V. Power On Hours (POH) for LM5163H-Q1 is a function of voltage, temperature,  
and time. Usage at higher voltages and temperatures results in a reduction in POH to achieve the same  
reliability performance.  
8-1. Power On Hours (POH) Breakdown  
JUNCTION TEMPERATURE  
HOURS (TOTAL = 12 000 HOURS)  
-40°C  
23°C  
6% = 720 Hrs  
20% = 2400 Hrs  
65% = 7800 Hrs  
7% = 840 Hrs  
100°C  
150°C  
155°C  
165°C  
1% = 120 Hrs  
1% = 120 Hrs  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
8.2 Typical Application  
8-1 shows the schematic for a 12-V, 0.5-A COT converter.  
VOUT = 12 V  
IOUT = 0.5 A  
LO  
120 mH  
U1  
VIN = 15 V...100 V  
VIN  
SW  
CA  
3.3 nF  
RA  
CBST  
LM5163H-Q1  
CIN  
226 kW  
2.2 nF  
RFB1  
2.2 mF  
EN/UVLO  
BST  
453 kW  
COUT  
CB  
22 mF  
56 pF  
FB  
RON  
RRON  
RFB2  
100 kW  
PGOOD  
GND  
49.9 kW  
8-1. Typical Application VIN(nom) = 48 V, VOUT = 12 V, IOUT(max) = 0.5 A, FSW(nom) = 300 kHz  
备注  
This and subsequent design examples are provided herein to showcase the LM5163H-Q1 converter in  
several different applications. Depending on the source impedance of the input supply bus, an  
electrolytic capacitor may be required at the input to ensure stability, particularly at low input voltage  
and high output current operating conditions. See the 8.3 section for more details.  
8.2.1 Design Requirements  
The target full-load efficiency is 92% based on a nominal input voltage of 48 V and an output voltage of 12 V.  
The required input voltage range is 15 V to 100 V. The LM5163H-Q1 delivers a fixed 12-V output voltage. The  
switching frequency is set by resistor RRON at 300 kHz. The output voltage soft-start time is 3 ms. 8-2 lists the  
required components. Refer to the LM5164-Q1EVM-041 User's Guide for more detail.  
8-2. List of Components  
COUNT  
REF DES  
CIN  
VALUE  
2.2 µF  
22 µF  
DESCRIPTION  
PART NUMBER  
CGA6N3X7R2A225K230AB  
TMK325B7226KMHT  
CGA3E2X7R2A332K080AA  
C0603C560J5GACTU  
GCM155R71H222KA37D  
MSS1260-124KL  
MANUFACTURER  
TDK  
2
Capacitor, Ceramic, 2.2 µF, 100 V, X7R, 10%  
Capacitor, Ceramic, 22 µF, 25 V, X7R, 10%  
Capacitor, Ceramic, 3300 pF, 16 V, X7R, 10%  
Capacitor, Ceramic, 56 pF, 50 V, X7R, 10%  
Capacitor, Ceramic, 2200 pF, 50 V, X7R, 10%  
Inductor, 120 µH, 210 mΩ, 1.65 A  
COUT  
CA  
Taiyo Yuden  
TDK  
1
1
1
1
-
3300 pF  
56 pF  
CB  
Kemet  
CBST  
LO  
2.2 nF  
120 µH  
120 µH  
MuRata  
Coilcraft  
Coilcraft  
Susumu Co Ltd  
Yageo  
MSS1038T-124KL  
LO  
Inductor, 120 µH, 380 mΩ, 0.95 A, 165 °C  
Resistor, Chip, 100 kΩ, 1%, 0.1 W, 0603  
Resistor, Chip, 453 kΩ, 1%, 0.1 W, 0603  
Resistor, Chip, 49.9 kΩ, 1%, 0.1 W, 0603  
Resistor, Chip, 226 kΩ1%, 0.1 W, 0603  
Wide VIN synchronous buck converter  
RG1608P-1053-B-T5  
RT0603BRD07448KL  
RG1608P-4992-B-T5  
RT0603BRD07226KL  
LM5163H-Q1  
1
1
1
1
1
RRON  
RFB1  
RFB2  
RA  
100 kΩ  
453 kΩ  
49.9 kΩ  
226 kΩ  
Susumu Co Ltd  
Yageo  
U1  
TI  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5163H-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Switching Frequency (RRON  
)
The switching frequency of the LM5163H-Q1 is set by the on-time programming resistor placed at RON. As  
shown by 方程15, a standard 100 kΩ, 1% resistor sets the switching frequency at 300 kHz.  
V
V × 2500  
OUT  
F
R
=  
(15)  
RON  
kHz  
SW  
Note that at very low duty cycles, the 50 ns minimum controllable on-time of the high-side MOSFET, tON(min)  
,
limits the maximum switching frequency. In CCM, tON(min) limits the voltage conversion step-down ratio for a  
given switching frequency. Use 方程16 to calculate the minimum controllable duty cycle.  
D
= t  
× F  
SW  
(16)  
MIN  
ON min  
Ultimately, the choice of switching frequency for a given output voltage affects the available input voltage range,  
solution size, and efficiency. Use 方程式 17 to calculate the maximum supply voltage for a given tON(min) before  
switching frequency reduction occurs.  
V
OUT  
V
=
(17)  
IN MAX  
t
× F  
ON min  
SW  
8.2.2.3 Buck Inductor (LO)  
Use 方程式 18 and 方程式 19 to calculate the inductor ripple current (assuming CCM operation) and peak  
inductor current, respectively.  
V
V
OUT  
OUT  
× L  
∆ I =  
× 1 −  
(18)  
(19)  
L
F
V
SW  
O
IN  
∆ I  
L
I
= I  
×
OUT max  
2
L PEAK  
For most applications, choose an inductance such that the inductor ripple current, ΔIL, is between 30% and 50%  
of the rated load current at nominal input voltage. Use 方程20 to calculate the inductance.  
V
V
OUT  
OUT  
× ∆ I  
L
=
× 1 −  
V
IN nom  
(20)  
O
F
SW  
L
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
18  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
Choosing a 120-μH inductor in this design results in 250-mA peak-to-peak ripple current at a nominal input  
voltage of 48 V, equivalent to 50% of the 500-mA rated load current.  
Check the inductor data sheet to make sure the saturation current of the inductor is well above the current limit  
setting of the LM5163H-Q1. Ferrite-core inductors have relatively lower core losses and are preferred at high  
switching frequencies, but exhibit a hard saturation characteristic the inductance collapses abruptly when the  
saturation current is exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage  
ripple, and reduced efficiency, in turn compromising reliability. Note that inductor saturation current levels  
generally decrease as the core temperature increases.  
8.2.2.4 Output Capacitor (COUT  
)
Select a ceramic output capacitor to limit the capacitive voltage ripple at the converter output. This is the  
sinusoidal ripple voltage that is generated from the triangular inductor current ripple flowing into and out of the  
capacitor. Select an output capacitance using 方程式 21 to limit the voltage ripple component to 0.5% of the  
output voltage.  
∆ I  
L
C
(21)  
OUT  
8 × F  
SW  
× V  
OUT ripple  
Substituting ΔIL(nom) of 250-mA gives COUT greater than 3.1 μF. With voltage coefficients of ceramic capacitors  
taken in consideration, a 22-µF, 25-V rated capacitor with X7R dielectric is selected.  
8.2.2.5 Input Capacitor (CIN)  
An input capacitor is necessary to limit the input ripple voltage while providing AC current to the buck power  
stage at every switching cycle. To minimize the parasitic inductance in the switching loop, position the input  
capacitors as close as possible to the VIN and GND pins of the LM5163H-Q1. The input capacitors conduct a  
square-wave current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive  
component of AC ripple voltage is a triangular waveform.  
Along with the ESR-related ripple component, use 程式 22 to calculate the peak-to-peak ripple voltage  
amplitude.  
I
× D × 1 − D  
× C  
OUT  
F
V
=
+ I  
× R  
ESR  
(22)  
IN ripple  
OUT  
SW  
IN  
Use 方程式 23 to calculate the input capacitance required for a load current, based on an input voltage ripple  
specification (VIN(ripple)).  
I
× D × 1 − D  
OUT  
C
(23)  
IN  
F
× V  
− I × R  
OUT ESR  
SW  
IN ripple  
The recommended high-frequency input capacitance is 2.2 µF or higher. Ensure the input capacitor is a high-  
quality X7S or X7R ceramic capacitor with sufficient voltage rating for CIN. Based on the voltage coefficient of  
ceramic capacitors, choose a voltage rating that is twice the maximum input voltage. Additionally, some bulk  
capacitance is required if the LM5163H-Q1 is not located within approximately 5 cm from the input voltage  
source. This capacitor provides parallel damping to the resonance associated with parasitic inductance of the  
supply lines and high-Q ceramics. See the 8.3 section for more detail.  
8.2.2.6 Type 3 Ripple Network  
A Type 3 ripple generation network uses an RC filter consisting of RA and CA across SW and VOUT to generate a  
triangular ramp that is in phase with the inductor current. This triangular ramp is then AC-coupled into the  
feedback node using capacitor CB as shown in 8-1. Type 3 ripple injection is suited for applications where low  
output voltage ripple is crucial.  
Use 方程24 and 方程25 to calculate RA and CA to provide the required ripple amplitude at the FB pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
10  
× R  
FB1  
C
(24)  
A
F
R
FB2  
SW  
For the feedback resistor values given in 8-1, 方程式 24 dictates a minimum CA of 742 pF. In this design, a  
3300 pF capacitance is chosen. This is done to keep RA within practical limits between 100 kand 1 Mwhen  
using 方程25.  
V
− V  
OUT  
20mV  
× t  
ON nom  
IN nom  
R × C  
(25)  
A
A
Based on CA set at 3.3 nF, RA is calculated to be 226 kto provide a 20-mV ripple voltage at FB. The general  
recommendation for a Type 3 network is to calculate RA and CA to get 20 mV of ripple at typical operating  
conditions, while ensuring a 12-mV minimum ripple voltage on FB at minimum VIN.  
While the amplitude of the generated ripple does not affect the output voltage ripple, it impacts the output  
regulation as it reflects as a DC error of approximately half the amplitude of the generated ripple. For example, a  
converter circuit with Type 3 network that generates a 40-mV ripple voltage at the feedback node has  
approximately 10-mV worse load regulation scaled up through the FB divider to VOUT than the same circuit that  
generates a 20-mV ripple at FB. Use 方程26 to calculate the coupling capacitance CB.  
t
TR − settling  
C
(26)  
B
3 × R  
FB1  
where  
tTR-settling is the desired load transient response settling time  
CB calculates to 56 pF based on a 75-µs settling time. This value avoids excessive coupling capacitor discharge  
by the feedback resistors during sleep intervals when operating at light loads. To avoid capacitance fall-off with  
DC bias, use a C0G or NP0 dielectric capacitor for CB.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
20  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
8.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
0.001  
0.01  
0.1  
0.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Load (A)  
Load (A)  
D001  
D002  
8-2. Conversion Efficiency (Log Scale)  
8-3. Conversion Efficiency (Linear Scale)  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
VOUT 100mV/DIV  
VIN = 15V  
VIN = 24V  
VIN = 48V  
VIN = 60V  
IOUT 250mA/DIV  
11.9  
11.8  
100 µs/DIV  
0
0.1  
0.2 0.3  
Output Current (A)  
0.4  
0.5  
Load  
VIN = 24 V  
IOUT = 0.125 A to 0.5 A at 0.1  
8-4. Load and Line Regulation Performance  
A/μs  
8-5. Load Step Response  
VIN 10V/DIV  
VIN 10V/DIV  
VOUT 2V/DIV  
VOUT 2V/DIV  
IOUT 100mA/DIV  
IOUT 100mA/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 0.5 A (Resistive)  
8-6. No-Load Start-up with VIN  
8-7. Full-Load Start-up with VIN  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
EN 5V/DIV  
EN 5V/DIV  
VOUT 5V/DIV  
VOUT 5V/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
2 ms/DIV  
2 ms/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 0.5 A (Resistive)  
8-8. No-Load Start-up and Shutdown with EN/  
8-9. Full-Load Start-up and Shutdown with EN/  
UVLO  
UVLO  
VOUT 5V/DIV  
EN 5V/DIV  
VOUT 5V/DIV  
VSW 10V/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
500 µs/DIV  
2 ms/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
Load = 0 A to Short  
8-10. Pre-bias Start-up with EN/UVLO  
8-11. Short Circuit Applied  
VOUT 5V/DIV  
VOUT 5V/DIV  
VSW 10V/DIV  
VSW 10V/DIV  
100 µs/DIV  
10 ms/DIV  
IOUT 500mA/DIV  
IOUT 500mA/DIV  
VIN = 24 V  
Load = 0 A to Short to 0 A  
VIN = 24 V  
Load = Short to 0 A  
8-13. No Load to Short Circuit/Short-Circuit  
8-12. Short-Circuit Recovery  
Recovery  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
VSW 10V/DIV  
VSW 10V/DIV  
VOUT 20mV/DIV  
VOUT 50mV/DIV  
10 ms/DIV  
5 µs/DIV  
VIN = 24 V  
IOUT = 0 A  
VIN = 24 V  
IOUT = 0.5 A  
8-14. No-Load Switching  
8-15. Full-Load Switching  
Peak  
Average  
Peak  
Average  
Start 30 MHz  
Stop 108 MHz  
Start 150 kHz  
Stop  
30 MHz  
VIN = 48 V  
Load = 0.5 A  
VIN = 48 V  
Load = 0.5 A  
8-17. CISPR 25 Class 5 Conducted Emissions  
8-16. CISPR 25 Class 5 Conducted Emissions  
Plot, 30 MHz to 108 MHz  
Plot, 150 kHz to 30 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
The LM5163H-Q1 buck converter is designed to operate from a wide input voltage range between 6 V and 100  
V. The characteristics of the input supply must be compatible with 6.3 and 6.1. In addition, the input supply  
must be capable of delivering the required input current to the fully-loaded regulator. Use 方程式 27 to estimate  
the average input current.  
V
× I  
OUT  
OUT  
V
I
=
(27)  
IN  
× η  
IN  
where  
ηis the efficiency  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, take  
special care to achieve stable performance. The parasitic inductance and resistance of the input cables can  
have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR  
ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at  
VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip  
during a load transient. If the converter is operating close to the minimum input voltage, this dip can cause false  
UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the  
input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitor helps to damp the input resonant circuit and reduce any voltage  
overshoots. A 10-μF electrolytic capacitor with a typical ESR of 0.5 Ω provides enough damping for most input  
circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The Simple Success with Conducted EMI for DC-DC Converters  
Application Report provides helpful suggestions when designing an input filter for any switching regulator.  
8.4 Layout  
8.4.1 Layout Guidelines  
PCB layout is a critical portion of good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise and EMI or  
degrade the power supply performance.  
1. To help eliminate these problems, bypass the VIN pin to GND with a low-ESR ceramic bypass capacitor with  
a high-quality dielectric. Place CIN as close as possible to the LM5163H-Q1 VIN and GND pins. Grounding  
for both the input and output capacitors must consist of localized top-side planes that connect to the GND  
pin and GND PAD.  
2. Minimize the loop area formed by the input capacitor connections to the VIN and GND pins.  
3. Locate the inductor close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
capacitive coupling.  
4. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
5. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
6. Have a single-point ground connection to the plane. Route the ground connections for the feedback, soft-  
start, and enable components to the ground plane. This prevents any switched or load currents from flowing  
in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic  
output voltage ripple behavior.  
7. Make VIN, VOUT, and ground bus connections as wide as possible. This reduces any voltage drops on the  
input or output paths of the converter and maximizes efficiency.  
8. Minimize trace length to the FB pin. Place both feedback resistors, RFB1 and RFB2, close to the FB pin. Place  
CFF (if needed) directly in parallel with RFB1. If output setpoint accuracy at the load is important, connect the  
VOUT sense at the load. Route the VOUT sense path away from noisy nodes and preferably through a layer  
on the other side of a grounded shielding layer.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
24  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
9. The RON pin is sensitive to noise. Thus, locate the RRON resistor as close as possible to the device and  
route with minimal lengths of trace. The parasitic capacitance from RON to GND must not exceed 20 pF.  
10. Provide adequate heat sinking for the LM5163H-Q1 to keep the junction temperature below 150°C. For  
operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of  
heat-sinking vias to connect the exposed pad to the PCB ground plane. If the PCB has multiple copper  
layers, these thermal vias must also be connected to inner layer heat-spreading ground planes.  
8.4.1.1 Compact PCB Layout for EMI Reduction  
Radiated EMI generated by high di/dt components relates to pulsing currents in switching converters. The larger  
the area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to  
minimizing radiated EMI is to identify the pulsing current path and minimize the area of that path.  
denotes the critical switching loop of the buck converter power stage in terms of EMI. The topological  
architecture of a buck converter means that a particularly high di/dt current path exists in the loop, comprising  
the input capacitor and the integrated MOSFETs of the LM5163H-Q1, and it becomes mandatory to reduce the  
parasitic inductance of this loop by minimizing the effective loop area.  
VIN  
VIN  
2
CIN  
LM5163H  
High  
BST  
di/dt  
loop  
High-side  
NMOS  
gate driver  
Q1  
LO  
SW  
VOUT  
8
CO  
Q2  
Low-side  
NMOS  
gate driver  
GND  
1
GND  
8-18. DC/DC Buck Converter With Power Stage Circuit Switching Loop  
The input capacitor provides the primary path for the high di/dt components of the current of the high-side  
MOSFET. Placing a ceramic capacitor as close as possible to the VIN and GND pins is the key to EMI reduction.  
Keep the trace connecting SW to the inductor as short as possible and just wide enough to carry the load current  
without excessive heating. Use short, thick traces or copper pours (shapes) for current conduction path to  
minimize parasitic resistance. Place the output capacitor close to the VOUT side of the inductor, and connect the  
return terminal of the capacitor to the GND pin and exposed PAD of the LM5163H-Q1.  
8.4.1.2 Feedback Resistors  
Reduce noise sensitivity of the output voltage feedback path by placing the resistor divider close to the FB pin,  
rather than close to the load. This reduces the trace length of FB signal and noise coupling. The FB pin is the  
input to the feedback comparator, and as such, is a high impedance node sensitive to noise. The output node is  
a low impedance node, so the trace from VOUT to the resistor divider can be long if a short path is not available.  
Route the voltage sense trace from the load to the feedback resistor divider, keeping away from the SW node,  
the inductor, and VIN to avoid contaminating the feedback signal with switch noise, while also minimizing the  
trace length. This is most important when high feedback resistances greater than 100 kΩ are used to set the  
output voltage. Also, route the voltage sense trace on a different layer from the inductor, SW node, and VIN so  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
there is a ground plane that separates the feedback trace from the inductor and SW node copper polygon. This  
provides further shielding for the voltage feedback path from switching noise sources.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
26  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
8.4.2 Layout Example  
8-19 shows an example layout for the PCB top layer of a 2-layer board with essential components placed on  
the top side.  
Type 3 ripple  
injection  
Connect BST cap  
close to BST and SW  
Place FB resistors very  
close to FB and GND pins  
PGOOD  
connection  
Thermal vias under  
LM5164 PAD  
Place resistor R8  
close to the RON pin  
GND  
Optional RC  
VOUT  
connection  
Connect ceramic  
input cap close to  
VIN and GND  
EN/UVLO  
connection  
connection snubber to  
reduce SW  
node ringing  
8-19. LM5163H-Q1 Single-Sided PCB Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.1.2 Development Support  
LM5163-Q1 Quickstart Calculator  
LM5163H-Q1 Simulation Models  
TI Reference Design Library  
Technical Articles:  
Use a Low-quiescent-current Switcher for High-voltage Conversion  
How a DC/DC Converter Package and Pinout Design Can Enhance Automotive EMI Performance  
9.1.2.1 Custom Design with WEBENCH® Tools  
Click here to create a custom design using the LM5163H-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, LM5164-Q1EVM-041 EVM User's Guide  
Texas Instruments, Selecting an Ideal Ripple Generation Network for Your COT Buck Converter Application  
Report  
Texas Instruments, Valuing Wide VIN, Low-EMI Synchronous Buck Circuits for Cost-Effective, Demanding  
Applications White Paper  
Texas Instruments, An Overview of Conducted EMI Specifications for Power Supplies White Paper  
Texas Instruments, An Overview of Radiated EMI Specifications for Power Supplies White Paper  
Texas Instruments, 24-V AC Power Stage with Wide VIN Converter and Battery Gauge for Smart Thermostat  
Design Guide  
Texas Instruments, Accurate Gauging and 50-μA Standby Current, 13S, 48-V Li-ion Battery Pack Reference  
Design Guide  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVSBN8  
28  
Submit Document Feedback  
Product Folder Links: LM5163H-Q1  
 
 
 
LM5163H-Q1  
ZHCSKN8A DECEMBER 2019 REVISED APRIL 2023  
www.ti.com.cn  
Texas Instruments, AN-2162: Simple Success with Conducted EMI from DC/DC Converters Application  
Report  
Texas Instruments, Automotive Cranking Simulator User's Guide  
Texas Instruments, Powering Drones with a Wide VIN DC/DC Converter Application Report  
Texas Instruments, Using New Thermal Metrics Application Report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM5163H-Q1  
English Data Sheet: SNVSBN8  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5163HQDDARQ1  
ACTIVE SO PowerPAD  
DDA  
8
2500 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 165  
5163HQ  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5163HQDDARQ1  
SO  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8.0  
12.0  
Q1  
PowerPAD  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SO PowerPAD DDA  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
LM5163HQDDARQ1  
8
2500  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM5163HQDDARQ1

具有超低 IQ 的 100V 输入、0.5A 同步高温降压直流/直流转换器 | DDA | 8 | -40 to 165
TI

LM5163QDDARQ1

具有超低 IQ 的汽车类 100V 输入、0.5A 同步降压直流/直流转换器 | DDA | 8 | -40 to 150
TI

LM5164

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器
TI

LM5164-Q1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器
TI

LM5164DDAR

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164DDAT

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164QDDARQ1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5164QDDATQ1

具有超低 IQ 的 6V 至 100V 输入、1A 同步直流/直流降压转换器 | DDA | 8 | -40 to 150
TI

LM5165

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器
TI

LM5165-Q1

具有超低 IQ 的汽车类 3V-65V、150mA 同步降压转换器
TI

LM5165DRCR

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器 | DRC | 10 | -40 to 150
TI

LM5165DRCT

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器 | DRC | 10 | -40 to 150
TI