LM5181 [TI]

具有 100V、0.75A 集成式 MOSFET 的 65V 输入电压非光电反激式转换器;
LM5181
型号: LM5181
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 100V、0.75A 集成式 MOSFET 的 65V 输入电压非光电反激式转换器

光电 转换器
文件: 总34页 (文件大小:2712K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM5181  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
100V0.75A MOSFET LM5181 65VIN PSR 反激式直流/直流转换器  
1 特性  
2 应用  
提供功能安全  
隔离式现场发送器现场传动器  
• 适用于模拟输入模块的多输出轨  
电机驱动器IGBT SiC 栅极驱动电源  
楼宇自动HVAC 系统  
可帮助进行功能安全系统设计的文档  
• 专为可靠耐用的应用而设计  
4.5V 65V 的宽输入电压范围启动后的工作  
电压低3.5V  
• 隔离式偏置电源  
– 稳定可靠的解决方案只有一个组件穿过隔离层  
±1.5% 的总输出稳压精度  
– 可VOUT 温度补偿  
6ms 内部或可编程软启动  
– 输UVLO 和热关断保护  
– 断续模式过流故障保护  
3 说明  
LM5181 是一款初级侧稳压 (PSR) 反激式转换器在  
4.5V 65V 的宽输入范围内具有高效率。隔离输出电  
压采样自初级侧反激式电压因此无需使用光耦合  
器、电压基准或变压器的第三绕组进行输出电压稳压。  
– 具40°C +150°C 的结温范围  
• 通过集成技术减小解决方案尺寸降低成本  
凭借高度的集成性可实现简单可靠的高密度设计其  
中只有一个组件穿过隔离层。通过采用边界导电模式  
(BCM) 实现紧凑的磁解决方案以及优于  
±1.5% 的负载和线路调节性能。集成的 100V 功率  
MOSFET 能够提供高达 4W 的输出功率并提高应对线  
路瞬变的余量。  
– 集100V0.4ΩMOSFET  
– 无需光耦合器或变压器辅助绕组即可进VOUT  
稳压  
– 内部环路补偿  
• 高效PSR 反激运行  
LM5181 反激式转换器采用 8 引脚 4mm × 4mm 热增  
WSON 封装引脚间距0.8mm。  
MOSFET BCM 模式下实现准谐振关断  
– 低输入静态电流  
器件信息  
封装(1)  
– 具有用于提升效率的外部偏置选项  
– 具有单输出和多输出实施手段  
• 超低EMI 传导和辐射信号  
封装尺寸标称值)  
器件型号  
LM5181  
WSON (8)  
4.00mm × 4.00mm  
– 软开关可避免二极管反向恢复  
– 针CISPR 32 EMI 要求进行了优化  
• 使WEBENCH® Power Designer 创建定制稳压器  
设计  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
90  
85  
80  
75  
DFLY  
VIN = 4.5 V...65 V  
VOUT = 5 V  
T1  
DZ  
COUT  
100 F  
3 : 1  
CIN  
DF  
VIN  
EN/UVLO  
2.2 F  
SW  
FB  
RFB  
LM5181  
158 kW  
70  
VIN = 12V  
VIN = 24V  
GND  
RSET  
TC  
VIN = 36V  
VIN = 48V  
VIN = 65V  
65  
60  
RSET  
SS/BIAS  
12.1 kW  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D002  
典型效(VOUT = 5V)  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBM6  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
Table of Contents  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Applications.................................................. 17  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Examples.....................................................26  
12 Device and Documentation Support..........................27  
12.1 Device Support....................................................... 27  
12.2 Documentation Support.......................................... 28  
12.3 接收文档更新通知................................................... 28  
12.4 支持资源..................................................................28  
12.5 Trademarks.............................................................28  
12.6 静电放电警告.......................................................... 28  
12.7 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................16  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2020) to Revision A (January 2021)  
Page  
• 更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
• 向添加了功能安全项目................................................................................................................................1  
5 Description (continued)  
The LM5181 flyback converter simplifies implementation of isolated DC/DC supplies with optional features to  
optimize performance for the target end equipment. The output voltage is set by one resistor, while an optional  
resistor improves output voltage accuracy by negating the thermal coefficient of the flyback diode voltage drop.  
Additional features include an internally-fixed or externally-programmable soft start, optional bias supply  
connection for higher efficiency, precision enable input with hysteresis for adjustable line UVLO, hiccup-mode  
overload protection, and thermal shutdown protection with automatic recovery.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
6 Pin Configuration and Functions  
8
7
6
5
GND  
SW  
FB  
1
2
3
4
RSET  
TC  
VIN  
EN/UVLO  
SS/BIAS  
6-1. NGU Package 8-Pin WSON With Wettable Flanks Top View  
6-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Switch node that is internally connected to the drain of the N-channel power MOSFET.  
Connect to the primary-side switching terminal of the flyback transformer.  
1
SW  
P
I
Primary-side feedback pin. Connect a resistor from FB to SW. The ratio of the FB resistor to  
the resistor at the RSET pin sets the output voltage.  
2
3
FB  
Input supply connection. Source for internal bias regulators and input voltage sensing pin.  
Connect directly to the input supply of the converter with short, low impedance paths.  
VIN  
P/I  
Enable input and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is  
below 1.1 V, the converter is in shutdown mode with all functions disabled. If the EN/UVLO  
voltage is greater than 1.1 V and below 1.5 V, the converter is in standby mode with the  
internal regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the  
start-up sequence begins.  
4
5
EN/UVLO  
SS/BIAS  
I
I
Soft start or bias input. Connect a capacitor from SS/BIAS to GND to adjust the output start-up  
time and input inrush current. If SS/BIAS is left open, the internal 6-ms soft-start timer is  
activated. Connect an external supply to SS/BIAS to supply bias to the internal voltage  
regulator and enable internal soft start.  
Temperature compensation pin. Tie a resistor from TC to RSET to compensate for the  
temperature coefficient of the forward voltage drop of the secondary diode, thus improving  
regulation at the secondary-side output.  
6
7
TC  
I
I
Reference resistor tied to GND to set the reference current for FB. Connect a 12.1-kresistor  
from RSET to GND.  
RSET  
8
-
GND  
DAP  
G
G
Analog and power ground. Ground connection of internal control circuits and power MOSFET.  
Die attach pad. Connect to PCB ground plane.  
(1) P = Power, G = Ground, I = Input, O = Output.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM5181  
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1.5  
3  
MAX  
UNIT  
VIN to GND  
70  
EN/UVLO to GND  
TC to GND  
70  
6
Input voltage  
SS/BIAS to GND  
FB to GND  
14  
V
70.3  
0.3  
3
FB to VIN  
RSET to GND  
SW to GND  
100  
Output voltage  
V
SW to GND (20-ns transient)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±2000  
HBM ESD Classification Level 2  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±500  
CDM ESD Classification Level C4B  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of 40°C to 150°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
Input voltage  
4.5  
65  
V
V
VSW  
SW voltage  
95  
VEN/UVLO  
VSS/BIAS  
TJ  
EN/UVLO voltage  
SS/BIAS voltage  
Operating junction temperature  
65  
V
13  
V
150  
°C  
40  
7.4 Thermal Information  
LM5181  
THERMAL METRIC(1)  
NGU (WSON)  
8 PINS  
41.3  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
34.7  
19.1  
0.3  
ΨJT  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
 
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
LM5181  
THERMAL METRIC(1)  
NGU (WSON)  
8 PINS  
19.2  
UNIT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
ΨJB  
RΘJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits aaply over the full 40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
ISHUTDOWN  
IACTIVE  
IACTIVE-BIAS  
VSD-FALLING  
VIN shutdown current  
VIN active current  
VEN/UVLO = 0 V  
3
260  
25  
µA  
µA  
µA  
V
VEN/UVLO = 2.5 V, VRSET = 1.8 V  
VSS/BIAS = 6 V  
350  
40  
VIN current with BIAS connected  
Shutdown threshold  
VEN/UVLO falling  
0.3  
ENABLE AND INPUT UVLO  
VSD-RISING  
VUV-RISING  
Standby threshold  
Enable threshold  
VEN/UVLO rising  
VEN/UVLO rising  
VEN/UVLO falling  
0.8  
1.5  
1
V
V
1.45  
0.04  
4.2  
1.53  
VUV-HYST  
Enable voltage hysteresis  
Enable current hysteresis  
0.05  
5
V
IUV-HYST  
FEEDBACK  
IRSET  
VEN/UVLO = 1.6 V  
5.5  
µA  
RSET current  
100  
µA  
V
RRSET = 12.1 kΩ  
RRSET = 12.1 kΩ  
IFB = 80 µA  
VRSET  
RSET regulation voltage  
FB to VIN voltage  
FB to VIN voltage  
1.191  
1.21  
1.224  
40  
VFB-VIN1  
VFB-VIN2  
mV  
mV  
40  
IFB = 120 µA  
SWITCHING FREQUENCY  
FSW-MIN  
FSW-MAX  
tON-MIN  
Minimum switching frequency  
12  
350  
140  
kHz  
kHz  
ns  
Maximum switching frequency  
Minimum switch on-time  
DIODE THERMAL COMPENSATION  
VTC TC voltage  
POWER SWITCHES  
ITC = ±10 µA, TJ = 25°C  
ISW = 100 mA  
1.2  
0.4  
1.27  
V
RDS(on)  
MOSFET on-state resistance  
Ω
SOFT-START AND BIAS  
ISS  
tSS  
SS ext capacitor charging current  
5
6
µA  
ms  
Internal SS time  
VBIAS-UVLO-  
BIAS enable voltage  
VSS/BIAS rising  
VSS/BIAS falling  
5.5  
5.75  
0.88  
V
RISE  
VBIAS-UVLO-  
BIAS UVLO hysteresis  
190  
mV  
HYST  
CURRENT LIMIT  
ISW-PEAK  
Peak current limit threshold  
0.62  
0.75  
A
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
6
°C  
°C  
TSD-HYS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM5181  
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
7.6 Typical Characteristics  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
90  
85  
80  
75  
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
70  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
65  
60  
4.85  
4.8  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D003  
D002  
See 9-1  
See 9-1  
7-1. Efficiency versus Load  
7-2. Output Voltage versus Load  
18  
VIN = 12 V  
VIN = 24 V  
VIN = 48 V  
15  
12  
9
SW 20V/DIV  
6
3
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
1 ms/DIV  
Junction Temperature (èC)  
D001  
IOUT = 0.5 A  
See 9-1  
7-4. Shutdown Quiescent Current versus  
7-3. Primary-side Switching Waveform in BCM  
Temperature  
290  
280  
270  
260  
35  
30  
25  
20  
250  
VIN = 12 V  
VIN = 24 V  
VIN = 48 V  
VIN = 12 V  
VIN = 24 V  
VIN = 48 V  
240  
-50  
15  
-50  
-25  
0
25  
50  
75  
100  
125 150  
-25  
0
25  
50  
75  
100 125 150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D002  
D003  
VSS/BIAS = 6 V  
7-5. Active Quiescent Current versus  
7-6. Active Quiescent Current with BIAS versus  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM5181  
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
102  
104  
102  
100  
98  
101  
100  
99  
98  
0
96  
-50  
10  
20  
30 40  
Input Voltage (V)  
50  
60  
70  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D004  
D005  
7-7. RSET Current versus Input Voltage  
7-8. RSET Current versus Temperature  
1.8  
1.54  
1.52  
1.5  
1.6  
1.4  
1.2  
1
1.48  
1.46  
1.44  
1.42  
VEN/UVLO Rising  
VEN/UVLO Falling  
1.4  
-50  
0.8  
-50  
-25  
0
25  
50  
75  
100 125 150  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D007  
D006  
7-10. EN/UVLO Threshold Voltages versus  
7-9. TC Voltage versus Temperature  
Temperature  
5.3  
5.2  
5.1  
5
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
4.9  
4.8  
4.7  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D008  
D009  
7-11. EN/UVLO Hysteresis Current versus  
7-12. MOSFET RDS(on) versus Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM5181  
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
1
0.8  
0.6  
0.4  
0.2  
0
160  
155  
150  
145  
140  
135  
130  
BCM / DCM  
FFM  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D010  
D011  
7-13. Switch Peak Current Limits versus  
7-14. Minimum Switch On-Time versus  
Temperature  
Temperature  
13  
12.5  
12  
380  
370  
360  
350  
340  
330  
320  
11.5  
11  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D012  
D013  
7-15. Minimum Switching Frequency versus  
7-16. Maximum Switching Frequency versus  
Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM5181  
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
8 Detailed Description  
8.1 Overview  
The LM5181 primary-side regulated (PSR) flyback converter is a high-density, cost-effective solution for  
industrial systems requiring less than 4 W of isolated DC/DC power. This compact, easy-to-use flyback converter  
with low IQ can be applied over a wide input voltage range from 4.5 V to 65 V, with operation down to 3.5 V after  
start-up. Innovative frequency and current amplitude modulation enables high conversion efficiency across the  
entire load and line range. Primary-side regulation of the isolated output voltage using sampled values of the  
primary winding voltage eliminates the need for an opto-coupler or an auxiliary transformer winding for feedback.  
Regulation performance that rivals that of traditional opto-coupler solutions is achieved without the associated  
cost, solution size, and reliability concerns. The LM5181 converter services a wide range of applications  
including IGBT-based motor drives, factory automation, and medical equipment.  
8.2 Functional Block Diagram  
VOUT  
VIN  
DFLY  
NP : NS  
DZ  
COUT  
5 mA  
LM5181  
SS/BIAS  
BIAS  
REGULATOR  
CIN  
EN/UVLO  
Standby  
1.5 V  
1.45 V  
VDD  
VIN  
DF  
VDD UVLO  
Shutdown  
VIN  
FB  
SAMPLED  
FEEDBACK  
THERMAL  
SHUTDOWN  
1.1 V  
100-V Power  
MOSFET  
SW  
RSET  
COMP  
VDD  
gm  
VREF  
TRIMMED  
REFERENCE  
CONTROL  
LOGIC  
RTC  
RSET  
FB  
ILIM  
TC  
0.75 A  
TC  
REGULATION  
VDD  
RFB  
SS/BIAS  
GND  
Internal SS  
CSS  
8.3 Feature Description  
8.3.1 Integrated Power MOSFET  
The LM5181 is a flyback dc/dc converter with integrated 100-V, 0.75-A N-channel power MOSFET. During the  
MOSFET on-time, the transformer primary current increases from zero with a slope of VIN / LMAG (where LMAG is  
the transformer primary-referred magnetizing inductance) while the output capacitor supplies the load current.  
When the MOSFET is turned off by the control logic, the SW voltage VSW swings up to approximately VIN + (NPS  
× VOUT), where NPS = NP / NS is the primary-to-secondary turns ratio of the transformer. The magnetizing current  
flows in the secondary side through the flyback diode, charging the output capacitor and supplying current to the  
load. Duty cycle D is defined as tON / tSW, where tON is the MOSFET conduction time and tSW is the switching  
period.  
8-1 shows a typical schematic of the LM5181 PSR flyback circuit. Components denoted in red are optional  
depending on the application requirements.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM5181  
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
SW  
EN/UVLO  
RUV2  
RFB  
LM5181  
GND  
FB  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
8-1. LM5181 Flyback Converter Schematic (Optional Components in Red)  
8.3.2 PSR Flyback Modes of Operation  
The LM5181 uses a variable-frequency, peak current-mode (VFPCM) control architecture with three possible  
modes of operation as illustrated in 8-2.  
Frequency  
foldback mode  
(FFM)  
Discontinuous conduction mode (DCM)  
Boundary conduction mode (BCM)  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
% Total Rated Output Power  
8-2. Three Modes of Operation Illustrated by Variation of Switching Frequency With Load  
The LM5181 operates in boundary conduction mode (BCM) at heavy loads. The power MOSFET turns on when  
the current in the secondary winding reaches zero, and the MOSFET turns off when the peak primary current  
reaches the level dictated by the output of the internal error amplifier. As the load is decreased, the frequency  
increases to maintain BCM operation. The duty cycle of the flyback converter is given 方程1.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
V
+ VD N  
(
)
OUT  
PS  
D =  
V
+ V  
+ VD N  
(
)
IN  
OUT  
PS  
(1)  
where  
VD is the forward voltage drop of the flyback diode as its current approaches zero  
The output power in BCM is given by 方程式 2, where the applicable switching frequency and peak primary  
current in BCM are specified by 方程3 and 方程4, respectively.  
2
LMAG IPRI-PK(BCM)  
POUT(BCM)  
=
FSW(BCM)  
2
(2)  
1
FSW(BCM)  
=
LMAG  
LMAG  
NPS V  
IPRI-PK(BCM)  
+
÷
÷
V
+ VD  
OUT  
(
)
IN  
«
(3)  
(4)  
2V  
(
+ VD I  
OUT  
)
OUT  
IPRI-PK(BCM)  
=
V D  
IN  
As the load decreases, the LM5181 clamps the maximum switching frequency to 350 kHz, and the converter  
enters discontinuous conduction mode (DCM). The power delivered to the output in DCM is proportional to the  
peak primary current squared as given by 方程式 5 and 方程式 6. Thus, as the load decreases, the peak current  
reduces to maintain regulation at 350-kHz switching frequency.  
2
LMAG IPRI-PK(DCM)  
POUT(DCM)  
=
FSW(DCM)  
2
(5)  
2IOUT V  
+ VD  
(
)
OUT  
IPRI-PK(DCM)  
=
LMAG FSW(DCM)  
(6)  
(7)  
LMAG IPRI-PK(DCM) FSW(DCM)  
DDCM  
=
V
IN  
At even lighter loads, the primary-side peak current set by the internal error amplifier decreases to a minimum  
level of 0.15 A, or 20% of its 0.75-A peak value, and the MOSFET off-time extends to maintain the output load  
requirement. The system operates in frequency foldback mode (FFM), and the switching frequency decreases  
as the load current is reduced. Other than a fault condition, the lowest frequency of operation of the LM5181 is  
12 kHz, which sets a minimum load requirement of approximately 0.5% full load.  
8.3.3 Setting the Output Voltage  
To minimize output voltage regulation error, the LM5181 senses the reflected secondary voltage when the  
secondary current reaches zero. The feedback (FB) resistor, which is connected between SW and FB as shown  
in 8-1, is determined using 方程8.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM5181  
 
 
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
RSET  
RFB = V  
+ VD N  
(
)
OUT  
PS  
VREF  
(8)  
where  
RSET is nominally 12.1 kΩ  
8.3.3.1 Diode Thermal Compensation  
The LM5181 employs a unique thermal compensation circuit that adjusts the feedback setpoint based on the  
thermal coefficient of the forward voltage drop of the flyback diode. Even though the output voltage is measured  
when the secondary current is effectively zero, there is still a non-zero forward voltage drop associated with the  
flyback diode. Select the thermal compensation resistor using 方程9.  
RFB kW  
»
ÿ
3
RTC kW =  
»
ÿ
NPS  
TCDiode mV èC  
» ÿ  
(9)  
The temperature coefficient of the diode voltage drop may not be explicitly provided in the diode data sheet, so  
the effective value can be estimated based on the measured output voltage shift overtemperature when the TC  
resistor is not installed.  
8.3.4 Control Loop Error Amplifier  
The inputs of the error amplifier include a level-shifted version of the FB voltage and an internal 1.21-V reference  
set by the resistor at RSET. A type-2 internal compensation network stabilizes the converter. In BCM operation  
when the output voltage is in regulation, an on-time interval is initiated when the secondary current reaches zero.  
The power MOSFET is subsequently turned off when an amplified version of the peak primary current exceeds  
the error amplifier output.  
8.3.5 Precision Enable  
The precision EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis for  
application specific power-up and power-down requirements. EN/UVLO connects to a comparator with a 1.5-V  
reference voltage and 50-mV hysteresis. An external logic signal can be used to drive the EN/UVLO input to  
toggle the output on and off for system sequencing or protection. The simplest way to enable the LM5181 is to  
connect EN/UVLO directly to VIN. This allows the LM5181 to start up when VIN is within its valid operating range.  
However, many applications benefit from using a resistor divider RUV1 and RUV2 as shown in 8-3 to establish  
a precision UVLO level.  
LM5181  
VCC  
VIN  
5 A  
RUV1  
EN/UVLO  
+
RUV2  
UVLO  
Comparator  
1.5 V  
1.45 V  
8-3. Programmable Input Voltage UVLO With Hysteresis  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
Use 方程10 and 方程11 to calculate the input UVLO voltages turnon and turnoff voltages, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM5181  
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
÷
RUV1  
RUV2  
V
= VUV-RISING 1+  
IN(on)  
«
(10)  
where  
VUV-RISING and VUV-FALLING are the UVLO comparator thresholds  
IUV-HYST is the hysteresis current  
÷
RUV1  
RUV2  
V
= VUV-FALLING 1+  
-IUV-HYST RUV1  
IN(off)  
«
(11)  
where  
VUV-RISING and VUV-FALLING are the UVLO comparator thresholds  
IUV-HYST is the hysteresis current  
The LM5181 also provides a low-IQ shutdown mode when the EN/UVLO voltage is pulled below a base-emitter  
voltage drop (approximately 0.6 V at room temperature). If the EN/UVLO voltage is below this hard shutdown  
threshold, the internal LDO regulator powers off, and the internal bias-supply rail collapses, shutting down the  
bias currents of the LM5181. The LM5181 operates in standby mode when the EN/UVLO voltage is between the  
hard shutdown and precision-enable thresholds.  
8.3.6 Configurable Soft Start  
The LM5181 has a flexible and easy-to-use soft-start control pin, SS/BIAS. The soft-start feature prevents inrush  
current impacting the LM5181 and the input supply when power is first applied. This is achieved by controlling  
the voltage at the output of the internal error amplifier. Soft start is achieved by slowly ramping up the target  
regulation voltage when the device is first enabled or powered up. Selectable and adjustable start-up timing  
options include a 6-ms internally-fixed soft start and an externally-programmable soft start.  
The simplest way to use the LM5181 is to leave SS/BIAS open. The LM5181 employs an internal soft-start  
control ramp and starts up to the regulated output voltage in 6 ms.  
However, in applications with a large amount of output capacitance, higher VOUT or other special requirements,  
the soft-start time can be extended by connecting an external capacitor CSS from SS/BIAS to GND. A longer  
soft-start time further reduces the supply current needed to charge the output capacitors while sourcing the  
required load current. When the EN/UVLO voltage exceeds the UVLO rising threshold and a delay of 20 µs  
expires, an internal current source ISS of 5 µA charges CSS and generates a ramp to control the primary current  
amplitude. Calculate the soft-start capacitance for a desired soft-start time, tSS, using 方程12.  
CSS nF = 5 t  
ms  
»
»
ÿ
ÿ
SS  
(12)  
CSS is discharged by an internal FET when switching is disabled by EN/UVLO or thermal shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
8.3.7 External Bias Supply  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
EN/UVLO  
SW  
RUV2  
RFB  
LM5181  
GND  
FB  
DBIAS1  
RSET  
TC  
SS/BIAS  
DBIAS2  
12 V  
CBIAS  
22 nF  
RSET  
NP : NAUX  
8-4. External Bias Supply Using Transformer Auxiliary Winding  
The LM5181 has an external bias supply feature that reduces input quiescent current and increases efficiency.  
When the voltage at SS/BIAS exceeds a rising threshold of 5.5 V, bias power for the internal LDO regulator can  
be derived from an external voltage source or from a transformer auxiliary winding as shown in 8-4. With a  
bias supply connected, the LM5181 then uses its internal soft-start ramp to control the primary current during  
start-up.  
When using a transformer auxiliary winding for bias power, the total leakage current related to diodes DBIAS1 and  
D
BIAS2 in 8-4 should be less than 1 µA across the full operating temperature range.  
8.3.8 Minimum On-Time and Off-Time  
When the internal power MOSFET is turned off, the leakage inductance of the transformer resonates with the  
SW node parasitic capacitance. The resultant ringing behavior can be excessive with large transformer leakage  
inductance and can corrupt the secondary zero-current detection. To prevent such a situation, a minimum switch  
off-time, designated as tOFF-MIN, of a maximum of 360 ns is set internally to ensure proper functionality. This sets  
a lower limit for the transformer magnetizing inductance as discussed in 9.2.1.2.  
Furthermore, noise effects as a result of power MOSFET turnon can impact the internal current sense circuit  
measurement. To mitigate this effect, the LM5181 provides a blanking time after the MOSFET turns on. This  
blanking time forces a minimum on-time, tON-MIN, of 140 ns.  
8.3.9 Overcurrent Protection  
In case of an overcurrent condition on the isolated output or outputs, the output voltage drops lower than the  
regulation level since the maximum power delivered is limited by the peak current capability on the primary side.  
The peak primary current is maintained at 0.75 A (plus an amount related to the 100-ns propagation delay of the  
current limit comparator) until the output decreases to the secondary diode voltage drop to impact the reflected  
signal on the primary side. At this point, the LM5181 assumes the output cannot be recovered and re-calibrates  
its switching frequency to 9 kHz until the overload condition is removed. The LM5181 responds with similar  
behavior to an output short circuit condition.  
For a given input voltage, 方程式 13 gives the maximum output current prior to the engagement of overcurrent  
protection, where ηis the efficiency. The typical threshold value for ISW-PEAK from 7 is 0.75 A.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM5181  
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
ISW-PEAK  
h
2
IOUT(max)  
=
«
÷
VOUT  
1
+
V
NPS  
IN  
(13)  
A failsafe current limit set at 1.2 A, or 1.6 times the nominal peak current limit, provides redundant fault  
protection in case of transformer short circuit or saturation effects. This initiates a 7.5-ms hiccup interval after  
eight overcurrent events.  
8.3.10 Thermal Shutdown  
Thermal shutdown is an integrated self-protection to limit junction temperature and prevent damage related to  
overheating. Thermal shutdown turns off the device when the junction temperature exceeds 175°C to prevent  
further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
LM5181 restarts when the junction temperature falls to 169°C.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
EN/UVLO facilitates ON and OFF control for the LM5181. When VEN/UVLO is below approximately 0.6 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 3 μA at VIN = 24 V. The LM5181 also employs internal bias rail undervoltage  
protection. If the internal bias supply voltage is below its UV threshold, the converter remains off.  
8.4.2 Standby Mode  
The internal bias rail LDO regulator has a lower enable threshold than the converter itself. When VEN/UVLO is  
above 0.6 V and below the precision-enable threshold (1.5 V typically), the internal LDO is on and regulating.  
The precision enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action  
and voltage regulation are not enabled until VEN/UVLO rises above the precision enable threshold.  
8.4.3 Active Mode  
The LM5181 is in active mode when VEN/UVLO is above the precision-enable threshold and the internal bias rail is  
above its UV threshold. The LM5181 operates in one of three modes depending on the load current requirement:  
1. Boundary conduction mode (BCM) at heavy loads  
2. Discontinuous conduction mode (DCM) at medium loads  
3. Frequency foldback mode (FFM) at light loads  
Refer to 8.3.2 for more details.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LM5181 requires only a few external components to convert from a wide range of supply voltages to one or  
more isolated output rails. To expedite and streamline the process of designing of a LM5181-based converter, a  
comprehensive LM5181 quick-start calculator is available for download to assist the designer with component  
selection for a given application. WEBENCH® online software is also available to generate complete designs,  
leveraging iterative design procedures and access to comprehensive component databases. The following  
sections discuss the design procedure for both single- and dual-output implementations using specific circuit  
design examples.  
As mentioned previously, the LM5181 also integrates several optional features to meet system design  
requirements, including precision enable, input UVLO, programmable soft start, output voltage thermal  
compensation, and external bias supply connection. Each application incorporates these features as needed for  
a more comprehensive design.  
The application circuits detailed in 9.2 show LM5181 configuration options suitable for several application use  
cases.  
9.2 Typical Applications  
For step-by-step design procedures, circuit schematics, bill of materials, PCB files, simulation and test results of LM5181-powered  
implementations, refer to the TI reference designs library.  
9.2.1 Design 1: Wide VIN, Low IQ PSR Flyback Converter Rated at 5 V, 0.5 A  
The schematic diagram of a 5-V, 0.5-A PSR flyback converter is given in 9-1.  
DFLY  
VIN = 10 V...65 V  
T1  
VOUT = 5 V  
IOUT = 0.5 A  
DCLAMP  
24 V  
COUT  
DOUT  
RUV1  
5.6 V  
47 F  
536 kW  
3 : 1  
CIN  
DF  
VIN  
EN/UVLO  
44 mH  
2.2 F  
SW  
FB  
RUV2  
RFB  
LM5181  
100 kW  
158 kW  
GND  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
130 kW  
12.1 kW  
47 nF  
9-1. Schematic for Design 1 With VIN(nom) = 24 V, VOUT = 5 V, IOUT = 0.5 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM5181  
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
9.2.1.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETER  
VALUE  
10 V to 65 V  
9.5 V on, 6.5 V off  
5 V  
Input voltage range  
Input UVLO thresholds  
Output voltage  
Rated load current, VIN = 24 V  
Output voltage regulation  
Output voltage ripple  
0.5 A  
±1.5%  
< 100 mV  
The target full-load efficiency is 87.5% based on a nominal input voltage of 24 V and an isolated output voltage  
of 5 V. The LM5181 is chosen to deliver a fixed 5-V output voltage set by resistor RFB connected between the  
SW and FB pins. The input voltage turnon and turnoff thresholds are established by RUV1 and RUV2. The  
required components are listed in 9-2. Transformers for other designs are listed in 9-3.  
9-2. List of Components for Design 1  
REF DES QTY SPECIFICATION  
VENDOR  
PART NUMBER  
12061C225KAT4A  
C3225X7R2A225K230AB  
GCJ32DR72A225KA01L  
HMK325B7225KN-T  
C3225X7S1A476M250AC  
GRM32ER71A476KE15L  
LMK325B7476MM-TR  
Std  
2.2 µF, 100 V, X7R, 1206, ceramic  
AVX  
TDK  
CIN  
1
2.2 µF, 100 V, X7R, 1210, ceramic  
Murata  
Taiyo Yuden  
TDK  
47 µF, 10 V, X7S, 1210, ceramic  
47 µF, 10 V, X7R, 1210, ceramic  
COUT  
1
Murata  
Taiyo Yuden  
Std  
CSS  
1
1
1
1
1
1
1
1
1
1
1
1
47 nF, 16 V, X7R, 0402  
DCLAMP  
DF  
Zener, 24 V, 1 W, PowerDI-123  
Switching diode, 75 V, 0.25 A, SOD-323  
Schottky diode, 40 V, 2 A, SOD-123  
Zener, 5.6 V, 5%, SOD-523  
158 kΩ, 1%, 0402  
DFLZ24-7  
CMDD4448  
FSV340FP  
BZX585-C5V6  
Std  
Diodes Inc.  
Central Semi  
Onsemi  
DFLY  
DOUT  
R FB  
RSET  
R TC  
R UV1  
R UV2  
T1  
Nexperia  
Std  
Std  
Std  
12.1 kΩ, 1%, 0402  
Std  
Std  
130 kΩ, 1%, 0402  
Std  
Std  
536 kΩ, 1%, 0603  
Std  
Std  
100 kΩ, 1%, 0402  
44 µH, 1.4 A, 3 : 1, 8.2 × 8.6 × 9.6 mm  
LM5181 PSR flyback converter, VSON-8  
Würth Electronik  
Texas Instruments  
750318633  
U1  
LM5181NGUR  
9-3. Magnetic Components for Various Output Voltages  
OUTPUT VOLTAGE (RANGE)  
3.3 V (up to 4 V)  
TURNS RATIO  
LMAG, ISAT  
DIMENSIONS  
VENDOR  
PART NUMBER  
750319117  
750318633  
750318737  
750318738  
750319118  
750319119  
4 : 1  
40 µH, 1 A  
5 V (4 V to 5.5 V)  
3 : 1  
12 V (5.5 V to 16 V)  
24 V (16 V to 32 V)  
48 V (32 V to 50 V)  
15 V and 7.5 V dual  
1 : 1  
44 µH, 1 A  
30 µH, 1 A  
8.6 × 8.26 × 9.65 mm Würth Electronik  
1 : 2  
1 : 3  
1 : 1.5 : 0.8  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5181 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.1.2.2 Custom Design With Excel Quickstart Tool  
Select components based on the converter specifications using the LM5181 quick-start calculator.  
9.2.1.2.3 Flyback Transformer T1  
Choose a turns ratio based on an approximate 60% max duty cycle at minimum input voltage using 方程式 14,  
rounding up or down as needed.  
V
DMAX  
0.6  
10V  
IN(min)  
NPS  
=
=
= 3  
1-DMAX VOUT + VD 1- 0.6 5V + 0.3V  
(14)  
Select a magnetizing inductance based on the minimum off-time constraint using 方程式 15. Choose a value of  
44 µH and a saturation current of minimum 1 A for this application.  
V
+ VD NPS tOFF-MIN  
)
ISW-PEAK(FFM)  
5V + 0.3V 3360ns  
(
(
)
0.15A  
OUT  
LMAG  
í
=
= 38H  
(15)  
Note that a higher magnetizing inductance provides a larger operating range for BCM and FFM, but the leakage  
inductance can increase based on a higher number of primary turns, NP. The primary and secondary winding  
RMS currents are given by 方程16 and 方程17, respectively.  
D
IPRI-RMS  
=
IPRI-PK  
3
(16)  
2IOUT IPRI-PK NPS  
ISEC-RMS  
=
3
(17)  
Find the maximum output current for a given turns ratio using 方程式 18, where the typical value for ISW-PEAK is  
the 0.75-A switch current peak threshold. Iterate by increasing the turns ratio if the output current capability is too  
low at minimum input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM5181  
 
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
0.42A at V = 12V  
À
IN  
ISW-PEAK  
h
2
0.85 0.75A  
Œ
IOUT(max)  
=
=
=
Ã
2
«
÷
«
÷
VOUT  
1
5V  
1
3
0.6A at V = 24V  
Œ
Õ
IN  
+
+
V
NPS  
V
IN  
IN  
(18)  
9.2.1.2.4 Flyback Diode DFLY  
The flyback diode reverse voltage is given by 方程19.  
V
65V  
3
IN(max)  
VD-REV  
í
+ VOUT  
=
+ 5V ö 27V  
NPS  
(19)  
Select a 40-V, 3-A Schottky diode for this application to account for inevitable diode voltage overshoot and  
ringing related to the resonance of transformer leakage inductance and diode parasitic capacitance. Connect an  
appropriate RC snubber circuit (for example, 100 Ωand 22 pF) across the flyback diode if needed.  
In general, choose a flyback diode with current rating greater than the maximum peak secondary winding current  
of NPS × ISW-PEAK. As mentioned in 11, place adequate copper at the cathode of the diode to improve its  
thermal performance and prevent overheating during high ambient temperature or overload conditions. Beware  
of the high leakage current typical of a Schottky diode at elevated operating temperatures.  
9.2.1.2.5 Zener Clamp Circuit DF, DCLAMP  
Connect a diode-Zener clamping circuit across the primary winding to limit the peak switch-node voltage after  
MOSFET turnoff below the maximum level of 95 V, as given by 方程20.  
VDZ(clamp) < VSW(max) - V  
IN(max)  
(20)  
Choosing the zener, DCLAMP, with clamp voltage of approximately 1.5 times the reflected output voltage, as  
specified by 方程式 21, provides a balance between the maximum SW voltage excursion and the leakage  
inductance demagnetization time.  
VDZ(clamp) = 1.5NPS V  
+ VD = 1.535V + 0.3V ö 24V  
(
)
(
)
OUT  
(21)  
Select an ultra-fast switching diode or Schottky diode for DF with rated voltage greater than the maximum input  
voltage and with low forward recovery voltage drop.  
9.2.1.2.6 Output Capacitor COUT  
The output capacitor determines the voltage ripple at the converter output, limits the voltage excursion during a  
load transient, and sets the dominant pole of the converter's small-signal response. For a flyback converter  
specifically, the output capacitor supplies the load current when the main switch is on, therefore, the output  
voltage ripple is a function of load current and duty cycle.  
Select an output capacitance using 方程式 22 to limit the ripple voltage amplitude to less than 1% of the output  
voltage at minimum input voltage.  
2
2
2
2
44H0.75A  
LMAG ISW-PEAK  
(
)
1+ D  
2
1+ 0.6  
COUT  
í
=
= 32F  
«
÷
«
÷
2∂ DVOUT VOUT  
250mV 5V  
2
(22)  
Mindful of the voltage coefficient of ceramic capacitors, select a 47-µF, 10-V capacitor in 1210 case size with  
X7S or better dielectric. 方程23 gives the output capacitor RMS ripple current.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
2NPS IPRI-PK  
ICOUT-RMS = IOUT  
-1  
3 IOUT  
(23)  
9.2.1.2.7 Input Capacitor CIN  
Select an input capacitance using 方程式 24 to limit the ripple voltage amplitude to less than 5% of the input  
voltage when operating at nominal input voltage.  
2
D
IPRI-PK D1-  
÷
2
«
CIN  
í
2FSW ∂ DV  
IN  
(24)  
Substituting the input current at full load, switching frequency, peak primary current, and peak-to-peak ripple  
specification gives CIN greater than 1 μF. Mindful of the voltage coefficient of ceramic capacitors, select a 2.2-  
µF, 100-V ceramic input capacitor with X7R dielectric in 1210 case size. 方程式 25 gives the input capacitor  
RMS ripple current.  
D IPRI-PK  
4
ICIN-RMS  
=
-1  
2
3 D  
(25)  
9.2.1.2.8 Feedback Resistor RFB  
Select a feedback resistor, designated RFB, of 158 kΩbased on the secondary winding voltage at the end of the  
flyback conduction interval (the sum of the 5-V output voltage and the Schottky diode forward voltage drop)  
reflected by the transformer turns ratio of 3 : 1. The forward voltage drop of the flyback diode is 0.3 V as its  
current approaches zero.  
V
+ VD N  
5V + 0.3V 3  
(
)
0.1mA  
(
)
OUT  
PS  
RFB  
=
=
= 158 kW  
0.1mA  
(26)  
9.2.1.2.9 Thermal Compensation Resistor RTC  
Select a resistor for output voltage thermal compensation, designated RTC, based on 方程27.  
RFB kW  
»
ÿ
3
158  
3
3
RTC kW =  
=
= 130 kW  
»
ÿ
NPS  
TCDiode mV èC  
1.2  
»
ÿ
(27)  
9.2.1.2.10 UVLO Resistors RUV1, RUV2  
Given VIN(on) and VIN(off) as the input voltage turn-on and turn-off thresholds of 9.5 V and 6.5 V, respectively,  
select the upper and lower UVLO resistors using the following expressions:  
VUV-FALLING  
VUV-RISING  
IUV-HYST  
1.45 V  
1.5 V  
5 A  
V
- V  
IN(off)  
9.5 V ∂  
- 6.5 V  
IN(on)  
RUV1  
=
=
= 536kW  
(28)  
(29)  
VUV-RISING  
1.5 V  
9.5 V -1.5 V  
RUV2 = RUV1  
= 536 kW ∂  
= 100 kW  
V
- VUV-RISING  
IN(on)  
Calculate the actual input turn-on and turn-off voltage thresholds as follows:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM5181  
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
÷
RUV1  
RUV2  
÷
536 kW  
100kW  
V
= VUV-RISING 1+  
= 1.5V 1+  
= 9.54V  
IN(on)  
«
«
(30)  
(31)  
RUV1  
RUV2  
÷
536kW  
100kW  
V
= VUV-FALLING 1+  
-IUV-HYST RUV1 = 1.45V 1+  
- 5A 536kW = 6.54V  
÷
IN(off)  
«
«
9.2.1.2.11 Soft-Start Capacitor CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 47 nF based on 方程12 to achieve a soft-start time of 8 ms.  
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's Power Management  
technical articles.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM5181  
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
9.2.2 Application Curves  
Unless otherwise stated, application performance curves were taken at TA = 25°C.  
90  
85  
80  
75  
70  
65  
60  
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
4.85  
4.8  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D002  
D003  
9-2. Efficiency (Linear Scale)  
9-3. Load Regulation (Linear Scale)  
SW 20V/DIV  
VDFLY 5V/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
IOUT = 0.5 A  
VIN = 24 V  
IOUT = 0.5 A  
9-5. Flyback Diode Voltage  
9-4. Switch Node Voltage  
Average detector  
Peak detector  
Peak detector  
Average detector  
Start 150 kHz  
Stop 30 MHz  
Start 30 MHz  
Stop 108 MHz  
VIN = 24 V  
150 kHz to 30 MHz  
LIN = 4.7 µH  
CIN = 10 µF  
VIN = 24 V  
IOUT = 0.5 A  
30 MHz to 108 MHz  
LIN = 4.7 µH  
CIN = 10 µF  
IOUT = 0.5 A  
9-6. CISPR 25 Class 5 Conducted EMI Plot  
9-7. CISPR 25 Class 5 Conducted EMI Plot  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM5181  
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
10 Power Supply Recommendations  
The LM5181 PSR flyback DC/DC converter operates over a wide input voltage range from 4.5 V to 65 V. The  
characteristics of the input supply must be compatible with the 7. In addition, the input supply must be  
capable of delivering the required input current to the fully-loaded regulator. Estimate the average input current  
with 方程32.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
(32)  
where  
ηis the efficiency  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, special  
care is required to achieve stable performance. The parasitic inductance and resistance of the input cables can  
have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR  
ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at  
VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip  
during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false  
UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the  
input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage  
overshoots. A capacitance in the range of 10 µF to 47 µF is usually sufficient to provide input damping and helps  
to hold the input voltage steady during large load transients. A typical ESR of 0.25 Ω provides enough damping  
for most input circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for  
DC-DC Converters provides helpful suggestions when designing an input filter for any switching regulator.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
11 Layout  
The performance of any switching converter depends as much upon PCB layout as it does the component  
selection. The following guidelines are provided to assist with designing a PCB with the best power conversion  
performance, thermal performance, and minimized generation of unwanted EMI. 11-1 and 11-2 provide  
layout examples for single-output and dual-output designs, respectively.  
11.1 Layout Guidelines  
PCB layout is a critical for good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with transformer leakage inductance or parasitic capacitance to generate  
noise and EMI or degrade the performance of the power supply.  
1. Bypass the VIN pin to GND with a low-ESR ceramic capacitor, preferably of X7R or X7S dielectric. Place CIN  
as close as possible to the LM5181 VIN and GND pins. Ground return paths for the input capacitor or  
capacitors must consist of localized top-side planes that connect to the GND pin and exposed PAD.  
2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.  
3. Locate the transformer close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
e-field or capacitive coupling.  
4. Minimize the loop area formed by the diode-Zener clamp circuit connections and the primary winding  
terminals of the transformer.  
5. Minimize the loop area formed by the flyback rectifying diode, output capacitor, and the secondary winding  
terminals of the transformer.  
6. Connect adequate copper at the cathode of the flyback diode to prevent overheating during overload or high  
ambient temperature conditions.  
7. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
8. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
9. Have a single-point ground connection to the plane. Route the return connections for the reference resistor,  
soft-start, and enable components directly to the GND pin. This prevents any switched or load currents from  
flowing in analog ground traces. If not properly handled, poor grounding results in degraded load regulation  
or erratic output voltage ripple behavior.  
10. Make VIN+, VOUT+, and ground bus connections short and wide. This reduces any voltage drops on the input  
or output paths of the converter and maximizes efficiency.  
11. Minimize trace length to the FB pin. Locate the feedback resistor close to the FB pin.  
12. Locate components RSET, RTC, and CSS as close as possible to their respective pins. Route with minimal  
trace lengths.  
13. Place a capacitor between input and output return connections to route common-mode noise currents  
directly back to their source.  
14. Provide adequate heatsinking for the LM5181 to keep the junction temperature below 150°C. For operation  
at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-  
sinking vias to connect the exposed PAD to the PCB ground plane. If the PCB has multiple copper layers,  
connect these thermal vias to inner-layer ground planes. The connection to VOUT+ provides heatsinking for  
the flyback diode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM5181  
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
11.2 Layout Examples  
Place the input capacitor close  
to the VIN pin and connect to  
the GND plane under the IC  
Keep the DZ clamp and RC snubber  
components close to the primary winding pins  
Use adequate heatsinking  
copper connected to the  
cathode of the flyback  
diode (VOUT)  
Locate the converter IC close  
to the transformer and connect  
to the GND plane as shown  
Keep the secondary  
winding, flyback diode  
and output capacitor  
loop as tight as possible  
Locate the RSET, TC and FB resistors and  
the SS capacitor close to their respective pins  
Place the Y-cap close to the transformer so that common-mode  
currents from the secondary to the primary side return in a tight loop  
11-1. Single-Output PCB Layout  
Place the ceramic input  
capacitor close to the IC to  
minimize the switching loop area  
Locate the converter IC close  
to the transformer and connect  
to the GND plane as shown  
Minimize the area of the  
secondary winding,  
flyback diode and output  
capacitor switching loops  
Maintain the appropriate primary-  
to-secondary clearance distance  
Place the RSET, TC, FB and SS small-signal  
components near their respective pins  
11-2. Dual-Output PCB Layout  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.1.2 Development Support  
With input voltage range and current capability as specified in 12-1, the PSR flyback DC/DC converter family  
of parts from TI provides flexibility, scalability and optimized solution size for a range of applications. Using an 8-  
pin WSON package with 4-mm × 4-mm footprint and 0.8-mm pin pitch, these converters enable isolated DC/DC  
solutions with high density and low component count.  
12-1. PSR Flyback DC/DC Converter Family  
PSR FLYBACK  
DC/DC  
CONVERTER  
MAXIMUM LOAD CURRENT, VOUT = 12 V, NPS = 1  
INPUT VOLTAGE  
RANGE  
PEAK SWITCH  
CURRENT  
VIN = 4.5 V  
VIN = 13.5 V  
VIN = 24 V  
LM5181  
LM5180  
LM25180  
LM25183  
LM25184  
4.5 V to 65 V  
4.5 V to 65 V  
4.5 V to 42 V  
4.5 V to 42 V  
4.5 V to 42 V  
0.75 A  
1.5 A  
1.5 A  
2.5 A  
4.1 A  
90 mA  
180 mA  
360 mA  
360 mA  
600 mA  
1 A  
225 mA  
450 mA  
450 mA  
750 mA  
1.25 A  
180 mA  
180 mA  
300 mA  
500 mA  
For development support, see the following:  
LM5181 Quick-start Calculator  
LM5181 Simulation Models  
For TI's reference design library, visit TIDesigns  
For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center.  
To view a related device of this product, see the LM5180 product page.  
TI Designs:  
Isolated IGBT Gate-Drive Power Supply Reference Design With Integrated Switch PSR Flyback Controller  
Compact, Efficient, 24-V Input Auxiliary Power Supply Reference Design for Servo Drives  
Reference Design for Power-Isolated Ultra-Compact Analog Output Module  
HEV/EV Traction Inverter Power Stage with 3 Types of IGBT/SiC Bias-Supply Solutions Reference Design  
4.5-V to 65-V Input, Compact Bias Supply With Power Stage Reference Design for IGBT/SiC Gate Drivers  
Channel-to-Channel Isolated Analog Input Module Reference Design  
SiC/IGBT Isolated Gate Driver Reference Design With Thermal Diode and Sensing FET  
>95% Efficiency, 1-kW Analog Control AC/DC Reference Design for 5G Telecom Rectifier  
3.5-W Automotive Dual-output PSR Flyback Regulator Reference Design  
TI Technical Articles:  
Flyback Converters: Two Outputs are Better Than One  
Common Challenges When Choosing the Auxiliary Power Supply for Your Server PSU  
Maximizing PoE PD Efficiency on a Budget  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5181 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM5181  
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
LM5180EVM-S05 EVM User's Guide (SNVU592)  
LM5180EVM-DUAL EVM User's Guide (SNVU609)  
LM25184EVM-S12 EVM User's Guide (SNVU680)  
Selecting Output Capacitor to Optimize Output Ripple and Stability in PSR Flyback Converters (SLYT800)  
How an Auxless PSR-Flyback Converter can Increase PLC Reliability and Density (SLYT779)  
Why Use PSR-Flyback Isolated Converters in Dual-Battery mHEV Systems (SLYT791)  
IC Package Features Lead to Higher Reliability in Demanding Automotive and Communications Equipment  
Systems (SNVA804)  
PSR Flyback DC/DC Converter Transformer Design for mHEV Applications (SNVA805)  
Flyback Transformer Design Considerations for Efficiency and EMI (SLUP338)  
Under the Hood of Flyback SMPS Designs (SLUP261)  
White Papers:  
Valuing Wide VIN, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications  
(SLYY104)  
An Overview of Conducted EMI Specifications for Power Supplies (SLYY136)  
An Overview of Radiated EMI Specifications for Power Supplies (SLYY142)  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® are registered trademarks of Texas Instruments.  
is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM5181  
 
 
 
 
 
LM5181  
www.ti.com.cn  
ZHCSL47A APRIL 2020 REVISED JANUARY 2021  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages have mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM5181  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5181NGUR  
ACTIVE  
WSON  
NGU  
8
4500 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 150  
LM5181  
NGU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5181NGUR  
WSON  
NGU  
8
4500  
330.0  
12.4  
4.3  
4.3  
1.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON NGU  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
LM5181NGUR  
8
4500  
Pack Materials-Page 2  
MECHANICAL DATA  
NGU0008B  
SDC08B (Rev A)  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY