LM5165DRCR [TI]

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器 | DRC | 10 | -40 to 150;
LM5165DRCR
型号: LM5165DRCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具备超低 IQ 的 3V 至 65V、150mA 同步降压转换器 | DRC | 10 | -40 to 150

转换器
文件: 总49页 (文件大小:3007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM5165  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
LM5165 具有超IQ 3V 65V 输入、150mA 同步降压转换器  
1 特性  
3 说明  
3V 65V 的宽输入电压范围  
10.5µA 空载静态电流  
LM5165 器件是一款易于使用的紧凑型 3V 65V、超  
IQ 同步降压转换器可在宽输入电压和负载电流范  
围内提供高效率。该器件具有集成式高侧和低侧功率  
MOSFET能够以 3.3V 5V 的固定输出电压或可调  
输出电压提供高达 150mA 的输出电流。该转换器设计  
旨在简化实现方案同时优化目标应用的性能。脉频调  
(PFM) 模式可确保在轻负载条件下获得最优效率,  
恒定导通时间 (COT) 控制可实现近似恒定的工作频  
率。这两种控制方案都不需要环路补偿同时还能够针  
对较高的降压转换比实现出色的线路和负载瞬态响应以  
及短暂的脉宽调(PWM) 导通时间。  
-40°C 150°C 的结温范围  
• 固定3.3V 5V或可调节输出电压  
• 符EN55022/CISPR 22 EMI 标准  
• 集成2ΩPMOS 降压开关  
– 支100% 占空比可实现低压降  
• 集成1ΩNMOS 同步整流器  
– 无需使用外部整流二极管  
• 可编程电流限制设置点四级)  
• 可PFM COT 模式工作  
1.223V ±1% 内部电压基准  
900µs 内部或可编程软启动  
• 可实现EMI 的有效压摆率控制  
• 二极管仿真模式和脉冲跳跃模式可在轻负载下实  
现超高效率  
高侧 P 沟道 MOSFET 能够以 100% 占空比工作以确  
保最低压差电压而且不需要使用自举电容器进行栅极  
驱动。另外还可以调节电流限制设定值来优化电感器  
选择从而满足特定的输出电流要求。可选和可调节启  
动时序选项包括最短延迟无软启动、内部固定值  
(900µs) 以及可使用电容器进行外部编程的软启动。可  
以使用开漏 PGOOD 指示器进行定序、故障报告和输  
出电压监视。LM5165 降压转换器采用 10 3mm ×  
3mm 增强型 VSON-10 脚间距为  
0.5mm LM5165 LM5165X 可以采用  
VSSOP-10 封装。  
• 单调启动至预偏置输出  
• 无环路补偿或自举元件  
• 具有迟滞功能的精密使能和输UVLO  
LM5166 引脚对引脚兼容  
• 具有迟滞功能的热关断保护  
10 3mm × 3mm VSON 封装  
• 使TPSM265R1 模块缩短产品上市时间  
• 使WEBENCH® Power Designer 创建定制稳压器  
设计  
器件信息  
封装(1)  
器件型号  
LM5165  
输出  
可调节  
2 应用  
LM5165X  
LM5165Y  
5V 固定  
3.3V 固定  
DRCVSON10)  
420mA 环路供电式传感器  
汽车和电池供电设备  
高电LDO 替代产品  
工业控制系统  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
通用偏置电源  
100  
90  
LF  
68  
VIN = 3 V...65 V  
VOUT = 5 V *  
H
VIN  
SW  
80  
LM5165X  
CIN  
COUT  
22  
EN  
VOUT  
70  
1
F
F
60  
PGOOD  
HYS  
SS  
VIN = 8V  
50  
ILIM  
VIN = 12V  
VIN = 24V  
VIN = 36V  
40  
GND  
VIN = 65V  
RT  
* VOUT tracks VIN  
if VIN < 5 V  
30  
0.1  
1
10  
30  
D101  
Output Current (mA)  
典型原理图固定输出)  
典型效(VOUT = 5V)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSA47  
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Applications and Implementation................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 20  
8.3 Power Supply Recommendations.............................34  
8.4 Layout....................................................................... 35  
9 Device and Documentation Support............................38  
9.1 Device Support......................................................... 38  
9.2 Documentation Support............................................ 38  
9.3 接收文档更新通知..................................................... 40  
9.4 支持资源....................................................................40  
9.5 Trademarks...............................................................40  
9.6 Electrostatic Discharge Caution................................40  
9.7 术语表....................................................................... 40  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................6  
6.7 Typical Characteristics................................................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
Information.................................................................... 40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (December 2020) to Revision D (December 2022)  
Page  
• 通篇去除了图的颜色并更新了图的编号格式....................................................................................................... 1  
Changed all instances of legacy terminology to commander and responder................................................... 17  
Added additional statement to Filter Inductor LF .........................................................................................21  
Changes from Revision B (July 2017) to Revision C (December 2020)  
Page  
• 添加TPSM265R1 链接................................................................................................................................... 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
5 Pin Configuration and Functions  
GND  
HYS  
GND  
10  
9
SW  
VIN  
ILIM  
SS  
1
10  
9
SW  
VIN  
ILIM  
SS  
1
2
3
4
5
2
3
4
5
HYS  
FB  
8
8
VOUT  
EN  
7
7
EN  
PGOOD  
PGOOD  
6
6
RT  
RT  
LM5165X, LM5165Y  
Fixed Output Versions  
LM5165  
Adjustable Output Version  
5-1. DRC Package 10-Pin VSON With Exposed Thermal Pad (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
Switching node that is internally connected to the drain of the high-side PMOS buck switch and the  
drain of the low-side NMOS synchronous rectifier. Connect to the switching side of the power inductor.  
1
SW  
P
P
I
Regulator supply input pin to high-side power MOSFET and internal bias rail LDO. Connect to input  
supply and input capacitor CIN. Path from VIN to the input capacitor must be as short as possible.  
2
3
VIN  
Programming pin for current limit. Connecting the appropriate resistor from ILIM to GND selects one of  
four preset current limit options. Short ILIM to GND for the maximum current setting.  
ILIM  
Programming pin for the soft-start time. If a 100-kΩresistor is connected from SS to GND, the internal  
soft-start circuit is disabled and the FB comparator reference steps immediately from zero to full value  
when the regulator is enabled by the EN input. If the SS pin is left open, the internal soft-start circuit  
ramps the FB reference from zero to full value in 900 µs. If an appropriate capacitance is connected to  
the SS pin, the soft-start time can be programmed as required.  
4
5
SS  
RT  
I
I
Mode selection and on-time programming pin for Constant On-Time (COT) control. Short RT to GND to  
select PFM (pulse frequency modulation) operation. Connect a resistor from RT to GND to program the  
on-time, which sets the switching frequency for COT.  
Power Good output flag pin. PGOOD is connected to the drain of an NFET that holds the pin low when  
either FB or VOUT is below the regulation target. Use a pullup resistor of 10 kΩto 100 kΩto the  
system voltage rail or VOUT (no higher than 12 V).  
6
7
PGOOD  
EN  
O
I
Input pin of the precision enable / UVLO comparator. The converter is enabled when the EN voltage is  
greater than 1.212 V.  
Feedback input to voltage regulation loop. The VOUT pin connects the internal feedback resistor  
divider to the regulator output voltage for fixed 3.3-V and 5-V options. The FB pin connects the internal  
feedback comparator to an external resistor divider for the adjustable output voltage option. The FB  
comparator reference voltage is nominally 1.223 V.  
8
9
VOUT/FB  
HYS  
I
Drain of an internal NFET that is turned off when the EN input is greater than the EN threshold. An  
external resistor from HYS to the EN pin UVLO resistor divider programs the input UVLO hysteresis  
voltage.  
O
10  
GND  
PAD  
G
P
Regulator ground return  
Exposed pad. Connect to the GND pin and system ground on PCB. Path to CIN must be as short as  
possible.  
(1) P = Power, G = Ground, I = Input, O = Output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted).(1) (2)  
MIN  
0.3  
0.7  
3  
MAX  
UNIT  
VIN, EN to GND  
SW to GND  
68  
V
VVIN + 0.3  
V
V
20-ns transient  
PGOOD, VOUT(3) to GND  
HYS to GND  
Survives short to automotive battery voltage  
16  
7
V
0.3  
0.3  
0.3  
40  
55  
V
ILIM, SS, RT, FB(4) to GND  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
3.6  
150  
150  
V
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) Fixed output versions.  
(4) Adjustable output version.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
VESD  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted)(1)  
.
MIN  
MAX  
65  
UNIT  
VIN  
3
0.3  
0.3  
0.3  
0
EN  
65  
Input voltages  
V
PGOOD  
12  
HYS  
5.5  
150  
100  
150  
IOUT (COT mode)  
IOUT (PFM mode)  
Operating junction temperature  
Output current  
Temperature  
mA  
°C  
0
40  
(1) Operating Ratings are conditions under which the device is intended to be functional. For specifications and test conditions, see  
Electrical Characteristics.  
6.4 Thermal Information  
LM5165  
THERMAL METRIC(1)  
DRC (VSON)  
10 PINS  
47.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
59.9  
22.1  
1
ψJT  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
 
 
 
 
 
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
LM5165  
THERMAL METRIC(1)  
DRC (VSON)  
UNIT  
10 PINS  
22.2  
4
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the 40°C to +125°C junction temperature  
range. VIN = 12 V (unless otherwise noted).(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
IQ-SHD  
VIN DC supply current, shutdown  
VIN DC supply current, no load  
VEN = 0 V, TA = 25°C  
4.6  
10.5  
11  
6
15  
15  
µA  
µA  
µA  
µA  
µA  
IQ-SLEEP  
VFB = 1.5 V, TA = 25°C  
VFB = 1.5 V, VVIN = 65 V, TA = 25°C  
PFM mode  
IQ-SLEEP-VINMAX VIN DC supply current, no load  
IQ-ACTIVE-PFM  
IQ-ACTIVE-COT  
VIN DC supply current, active  
VIN DC supply current, active  
205  
300  
COT mode, RRT = 107 kΩ  
POWER SWITCHES  
RDSON1 High-side MOSFET RDS(on)  
RDSON2 Low-side MOSFET RDS(on)  
2
1
ISW = 10 mA  
Ω
Ω
ISW = 10 mA  
CURRENT LIMITING  
ILIM1-VSON  
ILIM shorted to GND  
RILIM = 24.9 kΩ  
220  
155  
100  
48  
240  
180  
120  
60  
264  
205  
145  
75  
ILIM2-VSON  
High-side peak current threshold  
VSON-10 package  
mA  
ILIM3-VSON  
ILIM4-VSON  
REGULATION COMPARATOR  
VVOUT50 VOUT 5-V DC setpoint  
VVOUT33  
RILIM = 56.2 kΩ  
RILIM 100 kΩ  
LM5165X  
4.9  
5
3.3  
5.1  
V
V
VOUT 3.3-V DC setpoint  
VOUT pin input current  
LM5165Y  
3.23  
3.37  
VVOUT = 5 V, LM5165X  
VVOUT = 3.3 V, LM5165Y  
6.7  
IVOUT  
µA  
V
3.9  
VREF1  
Lower FB regulation threshold (PFM, COT)  
Upper FB regulation threshold (PFM)  
FB comparator PFM hysteresis  
FB comparator dropout hysteresis  
FB pin input bias current  
1.205  
1.22  
1.223  
1.233  
10  
1.241  
1.246  
Adjustable output version  
VREF2  
FBHYS-PFM  
FBHYS-COT  
IFB  
PFM mode  
mV  
mV  
nA  
COT mode  
4
VFB = 1 V  
100  
FBLINE-REG  
FB threshold variation over line  
VVIN = 3 V to 65 V  
0.001  
0.001  
%/V  
LM5165X, VVIN = 6 V to 65 V  
LM5165Y, VVIN = 4.5 V to 65 V  
VOUTLINE-REG VOUT threshold variation over line  
%/V  
POWER GOOD  
UVTRISING  
FB voltage rising, relative to VREF1  
FB voltage falling, relative to VREF1  
VFB = 1 V  
94%  
87%  
80  
PGOOD comparator  
UVTFALLING  
RPGOOD  
PGOOD on-resistance  
200  
1.65  
100  
Ω
V
VVIN falling, IPGOOD = 0.1 mA,  
VPGOOD < 0.5 V  
VINMIN-PGOOD  
Minimum VIN for valid PGOOD  
PGOOD off-state leakage current  
1.2  
10  
IPGOOD  
VFB = 1.2 V, VPGOOD = 5.5 V  
nA  
ENABLE / UVLO  
VIN-ON  
Turnon threshold  
VIN voltage rising  
2.6  
2.75  
2.95  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
6.5 Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the 40°C to +125°C junction temperature  
range. VIN = 12 V (unless otherwise noted).(1) (2)  
PARAMETER  
TEST CONDITIONS  
VIN voltage falling  
MIN  
2.35  
TYP  
2.45  
1.212  
1.144  
68  
MAX UNIT  
VIN-OFF  
VEN-ON  
VEN-OFF  
VEN-HYS  
VEN-SD  
RHYS  
Turnoff threshold  
2.6  
1.262  
1.178  
V
V
Enable turnon threshold  
Enable turnoff threshold  
Enable hysteresis  
EN voltage rising  
EN voltage falling  
1.163  
1.109  
V
mV  
V
EN shutdown threshold  
HYS on-resistance  
EN voltage falling  
VEN = 1 V  
0.3  
0.6  
80  
200  
100  
Ω
IHYS  
HYS off-state leakage current  
VEN = 1.5 V, VHYS = 5.5 V  
10  
nA  
SOFT-START  
ISS  
Soft-start charging current  
Soft-start rise time  
VSS = 1 V  
10  
µA  
µs  
TSS-INT  
SS floating  
900  
THERMAL SHUTDOWN  
TJ-SD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
170  
10  
°C  
°C  
TJ-SD-HYS  
(1) All hot and cold limits are specified by correlating the electrical characteristics to process and temperature variations and applying  
statistical process control.  
(2) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as  
follows: TJ = TA + (PD × RθJA) where RθJA (in °C/W) is the package thermal impedance provided in 6.4.  
6.6 Switching Characteristics  
Over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
Minimum controllable PWM on-time  
PWM on-time  
TEST CONDITIONS  
MIN  
TYP  
180  
MAX UNIT  
TON-MIN  
TON1  
ns  
ns  
ns  
250  
16 kΩfrom RT to GND  
TON2  
PWM on-time  
1000  
75 kΩfrom RT to GND  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
6.7 Typical Characteristics  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
0.1  
1
10  
30  
D101  
0.1  
1
10  
100 150  
D102  
Output Current (mA)  
Output Current (mA)  
5-V, 25-mA Design  
LF = 470 µH  
FSW(nom) = 100 kHz  
ILIM 100 kΩ  
See schematic,  
LF = 220 µH  
FSW(nom) = 230 kHz  
RRT = 133 kΩ  
COUT = 47 µF  
COUT = 22 µF  
R
8-1  
6-1. Converter Efficiency: 5 V, 25 mA, PFM  
6-2. Converter Efficiency: 5 V, 150 mA, COT  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
VIN = 8V  
VIN = 8V  
50  
50  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
40  
40  
VIN = 65V  
VIN = 65V  
30  
30  
0.1  
1
10  
50  
D103  
0.1  
1
10  
100 150  
D104  
Output Current (mA)  
Output Current (mA)  
See schematic,  
LF = 47 µH  
FSW(nom) = 350 kHz  
See schematic,  
LF = 150 µH  
FSW(nom) = 160 kHz  
COUT = 10 µF  
COUT = 22 µF  
8-14  
RILIM = 56.2 kΩ  
8-26  
RRT = 121 kΩ  
6-3. Converter Efficiency: 3.3 V, 50 mA, PFM  
6-4. Converter Efficiency: 3.3 V, 150 mA, COT  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
VIN = 18V  
50  
50  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
40  
40  
VIN = 65V  
30  
30  
0.1  
1
10  
75  
D105  
0.1  
1
10  
100 150  
D106  
Output Current (mA)  
Output Current (mA)  
See schematic,  
LF = 47 µH  
FSW(nom) = 500 kHz  
See schematic,  
LF = 150 µH  
FSW(nom) = 600 kHz  
COUT = 10 µF  
COUT = 10 µF  
8-21  
RILIM = 24.9 kΩ  
8-29  
RRT = 143 kΩ  
6-5. Converter Efficiency: 12 V, 75 mA, PFM  
6-6. Converter Efficiency: 15 V, 150 mA, COT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
4
3.5  
3
2
1.5  
1
2.5  
2
1.5  
1
0.5  
0
0.5  
-40°C  
25°C  
50  
150°C  
60  
-40°C  
25°C  
50  
150°C  
0
0
10  
20  
30 40  
Input Voltage (V)  
70  
0
10  
20  
30 40  
Input Voltage (V)  
60  
70  
D001  
D002  
6-7. High-Side MOSFET On-State Resistance vs 6-8. Low-Side MOSFET On-State Resistance vs  
Input Voltage Input Voltage  
1.24  
1.22  
1.2  
1.25  
1.245  
1.24  
1.235  
1.23  
1.18  
1.16  
1.14  
1.12  
1.1  
1.225  
1.22  
1.215  
1.21  
Rising  
Falling  
Rising  
Falling  
1.205  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
D004  
D005  
6-9. Enable Threshold Voltage vs Temperature  
6-10. Feedback Comparator Voltage vs  
Temperature  
5.08  
5.06  
5.04  
5.02  
5
3.36  
3.34  
3.32  
3.3  
4.98  
4.96  
4.94  
3.28  
3.26  
3.24  
Rising  
Falling  
Rising  
Falling  
4.92  
4.9  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
D007  
D006  
LM5165X  
LM5165Y  
6-11. VOUT Regulation Thresholds vs  
6-12. VOUT Regulation Thresholds vs  
Temperature  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
300  
250  
200  
150  
100  
50  
FB Rising  
FB Falling  
60 mA  
120 mA  
180 mA  
240 mA  
85  
0
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
D008  
D009  
6-13. PGOOD Thresholds vs Temperature  
6-14. Peak Current Limits vs Temperature  
300  
150  
250  
200  
150  
100  
50  
125  
100  
75  
50  
60 mA  
120 mA  
180 mA  
240 mA  
25  
0
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
100  
125  
150  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60  
70  
D011  
D010  
6-16. PGOOD and HYS Pulldown RDS(on) vs  
6-15. Peak Current Limits vs Input Voltage  
Temperature  
4
3
2.8  
2.6  
2.4  
2.2  
RT = 16 kΩ  
RT = 75 kΩ  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
Rising  
Falling  
2
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
100  
125 150  
0
10  
20  
30 40  
Input Voltagae (V)  
50  
60  
70  
D013  
D012  
6-18. Internal VIN UVLO Voltage vs Temperature  
6-17. COT One-Shot Timer TON vs Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
20  
15  
10  
5
12  
10  
8
6
4
2
Sleep  
Shutdown  
Sleep  
Shutdown  
0
0
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60  
70  
D014  
D015  
6-19. VIN Sleep and Shutdown Supply Current  
6-20. VIN Sleep and Shutdown Supply Current  
vs Temperature  
vs Input Voltage  
400  
350  
300  
250  
200  
150  
100  
350  
300  
250  
200  
150  
100  
50  
50  
0
COT  
PFM  
COT  
PFM  
0
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60 70  
D016  
D017  
RRT = 75 kΩ  
RRT = 75 kΩ  
6-21. VIN Active Mode Supply Current vs  
6-22. VIN Active Mode Supply Current vs Input  
Temperature  
Voltage  
VOUT  
100 mV/DIV  
VOUT  
100 mV/DIV  
IL  
50 mA/DIV  
VSW  
5 V/DIV  
VSW  
5 V/DIV  
IL  
200 mA/DIV  
20 ms/DIV  
2 ms/DIV  
5-V, 150-mA Design  
5-V, 150-mA Design  
6-23. Full Load Switching Waveforms, COT  
6-24. No Load Switching Waveforms, COT  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
IL 200 mA/DIV  
VIN 5 V/DIV  
VOUT 1 V/DIV  
IL 100 mA/DIV  
VSW 10 V/DIV  
2 ms/DIV  
200 ms/DIV  
5-V, 150-mA Design  
5-V, 150-mA Design  
6-25. Full Load Start-Up, COT  
VOUT 100 mV/DIV  
6-26. Short Circuit, COT  
VOUT 100 mV/DIV  
VSW 5 V/DIV  
IL  
IL 20 mA/DIV  
20 mA/DIV  
VSW 10 V/DIV  
2 ms/DIV  
20 ms/DIV  
5-V, 25-mA Design  
5-V, 25-mA Design  
6-27. Full Load Switching Waveforms, PFM  
6-28. No Load Switching Waveforms, PFM  
IL 20 mA/DIV  
VIN 5 V/DIV  
VOUT 1 V/DIV  
IOUT 50 mA/DIV  
VSW 10 V/DIV  
100 ms/DIV  
2 ms/DIV  
5-V, 25-mA Design  
5-V, 25-mA Design  
6-29. Full Load Start-Up, PFM  
6-30. Short Circuit, PFM  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
7 Detailed Description  
7.1 Overview  
The LM5165 converter is an easy-to-use synchronous buck DC-DC regulator that operates from a 3-V to  
65-V supply voltage. The device is intended for step-down conversions from 3.3-V, 5-V, 12-V, 24-V, and 48-V  
unregulated, semi-regulated and fully-regulated supply rails. With integrated high-side and low-side power  
MOSFETs, the LM5165 delivers up to 150-mA DC load current with high efficiency and ultra-low input quiescent  
current in a very small solution size. Designed for simple implementation, a choice of operating modes offers  
flexibility to optimize its usage according to the target application. In constant on-time (COT) mode of operation,  
ideal for low-noise, high current, fast load transient requirements, the device operates with predictive on-time  
switching pulse. A quasi-fixed switching frequency over the input voltage range is achieved by using an input  
voltage feedforward to set the on-time. Alternatively, pulse frequency modulation (PFM) mode, complemented by  
an adjustable peak current limit, achieves exceptional light-load efficiency performance. Control loop  
compensation is not required with either operating mode, reducing design time and external component count.  
The LM5165 incorporates other features for comprehensive system requirements, including an open-drain  
Power Good circuit for power-rail sequencing and fault reporting, internally-fixed or externally-adjustable soft-  
start, monotonic start-up into prebiased loads, precision enable with customizable hysteresis for programmable  
line undervoltage lockout (UVLO), adjustable cycle-by-cycle current limit for optimal inductor sizing, and thermal  
shutdown with automatic recovery. These features enable a flexible and easy-to-use platform for a wide range of  
applications. The pin arrangement is designed for simple Layout, requiring only a few external components.  
7.2 Functional Block Diagram  
LM5165  
VIN  
LDO BIAS  
REGULATOR  
IN  
VDD  
VDD UVLO  
THERMAL  
SHUTDOWN  
EN  
VIN UVLO  
1.212 V  
1.144 V  
ILIM  
I-LIMIT  
ADJUST  
HYS  
ENABLE  
VIN  
CURRENT  
LIMIT  
+
ON-TIME ONE  
SHOT  
SW  
Control  
Logic  
OUT  
VIN  
ZERO CROSS  
DETECT  
VOUT/FB  
+
HYSTERETIC  
MODE  
ZC  
RT  
R1(1)  
FEEDBACK  
R2(1)  
+
GND  
SS  
ENABLE  
VOLTAGE  
REFERENCE  
PGOOD  
1.223 V  
UV  
PG  
REFERENCE  
SOFT-START  
1.150 V  
1.064 V  
Note:  
(1) R1, R2 are implemented in the xed output voltage versions only.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
7.3 Feature Description  
7.3.1 Integrated Power MOSFETs  
The LM5165 is a step-down buck converter with integrated high-side PMOS buck switch and low-side NMOS  
synchronous switch. During the high-side MOSFET on-time, the SW voltage VSW swings up to approximately  
VIN, and the inductor current increases with slope (VIN VOUT)/LF. When the high-side MOSFET is turned off by  
the control logic, the low-side MOSFET turns on after an adaptive deadtime. Inductor current flows through the  
low-side MOSFET with slope VOUT/LF. Duty cycle D is defined as TON/TSW, where TON is the high-side  
MOSFET conduction time and TSW is the switching period.  
7.3.2 Selectable PFM or COT Mode Converter Operation  
7-1 and 7-2 show converter schematics for PFM and COT modes of operation.  
VIN  
VOUT  
VIN  
VOUT  
LF  
LF  
VIN  
EN  
VIN  
SW  
SW  
LM5165X  
LM5165Y  
RUV1  
LM5165  
RFB1  
EN  
VOUT  
FB  
SS  
CIN  
CIN  
COUT  
COUT  
RUV2  
PGOOD  
HYS  
PGOOD  
HYS  
SS  
RFB2  
ILIM  
CSS  
RILIM  
ILIM  
RHYS  
RT  
RT  
GND  
GND  
(a)  
(b)  
7-1. PFM Mode Converter Schematics: (a) Fixed Output Voltage of 5 V or 3.3 V, (b) Adjustable Output  
Voltage With Programmable Soft Start, Current Limit, and UVLO  
VIN  
VOUT  
VIN  
VOUT  
LF  
LF  
VIN  
EN  
VIN  
SW  
SW  
FB  
LM5165X  
LM5165Y  
RUV1  
RFB1  
LM5165  
RESR  
COUT  
RESR  
EN  
VOUT  
CIN  
CIN  
RUV2  
PGOOD  
HYS  
PGOOD  
SS  
COUT  
SS  
RFB2  
HYS  
RT  
ILIM  
CSS  
RILIM  
ILIM  
RT  
RHYS  
RRT  
RRT  
GND  
GND  
(a)  
(b)  
7-2. COT Mode Converter Schematics: (a) Fixed Output Voltage of 5 V or 3.3 V, (b) Adjustable Output  
Voltage With Programmable Soft Start, Current Limit, and UVLO  
The LM5165 operates in PFM mode when RT is shorted to GND. Configured as such, the LM5165 behaves as a  
hysteretic voltage regulator operating in boundary conduction mode, controlling the output voltage within upper  
and lower hysteresis levels according to the PFM feedback comparator hysteresis of 10 mV. 7-3 is a  
representation of the relevant output voltage and inductor current waveforms. The LM5165 provides the required  
switching pulses to recharge the output capacitor, followed by a sleep period where most of the internal circuits  
are shut off. The load current is supported by the output capacitor during this time, and the LM5165 current  
consumption approaches the sleep quiescent current of 10.5 µA. The sleep period duration depends on load  
current and output capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
VIN  
SW  
Voltage  
VOUT  
VREF = 1.233 V  
10 mV  
FB Voltage  
(internal)  
ILIM  
Inductor  
Current  
IOUT2  
t
IOUT1  
ACTIVE  
SLEEP  
ACTIVE SLEEP  
ACTIVE SLEEP ACTIVE  
7-3. PFM Mode SW Node Voltage, Feedback Voltage, and Inductor Current Waveforms  
When operating in PFM mode at given input and output voltages, the chosen filter inductance dictates the PFM  
pulse frequency in 方程1:  
÷
VOUT  
VOUT  
FSW(PFM)  
=
1-  
LF IPK(PFM)  
V
IN  
«
(1)  
where  
IPK(PFM) corresponds to one of the four programmable levels for peak limit of inductor current. See Adjustable  
Current Limit for more detail.  
Configured in COT mode, the LM5165 based converter turns on the high-side MOSFET with on-time inversely  
proportional to VIN to operate with essentially fixed switching frequency when in continuous conduction mode  
(CCM). Diode emulation mode (DEM) prevents negative inductor current, and pulse skipping maintains highest  
efficiency at light load currents by decreasing the effective switching frequency. The COT-controlled LM5165  
waveforms in CCM and DEM are represented in 7-4. The PWM on-time is set by resistor RRT connected from  
RT to GND as shown in 7-2. The control loop maintains a constant output voltage by adjusting the PWM off-  
time.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
VIN  
SW  
Voltage  
Extended  
On-Time  
VOUT  
FB Voltage  
(internal)  
VREF  
4 mV  
DCM  
Operation  
IOUT2  
Inductor  
Current  
CCM  
Operation  
IOUT1  
t
ACTIVE  
SLEEP  
ACTIVE SLEEP  
7-4. COT Mode SW Node Voltage, Feedback Voltage, and Inductor Current Waveforms  
The required on-time adjust resistance for a particular frequency is given in 方程式 2 and tabulated in 7-1.  
The maximum programmable on-time is 15 µs.  
104  
VOUT  
V
» ÿ  
RRT kW =  
»
ÿ
FSW kHz 1.75  
»
ÿ
(2)  
7-1. On-Time Adjust Resistance (E96 EIA Values) for Various Switching  
Frequencies and Output Voltages  
RRT (kΩ)  
FSW (kHz)  
VOUT = 1.8 V  
102  
VOUT = 3.3 V  
187  
VOUT = 5 V  
287  
VOUT = 12 V  
681  
100  
200  
300  
400  
500  
600  
51.1  
95.3  
143  
240  
34  
63.4  
95.3  
226  
25.5  
47.5  
71.5  
169  
20.5  
37.4  
57.6  
137  
16.9  
31.6  
47.5  
115  
The choice of control mode and switching frequency requires a compromise between conversion efficiency,  
quiescent current, and passive component size. Lower switching frequency implies reduced switching losses  
(including gate charge losses, transition losses, and so forth) and higher overall efficiency. Higher switching  
frequency, on the other hand, implies a smaller LC output filter and hence a more compact design. Lower  
inductance also helps transient response as the large-signal slew rate of inductor current increases. The ideal  
switching frequency in a given application is a tradeoff and thus is determined on a case-by-case basis. It relates  
to the input voltage, output voltage, most frequent load current level(s), external component choices, and circuit  
size requirement. At light loads, the PFM converter has a relatively longer sleep time interval and thus operates  
with lower input quiescent current and higher efficiency.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
7.3.3 COT Mode Light-Load Operation  
Diode emulation mode (DEM) operation occurs when the low-side MOSFET switches off as inductor valley  
current reaches zero. Here, the load current is less than half of the peak-to-peak inductor current ripple in CCM.  
Turning off the low-side MOSFET at zero current reduces switching loss, and preventing negative current  
conduction reduces conduction loss. Power conversion efficiency is thus higher in a DEM converter than an  
equivalent forced-PWM CCM converter. With DEM operation, the duration that both power MOSFETs remain off  
progressively increases as load current decreases.  
7.3.4 Low Dropout Operation and 100% Duty Cycle Mode  
If RDSON1 and RDSON2 are the high-side and low-side MOSFET on-state resistances, respectively, and RDCR is  
the inductor DC resistance, the duty cycle in COT (CCM) or PFM mode is given by 方程3.  
VOUT + R  
+ RDCR I  
(
)
VOUT  
DSON2  
OUT  
D =  
ö
V - RDSON1 -RDSON2 I  
V
(
)
IN  
OUT  
IN  
(3)  
The LM5165 offers a low input voltage to output voltage dropout by engaging the high-side MOSFET at 100%  
duty cycle. In COT mode, a frequency foldback feature effectively extends maximum duty cycle to 100% during  
low dropout conditions or load-on transients. Based on the 4-mV FB comparator dropout hysteresis, the duty  
cycle extends as needed at low input voltage conditions, corresponding to lower switching frequency. The PWM  
on-time extends based on the requirement that the FB voltage exceeds the dropout hysteresis during a given  
on-time. 100% duty cycle operation is eventually reached as the input voltage decreases towards the output  
setpoint. The output voltage stays in regulation at a lower supply voltage, thus achieving an extremely low  
dropout voltage.  
Note that PFM mode operation provides an inherently natural transition to 100% duty cycle if needed for low  
dropout applications.  
Use 方程4 to calculate the minimum input voltage to maintain output regulation.  
V
= VOUT +IOUT RDSON1 +RDCR  
(
)
IN(min)  
(4)  
7.3.5 Adjustable Output Voltage (FB)  
Three voltage feedback options are available: the fixed 3.3-V and 5-V versions include internal feedback  
resistors that sense the output directly through the VOUT pin; the adjustable voltage option senses the output  
through an external resistor divider connected from the output to the FB pin.  
The LM5165 voltage regulation loop regulates the output voltage by maintaining the FB voltage equal to the  
internal reference voltage, VREF1. A resistor divider programs the ratio from output voltage VOUT to FB. For a  
target VOUT setpoint, calculate RFB2 based on the selected RFB1 using 方程5.  
1.223V  
RFB2  
=
RFB1  
VOUT -1.223V  
(5)  
Selecting RFB1 in the range of 100 kΩ to 1 Mis recommended for most applications. A larger RFB1 consumes  
less DC current, which is mandatory if light-load efficiency is critical. However, RFB1 larger than 1 MΩ is not  
recommended as the feedback path becomes more susceptible to noise. High feedback resistances generally  
require more careful feedback path PCB layout. It is important to route the feedback trace away from the noisy  
area of the PCB. For more layout recommendations, see Layout.  
7.3.6 Adjustable Current Limit  
The LM5165 manages overcurrent conditions by cycle-by-cycle current limiting of the peak inductor current. The  
current sensed in the high-side MOSFET is compared every switching cycle to the current limit threshold set by  
the ILIM pin. Current is sensed after a leading-edge blanking time following the high-side MOSFET turnon  
transition. The propagation delay of current limit comparator is 100 ns.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
Four programmable peak current levels are available: 60 mA, 120 mA, 180 mA and 240 mA, corresponding to  
resistors of 100 kΩ, 56.2 kΩ, 24.9 kΩ and 0 Ω connected at the ILIM pin, respectively. In turn, 25-mA, 50-mA,  
75-mA, and 100-mA output current levels in boundary conduction mode PFM operation are possible,  
respectively.  
Note that in PFM mode, the inductor current ramps from zero to the chosen peak threshold every switching  
cycle. Consequently, the maximum output current is equal to half the peak inductor current. Meanwhile, the  
corresponding output current capability in COT mode is higher as the ripple current is determined by the input  
and output voltage and the chosen inductance.  
7.3.7 Precision Enable (EN) and Hysteresis (HYS)  
The precision EN input supports adjustable input undervoltage lockout (UVLO) with hysteresis programmed  
independently through the HYS pin for application specific power-up and power-down requirements. EN  
connects to a comparator-based input referenced to a 1.212-V bandgap voltage with 68-mV hysteresis. An  
external logic signal can be used to drive the EN input to toggle the output on and off and for system sequencing  
or protection. The simplest way to enable the LM5165 operation is to connect EN directly to VIN. This allows the  
LM5165 to start up when VIN is within its valid operating range. However, many applications benefit from using a  
resistor divider RUV1 and RUV2 as shown in 7-5 to establish a precision UVLO level. In tandem with the EN  
setting, use HYS to increase the voltage hysteresis as needed.  
VIN  
VIN  
LM5165  
LM5165  
RUV1  
RUV1  
Enable  
Comparator  
Enable  
Comparator  
EN  
EN  
7
7
9
RUV2  
RUV2  
1.212 V  
1.144 V  
1.212 V  
1.144 V  
RHYS  
HYS  
80  
(a)  
(b)  
7-5. Programmable Input Voltage UVLO With (a) Fixed Hysteresis, (b) Adjustable Hysteresis  
Use 方程6 and 方程7 to calculate the input UVLO voltages turnon and turnoff voltages, respectively.  
÷
RUV1  
RUV2  
V
= 1.212V 1+  
IN(on)  
«
(6)  
÷
RUV1  
V
= 1.144V 1+  
IN(off)  
RUV2 + RHYS  
«
(7)  
There is also a low IQ shutdown mode when EN is pulled below a base-emitter voltage drop (approximately 0.6  
V at room temperature). If EN is below this hard shutdown threshold, the internal LDO regulator powers off and  
the internal bias supply rail collapses, shutting down the bias currents of the LM5165. The LM5165 operates in  
standby mode when the EN voltage is between the hard shutdown and precision enable thresholds.  
7.3.8 Power Good (PGOOD)  
The LM5165 provides a PGOOD flag pin to indicate when the output voltage is within the regulation level. Use  
the PGOOD signal for start-up sequencing of downstream converters, as shown in 7-6, or for fault protection  
and output monitoring. PGOOD is an open-drain output that requires a pullup resistor to a DC supply not greater  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM5165  
 
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
than 12 V. Typical range of pullup resistance is 10 kto 100 k. If necessary, use a resistor divider to decrease  
the voltage from a higher voltage pullup rail.  
VIN(on) = 4.50 V  
VIN(off) = 3.15 V  
RUV1  
VOUT(COMMANDER) = 2.5 V  
VOUT(RESPONDER) = 1.5 V  
100 k  
LM5165  
LM5165  
EN  
7
9
EN  
7
9
RFB3  
22.3 k  
RPGOOD  
10 k  
RUV2  
PGOOD  
6
8
RFB1  
100 k  
PGOOD  
6
36.5 k  
HYS  
HYS  
FB  
FB  
8
1.223 V  
1.223 V  
RHYS  
20 k  
RFB4  
100 k  
RFB2  
95.3 k  
Regulator #1  
Startup based on Input  
Voltage UVLO  
Regulator #2  
Sequen al Startup  
based on PGOOD  
7-6. Commander-Responder Sequencing Implementation Using PGOOD and EN  
When the FB voltage exceeds 94% of the internal reference VREF1, the internal PGOOD switch turns off and  
PGOOD can be pulled high by the external pullup. If the FB voltage falls below 87% of VREF1, the internal  
PGOOD switch turns on, and PGOOD is pulled low to indicate that the output voltage is out of regulation. The  
rising edge of PGOOD has a built-in deglitch delay of 5 µs.  
7.3.9 Configurable Soft Start (SS)  
The LM5165 has a flexible and easy-to-use soft-start control pin, SS. The soft-start feature prevents inrush  
current impacting the LM5165 and the input supply when power is first applied. Soft start is achieved by slowly  
ramping up the target regulation voltage when the device is first enabled or powered up. Selectable and  
adjustable start-up timing options include minimum delay (no soft-start), 900-µs internally fixed soft start, and an  
externally programmable soft start.  
The simplest way to use the LM5165 is to leave the SS pin open. The LM5165 employs the internal soft-start  
control ramp and starts up to the regulated output voltage in 900 µs. In applications with a large amount of  
output capacitance, higher VOUT, or other special requirements, extend the soft-start time by connecting an  
external capacitor CSS from SS to GND. Longer soft-start time further reduces the supply current needed to  
charge the output capacitors and supply any output loading. An internal current source ISS of 10 µA charges CSS  
and generates a ramp to control the ramp rate of the output voltage. Use 方程式 8 to calculate the CSS  
capacitance for a desired soft-start time tSS  
.
CSS nF = 8.1t ms  
»
ÿ
»
ÿ
SS  
(8)  
CSS is discharged by an internal FET when VOUT is shutdown by EN, UVLO, or thermal shutdown.  
It is desirable in some applications for the output voltage to reach its nominal setpoint in the shortest possible  
time. Connecting a 100-kΩ resistor from SS to GND disables the soft-start circuit, and the LM5165 operates in  
current limit during start-up to rapidly charge the output capacitance.  
As negative inductor current is prevented, the LM5165 is capable of start-up into prebiased output conditions.  
With a prebiased output voltage, the LM5165 waits until the soft-start ramp allows regulation above the  
prebiased voltage and then follows the soft-start ramp to the regulation setpoint.  
7.3.10 Thermal Shutdown  
Thermal shutdown is an integrated self-protection to limit junction temperature and prevent damage related to  
overheating. Thermal shutdown turns off the device when the junction temperature exceeds 170°C to prevent  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
LM5165 restarts when the junction temperature falls to 160°C.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN pin provides ON and OFF control for the LM5165. When VEN is below approximately 0.6 V, the device is  
in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in shutdown  
mode drops to 4.6 µA at VIN = 12 V. The LM5165 also employs internal bias rail undervoltage protection. If the  
internal bias supply voltage is below its UV threshold, the regulator remains off.  
7.4.2 Standby Mode  
The internal bias rail LDO has a lower enable threshold than the regulator itself. When VEN is above 0.6 V and  
below the precision enable threshold (1.212 V typically), the internal LDO is on and regulating. The precision  
enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action and voltage  
regulation are not enabled until VEN rises above the precision enable threshold.  
7.4.3 Active Mode in COT  
The LM5165 is in active mode when VEN is above the precision enable threshold and the internal bias rail is  
above its UV threshold. In COT active mode, the LM5165 is in one of three modes depending on the load  
current:  
1. CCM with fixed switching frequency when load current is above half of the peak-to-peak inductor current  
ripple;  
2. Pulse skipping and diode emulation mode (DEM) when the load current is less than half of the peak-to-peak  
inductor current ripple in CCM operation. Refer to COT More Light-Load Operation for more detail;  
3. Frequency foldback mode to maintain output regulation at low dropout and for improved load-on transient  
response. Refer to Low Dropout Operation and 100% Duty Cycle Mode for more detail.  
7.4.4 Active Mode in PFM  
Similarly, the LM5165 is in PFM active mode when VEN and the internal bias rail are above the relevant  
thresholds, FB has fallen below the lower hysteresis level (VREF1), and boundary conduction mode is recharging  
the output capacitor to the upper hysteresis level (VREF2). There is a 4-µs wake-up delay from sleep to active  
states.  
7.4.5 Sleep Mode in PFM  
The LM5165 is in PFM sleep mode when VEN and the internal bias rail are above the relevant threshold levels,  
VFB has exceeded the upper hysteresis level (VREF2), and the output capacitor is sourcing the load current. In  
PFM sleep mode, the LM5165 operates with very low quiescent current.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8 Applications and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LM5165 only requires a few external components to convert from a wide range of supply voltages to a fixed  
output voltage. To expedite and streamline the process of designing of a LM5165-based converter, a  
comprehensive LM5165 Quick-start design tool is available for download to assist the designer with component  
selection for a given application. WEBENCH online software is also available to generate complete designs,  
leveraging iterative design procedures and access to comprehensive component databases. The following  
sections discuss the design procedure for both COT and PFM modes using specific circuit design examples.  
As mentioned previously, the LM5165 also integrates several optional features to meet system design  
requirements, including precision enable, UVLO, programmable soft start, programmable switching frequency in  
COT mode, adjustable current limit, and PGOOD indicator. Each application incorporates these features as  
needed for a more comprehensive design. The application circuits detailed below show LM5165 configuration  
options suitable for several application use cases. Refer to the LM5165EVM-HD-C50X and LM5165EVM-HD-  
P50A EVM user's guides for more detail.  
8.2 Typical Applications  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation and test results of an LM5165-powered  
implementation, refer to Field Transmitter with Bluetooth® Low Energy Connectivity Powered from 4 to 20-mA Current Loop reference  
design.  
8.2.1 Design 1: Wide VIN, Low IQ COT Converter Rated at 5 V, 150 mA  
The schematic diagram of a 5-V, 150-mA COT converter is given in 8-1.  
LF  
U1  
220 H  
VOUT = 5 V  
VIN = 5 V...65 V  
VIN  
EN  
SW  
IOUT = 150 mA  
LM5165X  
RESR  
CIN  
VOUT  
1.5 W  
1 F  
COUT  
HYS  
SS  
ILIM  
GND  
22 F  
CSS  
RT  
RRT  
133 kW  
47 nF  
PGOOD  
8-1. Schematic for Design 1 With VIN(nom) = 12 V, VOUT = 5 V, IOUT(max) = 150 mA, FSW(nom) = 220 kHz  
8.2.1.1 Design Requirements  
The target full-load efficiency is 91% based on a nominal input voltage of 12 V and an output voltage of 5 V. The  
required input voltage range is 5 V to 65 V. The LM5165X is chosen to deliver a fixed 5-V output voltage. The  
switching frequency is set by resistor RRT at 220 kHz. The output voltage soft-start time is 6 ms. The required  
components are listed in 8-1.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8-1. List of Components for Design 1  
REF DES  
CIN  
QTY SPECIFICATION  
VENDOR  
PART NUMBER  
1
1
1 µF, 100 V, X7R, 1206 ceramic  
TDK  
C3216X7R2A105K160AA  
GRM31CR71A226KE15L  
COUT  
22 µF, 10 V, X7R, 1206 ceramic  
Murata  
Würth Electronik WE-TPC 5828 744053221  
220 µH ±20%, 0.29 A, 0.92 Ωtyp DCR, 5.8 x 5.8 x 2.8 mm  
220 µH ±30%, 0.3 A, 1.25 Ωmax DCR, 5.8 x 5.8 x 3.0 mm  
1.5 Ω, 5%, 0402  
LF  
1
Bourns  
Std  
SRR5028-221Y  
RESR  
R RT  
CSS  
U1  
1
1
1
1
Std  
Std  
Std  
133 kΩ, 1%, 0402  
47 nF, 10 V, X7R, 0402 ceramic  
Std  
Std  
LM5165X Synchronous Buck Converter, VSON-10, 5V Fixed  
TI  
LM5165XDRCR  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5165 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Switching Frequency RT  
As mentioned, the switching frequency of a COT-configured LM5165 is set by the on-time programming resistor  
at the RT pin. As shown by 方程2, a standard 1% resistor of 133 kΩgives a switching frequency of 230 kHz.  
Note that at very low duty cycles, the minimum controllable on-time of the high-side MOSFET, TON(min), of 180 ns  
may affect choice of switching frequency. In CCM, TON(min) limits the voltage conversion step-down ratio for a  
given switching frequency. The minimum controllable duty cycle is given by 方程9:  
DMIN = TON(min) FSW  
(9)  
Given a fixed TON(min), it follows that higher switching frequency implies a larger minimum controllable duty cycle.  
Ultimately, the choice of switching frequency for a given output voltage affects the available input voltage range,  
solution size and efficiency. The maximum supply voltage for a given TON(min) before switching frequency  
reduction occurs is given by 方程10.  
VOUT  
V
=
IN(max)  
TON(min) FSW  
(10)  
8.2.1.2.3 Filter Inductor LF  
Added additional statement to inductor selection in applications section.  
The inductor ripple current (assuming CCM operation) and peak inductor current are given respectively by 方程  
11 and 方程12.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM5165  
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
÷
VOUT  
VOUT  
DIL =  
1-  
FSW LF  
V
IN  
«
(11)  
(12)  
DIL  
2
IL(peak) = IOUT(max)  
+
For most applications, choose an inductance such that the inductor ripple current, ΔIL, is between 30% and 50%  
of the rated load current at nominal input voltage. Calculate the inductance using 方程13.  
«
VOUT  
VOUT  
LF =  
1-  
÷
÷
FSW ∂ DIL(nom)  
V
IN(nom)  
(13)  
Choosing a 220-µH inductor in this design results in 55-mA peak-to-peak ripple current at nominal input voltage  
of 12 V, equivalent to 37% of the 150-mA rated load current. The peak inductor current at maximum input  
voltage of 65 V is 195 mA, sufficiently below the LM5165 peak current limit of 240 mA.  
The inductors selected for the following designs were meant for nominal operating conditions, and component  
behavior can deviate from expected results in situations like over current. Check the inductor data sheet to  
ensure that the inductor saturation current is well above the current limit setting of a particular design. Ferrite  
designs have low core loss and are preferred at high switching frequencies, so design goals can then  
concentrate on copper loss and preventing saturation. However, ferrite core materials exhibit a hard saturation  
characteristic the inductance collapses abruptly when the saturation current is exceeded. This results in an  
abrupt increase in inductor ripple current, higher output voltage ripple, not to mention reduced efficiency and  
compromised reliability. Note that inductor saturation current generally deceases as the core temperature  
increases.  
8.2.1.2.4 Output Capacitors COUT  
Select the output capacitor to limit the capacitive voltage ripple at the converter output. This is the sinusoidal  
ripple voltage that arises from the triangular ripple current flowing in the capacitor. Select an output capacitance  
using 方程14 to limit the voltage ripple component to 0.5% of the output voltage.  
DIL(nom) 100  
COUT  
í
FSW VOUT  
(14)  
Substituting ΔIL(nom) of 55 mA gives COUT greater than 5 μF. Mindful of the voltage coefficient of ceramic  
capacitors, select a 22-µF, 10-V capacitor with X7R dielectric in 1206 footprint.  
8.2.1.2.5 Series Ripple Resistor RESR  
Select a series resistor such that sufficient ripple in phase with the SW node voltage appears at the feedback  
node, FB. Use 方程15 to calculate the required ripple resistance, designated RESR  
.
20mV VOUT  
VREF ∂ DIL(nom)  
RESR  
í
(15)  
With VOUT of 5 V, VREF of 1.223 V, and ΔIL(nom) of 55 mA at the nominal input voltage of 12 V, the required RESR  
is 1.5 Ω. Calculate the total output voltage ripple in CCM using 方程16.  
2
«
÷
1
2
DVOUT = DIL RESR  
+
8 FSW COUT  
(16)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.1.2.6 Input Capacitor CIN  
An input capacitor is necessary to limit the input ripple voltage while providing switching-frequency AC current to  
the buck power stage. To minimize the parasitic inductance in the switching loop, position the input capacitors as  
close as possible to the VIN and GND pins of the LM5165. The input capacitors conduct a square-wave current  
of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive component of AC  
ripple voltage is a triangular waveform. Together with the ESR-related ripple component, the peak-to-peak ripple  
voltage amplitude is given by 方程17.  
IOUT D 1- D  
(
)
+ IOUT RESR  
DV  
=
IN  
FSW CIN  
(17)  
The input capacitance required for a particular load current, based on an input voltage ripple specification of  
ΔVIN, is given by 方程18.  
IOUT D1-D  
(
)
CIN  
í
FSW ∂ DVIN -IOUT RESR  
(
)
(18)  
The recommended high-frequency capacitance is 1 µF or higher and must be a high-quality ceramic type X5R or  
X7R with sufficient voltage rating. Based on the voltage coefficient of ceramic capacitors, choose a voltage rating  
of twice the maximum input voltage. Additionally, some bulk capacitance is required if the LM5165 circuit is not  
located within approximately 5 cm from the input voltage source. This capacitor provides damping to the  
resonance associated with parasitic inductance of the supply lines and high-Q ceramics.  
8.2.1.2.7 Soft-Start Capacitor CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 47 nF based on 方程8 to achieve a soft-start time of 6 ms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.1.3 Application Curves  
Unless otherwise stated, application performance curves were taken at TA = 25°C.  
100  
5.1  
90  
5.05  
80  
70  
5
60  
VIN = 8V  
VIN = 12V  
50  
4.95  
VIN = 24V  
VIN = 36V  
VIN = 65V  
40  
VIN = 12V  
VIN = 24V  
30  
0.1  
4.9  
1
10  
100 150  
D102  
0
25  
50  
75  
Output Current (mA)  
100  
125 150  
Output Current (mA)  
VOUT = 5 V  
8-2. Efficiency  
8-3. Load Regulation  
70  
60  
50  
40  
30  
20  
10  
0
1
MHz  
10 MHz  
VOUT 100 mV/DIV  
CISPR22  
Peak detector  
VSW 5 V/DIV  
20 ms/DIV  
Average detector  
-10  
Start 150 kHz  
Stop 30 MHz  
VIN = 12 V  
IOUT = 0 mA  
Date:  
26.FEB.2016 11:12:48  
VIN = 13.5 V IOUT = 100 mA  
LIN = 22 µH CIN(EXT) = 10 µF  
8-5. SW Node and Output Ripple Voltage, No  
8-4. EMI Plot CISPR 22 Filtered Emissions  
Load  
VOUT 100 mV/DIV  
VOUT 100 mV/DIV  
VSW 2 V/DIV  
4 ms/DIV  
4 ms/DIV  
VSW 5 V/DIV  
VIN = 12 V  
IOUT = 150 mA  
VIN = 5.7 V  
IOUT = 150 mA  
8-6. SW Node and Output Ripple Voltage, Full  
8-7. SW Node and Output Ripple Voltage  
Load  
Showing Frequency Foldback Near Dropout  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
VOUT 1 V/DIV  
VOUT 1 V/DIV  
VIN 5 V/DIV  
VEN 1 V/DIV  
IOUT 50 mA/DIV  
IOUT 50 mA/DIV  
2 ms/DIV  
2 ms/DIV  
VIN = 24 V  
VIN stepped to 24 V  
30-ΩLoad  
30-ΩLoad  
8-9. Enable ON and OFF  
8-8. Startup, Full Load  
VIN 1 V/DIV  
VIN 1 V/DIV  
VOUT 1 V/DIV  
VOUT 1 V/DIV  
IOUT 50 mA/DIV  
IOUT 50 mA/DIV  
4 ms/DIV  
4 ms/DIV  
VIN brownout to 3.2 V  
VIN brownout to 3.2 V  
8-10. Dropout Performance, 75-mA Resistive  
8-11. Dropout Performance, 150-mA Resistive  
Load  
Load  
VOUT 100 mV/DIV  
VIN 2 V/DIV  
IOUT 50 mA/DIV  
IL 50 mA/DIV  
VOUT 2 V/DIV  
10 ms/DIV  
200 ms/DIV  
VIN = 24 V  
IOUT = 150 mA  
8-12. Load Transient, 50 mA to 150 mA, 1 A/µs  
8-13. Input Transient (Automotive Cold Crank  
Profile)  
8.2.2 Design 2: Small Solution Size PFM Converter Rated at 3.3 V, 50 mA  
The schematic diagram of a 3.3-V, 50-mA PFM converter with minimum component count is given in 8-14.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
LF  
U1  
47 H  
VOUT = 3.3 V  
IOUT = 50 mA  
VIN = 3.5 V...65 V  
VIN  
SW  
LM5165Y  
CIN  
COUT  
EN  
VOUT  
1 F  
10 F  
SS  
ILIM  
GND  
HYS  
PGOOD  
RT  
RILIM  
56.2 kW  
8-14. Schematic for Design 2 With VIN(nom) = 12 V, VOUT = 3.3 V, IOUT(max) = 50 mA, FSW(nom) = 350 kHz  
8.2.2.1 Design Requirements  
The target full-load efficiency of this design is 88% based on a nominal input voltage of 12 V and an output  
voltage of 3.3 V. The required total input voltage range is 3.5 V to 65 V. The LM5165 has an internally-set soft-  
start time of 900 µs and an adjustable peak current limit threshold. The BOM is listed in 8-2.  
8-2. List of Components for Design 2  
REF DES  
QTY SPECIFICATION  
VENDOR  
PART NUMBER  
C2012X7S2A474M125AE  
JMK212AB7106KG-T  
GRM21BR70J106KE76K  
LPS4018-473MRC  
74404042470  
CIN  
1
1 µF, 100 V, X7S, 0805 ceramic  
TDK  
Taiyo Yuden  
Murata  
Coilcraft  
Würth  
COUT  
1
10 µF, 6.3 V, X7R, 0805 ceramic  
47 µH ±20%, 0.56 A, 650 mΩmaximum DCR, 3.9 × 3.9 × 1.7 mm  
47 µH ±20%, 0.7 A, 620 mΩtypical DCR, 4.0 × 4.0 × 1.8 mm  
47 µH ±20%, 0.57 A, 650 mΩtypical DCR, 4.0 × 4.0 × 1.8 mm  
56.2 kΩ, 1%, 0402  
LF  
1
Taiyo Yuden  
Std  
NR4018T470M  
R ILIM  
U1  
1
1
Std  
LM5165Y Synchronous Buck Converter, VSON-10, 3.3-V Fixed  
TI  
LM5165YDRCR  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Peak Current Limit Setting RILIM  
Install a 56.2-kΩ resistor from ILIM to GND to select a 120-mA peak current limit threshold setting to meet the  
rated output current of 50 mA.  
8.2.2.2.2 Switching Frequency LF  
Tie RT to GND to select PFM mode of operation. The inductor, input voltage, output voltage, and peak current  
determine the pulse switching frequency of a PFM-configured LM5165. For a given input voltage, output voltage  
and peak current, the inductance of LF sets the switching frequency when the output is in regulation. Use 方程式  
19 to select an inductance of 47 µH based on the target PFM converter switching frequency of 350 kHz at 12-V  
input.  
÷
VOUT  
VOUT  
LF =  
1-  
FSW(PFM) IPK(PFM)  
V
IN  
«
(19)  
IPK(PFM) in this example is the peak current limit setting of 120 mA plus an additional 10% margin added to  
include the effect of the 100-ns peak current comparator delay. An additional constraint on the inductance is the  
180-ns minimum on-time of the high-side MOSFET. Therefore, to keep the inductor current well controlled,  
choose an inductance that is larger than LF(min) using 方程式 20 where VIN(max) is the maximum input supply  
voltage for the application, tON(min) is 180 ns, and IL(max) is the maximum allowed peak inductor current.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
V
IN(max) tON(min)  
LF(min)  
=
IL(max)  
(20)  
Choose an inductor with saturation current rating above the peak current limit setting, and allow for derating of  
the saturation current at the highest expected operating temperature.  
8.2.2.2.3 Output Capacitor COUT  
The output capacitor, COUT, filters the inductor ripple current and stores energy to meet the load current  
requirement when the LM5165 is in sleep mode. The output ripple has a base component of amplitude VOUT/123  
related to the 10-mV typical feedback comparator hysteresis in PFM. The wakeup time from sleep to active  
mode adds a ripple voltage component that is a function of the output current. Approximate the total output ripple  
by 方程21.  
IOUT 4s VOUT  
DVOUT  
=
+
COUT  
123  
(21)  
Also, the output capacitance must be large enough to accept the energy stored in the inductor without a large  
deviation in output voltage. Setting this voltage change equal to 0.5% of the output voltage results in:  
2
I
PK(PFM)  
COUT í 100 L ∂  
÷
÷
F
VOUT  
«
(22)  
In general, select the capacitance of COUT to limit the output voltage ripple at full load current, ensuring that it is  
rated for worst-case RMS ripple current given by IRMS = IPK(PFM)/2. In this design example, choose a 10-µF, 6.3-  
V ceramic output capacitor with X7R dielectric and 0805 footprint.  
8.2.2.2.4 Input Capacitor CIN  
The input capacitor, CIN, filters the high-side MOSFET triangular current waveform, see 8-36. To prevent large  
ripple voltage, use a low-ESR ceramic input capacitor sized for the worst-case RMS ripple current given by IRMS  
= IOUT/2. In this design example, choose a 1-µF, 100-V ceramic input capacitor with X7S dielectric and 0805  
footprint.  
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's Power House blog  
series.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.2.3 Application Curves  
100  
VOUT 100 mV/DIV  
90  
80  
70  
VSW 5 V/DIV  
60  
VIN = 8V  
50  
40  
30  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
10 ms/DIV  
0.1  
1
10  
50  
D103  
VIN = 12 V  
IOUT = 50 mA  
Output Current (mA)  
VOUT = 3.3 V  
8-16. SW Node and Output Ripple Voltage, Full  
Load  
8-15. Efficiency  
VEN 1 V/DIV  
VIN 2 V/DIV  
VOUT 1 V/DIV  
VOUT 1 V/DIV  
IOUT 20 mA/DIV  
IOUT 20 mA/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 12 V  
VIN stepped to 12 V  
66-ΩLoad  
66-ΩLoad  
8-18. Enable ON and OFF  
8-17. Start-Up, Full Load  
VIN 2 V/DIV  
VOUT 100 mV/DIV  
VOUT 1 V/DIV  
IOUT 20 mA/DIV  
200 ms/DIV  
10 ms/DIV  
IOUT = 50 mA  
VIN = 12 V  
8-20. Input Voltage Transient (Atuomotive Cold  
8-19. Load Transient, 0 mA to 50 mA, 1 A/µs  
Crank Profile)  
8.2.3 Design 3: High Density 12-V, 75-mA PFM Converter  
The schematic diagram of 12-V, 75-mA PFM converter is given in 8-21.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
LF  
U1  
47 H  
VOUT = 12 V  
VIN = 18 V...65 V  
VIN  
EN  
SW  
IOUT = 75 mA  
RUV1  
RFB1  
LM5165  
10 MW  
1 MW  
COUT  
CIN  
FB  
SS  
10 F  
RUV2  
1 F  
PGOOD  
HYS  
825 kW  
RFB2  
CSS  
ILIM  
113 kW  
22 nF  
RHYS  
RILIM  
37.4 kW  
24.9 kW  
RT  
GND  
8-21. Schematic for Design 3 With VIN(nom) = 24 V, VOUT = 12 V, IOUT(max) = 75 mA, FSW(nom) = 500 kHz  
8.2.3.1 Design Requirements  
The full-load efficiency specification is 92% based on a nominal input voltage of 24 V and an output voltage of 12  
V. The total input voltage range is 18 V to 65 V, with UVLO turnon and turnoff at 16 V and 14.5 V, respectively.  
The output voltage setpoint is established by feedback resistors, RFB1 and RFB2. The switching frequency is set  
by inductor LF at 500 kHz at nominal input voltage. The required components are listed in 8-3.  
8-3. List of Components for Design 3  
REF DES QTY SPECIFICATION  
VENDOR  
Murata  
TDK  
PART NUMBER  
1 µF, 100 V, X7S, 0805 ceramic  
GRJ21BC72A105KE11L  
CGA4J3X7S2A105K125AE  
EMK212BB7106MG-T  
CGA4J1X7S1C106K125AC  
CIN  
1
1 µF, 100 V, X7S, 0805 ceramic, AEC-Q200  
10 µF, 16 V, X7R, 0805 ceramic  
Taiyo Yuden  
TDK  
COUT  
1
1
10 µF, 16 V, X7R, 0805 ceramic, AEC-Q200  
47 µH ±20%, 0.56 A, 650 mΩmaximum DCR, 3.9 × 3.9 × 1.7 mm  
AEC-Q200  
LF  
Coilcraft  
LPS4018-473MRC  
R ILIM  
R FB1  
R FB2  
R UV1  
R UV2  
R HYS  
C SS  
1
1
1
1
1
1
1
1
Std  
Std  
Std  
Std  
Std  
Std  
Std  
TI  
Std  
24.9 kΩ, 1%, 0402  
Std  
1 MΩ, 1%, 0402  
Std  
113 kΩ, 1%, 0402  
Std  
10 MΩ, 1%, 0603  
Std  
825 kΩ, 1%, 0402  
Std  
37.4 kΩ, 1%, 0402  
22 nF, 10 V, X7R, 0402  
LM5165 Synchronous Buck Converter, VSON-10, 3 mm × 3 mm  
Std  
U1  
LM5165DRCR  
8.2.3.2 Detailed Design Procedure  
The component selection procedure for this PFM design is quite similar to that of Design 2, see 8-14.  
8.2.3.2.1 Peak Current Limit Setting RILIM  
Install a 24.9-kΩ resistor from ILIM to GND to select the 180-mA peak current limit setting for a rated output  
current of 75 mA.  
8.2.3.2.2 Switching Frequency LF  
Tie RT to GND to select PFM mode of operation. Set the switching frequency by the filter inductance, LF.  
Calculate an inductance of 47 µH based on the target PFM converter switching frequency of 500 kHz at 24-V  
input using 方程式 19. Use a peak current limit setting, IPK(PFM), of 180 mA plus an additional 50% margin in this  
high-frequency design to include the effect of the 100-ns current limit comparator delay. Choose an inductor with  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
saturation current rating well above the peak current limit setting, and allow for derating of the saturation current  
at the highest expected operating temperature.  
8.2.3.2.3 Input and Output Capacitors CIN, COUT  
Choose a 1-µF, 100-V ceramic input capacitor with 0805 footprint. Such a capacitor is typically available in X5R  
or X7S dielectric. Based on 方程式 22, select a 10-µF, 16-V ceramic output capacitor with X7R dielectric and  
0805 footprint.  
8.2.3.2.4 Feedback Resistors RFB1, RFB2  
The output voltage of the LM5165 is externally adjustable using a resistor divider network. The divider network  
comprises the upper feedback resistor RFB1 and lower feedback resistor RFB2. Select RFB1 of 1 MΩ to minimize  
quiescent current and improve light-load efficiency in this application. With the desired output voltage setpoint of  
12 V and VFB = 1.223 V, calculate the resistance of RFB2 using 方程式 5 as 113.5 kΩ. Choose the closest  
available standard value of 113 kΩfor RFB2. Please refer to Adjustable Output Voltage (FB) for more detail.  
8.2.3.2.5 Undervoltage Lockout Setpoint RUV1, RUV2, RHYS  
Adjust the undervoltage lockout (UVLO) using an externally-connected resistor divider network of RUV1, RUV2  
,
and RHYS. The UVLO has two thresholds, one for power up when the input voltage is rising and one for power  
down or brownouts when the input voltage is falling. The EN rising threshold for the LM5165 is 1.212 V.  
Rearranging 方程6 and 方程7, the expressions to calculate RUV2 and RHYS are as follows:  
VEN(on)  
RUV2  
=
RUV1  
V
- VEN(on)  
IN(on)  
(23)  
(24)  
VEN(off)  
- VEN(off)  
RHYS  
=
RUV1 -RUV2  
V
IN(off)  
Choose RUV1 as 10 Mto minimize input quiescent current. Given the desired input voltage UVLO thresholds of  
16 V and 14.5 V, calculate the resistance of RUV2 and RHYS as 825 kand 37.4 k, respectively. See 7.3.7  
for more detail.  
8.2.3.2.6 Soft Start CSS  
Install a 22-nF capacitor from SS to GND for a soft-start time of 3 ms.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.3.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT 2 V/DIV  
VIN 5 V/DIV  
IOUT 20 mA/DIV  
VIN = 18V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
1 ms/DIV  
0.1  
1
10  
75  
D105  
VIN stepped to 24 V  
160-ΩLoad  
Output Current (mA)  
VOUT = 12 V  
8-23. Start-Up, Full Load  
8-22. Efficiency  
VOUT 500 mV/DIV  
VOUT 500 mV/DIV  
VSW 10 V/DIV  
VSW 10 V/DIV  
10 ms/DIV  
10 ms/DIV  
VIN = 24 V  
IOUT = 75 mA  
VIN = 24 V  
IOUT = 0 mA  
8-24. SW Node and Output Ripple Voltage, Full  
8-25. SW Node and Output Ripple Voltage, No  
Load  
Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.4 Design 4: 3.3-V, 150-mA COT Converter With High Efficiency  
The schematic diagram of a 3.3-V, 150-mA COT converter is given in 8-26.  
LF  
U1  
150 H  
VOUT = 3.3 V *  
IOUT = 150 mA  
VIN = 3 V...65 V  
VIN  
EN  
SW  
LM5165Y  
RESR  
CIN  
VOUT  
0.5 W  
1 F  
COUT  
HYS  
RT  
SS  
22 F  
CSS  
ILIM  
RRT  
121 kW  
33 nF  
GND  
PGOOD  
* VOUT tracks VIN if VIN Ç 3.3V  
8-26. Schematic for Design 4 With VIN(nom) = 24 V, VOUT = 3.3 V, IOUT(max) = 150 mA, FSW(nom) = 160 kHz  
8.2.4.1 Design Requirements  
The target full-load efficiency is 91% based on a nominal input voltage of 24 V and an output voltage of 3.3 V.  
The required input voltage range is 3 V to 65 V. The LM5165Y is chosen to deliver a fixed 3.3-V output voltage.  
The switching frequency is set by resistor RRT at approximately 160 kHz. The output voltage soft-start time is 4  
ms. The required components are listed in 8-4. The component selection procedure for this COT design is  
quite similar to that of Design 1, see 8-1.  
8-4. List of Components for Design 4  
REF DES  
CIN  
QTY SPECIFICATION  
VENDOR  
Murata  
Murata  
Coilcraft  
Std  
PART NUMBER  
GRM31CR72A105KA01L  
GRM21BR660J226ME39K  
LPS5030-154MLC  
Std  
1
1
1
1
1
1
1
1 µF, 100 V, X7R, 1206 ceramic  
COUT  
LF  
22 µF, 6.3 V, X7S, 0805 ceramic  
150 µH ±20%, 0.29 A, 0.86 Ωtypical DCR, 4.8 × 4.8 × 2.9 mm  
0.5 Ω, 5%, 0402  
RESR  
R RT  
CSS  
Std  
Std  
121 kΩ, 1%, 0402  
33 nF, 10 V, X7R, 0402 ceramic  
Std  
Std  
U1  
LM5165Y Synchronous Buck Converter, VSON-10, 3.3-V Fixed  
TI  
LM5165YDRCR  
8.2.4.2 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT 0.5 V/DIV  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
4 ms/DIV  
VSW 5 V/DIV  
VIN = 24 V  
IOUT = 150 mA  
0.1  
1
10  
100 150  
D104  
8-28. SW Node and Output Ripple Voltages, Full  
Output Current (mA)  
Load  
8-27. Efficiency  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.5 Design 5: 15-V, 150-mA, 600-kHz COT Converter  
The schematic diagram of a 15-V, 150-mA COT converter is given in 8-29.  
LF  
U1  
150 H  
VOUT = 15 V  
IOUT = 150 mA  
VIN = 24 V...48 V  
VIN  
EN  
SW  
RUV1  
CFF  
10 pF  
RFB1  
499 kW  
LM5165  
RESR  
10 MW  
0.5 W  
FB  
SS  
CIN  
RUV2  
681 kW  
COUT  
1 F  
PGOOD  
RFB2  
44.2 kW  
10 F  
HYS  
RT  
CSS  
ILIM  
RHYS  
40.2 kW  
47 nF  
GND  
RRT  
143 kW  
8-29. Schematic for Design 5 With VIN(nom) = 36 V, VOUT = 15 V, IOUT(max) = 150 mA, FSW(nom) = 600 kHz  
8.2.5.1 Design Requirements  
The target full-load efficiency is 92% based on a nominal input voltage of 36 V and an output voltage of 15 V.  
The input voltage operating range is 24 V to 48 V, but transients as high as 65 V are possible in the application.  
UVLO turnon and turnoff are set at 19 V and 17 V, respectively. The LM5165 switching frequency is set at  
approximately 600 kHz by resistor RRT of 143 kΩ. The output voltage soft-start time is 6 ms. The required  
components are listed in 8-5. The component selection procedure for this COT design is quite similar to that  
of Design 1, see 8-1.  
8-5. List of Components for Design 5  
REF DES  
CIN  
QTY SPECIFICATION  
VENDOR  
PART NUMBER  
1
1
1
1
1
1
1
1
1
1
1
1
1
1 µF, 100 V, X7R, 1206 ceramic  
AVX  
12061C105KAT2A  
COUT  
LF  
10 µF, 25 V, X7R, 1206 ceramic  
150 µH ±20%, 0.29 A, 0.86 Ωtypical DCR, 4.8 × 4.8 × 2.9 mm  
2.2 Ω, 5%, 0402  
Taiyo Yuden  
Coilcraft  
Std  
TMK316B7106KL-TD  
LPS5030-154MLC  
RESR  
R RT  
R FB1  
R FB2  
R UV1  
R UV2  
R HYS  
CFF  
Std  
Std  
Std  
143 kΩ, 1%, 0402  
Std  
Std  
499 kΩ, 1%, 0402  
Std  
Std  
44.2 kΩ, 1%, 0402  
Std  
Std  
10 MΩ, 1%, 0603  
Std  
Std  
681 kΩ, 1%, 0402  
Std  
Std  
40.2 kΩ, 1%, 0402  
10 pF, 10 V, X7R, 0402 ceramic  
47 nF, 10 V, X7R, 0402 ceramic  
LM5165 Synchronous Buck Converter, VSON-10, 3 mm × 3 mm  
Std  
Std  
CSS  
Std  
Std  
U1  
TI  
LM5165DRCR  
8.2.5.2 Detailed Design Procedure  
8.2.5.2.1 COT Output Ripple Voltage Reduction  
Depending on the required ripple resistance when operating in COT mode, the resultant output voltage ripple  
may be deemed too high for a given application. One option is to place a feedforward capacitor CFF in parallel  
with the upper feedback resistor RFB1. Capacitor CFF increases the high-frequency gain from VOUT to VFB close  
to unity such that the output voltage ripple couples directly to the FB node.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM5165  
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.2.5.3 Application Curves  
100  
90  
80  
70  
60  
50  
VIN 10 V/DIV  
VOUT 5 V/DIV  
IOUT 100 mA/DIV  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
40  
30  
2 ms/DIV  
0.1  
1
10  
100 150  
D106  
VIN stepped to 36 V  
IOUT = 150 mA  
Output Current (mA)  
VOUT = 15 V  
8-31. Start-Up, Full Load  
8-30. Efficiency  
VOUT 100 m/DIV  
VOUT 100 mV/DIV  
VSW 10 V/DIV  
10 ms/DIV  
VSW 10 V/DIV  
1 ms/DIV  
VIN = 36 V  
IOUT = 0 mA  
VIN = 36 V  
IOUT = 150 mA  
8-33. SW Node and Output Ripple Voltage, No  
8-32. SW Node and Output Ripple Voltage, Full  
Load  
Load  
VEN 1 V/DIV  
VIN 10 V/DIV  
VOUT 5 V/DIV  
VOUT 1 V/DIV  
IOUT 100 mA/DIV  
IOUT 100 mA/DIV  
400 ms/DIV  
2 ms/DIV  
VIN = 36 V  
VIN = 36 V  
8-34. Enable ON and OFF  
8-35. Short Circuit Recovery  
8.3 Power Supply Recommendations  
The LM5165 is designed to operate from an input voltage supply range between 3 V and 65 V. This input supply  
must be able to provide the maximum input current and maintain a voltage above 3 V. Ensure that the resistance  
of the input supply rail is low enough that an input current transient does not cause a high enough drop at the  
LM5165 supply rail to cause a false UVLO fault triggering and system reset. If the input supply is located more  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
than a few inches from the LM5165 converter, additional bulk capacitance may be required in addition to the  
ceramic input capacitance. A 4.7-μF electrolytic capacitor is a typical choice for this function, whereby the  
capacitor ESR provides a level of damping against input filter resonances. A typical ESR of 0.5 Ω provides  
enough damping for most input circuit configurations.  
8.4 Layout  
The performance of any switching converter depends as much upon PCB layout as it does the component  
selection. The following guidelines are provided to assist with designing a PCB with the best power conversion  
performance, thermal performance, and minimized generation of unwanted EMI.  
8.4.1 Layout Guidelines  
PCB layout is a critical for good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise and EMI or  
degrade the power supply performance.  
1. Bypass the VIN pin to GND with a low-ESR ceramic capacitor of X5R or X7R dielectric. Place CIN as close  
as possible to the LM5165 VIN and GND pins. Ground return paths for both the input and output capacitors  
must consist of localized top-side planes that connect to the GND pin and exposed PAD.  
2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.  
3. Locate the power inductor close to the SW pin. Minimize the area of the SW trace or plane to prevent  
excessive capacitive coupling.  
4. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
5. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
6. Have a single-point ground connection to the plane. Route the ground connections for the feedback, soft-  
start, and enable components to the ground plane. This prevents any switched or load currents from flowing  
in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic  
output voltage ripple behavior.  
7. Make VIN, VOUT and ground bus connections as wide as possible. This reduces any voltage drops on the  
input or output paths of the converter and maximizes efficiency.  
8. Minimize trace length to the FB pin. Locate both feedback resistors close to the FB pin. Place CFF (if used)  
directly in parallel with RFB1. Route the VOUT sense path away from noisy nodes and preferably on a layer at  
the other side of a shielding layer.  
9. Locate the components at RT and SS as close as possible to the device. Route with minimal trace lengths.  
10. Provide adequate heatsinking for the LM5165 to keep the junction temperature below 150°C. For operation  
at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-  
sinking vias to connect the exposed PAD to the PCB ground plane. If the PCB has multiple copper layers,  
connect these thermal vias to inner-layer ground planes.  
8.4.1.1 Compact PCB Layout for EMI Reduction  
Radiated EMI generated by high di/dt components relates to pulsing currents in switching converters. The larger  
area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to  
minimize radiated EMI is to identify the pulsing current path and minimize the area of that path.  
The critical switching loop of the power stage in terms of EMI is denoted in 8-36. The topological architecture  
of a buck converter means that a particularly high di/dt current effective path exists in the loop comprising the  
input capacitor and the LM5165 integrated MOSFETs, and it becomes mandatory to reduce the parasitic  
inductance of this loop by minimizing the effective loop area.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
VIN  
VIN  
2
CIN  
LM5165  
High  
di/dt  
loop  
High-side  
PMOS  
gate driver  
Q1  
LF  
SW  
VOUT  
1
COUT  
Q2  
Low-side  
NMOS  
gate driver  
GND  
10  
GND  
8-36. Synchronous Buck Converter With Power Stage Critical Switching Loop  
The input capacitor provides the primary path for the high di/dt components of the high-side MOSFET current.  
Placing a ceramic capacitor as close as possible to the VIN and GND pins is the key to EMI reduction. Keep the  
trace connecting SW to the inductor as short as possible and just wide enough to carry the load current without  
excessive heating. Use short, thick traces or copper pours (shapes) for current conduction path to minimize  
parasitic resistance. Place the output capacitor close to the VOUT side of the inductor, and connect the capacitor  
return terminal to the LM5165 GND pin and exposed PAD.  
8.4.1.2 Feedback Resistor Layout  
For the adjustable output voltage version of the LM5165, reduce noise sensitivity of the output voltage feedback  
path by placing the resistor divider close to the FB pin, rather than close to the load. This reduces the trace  
length of FB signal and noise coupling. The FB pin is the input to the feedback comparator and, as such, is a  
high impedance node sensitive to noise. The output node is a low impedance node, so the trace from VOUT to  
the resistor divider can be long if a short path is not available.  
Route the voltage sense trace from the load to the feedback resistor divider away from the SW node path, the  
inductor and VIN path to avoid contaminating the feedback signal with switch noise, while also minimizing the  
trace length. This is most important when high feedback resistances, greater than 100 kΩ, are used to set the  
output voltage. Also, route the voltage sense trace on a different layer from the inductor, SW node and VIN path,  
such that there is a ground plane that separates the feedback trace from the inductor and SW node copper  
polygon. This provides further shielding for the voltage feedback path from switching noise sources.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
8.4.2 Layout Example  
8-37 shows an example layout for the PCB top layer of a single-sided design. The bottom layer is essentially  
a full ground plane except for short connecting traces for SW, EN, and PGOOD.  
GND  
connection  
Short SW node trace  
routed underneath  
RESR  
LF  
VIN  
VOUT  
connection  
connection  
COUT  
CIN  
Connect ceramic input  
cap close to VIN and  
GND  
SW via  
RFB2 RFB1 CFF RPG  
RUV1  
RILIM  
RUV2  
EN connection  
PGOOD  
connection  
CSS  
RRT  
RHYS  
Place FB resistors very  
close to FB & GND pins  
Thermal vias under  
LM5165 PAD  
Place SS cap close  
to pin  
8-37. PCB Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LM5165  
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
9.1.2 Development Support  
For development support, see the following:  
LM5165 Quick-start Design Tool  
LM5165 Simulation Models  
For TI's reference design library, visit TIDesigns  
For TI's WEBENCH Design Environment, visit the WEBENCH Design Center  
To view a related device of this product, see the LM5166  
9.1.3 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5165 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, LM5165EVM-HD-P50A EVM User's Guide  
Texas Instruments, LM5165EVM-HD-C50X EVM User's Guide  
Texas Instruments, LM5166EVM-C50A EVM Users Guide  
Texas Instruments, Low-IQ Synchronous Buck Converter Enables Intelligent Field-sensor Applications  
Texas Instruments, Low EMI Buck Converter Powers a Multivariable Sensor Transmitter with BLE  
Connectivity  
TI Designs:  
Texas Instruments, Field Transmitter with Bluetooth® Low Energy Connectivity Powered from 4 to 20-mA  
Current Loop  
Texas Instruments, 24-V AC Power Stage with Wide VIN Converter and Battery Backup for Smart  
Thermostat  
Texas Instruments, 24-V AC Power Stage with Wide VIN Converter and Battery Gauge for Smart  
Thermostat  
Industrial Strength Blogs:  
Texas Instruments, Powering Smart Sensor Transmitters in Industrial Applications  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
Texas Instruments, Trends in Building Automation: Predictive Maintenance  
Texas Instruments, Trends in Building Automation: Connected Sensors for User Comfort  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LM5165  
LM5165  
www.ti.com.cn  
ZHCSEQ3D FEBRUARY 2016 REVISED DECEMBER 2022  
White Paper:  
Texas Instruments, Valuing Wide VIN, Low-EMI Synchronous Buck Circuits for Cost-Effective, Demanding  
Applications  
Texas Instruments, Selecting an Ideal Ripple Generation Network for Your COT Buck Converter  
Texas Instruments, AN-2162: Simple Success with Conducted EMI from DC-DC Converters  
Texas Instruments, Automotive Cranking Simulator User's Guide  
Texas Instruments, Using New Thermal Metrics  
Texas Instruments, Semiconductor and IC Package Thermal Metrics  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG Inc.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this datasheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LM5165  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5165DRCR  
LM5165DRCT  
LM5165XDRCR  
LM5165XDRCT  
LM5165YDRCR  
LM5165YDRCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
5165  
5165  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
5165X  
5165X  
5165Y  
5165Y  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM5165 :  
Automotive : LM5165-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5165DRCR  
LM5165DRCR  
LM5165DRCT  
LM5165DRCT  
LM5165XDRCR  
LM5165XDRCR  
LM5165XDRCT  
LM5165XDRCT  
LM5165YDRCR  
LM5165YDRCR  
LM5165YDRCT  
LM5165YDRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
3000  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5165DRCR  
LM5165DRCR  
LM5165DRCT  
LM5165DRCT  
LM5165XDRCR  
LM5165XDRCR  
LM5165XDRCT  
LM5165XDRCT  
LM5165YDRCR  
LM5165YDRCR  
LM5165YDRCT  
LM5165YDRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
3000  
250  
335.0  
367.0  
182.0  
210.0  
367.0  
335.0  
182.0  
210.0  
367.0  
335.0  
210.0  
182.0  
335.0  
367.0  
182.0  
185.0  
367.0  
335.0  
182.0  
185.0  
367.0  
335.0  
185.0  
182.0  
25.0  
35.0  
20.0  
35.0  
35.0  
25.0  
20.0  
35.0  
35.0  
25.0  
35.0  
20.0  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY