LM57TPW [TI]

具有电阻可编程温度开关的 ±0.7°C 温度传感器 | PW | 8 | -50 to 150;
LM57TPW
型号: LM57TPW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电阻可编程温度开关的 ±0.7°C 温度传感器 | PW | 8 | -50 to 150

开关 温度传感 传感器 温度传感器
文件: 总41页 (文件大小:1512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
LM57 电阻可编程温度开关和模拟温度传感器  
1 特性  
3 说明  
1
关于 AEC-Q100 1 /0 /0 级扩展标准(符合  
LM57 器件是一款具有模拟温度传感器输出的精密双路  
AEC-Q100 标准并采用汽车级流程制造),请参见  
LM57-Q1 数据表  
输出温度开关,适用于宽温度范围的工业级应用。 跳  
变温度 (TTRIP) 可从 –40°C 150°C 温度范围内的  
256 种可能值中进行选择。VTEMP AB 类模拟电压输  
出,该电压输出与温度成正比,负温度系数 (NTC) 可  
编程。 两个外部 1% 电阻设置 TTRIP VTEMP 斜率。  
数字和模拟输出具有保护功能,并且可监视系统过热事  
件。  
可通过外部电阻在 40°C +150°C 温度范围内设  
置跳变温度,  
精度为 ±1.7°C ±2.3°C  
电阻容差不会引入误差  
推挽和开漏开关输出  
宽工作温度范围:50°C 150°C  
内置的热滞后功能 (THYST) 可防止数字输出发生振荡。  
超线性模拟 VTEMP 温度传感器输出,50°C 至  
+150°C 温度范围内的精度为  
±0.8°C ±1.3°C  
TOVER TOVER 数字输出将在芯片温度超过 TTRIP 时置  
为有效,在芯片温度低于 TTRIP THYST 的差值时置为  
无效。  
具有短路保护的模拟和数字输出  
数字输出具有锁存功能  
TOVER 为高电平有效,并且采用推挽结构。 TOVER 为  
TRIP-TEST 引脚支持系统内测试  
低功耗特性最大程度减少自发热,使其低于 0.02°C  
低电平有效,并且采用开漏结构。 将 TOVER TRIP-  
TEST 相连,可在输出发生跳变后将其锁存。 将  
TRIP-TEST 强制为低电平可将输出清零。 将 TRIP-  
TEST 驱动为高电平会将数字输出置为有效。 处理器  
可检查 TOVER TOVER 的状态,从而确认它们是否已  
切换至激活状态。 这样一来,便可以在系统装配后现  
场验证比较器和输出电路的功能。 当 TRIP-TEST 为  
高电平时,VTEMP 引脚为跳变基准电压。 系统随后可  
使用该电压计算 LM57  
2 应用范围  
工厂自动化  
工业用  
汽车用  
井下设备  
航空电子设备  
电信基础设施  
器件信息 (1) (2)  
器件型号  
LM57BISD  
LM57FPW  
封装  
WSON (8)  
TSSOP (8)  
封装尺寸(标称值)  
2.50mm × 2.50mm  
3.00mm × 6.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) 关于器件比较,请参见 Device Comparison Table 。  
LM57 过热报警  
温度传递函数  
V
DD  
Supply  
(+2.4V to +5.5V)  
3,500  
J2 (-5.166mV/°C)  
J3 (-7.752mV/°C)  
J4 (-10.339mV/°C)  
J5 (-12.924mV/°C)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
V
DD  
Analog  
V
TEMP  
ADC Input  
LM57  
Microcontroller  
SENSE1  
T
OVER  
SENSE2  
Digital In  
T
OVER  
TRIP TEST  
GND  
Digital Out  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
TEMPERTURE (ƒC)  
C101  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNIS152  
 
 
 
 
 
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Application .................................................. 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
9
10 Power Supply Recommendations ..................... 28  
11 Layout................................................................... 28  
11.1 Layout Guidelines ................................................. 28  
11.2 Layout Example .................................................... 29  
11.3 Temperature Considerations................................. 30  
12 器件和文档支持 ..................................................... 31  
12.1 文档支持 ............................................................... 31  
12.2 社区资源................................................................ 31  
12.3 ....................................................................... 31  
12.4 静电放电警告......................................................... 31  
12.5 Glossary................................................................ 31  
13 机械、封装和可订购信息....................................... 31  
7.5 Electrical Characteristics - Accuracy Characteristics –  
Trip Point Accuracy.................................................... 7  
7.6 Electrical Characteristics - Accuracy Characteristics –  
VTEMP Analog Temperature Sensor Output  
Accuracy .................................................................... 7  
7.7 Electrical Characteristics........................................... 8  
7.8 Switching Characteristics.......................................... 9  
7.9 Typical Characteristics ........................................... 10  
Detailed Description ............................................ 12  
8
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (February 2013) to Revision E  
Page  
已添加引脚配置和功能部分,ESD 额定值表,特性描述部分,器件功能模式应用和实施部分,电源相关建议部分,  
布局部分,器件和文档支持部分以及机械、封装和可订购信息部分........................................................................................ 1  
已在整篇数据表中添加 TSSOP 封装选项 ............................................................................................................................... 1  
Changes from Revision C (February 2010) to Revision D  
Page  
已更改 国家数据表的布局以符合 TI 格式................................................................................................................................ 1  
2
Copyright © 2009–2015, Texas Instruments Incorporated  
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
5 Device Comparison Table  
VTEMP  
ACCURACY  
TRIP POINT  
HYSTERESIS  
ACCURACY  
ORDER NUMBER  
PACKAGE  
GRADE (TEMP RANGE)  
WSON/SD/NGR Commercial (-50°C to  
LM57BISD-5, LM57BISDX-5  
LM57BISD-10, LM57BISDX-10  
LM57CISD-5, LM57CISD-5  
LM57CISD-10, LM57CISDX-10  
LM57FPW, LM57FPWR  
LM57TPW, LM57TPWR  
±0.8°C  
±0.8°C  
±1.3°C  
±1.3°C  
±1.3°C  
±1.3°C  
±1.5°C  
±1.5°C  
±2.3°C  
±2.3°C  
±2.3°C  
±2.3°C  
5°C  
/DFN (8)  
WSON/SD/NGR Commercial (-50°C to  
/DFN (8) 150°C)  
WSON/SD/NGR Commercial (-50°C to  
/DFN (8) 150°C)  
WSON/SD/NGR Commercial (-50°C to  
150°C)  
10°C  
5°C  
10°C  
5°C  
/DFN (8)  
150°C)  
Commercial (-50°C to  
150°C)  
PW/TSSOP (8)  
Commercial (-50°C to  
150°C)  
PW/TSSOP (8)  
10°C  
Automotive Grade 0  
PW/TSSOP (8) Extended (-50°C to  
160°C)  
(1)  
(1)  
LM57FSPWQ1, LM57FSPWRQ1  
LM57TSPWQ1, LM57TSPWRQ1  
±1.3°C  
±1.3°C  
±2.3°C  
±2.3°C  
5°C  
Automotive Grade 0  
PW/TSSOP (8) Extended (-50°C to  
160°C)  
10°C  
Automotive Grade 0  
PW/TSSOP (8)  
(1)  
(1)  
(1)  
(1)  
LM57FEPWQ1, LM57FEPWRQ1  
LM57TEPWQ1, LM57TEPWRQ1  
LM57FQPWQ1, LM57FQPWRQ1  
LM57TQPWQ1, LM57TQPWRQ1  
±1.3°C  
±1.3°C  
±1.3°C  
±1.3°C  
±2.3°C  
±2.3°C  
±2.3°C  
±2.3°C  
5°C  
Standard (-50°C to 150°C)  
Automotive Grade 0  
PW/TSSOP (8)  
10°C  
5°C  
Standard (-50°C to 150°C)  
Automotive Grade 1  
PW/TSSOP (8)  
Standard (-50°C to 125°C)  
Automotive Grade 1  
PW/TSSOP (8)  
10°C  
Standard (-50°C to 125°C)  
(1) For Automotive grade device complete datasheet see LM57-Q1.  
Copyright © 2009–2015, Texas Instruments Incorporated  
3
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
6 Pin Configuration and Functions  
TSSOP/PW and WSON/SD/NGR/DFN Packages  
8-Pin  
Top View  
GND  
1
2
3
4
8
7
6
5
V
TEMP  
SENSE1  
SENSE2  
T
T
OVER  
OVER  
LM57  
TRIP TEST  
V
DD  
Pin Functions  
PIN  
TYPE  
EQUIVALENT CIRCUIT  
DESCRIPTION  
NAME  
GND  
NO.  
1
Ground  
Power supply ground  
VDD  
Trip-point resistor sense. One of two sense pins which selects the  
temperature at which TOVER and TOVER will assert.  
SENSE1  
2
GND  
GND  
VDD  
Trip-point resistor sense. One of two sense pins which selects the  
temperature at which TOVER and TOVER will assert.  
SENSE2  
3
4
GND  
GND  
VDD  
Power  
Supply voltage  
V
DD  
TRIP TEST pin. Active High input.  
If TRIP TEST = 0 (default), then the VTEMP output has the analog  
temperature sensor output voltage.  
If TRIP TEST = 1, then TOVER and TOVER outputs are asserted and VTEMP  
VTRIP, the temperature trip voltage.  
TRIP  
TEST  
Digital  
Input  
5
6
=
1 PA  
Tie this pin to ground if not used.  
GND  
Overtemperature switch output  
Active low, open-drain (see LM57 VTEMP Voltage-to-Temperature Equations  
regarding required pullup resistor.)  
Asserted when the measured temperature exceeds the Trip Point  
Temperature or if TRIP TEST = 1  
This pin may be left open if not used.  
Digital  
Output  
TOVER  
GND  
V
DD  
Overtemperature switch output  
Active high, push-pull  
Asserted when the measured temperature exceeds the trip point  
temperature or if TRIP TEST = 1  
Digital  
Output  
TOVER  
7
This pin may be left open if not used.  
GND  
4
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Pin Functions (continued)  
PIN  
TYPE  
EQUIVALENT CIRCUIT  
DESCRIPTION  
NAME  
NO.  
V
DD  
V
SENSE  
VTEMP analog voltage output  
Analog  
Output  
If TRIP TEST = 0, then VTEMP = VTS, temperature sensor output voltage  
If TRIP TEST = 1, then VTEMP = VTRIP, temperature trip voltage  
This pin may be left open if not used.  
VTEMP  
8
GND  
Thermal  
Pad  
(WSON  
package  
only)  
Connected to GND  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
Supply voltage  
6
Voltage at TOVER  
6
V
Voltage at TOVER , VTEMP, TRIP-TEST, SENSE1, and SENSE2  
Current at any pin  
(VDD + 0.3 V)  
V
5
mA  
°C  
Storage temperature  
65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging.  
7.2 ESD Ratings  
VALUE  
UNIT  
LM57BISD and LM57CISD in WSON package  
Human body model (HBM)  
±5500  
±1250  
±450  
Electrostatic discharge  
V(ESD)  
Charged-device model (CDM)  
Machine Model (MM)  
V
(1)  
LM57FPW and LM57TPW in TSSOP package  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001  
Charged-device model (CDM), per JEDEC specification JESD22-C101  
(2)  
±2000  
±750  
V(ESD)  
Electrostatic discharge  
V
(3)  
(1) The Human Body Model (HBM) is a 100-pF capacitor charged to the specified voltage then discharged through a 1.5-kΩ resistor into  
each pin. The Machine Model (MM) is a 200 pF capacitor charged to the specified voltage then discharged directly into each pin. The  
Charged Device Model (CDM) is a specified circuit characterizing an ESD event that occurs when a device acquires charge through  
some triboelectric (frictional) or electrostatic induction processes and then abruptly touches a grounded object or surface.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
Supply voltage  
2.4  
5.5  
V
Free air temperature range (TMIN TA TMAX  
)
50  
150  
°C  
Copyright © 2009–2015, Texas Instruments Incorporated  
5
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
7.4 Thermal Information  
LM57  
NGR  
(WSON/SD)  
PW (TSSOP)  
(1)  
THERMAL METRIC  
UNIT  
8 PINS  
71.3  
82.8  
43.4  
2.2  
8 PINS  
183  
66  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
111  
8
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
43.7  
11.9  
110  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Copyright © 2009–2015, Texas Instruments Incorporated  
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
7.5 Electrical Characteristics - Accuracy Characteristics – Trip Point Accuracy  
LM57B  
LM57C, LM57F or LM57T  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
J2 TA = 41°C to  
52°C  
VDD = 2.4 V to 5.5 V  
VDD = 2.4 V to 5.5 V  
VDD = 2.4 V to 5.5 V  
±1.5  
±2.3  
°C  
°C  
°C  
J3 TA  
=
52°C to  
±1.5  
±1.5  
±2.3  
±2.3  
Trip Point  
Accuracy  
(Includes 1% set-  
97°C  
TA = 97°C to  
119°C  
J4  
J5  
resistor tolerance)  
(1)  
TA = 119°C to  
free air  
temperature  
max  
VDD = 2.4 V to 5.5 V  
±1.5  
±2.3  
°C  
(1) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the  
specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the  
specified conditions. Accuracy limits do not include load regulation; they assume no DC load.  
7.6 Electrical Characteristics - Accuracy Characteristics – VTEMP Analog Temperature Sensor  
Output Accuracy  
These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1.  
LM57B  
TYP  
LM57C, LM57F or LM57T  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
TYP  
MAX  
TA = 50°C  
to free air  
temperature  
max  
J2  
J3  
VDD = 2.4 V to 5.5 V  
±0.95  
±1.3  
°C  
TA = 50°C  
to free air  
temperature  
max  
VDD = 2.4 V to 5.5 V  
VDD = 2.4 V to 5.5 V  
VDD = 2.7 V to 5.5 V  
VDD = 3.1 V to 5.5 V  
VDD = 2.4 V to 5.5 V  
VDD = 2.9 V to 5.5 V  
VDD = 3.2 V to 5.5 V  
VDD = 4 V to 5.5 V  
±0.8  
±0.7  
±0.7  
±0.8  
±0.7  
±0.7  
±0.7  
±0.8  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
°C  
°C  
TA  
= 20°C  
to 50°C  
VTEMP Accuracy  
(These stated  
accuracy limits are  
with reference to  
the values in  
TA 0°C to  
=
free air  
temperature  
max  
J4  
TA = 50°C  
to 0°C  
Table 1, LM57  
VTEMP  
TA  
= 60°C  
Temperature-to-  
(1)  
to free air  
temperature  
max  
Voltage.)  
TA  
= 20°C  
to 50°C  
J5  
°C  
TA 0°C to  
=
free air  
temperature  
max  
TA = 50°C  
to 0°C  
(1) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the  
specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the  
specified conditions. Accuracy limits do not include load regulation; they assume no DC load.  
Copyright © 2009–2015, Texas Instruments Incorporated  
7
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
7.7 Electrical Characteristics  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V. Limits apply over free air temperature range.  
(1)  
(2)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TEMPERATURE SENSOR  
J2: 50°C to 52°C  
5.166  
7.752  
10.339  
12.924  
0.18  
J3: 52°C to 97°C  
J4: 97°C to 119°C  
J5: 119°C to 150°C  
VTEMP sensor gain  
mV/°C  
mV  
μV/V  
dB  
Line regulation DC: supply-to- VDD = 2.4 V to 5.5 V  
58  
(3)  
VTEMP  
Temp = 90°C  
84  
Source 240 µA, (VDD – VTEMP) 200 mV; TA  
50°C to 150°C  
=
1  
mV  
Load regulation: VTEMP output  
Sink 300 µA, VTEMP 360 mV; TA = 50°C to  
150°C  
(4)  
1
Source or sink = 100 µA; TA = 50°C to 150°C  
1
Maximum Load capacitance:  
VTEMP output  
No output series resistor required; (See VTEMP  
Capacitive Loads )  
1100  
28  
pF  
µA  
(5)  
IS  
Supply current: quiescent  
24  
TRIP-TEST INPUT  
VIH  
VIL  
IIH  
Logic 1 threshold voltage  
VDD – 0.5  
V
V
Logic 0 threshold voltage  
Logic 1 input current  
0.5  
3
1.4  
µA  
Logic 0 input leakage current  
IIL  
TA = 50°C to 150°C  
0.001  
1
µA  
(6)  
TOVER (PUSH-PULL, ACTIVE-HIGH) OUTPUT  
Source 600 µA  
VDD – 0.2  
Logic 1 push-pull output  
voltage  
VOH  
V
V
Source 1.2 mA  
Sink 600 µA  
Sink 1.2 mA  
VDD – 0.45  
0.2  
VOL  
Logic 0 output voltage  
0.45  
TOVER (OPEN-DRAIN, ACTIVE-LOW) OUTPUT  
Sink 600 µA  
Sink 1.2 mA  
0.2  
VOL  
IOH  
Logic 0 output voltage  
V
0.45  
Logic 1 output leakage current  
Temperature = 30°C;  
0.001  
1
µA  
(6)  
(1) Limits are specified to TI's average outgoing quality level (AOQL).  
(2) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.  
(3) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest  
supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in VTEMP Voltage Shift .  
(4) Source currents are flowing out of the LM57. Sink currents are flowing into the LM57. Load Regulation is calculated by measuring VTEMP  
at 0 μA and subtracting the value with the conditions specified.  
(5) Supply current refers to the quiescent current of the LM57 only and does not include any load current  
(6) This current is leakage current only and is therefore highest at high temperatures. Prototype test indicate that the leakage is well below  
1 μA over the full temperature range. This 1 μA specification reflects the limitations of measuring leakage at room temperature. For this  
reason only, the leakage current is not specified at a lower value.  
8
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V. Limits apply over free air temperature range.  
(1)  
(2)  
(1)  
PARAMETER  
HYSTERESIS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
5°C hysteresis option (for all LM57F or LM57-5)  
10°C hysteresis option (for all LM57T or LM57-10)  
4.7  
9.6  
5
5.4  
°C  
°C  
THYST Hysteresis temperature  
10  
10.6  
7.8 Switching Characteristics  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V over the free air temperature range.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Maximum time from power on  
to digital output enabled  
tEN  
1.5  
2.9  
ms  
Maximum time from power on  
to analog temperature  
(VTEMP) valid  
tVTEMP  
1.5  
2.9  
ms  
V
DD  
1.3V  
t
EN  
T
Enabled  
Enabled  
OVER  
T
OVER  
Figure 1. Definition of tEN  
V
DD  
t
VTEMP  
Valid  
V
TEMP  
Figure 2. Definition of tVTEMP  
Copyright © 2009–2015, Texas Instruments Incorporated  
9
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
7.9 Typical Characteristics  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
30  
29  
28  
27  
26  
T = 150°C  
V
V
= 5.5V  
= 2.4V  
T = 30°C  
V
= 3.5V  
DD  
DD  
25  
24  
23  
22  
21  
20  
T = -40°C  
DD  
-50 -30 -10 10 30 50 70 90 110 130 150  
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6  
TEMPERATURE (°C)  
V
(V)  
DD  
Figure 4. Supply Current vs Temperature  
Figure 3. Supply Current vs Supply Voltage  
3.0  
2.8  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
-3.0  
V
= 2.4V  
= 2.7V  
DD  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
DD  
Overhead =  
400 mV  
Overhead =  
100 mV  
V
= 3.3V  
= 5.0V  
DD  
DD  
V
Overhead =  
200 mV  
0.4  
0.2  
0.0  
1000 12001400 1600  
0
200 400 600 800  
0
100 200 300 400 500 600 700  
LOAD (PA)  
LOAD (PA)  
Figure 6. Load Regulation: Change In VTEMP vs Sink Current  
Figure 5. Load Regulation: Change In VTEMP vs Source  
Current Overhead Is Vdd-Vtemp  
950  
949  
948  
10.2  
HYST J5  
10.1  
10.0  
HYST J4  
HYST J3  
HYST J2  
9.9  
|
|
5.2  
5.1  
5.0  
4.9  
947  
946  
HYST J3  
HYST J4  
HYST J5  
HYST J2  
945  
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6  
VDD  
2.4 2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
(V)  
V
DD  
Figure 7. Line Regulation: VTEMP vs Supply Voltage  
Figure 8. Line Regulation: Hysteresis vs Supply Voltage  
30°C  
10  
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Typical Characteristics (continued)  
3
2
1
10.2  
10.1  
10.0  
9.9  
HYST J5  
HYST J4  
HYST J3  
HYST J2  
Tover  
0
|
|
|
|
3
5.2  
5.1  
5.0  
4.9  
HYST J5  
HYST J3  
2
Vtemp  
1
HYST J4  
HYST J2  
0
-1  
0
1
2
3
4
5
6
7
8
9
-50 -30 -10 10 30 50 70 90 110 130 150  
TEMPERATURE (oC)  
TIME (ms)  
Figure 9. Start-Up Response  
Figure 10. Hysteresis vs Temperature  
2.0  
MAX LImit  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
MIN Limit  
-2.0  
0
25  
50  
75  
100  
125  
150  
±50  
±25  
DUT Temperature (ƒC)  
C102  
Conditions: J2, VDD=5V  
Figure 11. J2 Accuracy Specification Over Temperature  
Copyright © 2009–2015, Texas Instruments Incorporated  
11  
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM57 is a precision, dual-output, temperature switch with analog temperature sensor output. The trip  
temperature (TTRIP) is selected from 256 possible values by using two external 1% resistors. The VTEMP class AB  
analog output provides a voltage that is proportional to temperature. The LM57 includes an internal reference  
DAC, analog temperature sensor and analog comparator. The reference DAC is connected to one of the  
comparator inputs. The reference DAC output voltage (VTRIP) is controlled by the value of resistance applied to  
the SENSE pins. The resistance value sets one of 16 "logic" levels at the SENSE pins. These "logic" levels are  
then decoded and applied to the DAC input, thus the actual resistance tolerance does not directly affect the  
threshold level accuracy. The result of the reference DAC voltage and the temperature sensor output comparison  
is provided on two output pins TOVER and TOVER  
.
The VTEMP output has a programmable gain. The output gain has 4 possible settings as described in Figure 12.  
The gain setting is dependent on the trip point selected by resistance applied to the SENSE pins.  
Built-in temperature hysteresis (THYST) prevents the digital outputs from oscillating. The TOVER and TOVER will  
activate when the die temperature exceeds TTRIP and will release when the temperature falls below a  
temperature equal to TTRIP minus THYST. TOVER is active-high with a push-pull structure. TOVER , is active-low with  
an open-drain structure. There are two different hysteresis options available that are factory preset. The preset  
hysteresis can be selected by purchasing the proper order number as described in Device Comparison Table .  
Driving the TRIP-TEST high will activate the digital outputs. A processor can check the logic level of the TOVER or  
TOVER , confirming that they changed to their active state. This allows for system production testing verification  
that the comparator and output circuitry are functional after system assembly. When the TRIP-TEST pin is high,  
the trip-level reference voltage appears at the VTEMP pin. Tying TOVER to TRIP-TEST will latch the output after it  
trips. It can be cleared by forcing TRIP-TEST low or powering off the LM57.  
8.2 Functional Block Diagram  
V
DD  
= 2.4V to 5.5V  
TRIP TEST  
SENSE1  
LM57  
SENSE2  
V
TRIP  
T
OVER  
DAC  
GAIN  
+
-
TEMP SENSOR  
(negative temp  
coefficient)  
V
DD  
TRIP  
TEST = 1  
TRIP  
TEST = 0  
T
OVER  
V
TEMP  
GND  
12  
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
8.3 Feature Description  
8.3.1 LM57 VTEMP Temperature-to-Voltage Transfer Function  
The value of the RSENSE resistors select a trip point and a corresponding VTEMP gain (J2, J3, J4, or J5).The trip  
point range associated with a given gain is shown in bold green in Table 1. The VTEMP gain is selected by the  
RSENSE resistors. VTEMP is valid over the entire temperature range. The VTEMP gain is selected by the RSENSE  
resistors. VTEMP is valid over the entire temperature range.  
3,500  
J2 (-5.166mV/°C)  
J3 (-7.752mV/°C)  
J4 (-10.339mV/°C)  
J5 (-12.924mV/°C)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
TEMPERTURE (ƒC)  
C101  
Figure 12. Temperature Transfer Characteristics  
(1)  
Table 1. LM57 VTEMP Temperature to Voltage  
VTEMP VOLTAGE (mV)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
1352.56  
1347.60  
1342.64  
1337.67  
1332.70  
1327.73  
1322.76  
1317.78  
1312.81  
1307.82  
1302.84  
1297.86  
1292.87  
1287.88  
1282.88  
1277.89  
1272.89  
J3 (–7.752 mV/°C)  
2028.80  
2021.35  
2013.90  
2006.44  
1998.98  
1991.52  
1984.05  
1976.58  
1969.11  
1961.63  
1954.15  
1946.66  
1939.17  
1931.68  
1924.18  
1916.68  
1909.17  
J4 (–10.339 mV/°C)  
2705.20  
2695.26  
2685.32  
2675.38  
2665.43  
2655.47  
2645.51  
2635.54  
2625.57  
2615.60  
2605.62  
2595.63  
2585.64  
2575.64  
2565.64  
2555.63  
2545.62  
J5 (–12.924 mV/°C)  
3381.40  
3368.98  
3356.55  
3344.12  
3331.68  
3319.23  
3306.78  
3294.32  
3281.85  
3269.38  
3256.90  
3244.41  
3231.92  
3219.42  
3206.92  
3194.41  
3181.89  
–50  
–49  
–48  
–47  
–46  
–45  
–44  
–43  
–42  
–41  
–40  
–39  
–38  
–37  
–36  
–35  
–34  
(1) The RSENSE resistors select a trip point and a corresponding VTEMP gain (J2, J3, J4, or J5). The trip point range associated with a given  
gain is shown in bold green on this table. VTEMP is valid over the entire temperature range.  
Copyright © 2009–2015, Texas Instruments Incorporated  
13  
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
(1)  
Table 1. LM57 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
1267.88  
J4 (–10.339 mV/°C)  
2535.60  
2525.58  
2515.56  
2505.52  
2495.49  
2485.44  
2475.40  
2465.34  
2455.29  
2445.23  
2435.16  
2425.09  
2415.01  
2404.93  
2394.84  
2384.74  
2374.65  
2364.54  
2354.44  
2344.32  
2334.20  
2324.08  
2313.95  
2303.82  
2293.68  
2283.54  
2273.39  
2263.24  
2253.08  
2242.91  
2232.74  
2222.57  
2212.39  
2202.21  
2192.02  
2181.82  
2171.62  
2161.42  
2151.21  
2141.00  
2130.78  
2120.55  
2110.32  
2100.09  
2089.85  
J5 (–12.924 mV/°C)  
–33  
–32  
–31  
–30  
–29  
–28  
–27  
–26  
–25  
–24  
–23  
–22  
–21  
–20  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
1901.66  
1894.15  
1886.63  
1879.11  
1871.59  
1864.06  
1856.53  
1848.99  
1841.45  
1833.91  
1826.36  
1818.81  
1811.26  
1803.70  
1796.13  
1788.57  
1781.00  
1773.42  
1765.85  
1758.26  
1750.68  
1743.09  
1735.50  
1727.90  
1720.30  
1712.69  
1705.09  
1697.47  
1689.86  
1682.24  
1674.61  
1666.99  
1659.35  
1651.72  
1644.08  
1636.44  
1628.79  
1621.14  
1613.48  
1605.83  
1598.16  
1590.50  
1582.83  
1575.15  
1567.48  
3169.37  
3156.84  
3144.30  
3131.76  
3119.21  
3106.66  
3094.10  
3081.53  
3068.96  
3056.38  
3043.79  
3031.20  
3018.60  
3006.00  
2993.38  
2980.77  
2968.14  
2955.51  
2942.87  
2930.23  
2917.58  
2904.93  
2892.26  
2879.60  
2866.92  
2854.24  
2841.55  
2828.86  
2816.16  
2803.45  
2790.74  
2778.02  
2765.30  
2752.57  
2739.83  
2727.08  
2714.33  
2701.58  
2688.82  
2676.05  
2663.27  
2650.49  
2637.70  
2624.91  
2612.10  
1262.88  
1257.87  
1252.86  
1247.85  
1242.84  
1237.82  
1232.80  
1227.78  
1222.75  
1217.73  
1212.70  
1207.67  
1202.63  
1197.59  
1192.55  
1187.51  
1182.46  
1177.42  
1172.37  
1167.31  
1162.26  
1157.20  
1152.14  
1147.07  
1142.01  
1136.94  
1131.87  
1126.79  
1121.72  
1116.64  
1111.56  
1106.47  
1101.39  
1096.30  
1091.20  
1086.11  
1081.01  
1075.91  
1070.81  
1065.71  
1060.60  
1055.49  
1050.38  
1045.26  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
8
9
10  
11  
14  
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Feature Description (continued)  
(1)  
Table 1. LM57 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
1040.14  
J5 (–12.924 mV/°C)  
2599.30  
2586.48  
2573.66  
2560.84  
2548.01  
2535.17  
2522.32  
2509.47  
2496.61  
2483.75  
2470.88  
2458.00  
2445.12  
2432.23  
2419.34  
2406.43  
2393.53  
2380.61  
2367.69  
2354.76  
2341.83  
2328.89  
2315.94  
2302.99  
2290.03  
2277.07  
2264.10  
2251.12  
2238.14  
2225.15  
2212.15  
2199.15  
2186.14  
2173.12  
2160.10  
2147.07  
2134.04  
2121.00  
2107.95  
2094.90  
2081.84  
2068.77  
2055.70  
2042.62  
2029.54  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
1559.80  
1552.11  
1544.42  
1536.73  
1529.03  
1521.33  
1513.63  
1505.92  
1498.21  
1490.49  
1482.77  
1475.05  
1467.32  
1459.59  
1451.86  
1444.12  
1436.38  
1428.63  
1420.88  
1413.13  
1405.37  
1397.61  
1389.84  
1382.07  
1374.30  
1366.52  
1358.74  
1350.96  
1343.17  
1335.38  
1327.58  
1319.78  
1311.98  
1304.17  
1296.36  
1288.54  
1280.72  
1272.90  
1265.07  
1257.24  
1249.41  
1241.57  
1233.73  
1225.88  
1218.03  
2079.60  
2069.35  
2059.10  
2048.84  
2038.57  
2028.30  
2018.03  
2007.75  
1997.46  
1987.17  
1976.88  
1966.58  
1956.27  
1945.96  
1935.64  
1925.32  
1915.00  
1904.67  
1894.33  
1883.99  
1873.64  
1863.29  
1852.94  
1842.57  
1832.21  
1821.84  
1811.46  
1801.08  
1790.69  
1780.30  
1769.90  
1759.50  
1749.09  
1738.68  
1728.26  
1717.84  
1707.41  
1696.98  
1686.54  
1676.10  
1665.65  
1655.20  
1644.74  
1634.28  
1623.81  
1035.02  
1029.90  
1024.77  
1019.65  
1014.51  
1009.38  
1004.25  
999.11  
993.97  
988.82  
983.68  
978.53  
973.38  
968.22  
963.07  
957.91  
952.74  
947.58  
942.41  
937.24  
932.07  
926.90  
921.72  
916.54  
911.36  
906.17  
900.98  
895.79  
890.60  
885.41  
880.21  
875.01  
869.81  
864.60  
859.39  
854.18  
848.97  
843.75  
838.53  
833.31  
828.09  
822.86  
817.63  
812.40  
Copyright © 2009–2015, Texas Instruments Incorporated  
15  
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
(1)  
Table 1. LM57 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
807.17  
J4 (–10.339 mV/°C)  
1613.34  
1602.86  
1592.38  
1581.89  
1571.40  
1560.90  
1550.40  
1539.89  
1529.37  
1518.86  
1508.33  
1497.80  
1487.27  
1476.73  
1466.19  
1455.64  
1445.08  
1434.53  
1423.96  
1413.39  
1402.82  
1392.24  
1381.65  
1371.07  
1360.47  
1349.87  
1339.27  
1328.66  
1318.04  
1307.42  
1296.80  
1286.17  
1275.53  
1264.89  
1254.25  
1243.60  
1232.94  
1222.28  
1211.61  
1200.94  
1190.27  
1179.59  
1168.90  
1158.21  
1147.52  
J5 (–12.924 mV/°C)  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
1210.18  
1202.32  
1194.46  
1186.60  
1178.73  
1170.86  
1162.98  
1155.10  
1147.22  
1139.33  
1131.44  
1123.54  
1115.64  
1107.74  
1099.83  
1091.92  
1084.01  
1076.09  
1068.17  
1060.24  
1052.31  
1044.38  
1036.44  
1028.50  
1020.55  
1012.60  
1004.65  
996.69  
2016.44  
2003.35  
1990.24  
1977.13  
1964.02  
1950.89  
1937.76  
1924.63  
1911.49  
1898.34  
1885.19  
1872.02  
1858.86  
1845.68  
1832.50  
1819.32  
1806.13  
1792.93  
1779.72  
1766.51  
1753.30  
1740.07  
1726.84  
1713.61  
1700.36  
1687.11  
1673.86  
1660.60  
1647.33  
1634.05  
1620.77  
1607.49  
1594.19  
1580.89  
1567.59  
1554.28  
1540.96  
1527.63  
1514.30  
1500.97  
1487.62  
1474.27  
1460.92  
1447.55  
1434.18  
801.93  
796.69  
791.45  
786.20  
780.96  
775.71  
770.46  
765.20  
759.94  
754.68  
749.42  
744.16  
738.89  
733.62  
728.35  
723.07  
717.79  
712.51  
707.23  
701.94  
696.65  
691.36  
686.07  
680.77  
675.48  
670.17  
664.87  
659.56  
654.25  
648.94  
643.63  
638.31  
632.99  
627.67  
622.35  
617.02  
611.69  
606.36  
601.02  
595.69  
590.34  
585.00  
579.66  
574.31  
988.73  
980.77  
972.80  
964.83  
956.85  
948.87  
940.89  
932.90  
924.91  
916.92  
908.92  
900.91  
892.91  
884.90  
876.88  
868.87  
860.84  
16  
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Feature Description (continued)  
(1)  
Table 1. LM57 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
568.96  
J5 (–12.924 mV/°C)  
1420.81  
1407.43  
1394.04  
1380.65  
1367.24  
1353.84  
1340.42  
1327.01  
1313.58  
1300.15  
1286.71  
1273.26  
1259.81  
1246.36  
1232.89  
1219.42  
1205.95  
1192.46  
1178.98  
1165.48  
1151.98  
1138.47  
1124.96  
1111.44  
1097.91  
1084.38  
1070.84  
1057.29  
1043.74  
1030.18  
1016.62  
1003.05  
989.47  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
852.82  
844.79  
836.76  
828.72  
820.68  
812.63  
804.59  
796.53  
788.48  
780.42  
772.35  
764.29  
756.21  
748.14  
740.06  
731.98  
723.89  
715.80  
707.70  
699.61  
691.50  
683.40  
675.29  
667.18  
659.06  
650.94  
642.81  
634.68  
626.55  
618.41  
610.27  
602.13  
593.98  
585.83  
577.67  
569.51  
561.35  
553.18  
545.01  
536.84  
528.66  
520.48  
512.29  
504.10  
495.91  
1136.81  
1126.11  
1115.40  
1104.68  
1093.96  
1083.23  
1072.50  
1061.77  
1051.02  
1040.28  
1029.53  
1018.77  
1008.01  
997.24  
986.47  
975.69  
964.91  
954.12  
943.33  
932.53  
921.73  
910.92  
900.11  
889.29  
878.47  
867.64  
856.81  
845.97  
835.13  
824.28  
813.43  
802.57  
791.71  
780.84  
769.97  
759.09  
748.20  
737.32  
726.42  
715.52  
704.62  
693.71  
682.80  
671.88  
660.95  
563.61  
558.25  
552.89  
547.53  
542.17  
536.80  
531.43  
526.06  
520.69  
515.31  
509.93  
504.55  
499.17  
493.78  
488.39  
483.00  
477.61  
472.21  
466.81  
461.41  
456.00  
450.60  
445.19  
439.78  
434.36  
428.94  
423.52  
418.10  
412.67  
407.25  
401.82  
396.38  
390.95  
385.51  
380.07  
374.63  
369.18  
363.73  
358.28  
352.83  
347.37  
341.91  
336.45  
330.99  
975.89  
962.30  
948.70  
935.10  
921.49  
907.87  
894.25  
880.62  
866.99  
853.35  
839.70  
826.05  
Copyright © 2009–2015, Texas Instruments Incorporated  
17  
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
(1)  
Table 1. LM57 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
325.52  
J3 (–7.752 mV/°C)  
J4 (–10.339 mV/°C)  
650.03  
J5 (–12.924 mV/°C)  
147  
148  
149  
150  
487.71  
479.51  
471.30  
463.09  
812.39  
798.73  
785.05  
771.38  
320.05  
314.58  
309.10  
639.09  
628.15  
617.21  
18  
Copyright © 2009–2015, Texas Instruments Incorporated  
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
8.3.1.1 LM57 VTEMP Voltage-to-Temperature Equations  
VTEMP= a (T-30)2+ b (T-30) + c  
where  
VTEMP is in mV and T is in °C  
(1)  
(2)  
 b  b2  4a(c VTEMP  
)
T   
 30qC  
2a  
where  
T is in °C and VTEMP is in mV  
Table 2. LM57 VTEMP Voltage-to-Temperature Equations Coefficients  
Trip-Point  
Region  
LM57 Trip Point Range  
a
b
c
J2  
J3  
J4  
J5  
41°C to 52°C  
52°C to 97°C  
– 0.00129  
– 0.00191  
– 0.00253  
– 0.00316  
5.166  
7.752  
947.6  
1420.9  
1894.3  
2367.7  
97°C to 119°C  
119°C to 150°C  
10.339  
12.924  
8.3.2 RSENSE  
The LM57 uses the voltage at the two SENSE pins to set the trip point for the temperature switch. It is possible  
to drive the two SENSE pins with a voltage equal to the value generated by the resistor and the internal current-  
source and have the same switch point. Thus one can use an external DAC to drive each SENSE pin, allowing  
for the temperature trip point to be set dynamically by the system processor. Table 3 shows the RSENSE value  
and its corresponding generated SENSE pin voltage (the center value).  
Table 3. RSENSE Values (k) vs SENSE Pin Voltage (mV)  
SENSE Pin Voltage (mV)  
RSENSE (k)  
Center Value  
976  
825  
698  
590  
499  
412  
340  
280  
226  
178  
140  
105  
75  
1875  
1585  
1341  
1134  
959  
792  
653  
538  
434  
342  
269  
202  
146  
87  
46.4  
22.6  
0.01  
43  
0
Copyright © 2009–2015, Texas Instruments Incorporated  
19  
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
8.3.3 Resistor Selection  
Table 4. Trip Point (°C) vs Sense Resistor (RSENSE) Values ()  
RSENSE2  
(1)  
(1)  
(1)  
(1)  
J2  
825 kΩ  
J3  
J4  
J5  
976 kΩ  
–40.68  
–39.13  
–37.57  
–36.03  
–34.49  
–32.95  
–31.41  
–29.88  
–28.34  
–26.83  
–25.32  
–23.80  
–22.29  
–20.77  
–19.26  
–17.75  
698 kΩ  
7.33  
590 kΩ  
30.38  
31.81  
33.24  
34.67  
36.10  
37.53  
38.95  
40.38  
41.81  
43.23  
44.65  
46.07  
47.50  
48.92  
50.33  
51.75  
499 kΩ  
52.73  
53.68  
54.62  
55.56  
56.50  
57.44  
58.39  
59.33  
60.27  
61.21  
62.15  
63.08  
64.02  
64.96  
65.90  
66.84  
412 kΩ  
67.77  
68.71  
69.65  
70.59  
71.52  
72.46  
73.40  
74.33  
75.27  
76.20  
77.14  
78.07  
79.01  
79.94  
80.87  
81.81  
340 kΩ  
82.74  
83.67  
84.60  
85.53  
86.46  
87.40  
88.33  
89.26  
90.19  
91.12  
92.05  
92.99  
93.92  
94.84  
95.77  
96.70  
280 kΩ  
97.47  
226 kΩ  
108.61  
109.30  
110.00  
110.70  
111.39  
112.09  
112.79  
113.48  
114.18  
114.87  
115.57  
116.26  
116.95  
117.65  
118.34  
119.04  
178 kΩ  
119.62  
120.18  
120.73  
121.28  
121.84  
122.39  
122.94  
123.50  
124.05  
124.60  
125.15  
125.71  
126.26  
126.81  
127.36  
127.91  
140 kΩ  
128.46  
129.01  
129.56  
130.12  
130.67  
131.22  
131.77  
132.32  
132.87  
133.43  
133.98  
134.53  
135.08  
135.63  
136.18  
136.73  
105 kΩ  
137.28  
137.83  
138.38  
138.93  
139.49  
140.04  
140.59  
141.14  
141.69  
142.24  
142.79  
143.34  
143.89  
144.44  
144.99  
145.54  
75 kΩ  
146.08  
146.62  
147.16  
147.71  
148.25  
148.80  
149.34  
149.88  
150.43  
976 kΩ  
825 kΩ  
698 kΩ  
590 kΩ  
499 kΩ  
412 kΩ  
340 kΩ  
280 kΩ  
226 kΩ  
178 kΩ  
140 kΩ  
105 kΩ  
75 kΩ  
–16.26  
–14.76  
–13.27  
–11.78  
–10.29  
–8.81  
–7.32  
–5.83  
–4.35  
–2.88  
–1.42  
0.04  
8.79  
98.17  
10.24  
11.70  
13.15  
14.60  
16.05  
17.49  
18.93  
20.36  
21.79  
23.22  
24.65  
26.08  
27.51  
28.94  
98.86  
99.56  
100.25  
100.95  
101.64  
102.34  
103.03  
103.73  
104.42  
105.11  
105.81  
106.50  
107.19  
107.89  
RSENSE1  
1.50  
46.4 kΩ  
22.6 kΩ  
0.01 kΩ  
2.96  
4.42  
5.88  
(1) There are four gains corresponding to each of the four Temperature Trip Point Ranges:  
J2 (-5.166 mV/°C) is the temperature sensor output gain used for Temperature Trip Points 40.68°C to 51.8°C.  
J3 (-7.752 mV/°C) is for Trip Points 52°C to 97°C.  
J4 (-10.339 mV/°C) for 97°C to 119°C.  
J5 (-12.924 mV/°C) for 119°C to 150°C.  
20  
Copyright © 2009–2015, Texas Instruments Incorporated  
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Table 5. VTEMP (mV) at the Trip Point vs Sense Resistor (RSENSE) Value ()  
RSENSE2  
(1)  
(1)  
(1)  
(1)  
J2  
825 kΩ  
J3  
J4  
280 kΩ  
J5  
976 kΩ  
1306.23  
1298.50  
1290.72  
1283.03  
1275.33  
1267.64  
1259.94  
1252.25  
1244.55  
1236.99  
1229.38  
1221.76  
1214.15  
1206.53  
1198.92  
1191.30  
698 kΩ  
590 kΩ  
945.63  
938.23  
930.83  
923.43  
916.02  
908.62  
901.22  
893.82  
886.42  
879.02  
871.61  
864.21  
856.81  
849.41  
842.01  
834.62  
499 kΩ  
1243.67  
1236.27  
1228.88  
1221.48  
1214.09  
1206.69  
1199.30  
1191.90  
1184.50  
1177.11  
1169.71  
1162.32  
1154.92  
1147.53  
1140.13  
1132.74  
412 kΩ  
1125.34  
1117.93  
1110.52  
1103.10  
1095.69  
1088.28  
1080.87  
1073.45  
1066.04  
1058.63  
1051.22  
1043.80  
1036.39  
1028.98  
1021.57  
1014.15  
340 kΩ  
1006.75  
999.34  
991.92  
984.51  
977.09  
969.66  
962.22  
954.78  
947.35  
939.91  
932.48  
925.04  
917.61  
910.17  
902.74  
895.30  
226 kΩ  
178 kΩ  
1184.05  
1176.57  
1169.10  
1161.63  
1154.16  
1146.68  
1139.21  
1131.74  
1124.27  
1116.79  
1109.32  
1101.85  
1094.38  
1086.90  
1079.43  
1072.04  
140 kΩ  
1064.59  
1057.10  
1049.62  
1042.13  
1034.65  
1027.16  
1019.67  
1012.19  
1004.70  
997.22  
105 kΩ  
944.83  
937.33  
929.83  
922.33  
914.83  
907.33  
899.83  
892.33  
884.83  
877.33  
869.82  
862.32  
854.82  
847.32  
839.82  
832.32  
75 kΩ  
824.96  
817.53  
810.09  
802.66  
795.22  
787.78  
780.35  
772.91  
765.48  
976 kΩ  
825 kΩ  
698 kΩ  
590 kΩ  
499 kΩ  
412 kΩ  
340 kΩ  
280 kΩ  
226 kΩ  
178 kΩ  
140 kΩ  
105 kΩ  
75 kΩ  
1183.77  
1176.23  
1168.70  
1161.16  
1153.62  
1146.09  
1138.55  
1131.02  
1123.48  
1116.05  
1108.61  
1101.18  
1093.74  
1086.30  
1078.87  
1071.43  
1064.00  
1056.56  
1049.13  
1041.69  
1034.26  
1026.82  
1019.38  
1011.99  
1004.62  
997.26  
1185.27  
1177.83  
1170.40  
1162.96  
1155.52  
1148.09  
1140.65  
1133.22  
1125.78  
1118.35  
1110.91  
1103.48  
1096.04  
1088.60  
1081.17  
1073.73  
1066.00  
1058.52  
1051.03  
1043.55  
1036.07  
1028.59  
1021.10  
1013.62  
1006.14  
998.66  
RSENSE1  
989.89  
991.17  
989.73  
982.53  
983.69  
982.25  
975.16  
976.21  
974.76  
46.4 kΩ  
22.6 kΩ  
0.01 kΩ  
967.80  
968.73  
967.28  
960.43  
961.24  
959.79  
953.07  
953.76  
952.31  
(1) There are four gains corresponding to each of the four Temperature Trip Point Ranges:  
J2 (-5.166 mV/°C) is the temperature sensor output gain used for Temperature Trip Points 40.68°C to 51.8°C.  
J3 (-7.752 mV/°C) is for Trip Points 52°C to 97°C.  
J4 (-10.339 mV/°C) for 97°C to 119°C.  
J5 (-12.924 mV/°C) for 119°C to 150°C.  
Copyright © 2009–2015, Texas Instruments Incorporated  
21  
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
8.3.4 TOVER and TOVER Digital Outputs  
The TOVER active high, push-pull output and the TOVER Active Low, Open-Drain Output both assert at the same  
time whenever the Die Temperature reaches the Trip Point. They also assert simultaneously whenever the TRIP  
TEST pin is set high. Both outputs de-assert when the die temperature goes below the (Temperature Trip Point)  
- (Hysteresis). These two types of digital outputs enable the user the flexibility to choose the type of output that is  
most suitable for his design.  
Either the TOVER or the TOVER Digital Output pins can be left open if not used.  
The TOVER Active Low, Open-Drain Digital Output, if used, requires a pullup resistor between this pin and VDD  
.
8.3.4.1 TOVER and TOVER Noise Immunity  
The LM57 has some noise immunity to a premature trigger due to noise on the power supply. With the die  
temperature at 1°C below the trip point, there are no premature triggers for a square wave injected into the  
power supply with a magnitude of 100 mVPP over a frequency range of 100 Hz to 2 MHz. Above the frequency a  
premature trigger may occur.  
With the die temperature at 2°C below the trip point, and a magnitude of 200 mVPP, there are no premature  
triggers from 100 Hz to 300 kHz. Above that frequency a premature trigger may occur.  
Therefore if the supply line is noisy, it is recommended that a local supply decoupling capacitor be used to  
reduce that noise.  
8.3.5 Trip Test Digital Input  
The TRIP TEST pin provides a means to test the digital outputs by causing them to assert, regardless of  
temperature.  
In addition, when the TRIP TEST pin is pulled high the VTEMP pin will be at the VTRIP voltage.  
8.3.6 VTEMP Analog Temperature Sensor Output  
The VTEMP push-pull output provides the ability to sink and source significant current. This is beneficial when, for  
example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications  
the source current is required to quickly charge the input capacitor of the ADC. See the Typical Application  
section for more discussion of this topic. The LM57 is ideal for this and other applications which require strong  
source or sink current.  
8.3.6.1 VTEMP Noise Considerations  
A load capacitor on VTEMP can help to filter noise.  
For noisy environments, TI recommends a 100 nF supply decoupling capacitor placed closed across VDD and  
GND pins of LM57.  
22  
Copyright © 2009–2015, Texas Instruments Incorporated  
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
8.3.6.2 VTEMP Capacitive Loads  
The VTEMP Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched  
sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any  
precautions, the VTEMP can drive a capacitive load less than or equal to 1100 pF as shown in Figure 13. For  
capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in Figure 14, to  
maintain stable conditions.  
V
DD  
V
DD  
R
S
V
TEMP  
V
TEMP  
LM57  
LM57  
GND  
GND  
C
LOAD  
d 1100 pF  
C
LOAD  
> 1100 pF  
Figure 13. LM57 With No Isolation Resistor  
Required  
Figure 14. LM57 With Series Resistor for  
Capacitive Loading Greater than 1100 pF  
Table 6. CLOAD and RS Values of Figure 14  
CLOAD  
1.1 to 99 nF  
100 to 999 nF  
1 μF  
Minimum RS  
3 kΩ  
1.5 kΩ  
750 Ω  
8.3.6.3 VTEMP Voltage Shift  
The LM57 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an  
NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the  
operating range of the device. The location of the shift is determined by the relative levels of VDD and VTEMP. The  
shift typically occurs when VDD VTEMP = 1 V.  
This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VTEMP. Since  
the shift takes place over a wide temperature change of 5°C to 20°C, VTEMP is always monotonic. The accuracy  
specifications in the table already includes this possible shift.  
8.4 Device Functional Modes  
The LM57 has several modes of operation as detailed in the following drawings.  
V
DD  
SENSE1  
SENSE2  
T
OVER  
Asserts when T  
DIE  
> T  
TRIP  
See text  
LM57  
TRIP TEST  
GND  
Figure 15. Temperature Switch Using Push-Pull Output  
Copyright © 2009–2015, Texas Instruments Incorporated  
23  
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
V
DD  
100k  
SENSE1  
SENSE2  
T
OVER  
Asserts when T  
DIE  
> T  
TRIP  
LM57  
See text  
TRIP TEST  
GND  
Figure 16. Temperature Switch Using Open-Drain Output  
As shown in Figure 17 the LM57 has a TRIP Test input simplifying in situ board conductivity testing. Forcing  
TRIP TEST pin "HIGH" will drive the TOVER pin "LOW" and the TOVER pin "HIGH".  
V
DD  
100k  
T
OVER  
TRIP TEST  
LM57  
T
OVER  
GND  
Figure 17. Trip Test Digital Output Test Circuit  
In the circuit shown in Figure 18 when TOVER goes active high, it drives trip test high. Trip test high causes TOVER  
to stay high. It is therefore latched. To release the latch, power down, then power up. The LM57 always comes  
up in a released condition.  
V
DD  
T
OVER  
TRIP TEST  
LM57  
T
OVER  
GND  
Figure 18. Simple Latch Circuit  
24  
Copyright © 2009–2015, Texas Instruments Incorporated  
 
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Device Functional Modes (continued)  
The TRIP TEST pin, normally used to check the operation of the TOVER and TOVER pins, may be used to latch the  
outputs whenever the temperature exceeds the programmed limit and causes the digital outputs to assert. As  
shown in Figure 19, when TOVER goes high, the TRIP TEST input is also pulled high and causes TOVER output to  
latch high and the TOVER output to latch low. Momentarily switching the TRIP TEST input low will reset the LM57  
to normal operation. The resistor limits the current out of the TOVER output pin.  
V
DD  
100k  
T
OVER  
TRIP TEST  
LM57  
RESET  
Momentary  
T
OVER  
GND  
Figure 19. Latch Circuit Using TOVER Output  
Copyright © 2009–2015, Texas Instruments Incorporated  
25  
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LM57 has several outputs allowing for varying system implementations.  
9.1.1 ADC Input Considerations  
The LM57 has an analog temperature sensor output (VTEMP) that can be directly connected to an ADC (Analog to  
Digital Converter) input. Most CMOS ADCs found in microcontrollers and ASICs have a sampled data  
comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the  
output of the analog source such as the LM57 temperature sensor and many op amps. This requirement is easily  
accommodated by the addition of a capacitor (CFILTER). The size of CFILTER depends on the size of the sampling  
capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge  
requirements will vary. The general ADC application shown in Figure 20 is an example only.  
SAR Analog-to-Digital Converter  
Reset  
+2.4V to +5.5V  
Input  
Pin  
LM57  
Sample  
R
IN  
V
DD  
V
TEMP  
C
BP  
C
C
PIN  
SAMPLE  
C
FILTER  
GND  
Figure 20. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage  
9.2 Typical Application  
V
DD  
Supply  
(+2.4V to +5.5V)  
V
DD  
Analog  
V
TEMP  
ADC Input  
LM57  
Microcontroller  
SENSE1  
T
OVER  
SENSE2  
Digital In  
T
OVER  
TRIP TEST  
GND  
Digital Out  
Figure 21. Typical Application Schematic with Microcontroller TRIP TEST Control  
26  
Copyright © 2009–2015, Texas Instruments Incorporated  
 
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
Typical Application (continued)  
9.2.1 Design Requirements  
By simply selecting the value of two resistors the trip point of the LM57 can easily be programmed as described  
in the following section. If standard 1% values are used the actual trip point threshold is not degraded and stands  
as described in the Electrical Characteristics section ( ).  
9.2.2 Detailed Design Procedure  
9.2.2.1 Selection of RSENSE Resistors  
To set the trip point:  
1. Locate the desired trip temperature in Table 4.  
2. Identify the corresponding RSENSE2 value by following the column up to the resistor value.  
3. Identify the corresponding RSENSE1 value by following the row leftwards to the resistor value.  
4. Use only the EIA E96 standard resistor values from the list.  
5. Use only a resistor with 1% tolerance and a temperature coefficient of 100 ppm (or better). These restrictions  
are necessary to stay at the selected setting, and not to slip into an adjacent setting.  
6. This is consistent with using resistors from the thick film chip resistors CRCW0402 family. These are  
available with very small dimensions of L = 1 mm, W = 0.5 mm, H = 0.35 mm.  
7. Note that the resistor tolerance does not diminish the accuracy of the trip point. As can be seen in the block  
diagram these inputs drive the logic inputs of a DAC thus their tolerance does affect the trip point accuracy  
unless the DAC setting slips into an adjacent level. See patent number 6924758.  
9.2.3 Application Curves  
The typical performance of the LM57 temperature sensor output can be seen in Figure 22. Figure 23 shows the  
output behavior of the LM57 TOVER output.  
2.0  
MAX LImit  
1.5  
Trip Point  
1.0  
Trip Point - Hysteresis  
0.5  
VTEMP Output  
(Temp. of Leads)  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
T
OVER  
MIN Limit  
50  
0
25  
75  
100  
125  
150  
±50  
±25  
DUT Temperature (ƒC)  
C102  
Figure 23. Output Transfer Characteristic  
Figure 22. J2 VTEMP Accuracy Characteristics  
Copyright © 2009–2015, Texas Instruments Incorporated  
27  
 
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
Typical Application (continued)  
9.2.4 Grounding of the TRIP TEST Pin  
The circuit in Figure 24 shows the TRIP TEST pin grounded. This allows the LM57 to function autonomously  
without microcontroller intervention. In all other respects this circuit functions similarly to the circuit shown in  
Figure 21.  
V
DD  
Supply  
(+2.4V to +5.5V)  
V
DD  
V
TEMP  
LM57  
Microcontroller  
SENSE1  
SENSE2  
T
OVER  
Digital In  
T
OVER  
TRIP TEST  
GND  
Figure 24. Typical Application Schematic without Microcontroller TRIP TEST Control  
10 Power Supply Recommendations  
Power supply bypass capacitors are optional and may be required if the supply line is noisy. TI recommends that  
a local supply decoupling capacitor be used to reduce noise. For noisy environments, TI recommends a 100-nF  
supply decoupling capacitor placed closed across VDD and GND pins of LM57.  
11 Layout  
11.1 Layout Guidelines  
The LM57 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued  
or cemented to a surface. The temperatures of the lands and traces to the other leads of the LM57 will also  
affect the temperature reading.  
Alternatively, the LM57 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or  
screwed into a threaded hole in a tank. As with any IC, the LM57 and accompanying wiring and circuits must be  
kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold  
temperatures where condensation can occur. If moisture creates a short circuit from the VTEMP output to ground  
or VDD, the VTEMP output from the LM57 will not be correct. Printed-circuit coatings are often used to ensure that  
moisture cannot corrode the leads or circuit traces.  
28  
Copyright © 2009–2015, Texas Instruments Incorporated  
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
11.2 Layout Example  
VIA to ground plane  
VIA to power plane  
GND  
SENSE1  
SENSE2  
VDD  
VTEMP  
TOVER  
RSENSE1  
RSENSE2  
TOVER  
TRIP TEST  
0.1 µ F  
Figure 25. PW (TSSOP) Package Layout Example  
Copyright © 2009–2015, Texas Instruments Incorporated  
29  
LM57  
ZHCSDV6E MAY 2009REVISED JULY 2015  
www.ti.com.cn  
Layout Example (continued)  
VIA to ground plane  
VIA to power plane  
GND  
VTEMP  
TOVER  
RSENSE1  
RSENSE2  
SENSE1  
DAP  
SENSE2  
VDD  
TOVER  
TRIP TEST  
0.1 µ F  
The best thermal conductivity to the junction of the LM57 is through the DAP. Make sure it is connected to the surface  
whose temperature that is being measured.  
Figure 26. SD (WSON) Package Layout Example  
11.3 Temperature Considerations  
The junction temperature of the LM57 is the actual temperature being measured. The thermal resistance  
junction-to-ambient (RθJA) is the parameter (from Thermal Information ) used to calculate the rise of a device  
junction temperature due to its power dissipation. Equation 3 is used to calculate the rise in the die temperature  
of the LM57.  
7J ꢀ ꢀ7A ꢀꢁꢀ5TJA  9DD,Q ꢃꢀꢁꢀꢂ9DD ꢀ±ꢀ9TEMP ꢃꢀꢀ,L  
ª
º
¼
¬
where  
TA is the ambient temperature.  
IQ is the quiescent current.  
IL is the load current on VTEMP  
.
RθJA can be found in Thermal Information  
(3)  
=
For example using an LM57 in the PW (TSSOP) package, in an application where TA = 30°C, VDD = 5.5 V, IDD  
28 μA, J5 gain, VTEMP = 2368 mV, and IL = 0 μA, the total temperature rise would be [183°C/W × 5.5 V × 28 μA]  
= 0.028°C. To minimize self-heating, the load current on VTEMP should be minimized.  
30  
版权 © 2009–2015, Texas Instruments Incorporated  
 
LM57  
www.ti.com.cn  
ZHCSDV6E MAY 2009REVISED JULY 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档如下:  
LM57-Q1 汽车级数据表。  
《回流温度曲线》规范,www.ti.com/packaging。  
应用报告《IC 封装热指标》SPRA953  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2009–2015, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM57BISD-10/NOPB  
LM57BISD-5/NOPB  
LM57BISDX-10/NOPB  
LM57BISDX-5/NOPB  
LM57CISD-10/NOPB  
LM57CISD-5/NOPB  
LM57CISDX-10/NOPB  
LM57CISDX-5/NOPB  
LM57FPW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
PW  
8
8
8
8
8
8
8
8
8
8
8
8
1000 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
4500 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
4500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
57B9  
57B5  
57B9  
57B5  
57C9  
57C5  
57C9  
57C5  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
150  
2000 RoHS & Green  
150 RoHS & Green  
2000 RoHS & Green  
RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
LM57F  
LM57F  
LM57T  
LM57T  
LM57FPWR  
PW  
LM57TPW  
PW  
LM57TPWR  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM57BISD-10/NOPB  
LM57BISD-5/NOPB  
LM57BISDX-10/NOPB  
LM57BISDX-5/NOPB  
LM57CISD-10/NOPB  
LM57CISD-5/NOPB  
LM57CISDX-10/NOPB  
LM57CISDX-5/NOPB  
LM57FPWR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
TSSOP  
TSSOP  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
PW  
8
8
8
8
8
8
8
8
8
8
1000  
1000  
4500  
4500  
1000  
1000  
4500  
4500  
2000  
2000  
178.0  
178.0  
330.0  
330.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
7.0  
7.0  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
3.6  
3.6  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LM57TPWR  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM57BISD-10/NOPB  
LM57BISD-5/NOPB  
LM57BISDX-10/NOPB  
LM57BISDX-5/NOPB  
LM57CISD-10/NOPB  
LM57CISD-5/NOPB  
LM57CISDX-10/NOPB  
LM57CISDX-5/NOPB  
LM57FPWR  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
TSSOP  
TSSOP  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
NGR  
PW  
8
8
8
8
8
8
8
8
8
8
1000  
1000  
4500  
4500  
1000  
1000  
4500  
4500  
2000  
2000  
208.0  
208.0  
356.0  
356.0  
208.0  
208.0  
356.0  
356.0  
356.0  
356.0  
191.0  
191.0  
356.0  
356.0  
191.0  
191.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LM57TPWR  
PW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM57FPW  
LM57TPW  
PW  
PW  
TSSOP  
TSSOP  
8
8
150  
150  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
NGR 8  
2.5 x 2.5, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4227146/A  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY