LM53635NQRNLRQ1 [TI]

3.5A、36V 同步、2.1MHz、汽车类降压直流/直流转换器 | RNL | 22 | -40 to 150;
LM53635NQRNLRQ1
型号: LM53635NQRNLRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.5A、36V 同步、2.1MHz、汽车类降压直流/直流转换器 | RNL | 22 | -40 to 150

转换器
文件: 总59页 (文件大小:3112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
LM53625/35-Q1, 2.5-A or 3.5-A, 36-V Synchronous, 2.1-MHz, Step-Down DC-DC  
Converter  
1 Features  
3 Description  
AEC-Q100 automotive qualified:  
The LM53625-Q1/LM53635-Q1 synchronous buck  
regulator is optimized for automotive applications,  
providing an output voltage of 5 V, 3.3 V, or  
an adjustable output. Advanced high-speed circuitry  
allows the LM53625-Q1/LM53635-Q1 to regulate from  
an input of 18 V to an output of 3.3 V at a fixed  
frequency of 2.1 MHz. Innovative architecture allows  
this device to regulate a 3.3-V output from an input  
voltage of only 3.55 V. All aspects of the LM53625-  
Q1/LM53635-Q1 are optimized for automotive and  
performance-driven industrial customers. An input  
voltage range up to 36 V, with transient tolerance  
up to 42 V, eases input surge protection design.  
The automotive-qualified Hotrod QFN package with  
wettable flanks reduces parasitic inductance and  
resistance while increasing efficiency, minimizing  
switch node ringing, and dramatically lowering  
electromagnetic interference (EMI). An open-drain  
reset output, with built-in filtering and delay, provides  
a true indication of system status. This feature  
negates the requirement for an additional supervisory  
component, saving cost and board space. Seamless  
transition between PWM and PFM modes and  
low quiescent current (only 15 µA for the 3.3 V  
option) ensure high efficiency and superior transient  
responses at all loads.  
– Device temperature grade 1: –40°C to +125°C  
ambient operating temperature range  
– Device HBM classification level 2  
– Device CDM classification level C6  
–40°C to +150°C junction temperature range  
15-µA quiescent urrent at no load (typical) with  
3.3-V output  
5.0-mm × 4.0-mm VQFN package with or without  
wettable flanks and 0.6-mm VIN spacing  
Low EMI and switch noise  
Spread spectrum option  
External frequency synchronization  
RESET output with internal filter and 3-ms release  
timer  
Pin-selectable forced PWM mode  
Built-in compensation, soft start, current limit,  
thermal shutdown, and UVLO  
0.6-V dropout at 3.5 A at 105°C TA  
±1% output voltage tolerance (–40°C to 125°C TJ)  
Available with fixed 5-V, 3.3-V or adjustable output  
2 Applications  
Telematics  
Head unit  
Instrumentation cluster  
Battery-powered applications  
Device Information  
DEVICE NAME  
LM53625-Q1  
PACKAGE(1)  
BODY SIZE  
VQFN-HR (22)  
5.00 mm × 4.00 mm  
LM53635-Q1  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Automotive Layout (22 mm x 12.5 mm)  
Typical Application Circuit  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 System Characteristics............................................... 9  
7.7 Timing Characteristics.................................................9  
7.8 Typical Characteristics.............................................. 11  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................20  
8.5 Spread-Spectrum Operation.....................................23  
9 Application and Implementation..................................24  
9.1 Application Information............................................. 24  
9.2 Typical Applications.................................................. 24  
9.3 What to Do and What Not to Do............................... 41  
10 Power Supply Recommendations..............................41  
11 Layout...........................................................................42  
11.1 Layout Guidelines................................................... 42  
11.2 Layout Example...................................................... 43  
12 Device and Documentation Support..........................44  
12.1 Device Support....................................................... 44  
12.2 Documentation Support.......................................... 44  
12.3 Receiving Notification of Documentation Updates..44  
12.4 Support Resources................................................. 44  
12.5 Trademarks.............................................................44  
12.6 Electrostatic Discharge Caution..............................44  
12.7 Glossary..................................................................44  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 44  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (May 2016) to Revision B (July 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document. ................1  
Updated applications.......................................................................................................................................... 1  
Added the non-wettable flank options.................................................................................................................3  
Changes from Revision * (December 2015) to Revision A (May 2016)  
Page  
Product Preview to Production Data ..................................................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
5 Device Comparison  
Table 5-1. LM53625-Q1 Devices (2.5-A Output)  
SPREAD  
SPECTRUM  
WETTABLE  
FLANKS  
PART NUMBER  
OUTPUT VOLTAGE  
PACKAGE QTY  
LM53625AQRNLRQ1  
LM53625AQRNLTQ1  
LM536253QRNLRQ1  
LM536253QRNLTQ1  
LM536255QRNLRQ1  
LM536255QRNLTQ1  
LM53625MQRNLRQ1  
LM53625MQRNLTQ1  
LM53625NQRNLRQ1  
LM53625NQRNLTQ1  
LM53625LQRNLRQ1  
LM53625LQRNLTQ1  
LM53625NQURNLRQ1  
LM53625MQURNLRQ1  
LM53625LQURNLRQ1  
Adjustable  
Adjustable  
3.3 V  
No  
No  
3000  
250  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
No  
3000  
250  
3.3 V  
No  
5 V  
No  
3000  
250  
5 V  
No  
Adjustable  
Adjustable  
3.3 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
3000  
250  
3000  
250  
3.3 V  
5 V  
3000  
250  
5 V  
3.3 V  
3000  
3000  
3000  
Adjustable  
5 V  
Table 5-2. LM53635-Q1 Devices (3.5-A Output)  
SPREAD  
SPECTRUM  
PART NUMBER  
OUTPUT VOLTAGE  
PACKAGE QTY  
Wettable Flanks  
LM53635AQRNLRQ1  
LM53635AQRNLTQ1  
LM536353QRNLRQ1  
LM536353QRNLTQ1  
LM536355QRNLRQ1  
LM536355QRNLTQ1  
LM53635MQRNLRQ1  
LM53635MQRNLTQ1  
LM53635NQRNLRQ1  
LM53635NQRNLTQ1  
LM53635LQRNLRQ1  
LM53635LQRNLTQ1  
LM53635MQURNLRQ1  
LM53635NQURNLRQ1  
Adjustable  
Adjustable  
3.3 V  
No  
3000  
250  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
No  
No  
3000  
250  
3.3 V  
No  
5 V  
No  
3000  
250  
5 V  
No  
Adjustable  
Adjustable  
3.3 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
3000  
250  
3000  
250  
3.3 V  
5 V  
3000  
250  
5 V  
Adjustable  
3.3 V  
3000  
3000  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
6 Pin Configuration and Functions  
PGND1  
PGND2  
PGND2  
PGND1  
PGND2  
PGND2  
PGND1  
PGND1  
SW  
PVIN 2  
AVIN  
PVIN 1  
SYNC  
CBOOT  
VCC  
FPWM  
NC  
EN  
RESET AGND  
FB  
BIAS  
Figure 6-1. RNL Package 22-Pin VQFN Top View  
Table 6-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Internal 3.1-V LDO output. Used as supply to internal control circuits. Connect a high-quality  
4.7-µF capacitor from this pin to AGND.  
1
VCC  
A
P
Bootstrap capacitor connection for gate drivers. Connect a high quality 470-nF capacitor  
from this pin to the SW pin.  
2
CBOOT  
SYNC  
Synchronization input to regulator. Used to synchronize the device switching frequency to a  
system clock. Triggers on rising edge of external clock; frequency must be in the range of 1.9  
MHz and 2.3 MHz.  
3
I
Input supply to regulator. Connect input bypass capacitors directly to this pin and PGND  
pins. Connect PVIN1 and PVIN2 pins directly together at PCB.  
4
PVIN1  
PGND1  
P
G
Power ground to internal low side MOSFET. These pins must be tied together on the PCB.  
Connect PGND1 and PGND2 directly together at PCB. Connect to AGND and system  
ground.  
5, 6, 7, 8  
9
SW  
P
Regulator switch node. Connect to power inductor.  
Power ground to internal low side MOSFET. These pins must be tied together. Connect  
PGND1 and PGND2 directly together at PCB. Connect to AGND and system ground.  
10, 11, 12, 13  
PGND2  
G
Input supply to regulator. Connect input bypass capacitors directly to this pin and PGND  
pins. Connect PVIN1 and PVIN2 pins directly together at PCB.  
14  
PVIN2  
P
15  
16  
17  
18  
AVIN  
FPWM  
NC  
A
I
Analog VIN, Connect to PVIN1 and PVIN2 on PCB.  
Do not float. Mode control input of regulator. High = FPWM, low = Automatic light load mode.  
No internal connection  
I
EN  
Enable input to regulator. High = on, Low = off. Can be connected to VIN. Do not float.  
Open drain reset output flag. Connect to suitable voltage supply through a current limiting  
resistor. High = regulator OK, Low = regulator fault. Goes low when EN = low.  
19  
20  
RESET  
AGND  
O
G
Analog ground for regulator and system. All electrical parameters are measured with respect  
to this pin. Connect to PGND on PCB  
Feedback input to regulator. Connect to output voltage node for fixed VOUT options.  
Connect to feedback voltage divider for adjustable option.  
21  
22  
FB  
A
P
BIAS  
Input to auxiliary bias regulator. Connect to output voltage node.  
(1) A = Analog, O = Output, I = Input, G = Ground, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)(1)  
PARAMETER  
VIN (AVIN,PVIN1 and PVIN2) to AGND, PGND1 and PGND2(2)  
SW to AGND, PGND(3)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
40  
VIN + 0.3  
3.6  
V
CBOOT to SW  
V
EN to AGND, PGND(2) (4)  
40  
V
BIAS to AGND, PGND  
16  
V
FB to AGND, PGND  
16  
V
RESET to AGND, PGND  
8
V
RESET sink current(5)  
10  
mA  
V
SYNC to AGND,PGND(2) (4)  
FPWM to AGND,PGND(4)  
VCC to AGND,PGND  
–0.3  
–0.3  
–0.3  
–40  
–40  
40  
40  
V
3.6  
V
Junction temperature  
150  
150  
°C  
°C  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Section 7.1 may cause permanent damage to the device. These are stress ratings only, functional  
operation of the device at these or any other conditions beyond those indicated under Section 7.3 are not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) A maximum of 42 V can be sustained at this pin for a duration of ≤ 500 ms at a duty cycle of ≤ 0.01%.  
(3) A voltage of 2 V below PGND and 2 V above VIN can appear on this pin for ≤ 200 ns with a duty cycle of ≤ 0.01%.  
(4) Under no conditions should the voltage on this pin be allowed to exceed the voltage on the PVIN1,PVIN2 or AVIN pins by more than  
0.3 V.  
(5) Do not exceed the voltage rating on this pin.  
7.2 ESD Ratings  
VALUE  
±2500  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
 
 
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
7.3 Recommended Operating Conditions  
over the recommended operating junction temperature range of –40°C to +150°C (unless otherwise noted)  
MIN  
NOM  
MAX  
36  
UNIT  
V
Input voltage after start-up(1)  
3.9  
Output voltage for 3.3-V LM53625/35-Q1(2)  
3.4  
5.2  
10  
V
Output voltage for 5-V LM53625/35-Q1(2)  
V
Output adjustment for adjustable version of LM53625/35-Q1(2)  
Load current for LM53625-Q1, fixed output option and adjustable  
Load current for LM53635-Q1, fixed output option and adjustable  
Junction temperature for 1000-hour lifetime  
3.3  
V
2.5  
3.5  
125  
150  
A
A
–40  
–40  
°C  
°C  
Junction temperature for 408-hour lifetime  
(1) An extended input voltage range to 3.5 V is possible; see Section 7.6 table. See Input UVLO for start-up conditions.  
(2) The output voltage must not be allowed to fall below zero volts during normal operation.  
7.4 Thermal Information  
LM53625/35-Q1  
THERMAL METRIC(1)  
RNL (VQFN)  
22 PINS  
29.4  
UNIT  
RθJA  
RθJC  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
14.2  
5.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
ψJB  
5.4  
RθJC(bot)  
2.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
7.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature range of –40°C to +150°C, unless otherwise noted.  
Minimum and maximum limits are specified through test, design, or statistical correlation. Typical values represent the most  
likely parametric norm at Tj = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
VIN = 3.8 V to 36 V, TJ = 25°C  
VIN = 3.8 V to 36 V  
MIN  
TYP  
MAX  
UNIT  
–1%  
1%  
VFB  
Initial output voltage accuracy  
–1.5%  
1.5%  
Operating quiescent current;  
measured at VIN pin when  
enabled and not switching(1)  
VIN = 13.5 V, VBIAS = 5 V  
6
IQ  
µA  
µA  
VIN = 13.5 V, VBIAS = 5 V, TJ = 85°C  
16  
VIN = 13.5 V, VBIAS = 5 V, FPWM = 0  
V
35  
Bias current into BIAS pin,  
enabled, not switching  
IB  
VIN = 13.5 V, VBIAS = 3.3 V, FPWM =  
0 V  
35  
2
EN ≤ 0.4 V, TJ = 25°C  
EN ≤ 0.4 V, TJ = 85°C  
EN ≤ 0.4V, TJ = 150°C  
Rising  
Shutdown quiescent current;  
measured at VIN pin  
ISD  
3
5
µA  
V
3.2  
2.95  
3.55  
3.25  
0.3  
3.95  
3.55  
0.4  
VIN-OPERATE  
Minimum input voltage to operate Falling  
Hysteresis  
0.28  
RESET upper threshold voltage  
RESET lower threshold voltage  
Magnitude of RESET lower  
Rising, % of VOUT  
105%  
92%  
107%  
94%  
110%  
96.5%  
Falling, % VOUT  
VRESET  
Steady-state output voltage and  
threshold from steady state output RESET threshold read at the same  
96%  
voltage  
TJ and VIN  
RESET hysteresis as a percent of  
output voltage setpoint  
VRESET_HYST  
VRESET_VALID  
±1  
Minimum input voltage for proper 50-µA pullup to RESET pin, EN = 0  
RESET function  
1.5  
0.4  
V
V
V, TJ= 25°C  
50-µA pullup to RESET pin, VIN =1.5  
V, EN = 0 V  
Low level RESET function output 0.5-mA pullup to RESET pin, VIN  
VOL  
0.4  
voltage  
=13.5 V, EN=0 V  
1-mA pullup to RESET pin, VIN  
=13.5 V, EN=3.3 V  
0.4  
VIN = 13.5 V, center frequency with  
spread spectrum, PWM operation  
1.85  
1.85  
2.1  
2.35  
2.35  
FSW  
Switching frequency  
MHz  
MHz  
VIN = 13.5 V, without spread  
spectrum, PWM operation  
2.1  
2.1  
FSYNC  
DSYNC  
Sync frequency range  
1.9  
25%  
1.5  
2.3  
Sync input duty cycle range  
High state input < 5.5 V and > 2.3 V  
FPWM input high (MODE = FPWM)  
75%  
FPWM input low (MODE = AUTO  
with diode emulation)  
VFPWM  
FPWM input threshold voltage  
0.4  
1
V
FPWM input hysteresis  
0.15  
1.81  
Frequency span of spread  
spectrum operation  
FSSS  
FPSS  
±3%  
Spread-spectrum pattern  
frequency(2)  
9
Hz  
Switching Frequency while in  
spread spectrum  
FSW-SS  
VIN = 13.5 V, PWM operation  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Limits apply over the recommended operating junction temperature range of –40°C to +150°C, unless otherwise noted.  
Minimum and maximum limits are specified through test, design, or statistical correlation. Typical values represent the most  
likely parametric norm at Tj = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
VIN = 13.5 V, VFPWM = 3.3 V  
VIN = VFPWM = 13.5 V  
VIN = 13.5 V, VSYNC = 3.3 V  
VIN = VSYNC = 13.5 V  
LM53625  
MIN  
TYP  
MAX  
UNIT  
1
IFPWM  
ISYNC  
IL-HS  
FPWM leakage current  
µA  
5
1
SYNC leakage current  
µA  
A
5
3.5  
4.5  
2.5  
3.5  
5
6.5  
7.5  
4.1  
5.1  
High-side switch current limit  
Low-side switch current limit  
LM53635  
6
LM53625  
3.5  
4.5  
IL-LS  
A
LM53635  
Zero-cross current limit FPWM =  
low  
IL-ZC  
–0.02  
–1.5  
60  
A
Negative current limit FPWM =  
high  
IL-NEG  
High-side MOSFET RDSON, VIN = 13  
V, IL=1A  
130  
80  
RDSON  
Power switch on-resistance  
mΩ  
V
Low-side MOSFET RDSON, VIN = 13  
V, IL=1A  
40  
Enable input threshold voltage -  
rising  
VEN  
Enable rising  
1.7  
2
VEN_HYST  
VEN_WAKE  
IEN  
Enable threshold hysteresis  
Enable wake-up threshold  
EN pin input current  
0.45  
0.4  
0.55  
V
V
VIN = VEN = 13.5 V  
2
3.05  
3.15  
2.7  
185  
20  
5
µA  
VIN 13.5 V, VBIAS = 0 V  
VIN = 13.5 V, VBIAS = 3.3 V  
VIN rising  
VCC  
Internal VCC voltage  
V
V
Internal VCC input undervoltage  
lockout  
VCC_UVLO  
IFB  
Hysteresis below VCC-UVLO  
Adjustable LM53625/35-Q1, FB=1 V  
TJ = 25°C  
mV  
nA  
Input current from FB to AGND  
0.993  
0.99  
1
1.007  
1.01  
Reference voltage for adjustable  
option only  
VREF  
TJ = –40°C to 125°C  
TJ = –40°C to 150°C  
1
V
Ω
V
0.985  
1
1.015  
Pull FB pin low. Sink 1-mA at  
RESET pin  
RRESET  
RDSON of RESEToutput  
50  
85  
VIH  
1.5  
VSYNC  
VIL  
0.4  
1
VHYST  
0.15  
155  
Rising  
175  
TSD  
Thermal shutdown thresholds(2)  
°C  
Hysteresis  
15  
Fsw = 2.1 MHz  
While in dropout(2)  
80%  
DMAX  
Maximum switch duty cycle  
98%  
(1) This is the current used by the device while not switching, open loop on the ATE. It does not represent the total input current from the  
regulator system.  
(2) Ensured by Design, Not tested at production.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
7.6 System Characteristics  
The following specifications are ensured by design provided that the component values in the typical application circuit  
are used. These parameters are not ensured by production testing. Limits apply over the recommended operating junction  
temperature range of –40°C to +150°C, unless otherwise noted. Minimum and maximum limits are specified through test,  
design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for  
reference purposes only. Unless otherwise stated the following conditions apply: VIN = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Minimum input voltage for full  
functionality at 1.5 A load, after start- VOUT = 3.3 V +2/–3% regulation  
up.  
3.5  
VIN-MIN  
V
Minimum input voltage for full  
functionality at maximum rated load  
3.5 A after start-up.  
VOUT = 3.3 V +2/–3% regulation  
3.9  
Output voltage for 5-V option  
Output voltage for 3.3-V option  
VIN = 5.6 V to 36 V, IOUT = 3.5 A  
VIN 3.9 V to 36 V, IOUT = 3.5 A  
4.925  
3.24  
5
5.08  
3.35  
3.3  
VIN = 5.5 V to 36 V, IOUT = 100 µA to 100  
mA  
V
Output voltage for 5-V option  
4.92  
5.05  
3.33  
5.125  
VOUT  
VIN = 3.8 V to 36 V, IOUT = 100 µA to 100  
mA  
Output voltage for 3.3-V option  
3.24  
3.38  
2.25%  
40  
Output voltage for adjustable option  
VIN = VOUT + 1 V to 36 V, IOUT = 3.5 A  
–2.25%  
VIN= 13.5 V, VOUT = 3.3 V, IOUT = 0 A  
FPWM = 0  
15  
20  
IQ-VIN  
Input current to VIN pin  
µA  
VIN = 13.5 V, VOUT = 5.0 V and IOUT = 0 A  
FPWM = 0  
Minimum input to output voltage  
differential to maintain regulation  
accuracy without inductor DCR drop  
VOUT = 3.3 V/5 V, IOUT= 3.5 A, +2/–3%  
output accuracy  
VDROP1  
0.35  
1.1  
0.6  
1.4  
V
V
Minimum input to output voltage  
differential to maintain FSW ≥ 1.85  
MHz without inductor DCR drop  
VOUT = 3.3 V/5 V, IOUT=3.5 A, FSW = 1.85  
MHz, 2% regulation accuracy  
VDROP2  
VIN = 13.5 V, VOUT= 5.0 V, IOUT = 3.5 A  
VIN = 13.5 V, VOUT = 3.3 V, IOUT = 3.5 A  
VIN = 13.5 V, VOUT = 5 V, IOUT = 100 mA  
90%  
84%  
88%  
Typical Efficiency without inductor  
loss  
Efficiency  
7.7 Timing Characteristics  
Limits apply over the recommended operating junction temperature range of –40°C to +150°C, unless otherwise noted.  
Minimum and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 13.5 V.  
MIN  
NOM  
65  
60  
3
MAX  
84  
80  
4
UNIT  
tON  
Minimum switch on time, VIN = 18 V, IL=1 A  
Minimum switch off time, VIN = 3.8 V, IL=1 A  
Delay time to RESET high signal  
ns  
tOFF  
ns  
tRESET-act  
tRESET-filter  
tSS  
2
12  
2
ms  
µs  
Glitch filter time for RESET function(1)  
Soft-Start Time from first switching pulse to VREF at 90%  
Turn-on delay, CVCC = 2.2 µF(2)  
25  
3.2  
1
45  
5
ms  
ms  
ms  
tEN  
tW  
Short circuit wait time (hiccup time)(3)  
6
Change transition time from AUTO to FPWM MODE, 20-mA load,  
VIN = 13.5 V  
100  
80  
µs  
µs  
tFPWM  
Change transition time from FPWM to AUTO MODE, 20-mA load,  
VIN = 13.5 V  
(1) See Section 8.  
(2) This is the time from the rising edge of EN to the time that the soft-start ramp begins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
(3) Tw is the wait time between current limit trip and re-start. Tw is nominally 4× the soft-start time. However, provision must be made to  
make Tw longer to ensure survivability during an output short circuit.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
7.8 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 12 V, TA = 25°C. Specified temperatures are  
ambient.  
100.2%  
100.1%  
100%  
2.2  
2.175  
2.15  
2.125  
2.1  
99.9%  
99.8%  
99.7%  
99.6%  
99.5%  
99.4%  
99.3%  
99.2%  
2.075  
2.05  
2.025  
2
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D024  
Temperature (èC)  
D023  
VIN = 12 V  
VIN = 12 V  
Figure 7-1. Reference Voltage Drift  
Figure 7-2. Switching Frequency vs Temperature  
6.4  
6.2  
6
4.8  
LM53635  
LM53625  
4.6  
4.4  
4.2  
4
5.8  
5.6  
5.4  
5.2  
5
3.8  
3.6  
3.4  
3.2  
4.8  
4.6  
4.4  
4.2  
4
LM53635  
LM53625  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D034  
D035  
VIN = 12 V  
VIN = 12V  
Figure 7-3. High Side/Peak Current Limit for  
LM53625/35-Q1  
Figure 7-4. Low Side/Valley Current Limit for  
LM53625/35-Q1  
0.065  
0.06  
0.055  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
14  
5 Vin  
8 Vin  
12 Vin  
13.5 Vin  
18 Vin  
36 Vin  
12  
10  
8
6
4
2
0
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
D004  
Temperature (èC)  
D028  
VIN = 12 V  
VIN = 12 V  
Figure 7-5. Short Circuit Average Input Current for  
LM53635-Q1  
Figure 7-6. Shutdown Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
108%  
106%  
104%  
102%  
100%  
98%  
5.4  
VRESET_UPPER  
VRESET_UPPER  
5.3  
VRESET_UPPER_FALLING  
5.2  
5.1  
VOUT  
5
4.9  
VRESET_LOWER_RISING  
4.8  
4.7  
4.6  
4.5  
VRESET_LOWER  
96%  
VRESET_LOWER  
94%  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
D027  
Termperature (èC)  
D026  
Figure 7-8. RESET Threshold as Percentage of  
Output Voltage  
Figure 7-7. RESET Threshold Fixed 5-V output  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LM53625/35-Q1 is a wide input voltage range, low quiescent current, high performance regulator with  
internal compensation designed specifically for the automotive market. This device is designed to minimize  
end-product cost and size while operating in demanding automotive environments. Normal operating frequency  
is 2.1 MHz allowing the use of small passive components. Because the operating frequency is above the AM  
band, significant saving in input filtering is also achieved. This device has a low unloaded current consumption  
eliminating the need for an external back-up LDO. The LM53625/35-Q1 low shutdown current and high  
maximum operating voltage also allows the elimination of an external load switch. To further reduce system  
cost, an advanced reset output is provided, which can often eliminate the use of an external reset device.  
The LM53625/35-Q1 is designed with a flip-chip or HotRod technology, greatly reducing the parasitic inductance  
of pins. In addition, the layout of the device allows for reduction in the radiated noise generated by the switching  
action through partial cancellation of the current generated magnetic field.  
As a result the switch-node waveform exhibits less overshoot and ringing.  
Figure 8-1. Switch Node Waveform (VIN=13.5V, IOUT=3.5A)  
The LM53625/35-Q1 is AEC-Q1 qualified as well as having electrical characteristics ensured up to a maximum  
junction temperature of 150°C.  
The LM53625/35-Q1 is available in VQFN package with wettable-flanks which allows easy inspection of the  
soldering job without the requirement of X-ray checks.  
Please note that, throughout this data sheet, references to the LM53625 apply equally to the LM53635. The  
difference between the two devices is the maximum output current and specified MOSFET current limits.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
8.2 Functional Block Diagram  
SYNC  
VCC BIAS  
VIN  
* = Not used in -ADJ  
INT. REG.  
BIAS  
OSCILLATOR  
CBOOT  
ENABLE  
LOGIC  
HS CURRENT  
SENSE  
EN  
FB  
1.0 V  
Reference  
PWM  
COMP.  
ERROR  
AMPLIFIER  
+
-
CONTROL  
LOGIC  
DRIVER  
SW  
*
*
+
-
LS CURRENT  
SENSE  
RESET  
MODE  
RESET  
LOGIC  
CONTROL  
FPWM  
AGND PGND  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
8.2.1 Control Scheme  
The LM53625/35-Q1 control scheme allows this device to operate under a wide range of conditions with a  
low number of external components. Peak current mode control allows a wide range of input voltages and  
output capacitance values, while maintaining a constant switching frequency. Stable operation is maintained  
while output capacitance is changed during operation as well. This allows use in systems that require high  
performance during load transients and which have load switches that remove loads as system operating state  
changes. Short minimum on and off times ensure constant frequency regulation over a wide range of conversion  
ratios. These on and off times allow for a duty factor window of 13% to 87% at 2.1-MHz switching frequency.  
This architecture uses frequency spreading in order to achieve low dropout voltage maintaining output regulation  
as the input voltage falls close to output voltage. The frequency spreading is smooth and continuous, and  
activated as off time approaches its minimum. Under these conditions, the LM53625/35-Q1 operates much like  
a constant off-time converter allowing the maximum duty cycle to reach 98% and output voltage regulation with  
300-mV dropout at 3.5 A.  
While input voltage is high enough to require duty factor below 13%, frequency is reduced smoothly to allow  
lower duty factors. In this mode many of the beneficial properties of current-mode control such as insensitivity to  
output capacitance is maintained. The LM53625/35-Q1 has short enough minimum on time to maintain 2.1-MHz  
operation while converting a 18 V input to a 3.3-V output.  
As load current is reduced, the LM53625/35-Q1 transitions to light load mode. In this mode, diode emulation is  
used to reduce RMS inductor current and switching frequency is reduced. Also, fixed voltage versions do not  
need a voltage divider connected to FB saving additional power. As a result, only 15 µA (typical, while converting  
13.5 V to 3.3 V) is consumed to regulate output voltage if output is unloaded. Average output voltage increases  
slightly while lightly loaded as well.  
For applications that require constant operating frequency regardless of the load condition, the FPWM pin allows  
the user to disable the light load operating mode. The device then switches at 2.1 MHz regardless of the output  
current. Diode emulation is also turned off when the FPWM pin is set high.  
8.3 Feature Description  
8.3.1 RESET Flag Output  
The RESET function, built into the LM53625/35-Q1, has special features not found in the ordinary Power-Good  
function. A glitch filter prevents false flag operation for short excursions in the output voltage, such as during  
line and load transients. Furthermore, there is a delay between the point at which the output voltage is within  
specified limits and the flag asserts Power Good. Because the RESET comparator and the regulation loop  
share the same reference, the thresholds track with the output voltage. This allows the LM53625/35-Q1 to be  
specified with a 96.5% maximum threshold, while at the same time specifying a 94 % worst case threshold  
with respect to the actual output voltage for that device. This allows tighter tolerance than is possible with an  
external supervisor device. The net result is a more accurate Power-Good function while expanding the system  
allowance for transients, and so forth. RESET operation can best be understood by reference to Figure 8-2  
and Figure 8-3. The values for the various filter and delay times can be found in Section 7.7. Output voltage  
excursions lasting less than TRESET-filter do not trip RESET. Once the output voltage is within the prescribed  
limits, a delay of TRESET-act is imposed before RESET goes high.  
This output consists of an open-drain NMOS; requiring an external pullup resistor to a suitable logic supply. It  
can also be pulled up to either VCC or VOUT, through an appropriate resistor, as desired. The pin can be left  
floating or grounded if the RESET function is not used in the application. When EN is pulled low, the flag output  
isl also be forced low. With EN low, RESET remains valid as long as the input voltage is ≥ 1.5 V. The maximum  
current into this pin should be limited to 10 mA, while the maximum voltage must be less than 8 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Figure 8-2. Static RESET Operation  
Figure 8-3. RESET Timing Behavior  
While the LM53625/35-Q1 reset function resembles a standard Power-Good function, its functionality is  
designed to replace a discrete reset device, reducing additional component cost. There are three major  
differences between the reset function and the normal power good function seen in most regulators.  
A delay has been added for release of reset. See Figure 8-2 and Figure 8-3 for more detail.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
RESET Output signals a fault (pulls its output to ground) while the part is disabled.  
RESET Continues to operate with input voltage as low as 1.5 V. Below this input voltage, RESET Output may  
be high impedance.  
The threshold voltage for the RESET function is specified taking advantage of the availability of the LM53625/35-  
Q1 internal feedback threshold to the RESET circuit. This allows a maximum threshold of 96.5% of selected  
output voltage to be specified at the same time as 96 % of actual set point. The net result is a more accurate  
reset function while expanding the system allowance for transient response without the need for extremely  
accurate internal circuitry.  
8.3.2 Enable and Start-Up  
Start-up and shutdown of the LM53625/35-Q1 are controlled by the EN input. Applying a voltage of ≥ 2 V  
activates the device, while a voltage of ≤ 0.8 V is required to shut it down. The EN input may also be connected  
directly to the input voltage supply. This input must not be left floating. The LM53625/35-Q1 utilizes a reference-  
based soft start that prevents output voltage overshoots and large inrush currents as the regulator is starting up.  
A typical start-up waveform is shown in Figure 8-4 along with timing definitions.  
The waveforms shown in Figure 8-4 indicate the sequence and timing between the enable input and the output  
voltage and RESET. From the figure we can define several different start-up times depending on what is relevant  
to the application. Table 8-1 lists some definitions and typical values for the timings.  
Figure 8-4. Typical Start-up Waveform  
Table 8-1. Typical Start-up Times  
PARAMETER  
Total start-up sequence  
DEFINITION  
VALUE  
UNIT  
tRESET-READY  
Time from EN to RESET released  
7.5  
ms  
time  
tPOWER-UP  
tSS  
Start-up time  
Soft-start time  
Delay time  
Time from EN to 90% of VOUT  
Rise time of VOUT from 10% to 90%  
Time from EN to start of VOUT rising  
4
3.2  
1
ms  
ms  
ms  
tEN  
Time from output voltage within 94% and RESET  
released  
tRESET-ACT  
RESET time  
3
ms  
8.3.3 Soft-Start Function  
Soft-start time is fixed internally at about 3 ms. Soft start is achieved by ramping the internal reference. The  
LM53625/35-Q1 operates correctly even if there is a voltage present on the output before activation of the  
LM53625/35-Q1 (pre-biased start-up). The device operates in AUTO mode during soft start, and the state of the  
FPWM pin is ignored during that period.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
8.3.4 Current Limit  
The LM53625/35-Q1 incorporates valley current limit for normal overloads and for short-circuit protection. In  
addition, the low-side switch is also protected from excessive negative current when the device is in FPWM  
mode. Finally, a high-side peak-current limit is employed for protection of the top NMOS FET.  
During overloads the low-side current limit, IL-LS (see Section 7.5), determines the maximum load current that the  
LM53625/35-Q1 can supply. When the low-side switch turns on, the inductor current begins to ramp down. If the  
current does not fall below IL-LS before the next turnon cycle, then that cycle is skipped, and the low-side FET is  
left on until the current falls below IL-LS. This is somewhat different than the more typical peak current limit, and  
results in Equation 1 for the maximum load current.  
(
V
IN - VOUT  
2FS L  
)
VOUT  
IOUT  
= ILS  
+
max  
V
IN  
(1)  
The LM53625/35-Q1 uses two current limits, which allow use of smaller inductors than systems utilizing a  
single current limit. A coarse high side or peak current limit is provided to protect against faults and saturated  
inductors. A precision valley current limit prevents excessive average output current from the buck converter of  
the LM53625/35-Q1. A new switching cycle is not initiated until inductor current drops below the valley current  
limit. This scheme allows use of inductors with saturation current rated less than twice the rated operating  
current of the LM53625/35-Q1.  
If the converter keeps triggering valley current limit for more than about 64 clock cycles, the device turns off both  
high and low side switches for approximately 5.5 ms (see TW in Section 7.7. If the overload is still present after  
the hiccup time, another 64 cycles is counted, and the process is repeated. If the current limit is not tripped for  
two consecutive clock cycles, the counter is reset. Figure 8-5 shows the inductor current with a hard short on the  
output. The hiccup time allows the inductor current to fall to zero, resetting the inductor volt-second balance. This  
is the method used for short-circuit protection and keeps the power dissipation low during a fault. Of course the  
output current is greatly reduced in this condition (see Section 7.8. A typical short-circuit transient and recovery  
is shown in Figure 8-6.  
Short Removed  
Short Applied  
VOUT, 2V/div  
Iinductor, 2A/div  
5ms/div  
Figure 8-5. Inductor Current Bursts in Short Circuit  
Figure 8-6. Short-Circuit Transient and Recovery  
The high-side current limit trips when the peak inductor current reaches IL-HS (see Section 7.5). This is a  
cycle-by-cycle current limit and does not produce any frequency or current foldback. It is meant to protect the  
high-side MOSFET from excessive current. Under some conditions, such as high input voltage, this current limit  
may trip before the low-side protection. The peak value of this current limit varies with duty cycle.  
In FPWM mode, the inductor current is allowed to go negative. Should this current exceed INEG, the low side  
switch is turned off until the next clock cycle. This is used to protect the low-side switch from excessive negative  
current. When the device is in AUTO mode, the negative current limit is increased to about IZC (about 0 A). This  
allows the device to operate in DCM.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
The LM53625/35-Q1 response to a short circuit is: Peak current limit prevents excessive peak current while  
valley current limit prevents excessive average inductor current. After a small number of cycles of valley current  
limit triggers, hiccup mode is activated.  
8.3.5 Hiccup Mode  
In order to prevent excessive heating and power consumption under sustained short circuit conditions, a hiccup  
mode is included. If an overcurrent condition is maintained, the LM53625/35-Q1 shuts off its output and waits for  
TW (approximately 6 ms), after which the LM53625/35-Q1 restarts operation beginning by activating soft start.  
Vout  
Figure 8-7. Hiccup Operation  
During hiccup mode operation the switch node of the LM53625/35-Q1 is high impedance after a short circuit or  
overcurrent persists for a short duration. Periodically, the LM53625/35-Q1 attempts to restart. If the short has  
been removed before one of these restart attempts, the LM53625/35-Q1 operates normally.  
8.3.6 Synchronizing Input  
It is often desirable to synchronize the operation of multiple regulators in a single system. This technique results  
in better-defined EMI and can reduce the need for capacitance on some power rails. The LM53625/35-Q1  
provides a SYNC input which allows synchronization with an external clock. The LM53625/35-Q1 implements an  
in-phase locking scheme – the rising edge of the clock signal provided to the LM53625/35-Q1 input corresponds  
to turning on the high-side device within the LM53625/35-Q1. This function is implemented using phase locking  
over a limited frequency range eliminating large glitches upon initial application of an external clock. The clock  
fed into the LM53625/35-Q1 replaces the internal free running clock but does not affect frequency foldback  
operation. Output voltage continues to be well regulated with duty factors outside of the normal 15% through  
87% range though at reduced frequency.  
The internal clock of the LM53625/35-Q1 can be synchronized to a system clock through the SYNC input. This  
input recognizes a valid high level as that ≥ 1.5 V, and a valid low as that ≤ 0.4 V. The frequency synchronization  
signal must be in the range of 1.9 MHz to 2.3 MHz with a duty cycle of from 10% to 90%. The internal clock  
is synced to the rising edge of the external clock. Ground this input if not used. The maximum voltage on this  
input is 5.5 V and should not be allowed to float. See Section 8.4 to determine which modes are valid for  
synchronizing the clock.  
The device remains in FPWM mode and operates in CCM for light loads when synchronization input is provided.  
8.3.7 Undervoltage Lockout (UVLO) and Thermal Shutdown (TSD)  
The LM53625/35-Q1 incorporates an input UVLO function. The device accepts an EN command when the input  
voltage rises above about 3.64 V and shuts down when the input falls below about 3.3 V. See Section 7.5 under  
VIN-OPERATE for detailed specifications.  
TSD is provided to protect the device from excessive temperature. When the junction temperature reaches about  
165°C, the device shuts down; re-start occurs at a temperature of about 150°C.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM53625-Q1 LM53635-Q1  
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
8.3.8 Input Supply Current  
The LM53625/35-Q1 is designed to have very low input supply current when regulating light loads. One way  
this is achieved is by powering much of the internal circuitry from the output. The BIAS pin is the input to the  
LDO that powers the majority of the control circuits. By connecting the BIAS input to the output of the regulator,  
this current acts as a small load on the output. This current is reduced by the ratio of VOUT/VIN, just like any  
other load. Another advantage of the LM53625/35-Q1 is that the feedback divider is integrated into the device.  
This allows the use of much larger resistors than can be used externally; >> 100 kΩ. This results in much lower  
divider current than is possible with external resistors.  
Equation 2 can be used as a guide to indicate how the various terms affect the input supply current in AUTO  
mode in unloaded conditions. The Section 9.2.2.3 show measured values for the input supply current for both  
the 3.3-V and the 5-V output voltage versions.  
8.4 Device Functional Modes  
Please refer to Table 8-2 and the following paragraphs for a detailed description of the functional modes for  
the LM53625/35-Q1. These modes are controlled by the FPWM input as shown in Table 8-2. This input can be  
controlled by any compatible logic, and the mode changed, while the regulator is operating. If it is desired to fix  
the mode for a given application, the input can be either connected to ground, a logic supply, or the VCC pin, as  
desired. The maximum input voltage on this pin is 5.5 V; the FPWM pin should not be allowed to float.  
Table 8-2. Mode Selection  
FPWM INPUT VOLTAGE  
OPERATING MODE  
Forced PWM: The regulator operates as a constant frequency, current mode, full-  
synchronous converter for all loads; without diode emulation.  
> 1.5 V  
AUTO: The regulator moves between PFM and PWM as the load current changes, utilizing  
diode-emulation mode to allow DCM (see the Glossary ).  
< 0.4 V  
8.4.1 AUTO Mode  
In AUTO mode the device moves between PWM and PFM as the load changes. At light loads the regulator  
operates in PFM . At higher loads the mode changes to PWM. The load currents at which the mode changes can  
be found in the Section 9.2.2.3.  
In PWM, the converter operates as a constant frequency, current mode, full synchronous converter using PWM  
to regulate the output voltage. While operating in this mode the output voltage is regulated by switching at a  
constant frequency and modulating the duty cycle to control the power to the load. This provides excellent line  
and load regulation and low output voltage ripple. When in PWM the converter synchronizes to any valid clock  
signal on the SYNC input (see Section 8.4.3 and Section 8.4.4 ).  
In PFM the high side FET is turned on in a burst of one or more cycles to provide energy to the load. The  
frequency of these bursts is adjusted to regulate the output, while diode emulation is used to maximize efficiency  
(see the Glossary). This mode provides high light-load efficiency by reducing the amount of input supply current  
required to regulate the output voltage at small loads. This trades off very good light load efficiency for larger  
output voltage ripple and variable switching frequency. Also, a small increase in the output voltage occurs in  
PFM. The actual switching frequency and output voltage ripple will depend on the input voltage, output voltage,  
and load. Typical switching waveforms for PFM are shown in Figure 8-8. See the Section 9.2.2.3 for output  
voltage variation in AUTO mode. The SYNC input is ignored during PFM operation.  
A unique feature of this device is that a minimum input voltage is required for the regulator to switch from PWM  
to PFM at light load. This feature is a consequence of the advanced architecture employed to provide high  
efficiency at light loads. Figure 8-9 and Figure 8-10 indicates typical values of input voltage required to switch  
modes at no load. Also, once the regulator switches to PFM, at light load, it remains in that mode if the input  
voltage is reduced.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
6.2  
6
Light Load Activation Thsld (rising)  
Light Load Deactivation Thsld (falling)  
SW, 5V/div  
5.8  
5.6  
5.4  
5.2  
5
VOUT, 50mV/div  
Iinductor, 500mA/div  
10µs/div  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Figure 8-8. Typical PFM Switching Waveforms  
D033  
Figure 8-9. Input Voltage for Mode Change — Fixed  
5-V Output, 2.2-µH Inductor  
4.2  
4
Light Load Activation Thsld (rising)  
Light Load Deactivation Thsld (falling)  
3.8  
3.6  
3.4  
3.2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D038  
Figure 8-10. Input Voltage for Mode Change — Fixed 3.3-V Output, 2.2-µH Inductor  
IQ_VIN is the current consumed by a converter utilizing a LM53635-Q1 or LM53625-Q1 device while regulating  
without a load. While operating without a load, the LM53635-Q1 or LM53625-Q1 is only powering itself. The  
device draws power from two sources, its VIN pin, IQ, and either its FB pin for fixed versions or BIAS pin for  
adjustable versions, IB. Since BIAS or FB is connected to the output of the circuit, the power consumed is  
converted from input power with an effective efficiency, ηeff, of approximately 80 %. Here, effective efficiency is  
the added input power needed when lightly loading the converter of the LM53625-Q1 and LM53635- Q1 devices  
and is divided by the corresponding additional load. This allows unloaded current to be calculated as follows:  
Output Voltage  
IQ_ VIN = IQ +IEN + I +I  
(
)
B
div  
heff ìInput Voltage  
(2)  
where  
IQ_VIN is the current consumed by the operating (switching) buck converter utilizing the LM53625-Q1 or  
LM53635-Q1 while unloaded.  
IQ is the current drawn by the LM53625-Q1 or LM53635-Q1 from its VIN terminal. See IQ in Section 7.5.  
IEN is current drawn by the LM53625-Q1 or LM53635-Q1 from its EN terminal. Include this current if EN is  
connected to VIN. See IEN in Section 7.5. Note that this current drops to a very low value if connected to a  
voltage less than 5 V.  
IB is bias/feedback current drawn by the LM53625-Q1 or LM53635-Q1 while the Buck converter utilizing it is  
unloaded. See IB in Section 7.5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Idiv is the current drawn by the feedback voltage divider used to set output voltage for adjustable devices.  
This current is zero for fixed output voltage devices.  
ηeff is the light load efficiency of the Buck converter with IQ_VIN removed from the input current of the buck  
converter input current. 0.8 is a conservative value that can be used under normal operating conditions.  
Note  
The EN pin consumes a few micro-amperes when tied to high; see IEN. Add IEN to IQ as shown in  
Equation 2 if EN is tied to VIN. If EN is tied to a voltage less than 5 V, virtually no current is consumed  
allowing EN to be used as an UVLO pin once a voltage divider is added.  
8.4.2 FPWM Mode  
With a logic high on the FPWM input, the device is locked in PWM mode. This operation is maintained, even at  
no-load, by allowing the inductor current to reverse its normal direction. This mode trades off reduced light load  
efficiency for low output voltage ripple, tight output voltage regulation, and constant switching frequency. In this  
mode, a negative current limit of INEG is imposed to prevent damage to the low-side FET of the regulator. When  
in FPWM the converter synchronizes to any valid clock signal on the SYNC input (see Section 8.4.3 and Section  
8.4.4.  
When constant frequency operation is more important than light load efficiency, pull the LM53625/35-Q1 FPWM  
input high or provide a valid synchronization input. Once activated, this feature ensures that the switching  
frequency stays above the AM frequency band, while operating between the minimum and maximum duty cycle  
limits. Essentially, the diode emulation feature is turned off in this mode. This means that the device remains  
in CCM under light loads. Under conditions where the device must reduce the on time or off time below the  
ensured minimum, the frequency reduces to maintain the effective duty cycle required for regulation. This can  
occur for high input/output voltage ratios.  
With the FPWM pin pulled low (normal mode), the diode emulation feature is activated. Device operation is the  
same as above; however, the regulator goes into DCM operation when the valley of the inductor current reaches  
zero.  
This feature may be activated and deactivated while the part is regulating without removing the load. This feature  
activates and deactivates gradually, over approximately 40 µs, preventing perturbation of output voltage. When  
in FPWM mode, a limited reverse current is allowed through the inductor allowing power to pass from the  
regulators output to its input. In this case, care must be taken to ensure that a large enough input capacitor is  
used to absorb this reverse current.  
Note  
While FPWM is activated, larger currents pass through the inductor than in AUTO mode when lightly  
loaded. This may result in more EMI, though at a predictable frequency. Once loads are heavy enough  
to necessitate CCM operation, FPWM has no measurable effect on the operation of the regulator.  
8.4.3 Dropout  
One of the parameters that influences the dropout performance of a buck regulator is the minimum off time. As  
the input voltage is reduced, to near the output voltage, the off time of the high-side switch starts to approach  
the minimum value (see Section 7.5). Beyond this point the switching may become erratic and/or the output  
voltage falls out of regulation. To avoid this problem, the LM53625/35-Q1 automatically reduces the switching  
frequency to increase the effective duty cycle. This results in two specifications regarding dropout voltage, as  
shown in Section 7.6. One specification indicates when the switching frequency drops to 1.85 MHz; avoiding the  
A.M. radio band. The other specification indicates when the output voltage has fallen to 3% of nominal. See the  
Section 9.2.2.3 for typical dropout values. The overall dropout characteristic for the 5-V option can be seen in  
Figure 8-11 and Figure 8-12. The SYNC input is ignored during frequency foldback in dropout. Additional dropout  
information is discussed in for 5-V output (Section 9.2.2.3 and for 3.3 V output (Section 9.2.3.3).  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
5.2  
2.5E+6  
2E+6  
1.5E+6  
1E+6  
5E+5  
0
5
4.8  
4.6  
4.4  
4.2  
0 A  
1 A  
2 A  
3 A  
0 A  
1 A  
2 A  
3 A  
3.5 A  
3.5 A  
4
4
4.25  
4.5  
4.75  
Input Voltage (V)  
5
5.25  
5.5  
4
4.5  
5 5.5  
Input Voltage (V)  
6
6.5  
D029  
D030  
Figure 8-11. Overall Dropout Characteristics (VOUT  
= 5 V)  
Figure 8-12. Frequency Dropout Characteristics  
(VOUT = 5 V)  
8.4.4 Input Voltage Frequency Foldback  
At higher input voltages the on time of the high-side switch becomes small. When the minimum is reached (see  
Section 7.5), the switching may become erratic and/or the output voltage may fall out of regulation. To avoid this  
behavior, the LM53625/35-Q1 automatically reduces the switching frequency at input voltages above about 20 V  
(see Section 9.2.2.3). In this way the device avoids the minimum on-time restriction and maintains regulation at  
abnormally high battery voltages. The SYNC input is ignored during frequency foldback at high input voltages.  
Frequency foldback patterns are different for the fixed 3.3-V and the 5-V output options. The fixed 3.3-V option  
has a deeper foldback pattern to accommodate the lower duty cycle. The adjustable option has a fold-back  
patterns is similar to that of the fixed 3.3-V option.  
8.5 Spread-Spectrum Operation  
The spread spectrum is a factory option. In order to find which parts have spread spectrum enabled, see Section  
5.  
The purpose of the spread spectrum is to eliminate peak emissions at specific frequencies by spreading  
emissions across a wider range of frequencies than a part with fixed frequency operation. In most systems  
containing the LM53625-Q1 and LM53635-Q1 devices, low frequency conducted emissions from the first few  
harmonics of the switching frequency can be easily filtered. A more difficult design criterion is reduction of  
emissions at higher harmonics which fall in the FM band. These harmonics often couple to the environment  
through electric fields around the switch node. The LM53625-Q1 and LM53635-Q1 devices use a ±3% spread  
of frequencies which spread energy smoothly across the FM band but is small enough to limit sub-harmonic  
emissions below its switching frequency. Peak emissions at the part’s switching frequency are only reduced by  
slightly less than 1 dB, while peaks in the FM band are typically reduced by more than 6 dB.  
The LM53625-Q1 and LM53635-Q1 devices use a cycle to cycle frequency hopping method based on a linear  
feedback shift register (LFSR). Intelligent pseudo random generator limits cycle to cycle frequency changes to  
limit output ripple. Pseudo random pattern repeats by approximately 8 Hz which is below the audio band.  
The spread spectrum is only available while the clock of the LM53625-Q1 and LM53635-Q1 devices is free  
running at its natural frequency. Any of the following conditions overrides spread spectrum, turning it off:  
1. An external clock is applied to the SYNC/MODE terminal.  
2. The clock is slowed due to operation low input voltage – this is operation in dropout.  
3. The clock is slowed due to high input voltage – input voltage above approximately 21 V disables spread  
spectrum.  
4. The clock is slowed under light load in Auto mode – this is normally not seen above 200 mA of load. In  
FPWM mode, spread spectrum is active even if there is no load.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LM53625/35-Q1 is a step-down DC-DC converter, typically used to convert a higher DC voltage to a lower  
DC voltage with a maximum output current of 2.5 A or 3.5 A. The following design procedures can be used to  
select components for the LM53625/35-Q1. Alternately, the WEBENCH® Design Tool may be used to generate  
a complete design. This tool utilizes an iterative design procedure and has access to a comprehensive database  
of components. This allows the tool to create an optimized design and allows the user to experiment with various  
design options.  
9.2 Typical Applications  
9.2.1 General Application  
Figure 9-1 shows a general application schematic. FPWM, SYNC and EN are digital inputs. RESET is an  
open-drain output. FB connection is different for the fixed output options and the adjustable option.  
The FPWM pin can be connected to GND to enable light-load PFM operation. Select this option if current  
consumption at light load is critical. The pin can be connected to VCC or VIN for forced 2-MHz operation.  
Select this option if constant switching frequency is critical over the entire load range. The pin can also be  
driven by an external signal and can be toggled while the part is in operation (by an MCU for example.) Refer  
to the Section 7.5 and Section 8.4 for more details on the operation and signal requirements of the FPWM  
pin.  
The SYNC pin can be used to control the switching frequency and the phase of the converter. If the function  
is not needed, tie the SYNC pin to GND or 3 V.  
The RESET pin can be left floating if the function is not required. If the function is needed, the pin must be  
connected to a DC rail through a pullup resistor (100 kΩ is the typical recommended value). Check Section  
7.5 and Section 8.3.1 for the details of the RESET-pin function.  
If the device is a fixed-output version (3.3 V or 5 V output option), connect the FB pin directly to the output. In  
the case of an adjustable-output part, connect the output to the FB pin through a voltage divider. See Section  
9.2.1.2 for details on component selection.  
The BIAS pin can be connected directly to the output except in applications that can experience inductive  
shorts (such as cases with long leads on the output). In those cases, a 3 Ω or so is necessary between  
the output and the BIAS pin, and a small capacitor to GND is necessary close to the BIAS pin (CBIAS).  
Alternatively, a Schottky diode can be connected between the OUT and GND to limit the negative voltage that  
can arise on the output during inductive shorts. In addition, BIAS can also be connected to an external rail  
if necessary and if available. The typical current into the bias pin is 15 mA when the device is operating in  
PWM mode at 2.1 MHz.  
Power components must be chosen carefully for proper operation of the converter. Section 9.2.1.2 discusses  
the details of the process of choosing the input capacitors, output capacitors, and inductor for the application.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Figure 9-1. General Application Circuit  
9.2.1.1 Design Requirements  
See Table 9-4, Table 9-5, and Table 9-6. The minimum input voltage shown in Figure 9-1 is not the minimum  
operating voltage of the LM53625-Q1/LM53635-Q1. Rather, it is a typical operating range for the systems. For  
the complete information regarding minimum input voltage, please refer to Section 7.5  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 External Components Selection  
The device requires input capacitors and an output inductor-capacitor filter. These components are critical to the  
performance of the device.  
9.2.1.2.1.1 Input Capacitors  
The input capacitor supplies the AC switching current drawn from the switching action of the internal power  
FETs. The input current of a buck converter is discontinuous, so the ripple current supplied by the input capacitor  
is large. The input capacitor must be rated to handle both the RMS current and the dissipated power.  
The device is designed to be used with ceramic capacitors on the input of the buck regulator. The recommended  
dielectric type of these capacitors is X5R, X7R, or of comparable material to maintain proper tolerances over  
voltage and temperature.  
The device requires a minimum of 22 µF of ceramic capacitance at the input. TI recommends 2 × 10 µF, 10 µF  
for PVIN1 and 10 µF for PVIN2. Place these capacitors close to the PVIN1 and PGND1 / PVIN2 and PGND2  
pads.  
In addition, it is especially important to have small ceramic capacitors of 10 nF to 100 nF very close to the PVIN1  
and PVIN2 inputs in order to minimize ringing and EMI generation due to the high speed switching of the device  
coupled with trace inductance.  
Many times it is desirable to use an additional electrolytic capacitor on the input, in parallel with the ceramics.  
This is especially true if longs leads/traces are used to connect the input supply to the regulator. The moderate  
ESR of this capacitor can help damp any ringing on the input supply caused by long power leads. The use of this  
additional capacitor will also help with voltage dips caused by input supplies with unusually high impedance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.2.1.2.1.1.1 Input Capacitor Selection  
The ceramic input capacitors provide a low impedance source to the regulator in addition to supplying ripple  
current and isolating switching noise from other circuits. Table 9-1 shows the nominal and minimum values of  
total input capacitance recommenced for the LM53625/35-Q1. Also shown are the measured values of effective  
capacitance for the indicated capacitor. In addition, small high frequency bypass capacitors connected directly  
between the VIN and PGND pins are very helpful in reducing noise spikes and aid in reducing conducted EMI. TI  
recommends that a small case size 10-nF ceramic capacitor be placed across the input, as close to the device  
as possible. Additional high-frequency capacitors can be used to help manage conducted EMI or voltage spike  
issues that may be encountered.  
Table 9-1. Recommended Input Capacitors  
NOMINAL INPUT CAPACITANCE  
MINIMUM INPUT CAPACITANCE  
PART NUMBER  
RATED  
CAPACITANCE  
MEASURED  
MEASURED CAPACITANCE(1)  
RATED CAPACITANCE  
CAPACITANCE(1)  
3 × 10 μF  
22.5 μF  
2 × 10 μF  
15 μF  
CL32B106KBJNNNE  
(1) Measured at 14 V and 25°C.  
9.2.1.2.1.2 Output Inductors and Capacitors Selection  
There are several design considerations related to the selection of output inductors and capacitors:  
Load transient response  
Stability  
Efficiency  
Output ripple voltage  
Overcurrent ruggedness  
The device has been optimized for use with nominal LC values as shown in the Figure 9-1.  
9.2.1.2.1.2.1 Inductor Selection  
The LM53625/35-Q1 is optimized for a nominal inductance of 2.2 μH for the 5-V and 3.3-V versions. This gives  
a ripple current that is approximately 20% to 30% of the full load current of 3.5 A. For output voltages greater  
than 5 V, a proportionally larger inductor can be used, thus keeping the ratio of inductor current slope to internal  
compensating slope constant.  
The most important inductor parameters are saturation current and parasitic resistance. Inductors with a  
saturation current of between 7 A and 8 A are appropriate for most applications when using the LM53625/35-Q1.  
Of course, the inductor parasitic resistance must be as low as possible to reduce losses at heavy loads. Table  
9-2 gives a list of several possible inductors that can be used with the LM53625/35-Q1.  
The LM53625 and LM53635 devices run in current mode and with internal compensation. This compensation  
is stable with inductance between 1.5 µH and 10 µH. For most applications, use 2.2 µH with the fixed 5-V  
and 3.3-V versions of the LM53625 and LM53635 devices. Adjustable devices operate at the same frequency  
under high input-voltage conditions as devices set to deliver 3.3 V (see Switching Frequency vs Input Voltage).  
Inductor current ripple at high input voltages can become excessive when using a 2.2-µH inductor with an  
adjustable device that is delivering output voltage above 6 V. A 4.7-µH inductor might be necessary. Inductance  
that is too high is not recommended as it can result in poor load transient behavior and instability for extreme  
inductance choice. See Table 9-2 for typical recommended values.  
The inductor must be rated to handle the peak load current plus the ripple current — take care when reviewing  
the different saturation current ratings specified by different manufacturers. Saturation current ratings are  
typically specified at 25°C, so ratings at maximum ambient temperature of the application should be requested  
from the manufacturer. For the LM53635, TI recommends a saturation current of 7.5 A or higher, and for the  
LM53625, a saturation current of 6.5 A or higher is recommended  
Table 9-2. Recommended Inductors  
MANUFACTURER  
PART NUMBER  
SATURATION CURRENT  
DC RESISTANCE  
Würth  
7440650022  
6 A  
15 mΩ  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Table 9-2. Recommended Inductors (continued)  
MANUFACTURER  
Coilcraft  
PART NUMBER  
SATURATION CURRENT  
DC RESISTANCE  
11 mΩ  
DO3316T-222MLB  
7.8 A  
7.9 A  
8 A  
Coiltronics  
Vishay  
MPI4040R3-2R2-R  
48 mΩ  
IHLP2525CZER2R2M01  
IHLP2525BDER2R2M01  
18 mΩ  
Vishay  
6.5 A  
28 mΩ  
The designer should choose the inductors that best match the system requirements. A very wide range of  
inductors are available as regarding physical size, height, maximum current (thermally limited, and inductance  
loss limited), series resistance, maximum operating frequency, losses, and so forth. In general, inductors of  
smaller physical size have higher series resistance (DCR) and implicitly lower overall efficiency is achieved.  
Very low-profile inductors may have even higher series resistance. TI recommends finding the best compromise  
between system performance and cost.  
9.2.1.2.1.2.2 Output Capacitor Selection  
The LM53625/35-Q1 is designed to work with low-ESR ceramic capacitors. For automotive applications, TI  
recommends X5R and X7R type capacitors. The effective value of these capacitors is defined as the actual  
capacitance under voltage bias and temperature. All ceramic capacitors have a large voltage coefficient,  
in addition to normal tolerances and temperature coefficients. Under DC bias, the capacitance value drops  
considerably. Larger case sizes and/or higher voltage capacitors are better in this regard. To help mitigate these  
effects, multiple small capacitors can be used in parallel to bring the minimum effective capacitance up to the  
desired value. This can also ease the RMS current requirements on a single capacitor. Table 9-3 shows the  
nominal and minimum values of total output capacitance recommended for the LM53625/35-Q1. The values  
shown also provide a starting point for other output voltages, when using the adjustable option. Also shown are  
the measured values of effective capacitance for the indicated capacitor. More output capacitance can be used  
to improve transient performance and reduce output voltage ripple.  
In practice, the output capacitor has the most influence on the transient response and loop phase margin. Load  
transient testing and Bode plots are the best way to validate any given design and should always be completed  
before the application goes into production. Make a careful study of temperature and bias voltage variation of  
any candidate ceramic capacitor in order to ensure that the minimum value of effective capacitance is provided.  
The best way to obtain an optimum design is to use the Texas Instruments WEBENCH Design Tool.  
In adjustable applications the feed-forward capacitor, CFF, provides another degree of freedom when stabilizing  
and optimizing the design. Refer to Optimizing Transient Response of Internally Compensated dc-dc Converters  
With Feedforward Capacitor (SLVA289) for helpful information when adjusting the feed-forward capacitor.  
In addition to the capacitance shown in Table 9-3, a small ceramic capacitor placed on the output can help to  
reduce high frequency noise. Small case-size ceramic capacitors in the range of 1 nF to 100 nF can be very  
helpful in reducing spikes on the output caused by inductor parasitics.  
Limit the maximum value of total output capacitance to between 300 μF and 400 μF. Large values of output  
capacitance can prevent the regulator from starting up correctly and adversely effect the loop stability. If values  
in the range given above, or greater, are to be used, then a careful study of start-up at full load and loop stability  
must be performed.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
Table 9-3. Recommended Output Capacitors  
OUTPUT VOLTAGE  
NOMINAL OUTPUT CAPACITANCE  
MINIMUM OUTPUT CAPACITANCE  
PART NUMBER  
RATED  
CAPACITANCE  
MEASURED  
RATED  
CAPACITANCE  
MEASURED  
CAPACITANCE(1)  
CAPACITANCE(1)  
3.3 V (fixed option)  
5 V (fixed option)  
6 V  
3 × 22 µF  
3 × 22 µF  
5 × 22 μF  
5 × 22 μF  
63 µF  
60 µF  
98 µF  
80 µF  
2 × 22 µF  
2 × 22 µF  
3 × 22 μF  
3 × 22 μF  
42 µF  
40 µF  
58 µF  
48 µF  
C3225X7R1C226M250AC  
C3225X7R1C226M250AC  
C3225X7R1C226M250AC  
C3225X7R1C226M250AC  
10 V(2)  
(1) Measured at indicated VOUT at 25°C.  
(2) L = 4.7 μH.  
The output capacitor of a switching converter absorbs the AC ripple current from the inductor and provides  
the initial response to a load transient. The ripple voltage at the output of the converter is the product of the  
ripple current flowing through the output capacitor and the impedance of the capacitor. The impedance of the  
capacitor can be dominated by capacitive, resistive, or inductive elements within the capacitor, depending on  
the frequency of the ripple current. Ceramic capacitors have very low ESR and remain capacitive up to high  
frequencies. Their inductive component can be usually neglected at the frequency ranges the switcher operates.  
The output-filter capacitor smooths out the current flow from the inductor to the load and helps maintain a steady  
output voltage during transient load changes. It also reduces output voltage ripple. These capacitors must be  
selected with sufficient capacitance and low enough ESR to perform these functions.  
Consult Output Ripple Voltage for Buck Switching Regulator (SLVA630) for more details on the estimation of the  
output voltage ripple for this converter.  
9.2.1.2.2 Setting the Output Voltage  
For the fixed output voltage versions, the FB input is connected directly to the output voltage node. Preferably,  
near the top of the output capacitor. If the feedback point is located further away from the output capacitors (that  
is, remote sensing), then a small 100-nF capacitor may be needed at the sensing point.  
9.2.1.2.2.1 FB for Adjustable Versions  
The adjustable version of the LM53625-Q1 and LM53635-Q1 devices regulates output voltage to a level that  
results in the FB node being VREF, which is approximately 1 V; see Section 7.5. Output voltage given a specific  
feedback divider can be calculated using Equation 3:  
RFBB + RFBT  
RFBB  
Output Voltage = Vref  
ì
(3)  
See Figure 9-34 for an example of the use of adjustable versions of the LM53625-Q1 and LM53635-Q1 devices.  
To ensure proper behavior for all modes of operation, a 50 kΩ resistor is recommended for RFBT. RFBB can then  
be determined using :  
V
ìRFBT  
ref  
RFBB  
=
Output Voltage - V  
ref  
(4)  
In addition a feed-forward capacitor CFF may be required to optimize the transient response. For output voltages  
greater than 6 V, the WEBENCH Design Tool can be used to optimize the design.  
9.2.1.2.3 VCC  
The VCC pin is the output of the internal LDO used to supply the control circuits of the LM53625/35-Q1. This  
output requires a 4.7-µF, 10-V ceramic capacitor connected from VCC to GND for proper operation. X7R type is  
recommended for automotive applications. In general this output must not be loaded with any external circuitry.  
However, it can be used to supply a logic level to the FPWM input or for the pullup resistor used with the RESET  
output. The nominal output of the LDO is 3.15 V.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.2.1.2.4 BIAS  
The BIAS pin is the input to the internal LDO. As mentioned in Section 8.3.8, this input is connected to VOUT  
in order to provide the lowest possible supply current at light loads. Because this input is connected directly to  
the output, it must be protected from negative voltage transients. Such transients may occur when the output is  
shorted at the end of a long PCB trace or cable. If this is likely in a given application, then place a small resistor  
in series between the BIAS input and VOUT, as shown in Figure 9-4. Size the resistor to limit the current out of  
the BIAS pin to < 100 mA. Values in the range of 2 Ω to 5 Ω are usually sufficient. Values greater than 5 Ω are  
not recommended. As a rough estimate, assume that the full negative transient will appear across RBIAS and  
design for a current of < 100 mA. In severe cases, a Schottky diode can be placed in parallel with the output to  
limit the transient voltage and current.  
When a resistor is used between the output and the BIAS pin, a 0.1-µF capacitor is required close to the BIAS  
pin. In general, TI recommends having a 0.1-µF capacitor near the BIAS pin, regardless of the presence or not  
of the resistor, unless the trace between the output capacitors and the BIAS pin is very short.  
The typical current into the bias pin is 15 mA when the device is operating in PWM mode at 2.1 MHz.  
9.2.1.2.5 CBOOT  
The LM53625/35-Q1 requires a boot-strap capacitor between the CBOOT pin and the SW pin. This capacitor  
stores energy that is used to supply the gate drivers for the power MOSFETs. A ceramic capacitor of 0.47 µF, ≥  
6.3 V is required.  
9.2.1.2.6 Maximum Ambient Temperature  
As with any power conversion device, the LM53625/35-Q1 dissipates internal power while operating. The effect  
of this power dissipation is to raise the internal temperature of the converter above ambient. The internal die  
temperature (TJ) is a function of the ambient temperature, the power loss, and the effective thermal resistance,  
RθJA of the device and PCB combination. The maximum internal die temperature for the LM53625/35-Q1 is  
150°C, thus establishing a limit on the maximum device power dissipation and therefore load current at high  
ambient temperatures. Equation 5 shows the relationships between the important parameters.  
(
TJ - TA  
RqJA  
)
h
1- h  
1
IOUT  
=
(
)
VOUT  
(5)  
The device uses an advanced package technology that utilizes the pads/pins as heat spreading paths. As a  
result, the pads should be connected to large copper areas in order to dissipate the heat from the IC. All pins  
provide some heat relief capability but the PVINs, PGNDs and SW pins are of particular importance for proper  
heat dissipation. Utilization of all the board layers for heat dissipation using vias as heat pipes is recommended.  
The Layout Guideline section includes example that shows layout for proper heat management.  
9.2.1.3 Application Curves  
These parameters are not tested and represent typical performance only. Unless otherwise stated, the following  
conditions apply: VIN = 12 V, TA = 25°C. For the purpose of offering the more information to the designer,  
information for the application with FPWM pin high (FPWM mode) and FPWM pin low (AUTO mode) is included,  
although the schematic shows the application running specifically in FPWM mode. The mode is specified under  
each following graph.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
4
4
3.5  
3
8 Vin  
5.5 Vin  
8 Vin  
12 Vin  
13.5 Vin  
18 Vin  
36 Vin  
3.5  
3
12 Vin  
13.5 Vin  
18 Vin  
36 Vin  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
D0312  
D031  
Figure 9-3. Power Dissipation 3.3-V Output  
Figure 9-2. Power Dissipation 5-V Output  
9.2.2 Fixed 5-V Output for USB-Type Applications  
Figure 9-4. Fixed 5-V, 3.5-A Output Power Supply  
9.2.2.1 Design Requirements  
Example requirements for a typical 5-V application. The input voltages are here for illustration purposes only.  
See Section 7.5 for minimum operating input voltage. The minimum input voltage necessary to achieve proper  
output regulation depends on the components used. See Dropout for –3% Regulation for typical drop-out  
behavior.  
Table 9-4. Example Requirements for 5-V Typical Application  
DESIGN PARAMETER  
EXAMPLE VALUE  
8 V to 18 V steady state, 5.5 V to 36 V transients  
0 A to 3.5 A  
Input voltage range  
Output current  
Switching Frequency at 0-A load  
Current Consumption at 0-A load  
Synchronization  
Critical: must have > 1.85 MHz  
Not critical: < 100 mA acceptable  
Yes: 1.9 MHz supplied by MCU  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.2.2.2 Detailed Design Procedure  
BIAS is connected to the output. This example assumes that the load is connected to the output through long  
wires so a 3 Ω resistor is inserted to minimize risks of damage to the part during load shorts. As a result a  
0.1-µF capacitor is required close to the bias pin.  
FB is connected directly to the output. BIAS and FB are connected to the output via separate traces. This is  
important in order to reduce noise and achieve good performances. See Section 11.1 for more details on the  
proper layout method.  
SYNC is connected to ground through a pulldown resistor, and an external synchronization signal can be  
applied. The pulldown resistor ensures that the pin is not floating when the SYNC pin is not driven by any  
source.  
EN is connected to VIN so the device operates as soon as the input voltage rises above the VIN-OPERATE  
threshold.  
FPWM is connected to VCC. This causes the device to operate in FPWM mode. In this mode, the switching  
frequency is not affected by the output current and is ensured to be within the boundaries set by FSW. The  
drawback is that the efficiency is not optimized for light loads. See Section 8.4 for more details.  
A 4.7-µF capacitor is connected between VCC and GND close to the VCC pin This ensures stable operation  
of the internal LDO.  
RESET is biased to the output in this example. A pullup resistor is necessary. A 100-kΩ is selected for this  
application and is generally sufficient. The value can be selected to match the needs of the application but  
must not lead to excessive current into the RESET pin when RESET is in a low state. Consult Section 7.1 for  
the maximum current allowed. In addition, a low pullup resistor could lead to an incorrect logic level due to  
the value of RRESET . Consult Section 7.5 for details on the RESET pin.  
Input capacitor selection is detailed in Section 9.2.1.2.1.1. It is important to connect small high-frequency  
capacitors CIN_HF1 and CIN_HF2 as close to both inputs PVIN1 and PVIN2 as possible.  
Output capacitor selection is detailed in Section 9.2.1.2.1.2.2.  
Inductor selection is detailed in Section 9.2.1.2.1.2.1. In general, a 2.2-µH inductor is recommended for the  
fixed output options. For the adjustable options, the inductance can vary with the output voltage due to ripple  
and current limit requirements.  
9.2.2.3 Application Curves  
The following characteristics apply only to the circuit of Section 9.2.2. These parameters are not tested and  
represent typical performance only. Unless otherwise stated, the following conditions apply: VIN = 12 V, TA =  
25°C. For the purpose of offering the more information to the designer, information for the application with  
FPWM pin high (FPWM mode) and FPWM pin low (AUTO mode) is included, although the schematic shows the  
application running specifically in FPWM mode. The mode is specified under each following graph.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
5.5Vin  
8Vin  
12Vin  
13.5Vin  
18Vin  
36Vin  
8Vin  
12Vin  
13.5Vin  
18Vin  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
1E-5  
0.0001  
0.001 0.01  
Output Current (A)  
0.10.2 0.5 1 2 34  
D006  
D002  
VOUT = 5 V  
FPWM  
VOUT = 5 V  
AUTO  
Figure 9-6. Efficiency  
Figure 9-5. Efficiency  
5.08  
5.06  
5.04  
5.02  
5
5.05  
8Vin  
5.025  
5
12Vin  
18Vin  
36Vin  
4.975  
4.95  
4.925  
4.9  
5.5Vin  
8Vin  
12Vin  
13.5Vin  
18Vin  
36Vin  
4.875  
4.85  
4.825  
4.8  
4.98  
4.96  
4.775  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
D007  
D003  
VOUT = 5 V  
FPWM  
VOUT = 5 V  
AUTO  
Figure 9-8. Load and Line Regulation  
Figure 9-7. Load and Line Regulation  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
4
8
12  
16  
20  
24  
Input Voltage (V)  
28  
32  
36  
6
9
12  
15  
18  
21  
24  
Input Voltage (V)  
27  
30  
33  
36  
D017  
D015  
VOUT = 5 V  
VOUT = 5 V  
AUTO  
IOUT = 0 A  
Figure 9-10. Load Current for PFM-to-PWM  
transition  
Figure 9-9. Input Supply Current (includes Leakage  
Current of the Capacitor)  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
1.5  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-40C  
25C  
105C  
1.2  
0.9  
0.6  
0.3  
-40C  
25C  
105C  
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3.5  
D022  
D021  
VOUT = 5 V  
VOUT = 5 V  
Figure 9-11. Dropout for –3% Regulation  
Figure 9-12. Dropout for ≥ 1.85 MHz  
5E+6  
2.5  
2
1E+6  
1E+5  
1E+4  
1E+3  
1.5  
1
8Vin  
12Vin  
18Vin  
0.5  
0
1E+2  
5E+1  
1E-6  
1E-5 0.0001 0.001 0.01  
Output Current (A)  
0.1  
1
5
0
4
8
12  
16  
20  
Vin (V)  
24  
28  
32  
36  
40  
D018  
D001  
VOUT = 5 V  
AUTO  
VOUT = 5 V  
FPWM  
Figure 9-13. Switching Frequency vs Load Current  
Figure 9-14. Switching Frequency vs Input Voltage  
5
4.5  
4
3.5  
LM53635  
LM53625  
AUTO  
VOUT = 5 V  
IOUT = 10 mA to  
3.5 A  
L = 2.2 µH  
3
COUT = 3 × 22 µF  
TR = TF = 1 µs  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
D005  
VOUT = 5 V  
L = 2.2µH  
Figure 9-16. Load Transients  
Figure 9-15. Output Current Level Limit Before  
Overcurrent Protection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
FPWM  
COUT = 3 × 22 µF  
VOUT = 5 V  
L = 2.2 µH  
TR = TF = 1µs  
IOUT = 0 A to 3.5 A  
Figure 9-17. Load Transient  
9.2.3 Fixed 3.3-V Output  
Figure 9-18. Fixed 3.3-V, 3.5-A Output Power Supply  
9.2.3.1 Design Requirements  
Example requirements for a typical 3.3-V application. The input voltages are here for illustration purposes  
only. See Section 7.5 for minimum operating input voltage. The minimum input voltage necessary to achieve  
proper output regulation depends on the components used. See Dropout for –3% Regulation for typical drop-out  
behavior.  
Table 9-5. Example Requirements for 3.3-V Application  
DESIGN PARAMETER  
EXAMPLE VALUE  
8-V to 18-V steady state, 4.0-V to 36-V transients  
0 A to 3.5 A  
Input voltage range  
Output current  
Swtiching Frequency at 0-A load  
Current Consumption at 0-A load  
Synchronization  
Not critical: Need >1.85 MHz at high load only  
Critical: Need to ensure low current consumption to reduce battery drain  
No  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.2.3.2 Detailed Design Procedure  
BIAS is connected to the output. This example assumes that the load is close to the output so no bias  
resistance is necessary. A 0.1-µF capacitor is still recommended close to the bias pin.  
FB is connected directly to the output. BIAS and FB are connected to the output via separate traces. This is  
important to reduce noise and achieve good performances. See Section 11.1 for more details on the proper  
layout method.  
SYNC is connected to ground directly as there is no need for this function in this application.  
EN is connected to VIN so the device perates as soon as the input voltage rises above the VIN-OPERATE  
threshold.  
FPWM is connected to GND. This causes the device to operate in AUTO mode. In this mode, the switching  
frequency is adjusted at light loads to keep efficiency maximum. As a result the switching frequency will  
change with the output current until medium load is reached. The part will then switch at the frequency  
defined by FSW. See Section 8.4 for more details.  
A 4.7-µF capacitor is connected between VCC and GND close to the VCC pin This ensures stable operation  
of the internal LDO.  
RESET is biased to an external rail in this example. A pullup resistor is necessary. A 100 kΩ is selected for  
this application and is generally sufficient. The value can be selected to match the needs of the application  
but must not lead to excessive current into the RESET pin when RESET is in a low state. Consult Section 7.1  
for the maximum current allowed. In addition, a low pull-up resistor could lead to an incorrect logic level due  
to the value of RRESET . Consult Section 7.5 for details on the RESET pin.  
it is important to connect small high frequency capacitors CIN_HF1 and CIN_HF2 as close to both inputs PVIN1  
and PVIN2 as possible. For the detailed process of choosing input capacitors, refer to Section 9.2.1.2.1.1.  
Output capacitor selection is detailed in Section 9.2.1.2.1.2.2.  
Inductor selection is detailed in Section 9.2.1.2.1.2.1. In general, a 2.2-µH inductor is recommended for the  
fixed output options. For the adjustable options, the inductance can vary with the output voltage due to ripple  
and current limit requirements.  
9.2.3.3 Application Curves  
The following characteristics apply only to the circuit of Figure 9-18. These parameters are not tested and  
represent typical performance only. Unless otherwise stated, the following conditions apply: VIN = 12 V, TA =  
25°C. For the purpose of offering the more information to the designer, information for the application with  
FPWM pin high (FPWM mode) and FPWM pin low (AUTO mode) is included, although the schematic shows the  
application running specifically in AUTO mode. The mode is specified under each of the following graphs.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
5.5Vin  
8Vin  
12Vin  
18Vin  
36Vin  
3.28  
3.26  
3.24  
3.22  
3.2  
8Vin  
12Vin  
13.5Vin  
18Vin  
0.0001  
0.001  
0.01 0.05  
Output Current (A)  
0.2 0.5  
1
2 3 4  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
D008  
D009  
VOUT = 3.3 V  
AUTO  
VOUT = 3.3 V  
AUTO  
Figure 9-19. Efficiency  
Figure 9-20. Load and Line Regulation  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
3.4  
5.5Vin  
8Vin  
12Vin  
18Vin  
36Vin  
3.38  
3.36  
3.34  
3.32  
3.3  
5.5Vin  
8Vin  
12Vin  
13.5Vin  
18Vin  
36Vin  
3.28  
3.26  
3.24  
3.22  
3.2  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
0
0.5  
1
1.5 2  
Output Current (A)  
2.5  
3
3.5  
D010  
D011  
VOUT = 3.3 V  
FPWM  
VOUT = 3.3 V  
FPWM  
Figure 9-21. Efficiency  
Figure 9-22. Load and Line Regulation  
45  
40  
35  
30  
25  
20  
15  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
6
12  
18 24  
Input Voltage (V)  
30  
36  
42  
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
D014  
D016  
VOUT = 3.3 V  
VOUT = 3.3 V  
AUTO  
IOUT = 0A  
Figure 9-24. Load Current for PFM-to-PWM  
Transition  
Figure 9-23. Input Supply Current (Includes  
Leakage Current of Capacitor)  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
1.5  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-40C  
25C  
105C  
1.2  
0.9  
0.6  
0.3  
-40C  
25C  
105C  
0
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
Output Current (A)  
2
2.5  
3
3.5  
D020  
D019  
VOUT = 3.3 V  
VOUT = 3.3 V  
Figure 9-25. Dropout for –3% Regulation  
Figure 9-26. Dropout for ≥ 1.85 MHz  
5E+6  
2.5  
2.25  
2
2E+6  
1E+6  
5E+5  
2E+5  
1E+5  
5E+4  
1.75  
1.5  
1.25  
1
2E+4  
1E+4  
5E+3  
2E+3  
1E+3  
5E+2  
0.75  
0.5  
0.25  
0
8 Vin  
12 Vin  
18 Vin  
2E+2  
1E+2  
5E+1  
1E-6  
1E-5 0.0001 0.001 0.01  
Output Current (A)  
0.1 0.5 23 5  
0
4
8
12  
16  
20  
24  
Input Voltage (V)  
28  
32  
36  
40  
D036  
D012  
VOUT = 3.3 V  
AUTO  
VOUT = 3.3 V  
FPWM  
IOUT = 1 A  
Figure 9-27. Switching Frequency vs Load Current  
Figure 9-28. Switching Frequency vs Input Voltage  
5
4.5  
4
3.5  
LM53635  
LM53625  
AUTO  
VOUT = 3.3 V  
L = 2.2 µH,  
3
COUT = 3 × 22 µF  
IOUT = 0 A to 3.5 A  
TR = TF = 1 µs  
5
10  
15  
20 25  
Input Voltage (V)  
30  
35  
40  
D005  
Figure 9-30. Load Transient  
VOUT = 3.3 V  
L=2.2 µH  
IOUT = 1 A  
Figure 9-29. Output Current Level for Overcurrent  
Protection Trip  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
FPWM  
VOUT = 3.3 V  
L = 2.2 µH,  
VOUT = 3.3 V  
IOUT = 10 mA  
COUT = 3 × 22 µF  
IOUT = 0 A to 3.5 A  
TR = TF = 1 µs  
Figure 9-32. Mode Change Transient AUTO to  
FPWM mode  
Figure 9-31. Load Transient  
VOUT = 3.3 V  
IOUT = 10 mA  
Figure 9-33. Mode Change Transient FPWM to AUTO Mode  
9.2.4 Adjustable Output  
Figure 9-34. 6 V Output Power Supply  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.2.4.1 Design Requirements  
The application highlighted in this section is for a typical 6-V system but can be used as a basis for the  
implementation of the adjustable version of the LM53625/LM53635 for other output voltages as well. The input  
voltages are here for illustration purposes only. See Section 7.5 for minimum operating input voltage.  
Table 9-6. Example Requirements for 6-V Application  
DESIGN PARAMETER  
EXAMPLE VALUE  
8-V to 18-V steady state  
0 A to 3.5 A  
Input voltage range  
Output current  
Swtiching Frequency at 0-A load  
Current Consumption at 0-A load  
Synchronization  
Constant frequency preferred  
Not critical  
No  
9.2.4.2 Detailed Design Procedure  
BIAS is connected to the output. This example assumes that inductive short are a risk for this application so a  
3-Ω resistor is added between BIAS and the output. A 0.1-µF capacitor is added close the BIAS pin.  
FB is connected to the output through a voltage divider in order to create a voltage of 1 V at the FB pin  
when the output is at 6 V. A 12-pF capacitance is added in parallel with the top feedback resistor in order to  
improve transient behavior. BIAS and FB are connected to the output via separate traces. This is important  
to reduce noise and achieve good performances. See Section 11.1 for more details on the proper layout  
method.  
SYNC is connected to ground directly as there is no need for this function in this application.  
EN is toggled by an external device (like an MCU for example). A pulldown resistor is placed to ensure the  
part does not turn on if the external source is not driving the pin (Hi-Z condition).  
FPWM is connected to GND. This leads the device to operate in AUTO mode. In this mode, the switching  
frequency is adjusted at light loads to keep efficiency maximum. As a result the switching frequency changes  
with the output current until medium load is reached. The device then switches at the frequency defined by  
FSW. See Section 8.4 for more details.  
A 4.7-µF capacitor is connected between VCC and GND close to the VCC pin. This ensure stable operation  
of the internal LDO.  
RESET is not used in this example so the pin has been left floating. Other possible connections can be seen  
in the previous typical applications and in Section 8.3.1.  
Power components (input capacitor, output capacitor, and inductor) selection can be found here in Section  
9.2.1.2.1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.2.4.3 Application Curves  
The following characteristics apply only to the circuit of Figure 9-34. These parameters are not tested and  
represent typical performance only. Unless otherwise stated, the following conditions apply: VIN = 12 V, TA  
= 25°C. For the purpose of offering meaningful information to the designer, information is included for the  
application with FPWM pin high (FPWM mode) and FPWM pin low (AUTO mode) although the schematic shows  
the application running specifically in AUTO mode. The mode is specified under each of the following graphs.  
2.5E+6  
2.25E+6  
2E+6  
1.75E+6  
1.5E+6  
1.25E+6  
1E+6  
7.5E+5  
5E+5  
2.5E+5  
0
VOUT = 6 V (ADJ part)  
FPWM  
IOUT = 0 A  
0
4
8
12  
16  
20  
24  
Input Voltage (V)  
28  
32  
36  
40  
D037  
Figure 9-36. Start-up Waveform  
VOUT = 6 V (ADJ part)  
FPWM  
IOUT = 0 A  
Figure 9-35. Switching Frequency vs Input Voltage  
VOUT = 6 V (ADJ part)  
FPWM  
VOUT = 6 V (ADJ part)  
FPWM  
IOUT = 0 A  
Figure 9-38. Load Transient  
Figure 9-37. Start-up Waveform (EN tied to VIN)  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
9.3 What to Do and What Not to Do  
Don't: Exceed the Section 7.1.  
Don't: Exceed the Section 7.3.  
Don't: Allow the EN, FPWM or SYNC input to float.  
Don't: Allow the output voltage to exceed the input voltage, nor go below ground.  
Don't: Use the thermal data given in the Section 7.4 table to design your application.  
Do: Follow all of the guidelines and/or suggestions found in this data sheet before committing a design  
to production. TI Application Engineers are ready to help critique designs and PCB layouts to help ensure  
successful projects.  
Do: Refer to the helpful documents found in Section 12.2.1.  
10 Power Supply Recommendations  
The characteristics of the input supply must be compatible with the Section 7.1 and Section 7.3 found in this  
data sheet. In addition, the input supply must be capable of delivering the required input current to the loaded  
regulator. The average input current can be estimated with Equation 6:  
VOUT IOUT  
IIN =  
V ∂ h  
IN  
(6)  
where  
η is the efficiency.  
If the regulator is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse  
effect on the operation of the regulator. The parasitic inductance, in combination with the low ESR ceramic input  
capacitors, can form an under-damped resonant circuit. This circuit may cause overvoltage transients at the VIN  
pin, each time the input supply is cycled on and off. The parasitic resistance causes the voltage at the VIN pin  
to dip when the load on the regulator is switched on or exhibits a transient. If the regulator is operating close  
to the minimum input voltage, this dip may cause the device to shut down and/or reset. The best way to solve  
these kinds of issues is to reduce the distance from the input supply to the regulator and/or use an aluminum or  
tantalum input capacitor in parallel with the ceramics. The moderate ESR of these types of capacitors helps to  
damp the input resonant circuit and reduce any voltage overshoots. A value in the range of 20 µF to 100 µF is  
usually sufficient to provide input damping and help to hold the input voltage steady during large load transients.  
Sometimes, for other system considerations, an input filter is used in front of the regulator. This can lead  
to instability, as well as some of the effects mentioned above, unless it is designed carefully. SNVA538 and  
SNVA489c provide helpful suggestions when designing an input filter for any switching regulator.  
In some cases a transient voltage suppressor (TVS) is used on the input of regulators. One class of this device  
has a snap-back V-I characteristic (thyristor type). The use of a device with this type of characteristic is not  
recommend. When the TVS fires, the clamping voltage drops to a very low value. If this holding voltage is less  
than the output voltage of the regulator, the output capacitors are discharged through the regulator back to the  
input. This uncontrolled current flow could damage the regulator.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The PCB layout of a DC-DC converter is critical for optimal performance of the application. For a buck converter  
the input loop formed by the input capacitors and power grounds are very critical. The input loop carries fast  
transient currents that cause larger transient voltages when reacting with a parasitic loop inductance. The IC  
uses two input loops in parallel IN1 and IN2 as shown in Figure 11-1 that cuts the parasitic input inductance in  
half. To get the minimum input loop area two small high frequency capacitors CIN1 and CIN2 are placed as close  
as possible.  
To further reduce inductance, an input current return path should be placed underneath the loops IN1 and IN2.  
The closest metal plane is MID1 Layer2, and with a solid copper plane placed right under the IN1 and IN2  
loop the parasitic loop inductance is minimized. Connecting this MID1 Layer2 plane then to GND will provide  
a nice bridge connection between GND1 and GND2 as well. Minimizing the parasitic input loop inductance will  
minimize switch node ringing and EMI.  
The output current loop can be optimized as well by using two ceramic output caps COUT1 and COUT2 to  
each side. They will form two parallel ground return paths OUT1 from COUT1 back to the low side FET PGND1  
pins 5,6,7,8 and a second symmetric ground return path OUT2 from COUT2 back to low side FET PGND2 pins  
10,11,12 and 13. Having two parallel ground return path will yield into reduced “ground bouncing” and reduced  
sensitivity of surrounding circuits sensitive to it.  
Figure 11-1. Layout of the Power Components and Current Flow  
Providing adequate thermal paths to dissipate heat is critical for operation at full current. The recommended  
method for heat dissipation is to use large solid 2 oz copper planes well connected to the power pins VIN1,  
VIN2, GND1 and GND2 which transfer the heat out of the IC over the TOP Layer1 copper planes. It is important  
to leave the TOP Layer1 copper planes as unbroken as much as possible so that heat is not trapped near the IC.  
The heat flow can be further optimized by thermally connecting the TOP Layer 1 plane to large BOTTOM Layer4  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
2oz. copper planes with vias. MID2 Layer3 is then open for all other signal routing. A fully filled / solid BOTTOM  
Layer4 ground plane without any interruptions or ground splitting is beneficial for EMI as well. Most important  
for low EMI is to use the smallest possible switch node copper area. The switch node including the CBOOT cap  
has the largest dv/dt signal causing common mode noise coupling. Using any kind of grounded shield around the  
switch node will “shorten” and reduce this e-field.  
All these DC/DC converter descriptions can be transformed into layout guidelines:  
1. Place two 0.047-µF / 50-V high frequency input capacitors CIN1 and CIN2 as close as possible to the VIN1/2  
and PGND1/2 pins to minimize switch node ringing.  
2. Place bypass capacitors for VCC and BIAS close to their respective pins. Make sure AGND pin “sees” the  
CVCC and CBIAS capacitors first before connecting it to GND.  
3. Place CBOOT capacitor with smallest parasitic loop. Shielding the CBOOT capacitor and switch node will  
have biggest impact to reduce common mode noise. Placing a small RBOOT resistor (less than 3 Ω is  
recommended) in series to CBOOT will slow down the dV/dt of the switch node and reduce EMI.  
4. Place the feedback resistor divider for adjustable parts as close as possible to the FB pin and to AGND pin  
of the device. Use dedicated feedback trace and away from switch node and CBOOT capacitor to avoid any  
cross coupling into sensitive analog feedback.  
5. Use dedicated BIAS trace to avoid noise into feedback trace.  
6. Use a 3-Ω to 5-Ω resistor between the output and BIAS if the load is far from the output of the converter or  
inductive shorts on the output are possible.  
7. Use well connected large 2-oz. TOP and BOTTOM copper planes for all power pins VIN1/2 and PGND1/2.  
8. Minimize switch node and CBOOT area for lowest EMI common mode noise.  
9. For lowest EMI place input and output wires on same side of PCB, using EMI filter and away from switch  
node.  
10. The resources in Section 12 provide additional important guidelines.  
11.2 Layout Example  
This example layout is the one used in REV A of the LM53635 EVM. It shows the CIN and CIN_HF capacitors  
placed symmetrically either side of the device.  
Figure 11-2. Recommended Layout for LM53625/35-Q1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
LM53625-Q1, LM53635-Q1  
SNVSAA7B – DECEMBER 2015 – REVISED JULY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For additional information, see the following:  
Optimizing Transient Response of Internally Compensated dc-dc Converters With Feedforward Capacitor  
(SLVA289)  
Output Ripple Voltage for Buck Switching Regulator (SLVA630)  
AN-1149 Layout Guidelines for Switching Power Supplies (SNVA021)  
AN-1229 Simple Switcher® PCB Layout Guidelines (SNVA054 )  
Constructing Your Power Supply- Layout Considerations (SLUP230)  
AN-2020 Thermal Design By Insight, Not Hindsight (SNVA419)  
Semiconductor and IC Package Thermal Metrics (SPRA953)  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of TI.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LM53625-Q1 LM53635-Q1  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM536253QRNLRQ1  
LM536253QRNLTQ1  
LM536255QRNLRQ1  
LM536255QRNLTQ1  
LM53625AQRNLRQ1  
LM53625AQRNLTQ1  
LM53625LQRNLRQ1  
LM53625LQRNLTQ1  
LM53625LQURNLRQ1  
LM53625MQRNLRQ1  
LM53625MQRNLTQ1  
LM53625MQURNLRQ1  
LM53625NQRNLRQ1  
LM53625NQRNLTQ1  
LM53625NQURNLRQ1  
LM536353QRNLRQ1  
LM536353QRNLTQ1  
LM536355QRNLRQ1  
LM536355QRNLTQ1  
LM53635AQRNLRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
L536253  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
L536253  
L536255  
L536255  
L53625A  
L53625A  
L53625L  
L53625L  
U53625L  
L53625M  
L53625M  
U53625M  
L53625N  
L53625N  
U53625N  
L536353  
L536353  
L536355  
L536355  
L53635A  
3000 RoHS & Green  
3000 RoHS & Green  
250  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
250  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM53635AQRNLTQ1  
LM53635LQRNLRQ1  
LM53635LQRNLTQ1  
LM53635MQRNLRQ1  
LM53635MQRNLTQ1  
LM53635MQURNLRQ1  
LM53635NQRNLRQ1  
LM53635NQRNLTQ1  
LM53635NQURNLRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
22  
22  
22  
22  
22  
22  
22  
22  
22  
250  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
L53635A  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
L53635L  
L53635L  
L53635M  
L53635M  
U53635M  
L53635N  
L53635N  
U53635N  
3000 RoHS & Green  
3000 RoHS & Green  
250  
RoHS & Green  
3000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Sep-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM536253QRNLRQ1  
LM536253QRNLTQ1  
LM536255QRNLRQ1  
LM536255QRNLTQ1  
LM53625AQRNLRQ1  
LM53625AQRNLTQ1  
LM53625LQRNLRQ1  
LM53625LQRNLTQ1  
LM53625LQURNLRQ1  
LM53625MQRNLRQ1  
LM53625MQRNLTQ1  
VQFN-  
HR  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
3000  
250  
VQFN-  
HR  
VQFN-  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Sep-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HR  
LM53625MQURNLRQ1 VQFN-  
HR  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
3000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LM53625NQRNLRQ1  
LM53625NQRNLTQ1  
LM53625NQURNLRQ1  
LM536353QRNLRQ1  
LM536353QRNLTQ1  
LM536355QRNLRQ1  
LM536355QRNLTQ1  
LM53635AQRNLRQ1  
LM53635AQRNLTQ1  
LM53635LQRNLRQ1  
LM53635LQRNLTQ1  
LM53635MQRNLRQ1  
LM53635MQRNLTQ1  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
3000  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
LM53635MQURNLRQ1 VQFN-  
HR  
3000  
3000  
250  
LM53635NQRNLRQ1  
LM53635NQRNLTQ1  
LM53635NQURNLRQ1  
VQFN-  
HR  
VQFN-  
HR  
VQFN-  
HR  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Sep-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM536253QRNLRQ1  
LM536253QRNLTQ1  
LM536255QRNLRQ1  
LM536255QRNLTQ1  
LM53625AQRNLRQ1  
LM53625AQRNLTQ1  
LM53625LQRNLRQ1  
LM53625LQRNLTQ1  
LM53625LQURNLRQ1  
LM53625MQRNLRQ1  
LM53625MQRNLTQ1  
LM53625MQURNLRQ1  
LM53625NQRNLRQ1  
LM53625NQRNLTQ1  
LM53625NQURNLRQ1  
LM536353QRNLRQ1  
LM536353QRNLTQ1  
LM536355QRNLRQ1  
LM536355QRNLTQ1  
LM53635AQRNLRQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
22  
3000  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
213.0  
367.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
191.0  
367.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
35.0  
38.0  
3000  
250  
3000  
250  
3000  
250  
3000  
3000  
250  
3000  
3000  
250  
3000  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Sep-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM53635AQRNLTQ1  
LM53635LQRNLRQ1  
LM53635LQRNLTQ1  
LM53635MQRNLRQ1  
LM53635MQRNLTQ1  
LM53635MQURNLRQ1  
LM53635NQRNLRQ1  
LM53635NQRNLTQ1  
LM53635NQURNLRQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
RNL  
22  
22  
22  
22  
22  
22  
22  
22  
22  
250  
3000  
250  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
3000  
250  
3000  
3000  
250  
3000  
Pack Materials-Page 4  
GENERIC PACKAGE VIEW  
RNL 22  
5 X 4, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226989/A  
www.ti.com  
PACKAGE OUTLINE  
RNL0022A  
VQFN-HR - 0.9 mm max height  
SCALE 2.800  
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2
1
0.45  
0.35  
2X 0.8 0.1  
8X 0.5  
5X  
(0.2) TYP  
9
8
10  
7
4
11  
2X  
1.45 0.1  
2X  
2X  
2.175  
2.95 0.1  
0.25  
PKG  
14  
0.3  
0.2  
15X  
2X  
2
2X 0.85  
A
A
0.1  
0.05  
C A B  
C
0.65  
0.45  
5X  
22  
17  
1
2X 0.575  
0.45  
0.35  
18  
0.45  
0.35  
SYMM  
2
0.5  
0.3  
11X  
0.5  
0.3  
4221861/E 07/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNL0022A  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.5)  
18  
SYMM  
15X (0.25)  
22  
12X (0.6)  
2X (0.4)  
(2.325)  
1
17  
2X (2)  
5X (0.75)  
2X (1.425)  
SEE SOLDER MASK  
DETAILS  
3X (0.4)  
2X (0.575)  
2X (1)  
2X (0.4)  
0.000 PKG  
2X (0.25)  
14  
(0.295)  
4
(
0.2) VIA TYP  
NOTE 4  
(3.15)  
(1.125)  
2X (1.65)  
2X (1.875)  
(2.175)  
(1.955)  
11  
7
4X (0.5)  
8
9
(2)  
10  
(3.4)  
6X (3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
(PREFERRED)  
4221861/E 07/2019  
NOTES: (continued)  
3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNL0022A  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.5)  
SYMM  
15X (0.25)  
5X (0.75)  
18  
22  
12X (0.6)  
2X (0.4)  
(2.325)  
1
2X (2)  
17  
(R0.05) TYP  
2X (1.425)  
2X (0.575)  
6X  
EXPOSED  
METAL  
7X  
EXPOSED  
METAL  
(1.4)  
(0.12)  
0.000 PKG  
(0.25)  
4X ( 0.4)  
4
14  
(0.71)  
(2)  
2X (1.445)  
(1.54)  
4X (0.5)  
11  
2X (2.175)  
2X (2.305)  
4X  
(0.66)  
7
(2.37)  
9
10  
8
8X (0.4)  
4X (0.63)  
(2)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR PADS 4,8,9,10 & 14  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4221861/E 07/2019  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RNL0022B  
VQFN-HR - 0.9 mm max height  
SCALE 2.800  
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
5.1  
4.9  
PIN 1 INDEX AREA  
0.9  
0.8  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2
0.9  
0.7  
0.45  
0.35  
2X  
1
5X  
(0.2) TYP  
9
8
10  
8X 0.5  
7
4
11  
1.55  
1.35  
2X  
2X  
3.05  
2.85  
2X  
2.175  
0.25  
PKG  
14  
0.3  
0.2  
0.1  
15X  
2X  
2
2X 0.85  
C A B  
C
0.65  
0.45  
5X  
22  
0.05  
17  
1
2X 0.575  
0.45  
0.35  
18  
0.45  
0.35  
SYMM  
2
0.5  
0.3  
11X  
0.5  
0.3  
4226904/A 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNL0022B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.5)  
18  
SYMM  
15X (0.25)  
22  
12X (0.6)  
2X (0.4)  
(2.325)  
1
17  
2X (2)  
5X (0.75)  
2X (1.425)  
SEE SOLDER MASK  
DETAILS  
3X (0.4)  
2X (0.575)  
2X (1)  
2X (0.4)  
0.000 PKG  
2X (0.25)  
14  
(0.295)  
4
(
0.2) VIA TYP  
NOTE 4  
(3.15)  
(1.125)  
2X (1.65)  
2X (1.875)  
(2.175)  
(1.955)  
11  
7
4X (0.5)  
8
9
(2)  
10  
(3.4)  
6X (3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
(PREFERRED)  
4226904/A 07/2021  
NOTES: (continued)  
3. This package is designed to be soldered to thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNL0022B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.5)  
SYMM  
15X (0.25)  
5X (0.75)  
18  
22  
12X (0.6)  
2X (0.4)  
(2.325)  
1
2X (2)  
17  
(R0.05) TYP  
2X (1.425)  
2X (0.575)  
6X  
EXPOSED  
METAL  
7X  
EXPOSED  
METAL  
(1.4)  
(0.12)  
0.000 PKG  
(0.25)  
4X ( 0.4)  
4
14  
(0.71)  
(2)  
2X (1.445)  
(1.54)  
4X (0.5)  
11  
2X (2.175)  
2X (2.305)  
4X  
(0.66)  
7
(2.37)  
9
10  
8
8X (0.4)  
4X (0.63)  
(2)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR PADS 4,8,9,10 & 14  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4226904/A 07/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY