LM7322MA/NOPB [TI]

双路、32V、20MHz 运算放大器 | D | 8 | -40 to 125;
LM7322MA/NOPB
型号: LM7322MA/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、32V、20MHz 运算放大器 | D | 8 | -40 to 125

放大器 光电二极管 运算放大器 放大器电路
文件: 总35页 (文件大小:1334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
LM7321/LM7321Q Single/ LM7322/LM7322Q Dual Rail-to-Rail Input/Output ±15V, High  
Output Current and Unlimited Capacitive Load Operational Amplifier  
Check for Samples: LM7321, LM7322  
1
FEATURES  
DESCRIPTION  
The LM7321/LM7321Q/LM7322/LM7322Q are rail-to-  
rail input and output amplifiers with wide operating  
2
(VS = ±15, TA = 25°C, Typical Values Unless  
Specified.)  
voltages  
and  
high  
output  
currents.  
The  
Wide Supply Voltage Range 2.5V to 32V  
Output Current +65 mA/100 mA  
Gain Bandwidth Product 20 MHz  
Slew Rate 18 V/µs  
LM7321/LM7321Q/LM7322/LM7322Q are efficient,  
achieving 18 V/µs slew rate and 20 MHz unity gain  
bandwidth while requiring only 1 mA of supply current  
per  
op  
amp.  
The  
LM7321/LM7321Q/LM7322/LM7322Q performance is  
fully specified for operation at 2.7V, ±5V and ±15V.  
Capacitive Load Tolerance Unlimited  
Input Common Mode Voltage 0.3V Beyond  
Rails  
The  
designed to drive unlimited capacitive loads without  
oscillations. All LM7321/LM7321Q and  
LM7321/LM7321Q/LM7322/LM7322Q  
are  
Input Voltage Noise 15 nV/Hz  
Input Current Noise 1.3 pA/Hz  
Supply Current/Channel 1.1 mA  
Distortion THD+Noise 86 dB  
Temperature Range 40°C to 125°C  
LM7322/LM732Q parts are tested at 40°C, 125°C,  
and 25°C, with modern automatic test equipment.  
High performance from 40°C to 125°C, detailed  
specifications, and extensive testing makes them  
suitable  
for  
industrial,  
automotive,  
and  
communications applications.  
Tested at 40°C, 25°C and 125°C at 2.7V, ±5V,  
Greater than rail-to-rail input common mode voltage  
range with 50 dB of common mode rejection across  
this wide voltage range, allows both high side and low  
side sensing. Most device parameters are insensitive  
to power supply voltage, and this makes the parts  
easier to use where supply voltage may vary, such as  
automotive electrical systems and battery powered  
equipment. These amplifiers have true rail-to-rail  
output and can supply a respectable amount of  
current (15 mA) with minimal head- room from either  
rail (300 mV) at low distortion (0.05% THD+Noise).  
There are several package options for each part.  
Standard SOIC versions of both parts make  
upgrading existing designs easy. LM7322LM7322Q  
are offered in a space saving 8-Pin VSSOP package.  
The LM7321/LM7321Q are offered in small SOT-23  
package, which makes it easy to place this part close  
to sensors for better circuit performance.  
±15V.  
LM7321Q/LM7322Q are Automotive Grade  
Products that are AEC-Q100 Grade 1 Qualified.  
APPLICATIONS  
Driving MOSFETs and Power Transistors  
Capacitive Proximity Sensors  
Driving Analog Optocouplers  
High Side Sensing  
Below Ground Current Sensing  
Photodiode Biasing  
Driving Varactor Diodes in PLLs  
Wide Voltage Range Power supplies  
Automotive  
International Power Supplies  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2013, Texas Instruments Incorporated  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
1
12,200 pF  
8,600 pF  
V
= ±15V  
S
V
= ±15V, A = +1  
V
S
125°C  
2,200 pF  
85°C  
10 pF  
0.1  
25°C  
-40°C  
INPUT  
0.01  
0.1  
1
I
10  
(mA)  
100  
5 ms/DIV  
SOURCE  
Figure 1. Output Swing vs. Sourcing Current  
Figure 2. Large Signal Step Response  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)  
Absolute Maximum Ratings  
Human Body Model  
Machine Model  
2 kV  
200V  
1 kV  
(3)  
ESD Tolerance  
Charge-Device Model  
VIN Differential  
±10V  
(4)  
Output Short Circuit Current  
Supply Voltage (VS = V+ - V)  
Voltage at Input/Output pins  
Storage Temperature Range  
See  
35V  
V+ +0.8V, V0.8V  
65°C to 150°C  
150°C  
(5)  
Junction Temperature  
Soldering Information:  
Infrared or Convection (20 sec.)  
Wave Soldering (10 sec.)  
235°C  
260°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of  
JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).  
(4) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C. Short circuit test is a momentary test. Output short circuit duration is  
infinite for VS 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5 ms.  
(5) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX)) - TA)/ θJA. All numbers apply for packages soldered directly onto a PC board.  
Operating Ratings  
Supply Voltage (VS = V+ - V)  
2.5V to 32V  
40°C to 125°C  
325°C/W  
(1)  
Temperature Range  
(1)  
Package Thermal Resistance, θJA  
,
5-Pin SOT-23  
8-Pin VSSOP  
8-Pin SOIC  
235°C/W  
165°C/W  
(1) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX)) - TA)/ θJA. All numbers apply for packages soldered directly onto a PC board.  
2
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
(1)  
2.7V Electrical Characteristics  
Unless otherwise specified, all limits ensured for TA = 25°C, V+ = 2.7V, V= 0V, VCM = 0.5V, VOUT = 1.35V, and RL > 1 Mto  
1.35V. Boldface limits apply at the temperature extremes.  
Min  
Typ  
Max  
Symbol  
VOS  
TC VOS  
Parameter  
Input Offset Voltage  
Condition  
Units  
mV  
(2)  
(3)  
(2)  
5  
6  
+5  
+6  
VCM = 0.5V & VCM = 2.2V  
±0.7  
VCM = 0.5V & VCM = 2.2V  
Input Offset Voltage Temperature Drift  
Input Bias Current  
±2  
µV/C  
(4)  
VCM = 0.5V  
2.0  
2.5  
1.2  
(5)  
IB  
µA  
nA  
dB  
dB  
V
VCM = 2.2V  
0.45  
20  
1.0  
1.5  
(5)  
200  
300  
IOS  
Input Offset Current  
VCM = 0.5V and VCM = 2.2V  
0V VCM 1.0V  
70  
60  
100  
70  
CMRR  
PSRR  
CMVR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Common Mode Voltage Range  
55  
50  
0V VCM 2.7V  
78  
74  
104  
0.3  
3.0  
72  
2.7V VS 30V  
0.1  
0.0  
CMRR > 50 dB  
2.8  
2.7  
0.5V VO 2.2V  
65  
RL = 10 kto 1.35V  
62  
AVOL  
Open Loop Voltage Gain  
dB  
0.5V VO 2.2V  
59  
66  
RL = 2 kto 1.35V  
55  
RL = 10 kto 1.35V  
50  
150  
VID = 100 mV  
160  
Output Voltage Swing  
High  
RL = 2 kto 1.35V  
VID = 100 mV  
100  
20  
250  
280  
mV from  
either rail  
VOUT  
RL = 10 kto 1.35V  
VID = 100 mV  
120  
150  
Output Voltage Swing  
Low  
RL = 2 kto 1.35V  
VID = 100 mV  
40  
120  
150  
Sourcing  
VID = 200 mV, VOUT = 0V  
30  
20  
48  
(6)  
IOUT  
Output Current  
Supply Current  
mA  
mA  
Sinking  
VID = 200 mV, VOUT = 2.7V  
40  
30  
65  
(6)  
0.95  
2.0  
1.3  
1.9  
LM7321  
LM7322  
IS  
2.5  
3.8  
(7)  
SR  
fu  
Slew Rate  
AV = +1, VI = 2V Step  
8.5  
7.5  
V/µs  
MHz  
Unity Gain Frequency  
RL = 2 k, CL = 20 pF  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA.  
(2) All limits are ensured by testing or statistical analysis.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(4) Offset voltage temperature drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
(6) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C. Short circuit test is a momentary test. Output short circuit duration is  
infinite for VS 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5 ms.  
(7) Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
2.7V Electrical Characteristics (1) (continued)  
Unless otherwise specified, all limits ensured for TA = 25°C, V+ = 2.7V, V= 0V, VCM = 0.5V, VOUT = 1.35V, and RL > 1 Mto  
1.35V. Boldface limits apply at the temperature extremes.  
Min  
Typ  
Max  
Symbol  
Parameter  
Condition  
Units  
(2)  
(3)  
(2)  
GBW  
Gain Bandwidth  
f = 50 kHz  
f = 2 kHz  
f = 2 kHz  
16  
11.9  
0.5  
MHz  
nV/  
en  
in  
Input Referred Voltage Noise Density  
Input Referred Current Noise Density  
pA/  
V+ = 1.9V, V= 0.8V  
f = 1 kHz, RL = 100 k, AV = +2  
VOUT = 210 mVPP  
THD+N  
CT Rej.  
Total Harmonic Distortion + Noise  
77  
dB  
dB  
Crosstalk Rejection  
f = 100 kHz, Driver RL = 10 kΩ  
60  
(1)  
±5V Electrical Characteristics  
Unless otherwise specified, all limited ensured for TA = 25°C, V+ = 5V, V= 5V, VCM = 0V, VOUT = 0V, and RL > 1 Mto 0V.  
Boldface limits apply at the temperature extremes.  
Min  
Typ  
Max  
Symbol  
VOS  
Parameter  
Input Offset Voltage  
Condition  
Units  
mV  
(2)  
(3)  
(2)  
5  
6  
±0.7  
+5  
+6  
VCM = 4.5V and VCM = 4.5V  
VCM = 4.5V and VCM = 4.5V  
TC VOS  
Input Offset Voltage Temperature Drift  
Input Bias Current  
±2  
µV/°C  
(4)  
VCM = 4.5V  
2.0  
2.5  
1.2  
(5)  
IB  
µA  
nA  
dB  
dB  
V
VCM = 4.5V  
0.45  
20  
1.0  
1.5  
(5)  
200  
300  
IOS  
Input Offset Current  
VCM = 4.5V and VCM = 4.5V  
5V VCM 3V  
80  
70  
100  
80  
CMRR  
PSRR  
CMVR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Common Mode Voltage Range  
65  
62  
5V VCM 5V  
78  
74  
104  
5.3  
5.3  
80  
2.7V VS 30V, VCM = 4.5V  
5.1  
5.0  
CMRR > 50 dB  
5.1  
5.0  
4V VO 4V  
74  
RL = 10 kto 0V  
70  
AVOL  
Open Loop Voltage Gain  
dB  
4V VO 4V  
RL = 2 kto 0V  
68  
65  
74  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA.  
(2) All limits are ensured by testing or statistical analysis.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(4) Offset voltage temperature drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
4
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
±5V Electrical Characteristics (1) (continued)  
Unless otherwise specified, all limited ensured for TA = 25°C, V+ = 5V, V= 5V, VCM = 0V, VOUT = 0V, and RL > 1 Mto 0V.  
Boldface limits apply at the temperature extremes.  
Min  
Typ  
Max  
Symbol  
Parameter  
Condition  
Units  
(2)  
(3)  
(2)  
RL = 10 kto 0V  
VID = 100 mV  
100  
160  
35  
250  
280  
Output Voltage Swing  
High  
RL = 2 kto 0V  
VID = 100 mV  
350  
450  
mV from  
either rail  
VOUT  
RL = 10 kto 0V  
VID = 100 mV  
200  
250  
Output Voltage Swing  
Low  
RL = 2 kto 0V  
VID = 100 mV  
80  
200  
250  
Sourcing  
VID = 200 mV, VOUT = 5V  
35  
20  
70  
(6)  
(6)  
IOUT  
Output Current  
Supply Current  
mA  
mA  
Sinking  
VID = 200 mV, VOUT = 5V  
50  
30  
85  
1.0  
2.3  
1.3  
2
LM7321  
LM7322  
IS  
VCM = 4.5V  
2.8  
3.8  
(7)  
SR  
fu  
Slew Rate  
AV = +1, VI = 8V Step  
RL = 2 k, CL = 20 pF  
f = 50 kHz  
12.3  
9
V/µs  
MHz  
MHz  
nV/  
Unity Gain Frequency  
GBW  
en  
Gain Bandwidth  
16  
Input Referred Voltage Noise Density  
Input Referred Current Noise Density  
f = 2 kHz  
14.3  
1.35  
in  
f = 2 kHz  
pA/  
f = 1 kHz, RL = 100 k, AV = +2  
VOUT = 8 VPP  
THD+N  
CT Rej.  
Total Harmonic Distortion + Noise  
Crosstalk Rejection  
79  
dB  
dB  
f = 100 kHz, Driver RL = 10 kΩ  
60  
(6) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C. Short circuit test is a momentary test. Output short circuit duration is  
infinite for VS 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5 ms.  
(7) Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.  
(1)  
±15V Electrical Characteristics  
Unless otherwise specified, all limited ensured for TA = 25°C, V+ = 15V, V= 15V, VCM = 0V, VOUT = 0V, and RL > 1Mto  
15V. Boldface limits apply at the temperature extremes.  
Min  
Typ  
Max  
Symbol  
VOS  
TC VOS  
Parameter  
Input Offset Voltage  
Condition  
Units  
mV  
(2)  
(3)  
(2)  
6  
8  
±0.7  
+6  
+8  
VCM = 14.5V and VCM = 14.5V  
VCM = 14.5V and VCM = 14.5V  
Input Offset Voltage Temperature Drift  
Input Bias Current  
±2  
µV/°C  
(4)  
VCM = 14.5V  
2  
2.5  
1.1  
(5)  
IB  
µA  
nA  
VCM = 14.5V  
0.45  
30  
1.0  
1.5  
(5)  
300  
500  
IOS  
Input Offset Current  
VCM = 14.5V and VCM = 14.5V  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA.  
(2) All limits are ensured by testing or statistical analysis.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(4) Offset voltage temperature drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
±15V Electrical Characteristics (1) (continued)  
Unless otherwise specified, all limited ensured for TA = 25°C, V+ = 15V, V= 15V, VCM = 0V, VOUT = 0V, and RL > 1Mto  
15V. Boldface limits apply at the temperature extremes.  
Min  
Typ  
Max  
Symbol  
CMRR  
PSRR  
Parameter  
Condition  
15V VCM 12V  
Units  
(2)  
(3)  
(2)  
80  
75  
100  
80  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Common Mode Voltage Range  
dB  
72  
70  
15V VCM 15V  
78  
74  
100  
15.3  
15.3  
85  
2.7V VS 30V, VCM = 14.5V  
dB  
15.1  
15  
CMVR  
CMRR > 50 dB  
V
15.1  
15  
13V VO 13V  
RL = 10 kto 0V  
75  
70  
AVOL  
Open Loop Voltage Gain  
dB  
13V VO 13V  
RL = 2 kto 0V  
70  
65  
78  
RL = 10 kto 0V  
VID = 100 mV  
150  
250  
60  
300  
350  
Output Voltage Swing  
High  
RL = 2 kto 0V  
VID = 100 mV  
550  
650  
mV from  
either rail  
VOUT  
RL = 10 kto 0V  
VID = 100 mV  
200  
250  
Output Voltage Swing  
Low  
RL = 2 kto 0V  
VID = 100 mV  
130  
65  
300  
400  
Sourcing  
VID = 200 mV, VOUT = 15V  
40  
60  
(6)  
IOUT  
Output Current  
Supply Current  
mA  
mA  
Sinking  
VID = 200 mV, VOUT = 15V  
100  
1.1  
(6)  
1.7  
2.4  
LM7321  
LM7322  
IS  
VCM = 14.5V  
2.5  
4
5.6  
(7)  
SR  
fu  
Slew Rate  
AV = +1, VI = 20V Step  
RL = 2 k, CL = 20 pF  
f = 50 kHz  
18  
11.3  
20  
V/µs  
MHz  
MHz  
nV/  
Unity Gain Frequency  
GBW  
en  
Gain Bandwidth  
Input Referred Voltage Noise Density  
Input Referred Current Noise Density  
f = 2 kHz  
15  
in  
f = 2 kHz  
1.3  
pA/  
f = 1 kHz, RL 100 k,  
AV = +2, VOUT = 23 VPP  
THD+N  
CT Rej.  
Total Harmonic Distortion +Noise  
Crosstalk Rejection  
86  
dB  
dB  
f = 100 kHz, Driver RL = 10 kΩ  
60  
(6) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C. Short circuit test is a momentary test. Output short circuit duration is  
infinite for VS 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5 ms.  
(7) Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.  
6
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
CONNECTION DIAGRAMS  
1
8
+
1
8
OUT A  
5
1
V
+
N/C  
N/C  
OUT  
V
A
7
6
5
2
3
4
2
3
4
7
6
5
+
OUT B  
-IN B  
-IN A  
-IN  
V
-
-
2
3
-
V
+
B
-
+IN A  
+IN  
OUT  
N/C  
-
4
-IN  
+IN  
-
-
+IN B  
V
V
Figure 3. 5-Pin SOT-23  
Top View  
Figure 4. 8-Pin SOIC  
Top View  
Figure 5. 8-Pin VSSOP/SOIC  
Top View  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics  
Unless otherwise specified: TA = 25°C.  
Output Swing vs. Sourcing Current  
Output Swing vs. Sinking Current  
10  
1
10  
V
S
= 2.7V  
V
S
= 2.7V  
1
125°C  
125°C  
85°C  
85°C  
0.1  
0.1  
0.01  
25°C  
25°C  
10  
-40°C  
-40°C  
0.01  
0.1  
1
I
10  
(mA)  
100  
100  
100  
0.1  
1
100  
I
(mA)  
SOURCE  
SINK  
Figure 6.  
Figure 7.  
Output Swing vs. Sourcing Current  
Output Swing vs. Sinking Current  
10  
1
10  
1
V
= ±5V  
S
V
= ±5V  
S
125°C  
125°C  
-40°C  
85°C  
0.1  
0.1  
85°C  
25°C  
25°C  
10  
-40°C  
0.01  
0.01  
0.1  
1
I
10  
(mA)  
0.1  
1
100  
I
(mA)  
SOURCE  
SINK  
Figure 8.  
Figure 9.  
Output Swing vs. Sourcing Current  
Output Swing vs. Sinking Current  
10  
1
10  
1
V
= ±15V  
V = ±15V  
S
S
125°C  
125°C  
-40°C  
85°C  
0.1  
0.1  
25°C  
85°C  
-40°C  
25°C  
10  
0.01  
0.01  
0.1  
1
I
10  
(mA)  
0.1  
1
100  
I
(mA)  
SOURCE  
SINK  
Figure 10.  
Figure 11.  
8
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
VOS Distribution  
VOS vs. VCM (Unit 1)  
12  
-0.5  
-0.7  
-0.9  
-1.1  
-1.3  
-1.5  
-1.7  
-1.9  
-2.1  
-2.3  
-2.5  
V
= 2.7V  
S
V
= ±5V  
S
10  
8
-40°C  
6
25°C  
85°C  
4
2
125°C  
0
-1  
-1  
-6  
0
1
2
3
4
4
6
-3  
-2  
-1  
0
1
2
3
V
(mV)  
V
(V)  
OS  
CM  
Figure 12.  
VOS vs. VCM (Unit 2)  
= 2.7V  
Figure 13.  
VOS vs. VCM (Unit 3)  
= 2.7V  
0
-0.5  
-0.7  
-0.9  
-1.1  
-1.3  
-1.5  
-1.7  
-1.9  
-2.1  
-2.3  
-2.5  
V
S
V
S
-0.1  
-0.2  
-40°C  
-0.3  
-0.4  
-0.5  
25°C  
85°C  
85°C  
-40°C  
125°C  
-0.6  
25°C  
125°C  
125°C  
-0.7  
-0.8  
-40°C  
-1  
0
1
2
3
4
0
1
2
3
V
(V)  
CM  
V
(V)  
CM  
Figure 14.  
VOS vs. VCM (Unit 1)  
= ±5V  
Figure 15.  
VOS vs. VCM (Unit 2)  
= ±5V  
-1  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
V
S
V
S
-1.25  
-1.5  
-1.75  
-2  
-40°C  
85°C  
25°C  
-40°C  
125°C  
25°C  
85°C  
125°C  
-2.25  
-2.5  
-6  
-4  
-2  
2
4
6
0
-4  
-2  
0
0
4
V
CM  
(V)  
V
(V)  
CM  
Figure 16.  
Figure 17.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
VOS vs. VCM (Unit 2)  
VOS vs. VCM (Unit 1)  
= ±15V  
-0.5  
-1  
-1.25  
-1.5  
V
V
= ±5V  
S
S
-0.75  
-1  
-40°C  
-40°C  
-1.25  
-1.5  
-1.75  
-2  
25°C  
25°C  
-1.75  
-2  
85°C  
85°C  
125°C  
125°C  
-2.25  
-2.5  
-2.25  
-6  
-4  
-2  
2
4
6
0
-20 -15 -10 -5  
0
5
10 15 20  
VCM (V)  
V
CM  
(V)  
Figure 18.  
Figure 19.  
VOS vs. VCM (Unit 2)  
= ±15V  
VOS vs. VCM (Unit 3)  
V = ±15V  
S
0
-0.1  
-0.2  
-0.5  
-0.7  
-0.9  
V
S
-40°C  
125°C  
125°C  
85°C  
-0.3  
-0.4  
-1.1  
-1.3  
25°C  
25°C  
-0.5  
-1.5  
-40°C  
-0.6  
-0.7  
-1.7  
-1.9  
85°C  
-0.8  
-2.1  
-0.9  
-1  
-2.3  
-2.5  
-20 -15 -10 -5  
0
5
10 15 20  
-20 -15 -10 -5  
0
5
10 15 20  
V
CM  
(V)  
V
CM  
(V)  
Figure 20.  
Figure 21.  
VOS vs. VS (Unit 1)  
VOS vs. VS (Unit 2)  
-1.1  
-1.3  
-1.5  
0
-
-
V
= V +0.5V  
CM  
V
= V +0.5V  
CM  
-40°C  
-0.1  
-0.2  
25°C  
-1.7  
-1.9  
-2.1  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
85°C  
85°C  
125°C  
25°C  
-40°C  
-2.3  
-2.5  
125°C  
0
5
10 15 20 25 30 35 40  
(V)  
0
10  
20  
(V)  
30  
40  
V
V
S
S
Figure 22.  
Figure 23.  
10  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
VOS vs. VS (Unit 3)  
VOS vs. VS (Unit 1)  
-1  
-1.2  
-1.4  
0
-
= V +0.5V  
+
V
V
= V -0.5V  
CM  
CM  
-0.5  
-1  
-40°C  
-40°C  
25°C  
-1.6  
-1.8  
-1.5  
-2  
25°C  
85°C  
85°C  
125°C  
125°C  
-2  
-2.5  
0
5
10 15 20 25 30 35 40  
0
0
0
5
10 15 20 25 30 35 40  
(V)  
V
S
(V)  
V
S
Figure 24.  
Figure 25.  
VOS vs. VS (Unit 2)  
VOS vs. VS (Unit 3)  
-1  
0
-0.1  
-0.2  
+
V
= V -0.5V  
V
= V+ -0.5V  
CM  
CM  
-1.2  
-40°C  
-0.3  
-0.4  
-1.4  
-1.6  
-1.8  
85°C  
-0.5  
25°C  
125°C  
-0.6  
-0.7  
25°C  
-0.8  
85°C  
-2  
-40°C  
-0.9  
-1  
125°C  
10 15 20 25 30 35 40  
(V)  
-2.2  
0
5
5
10 15 20 25 30 35 40  
(V)  
V
V
S
S
Figure 26.  
Figure 27.  
IBIAS vs. VCM  
IBIAS vs. VCM  
1
1
V
= 2.7V  
S
V
= ±5V  
-40°C  
S
25°C  
0.5  
0.5  
85°C  
125°C  
0
-0.5  
-1  
0
-0.5  
-1  
125°C  
85°C  
25°C  
-40°C  
-1.5  
-1.5  
0.5  
1
1.5  
(V)  
2
2.5  
3
-5  
-3  
-1  
1
3
5
V
V
CM  
(V)  
CM  
Figure 28.  
Figure 29.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
IBIAS vs. VCM  
IBIAS vs. VS  
-1  
1
-
V
= ±15V  
V
= V +0.5V  
S
CM  
-1.1  
0.5  
85°C  
125°C  
25°C  
-1.2  
-1.3  
-1.4  
0
-0.5  
-1  
-40°C  
85°C  
125°C  
-1.5  
-1.6  
-40°C  
25°C  
-1.5  
-15  
0
5
10 15 20 25 30 35 40  
(V)  
-10  
-5  
0
5
10  
15  
40  
4
V
S
V
(V)  
CM  
Figure 30.  
Figure 31.  
IBIAS vs. VS  
IS vs. VCM (LM7321)  
0.7  
0.65  
0.6  
1.8  
1.6  
1.4  
1.2  
+
V
= V -0.5V  
V
= 2.7V  
S
125°C  
CM  
85°C  
25°C  
-40°C  
0.55  
0.5  
1
0.8  
0.6  
0.4  
0.2  
0
25°C  
-40°C  
85°C  
0.45  
125°C  
30  
0.4  
0.35  
0.3  
0
10  
20  
(V)  
-1  
0
1
2
3
4
V
S
V
CM  
(V)  
Figure 32.  
Figure 33.  
IS vs. VCM (LM7321)  
= ±5V  
IS vs. VCM (LM7322)  
3.5  
3
2
1.8  
1.6  
1.4  
1.2  
1
V
125°C  
S
85°C  
25°C  
2.5  
2
125°C  
85°C  
-40°C  
1.5  
1
25°C  
0.8  
0.6  
0.4  
0.2  
0
-40°C  
0.5  
0
V
= 2.7V  
S
-1  
0
1
2
3
-6  
-4  
-2  
0
2
4
6
V
(V)  
CM  
V
CM  
(V)  
Figure 34.  
Figure 35.  
12  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
IS vs. VCM (LM7322)  
IS vs. VCM (LM7321)  
4
2.5  
2
V
= ±5V  
S
V
= ±15V  
S
3.5  
3
2.5  
2
125°C  
1.5  
125°C  
85°C  
85°C  
25°C  
1
1.5  
1
25°C  
-40°C  
-40°C  
0.5  
0.5  
0
0
-6  
-4  
-2  
2
4
6
0
-20 -15 -10 -5  
0
5
10 15 20  
V
(V)  
CM  
V
CM  
(V)  
Figure 36.  
Figure 37.  
IS vs. VCM (LM7322)  
IS vs. VS (LM7321)  
4.5  
4
1.6  
1.4  
1.2  
-
V
= ±15V  
25°C  
S
V
= V +0.5V  
CM  
125°C  
3.5  
3
85°C  
1
0.8  
0.6  
2.5  
25°C  
85°C  
-40°C  
2
25°C  
1.5  
-40°C  
0.4  
1
0.5  
0
0.2  
0
-20 -15 -10 -5  
0
5
10 15 20  
5
15  
25  
30  
0
10  
20  
(V)  
30  
40  
V
CM  
(V)  
V
S
Figure 38.  
IS vs. VS (LM7322)  
Figure 39.  
IS vs. VS (LM7321)  
2.5  
2
4.5  
4
+
V
= V -0.5V  
CM  
125°C  
3.5  
85°C  
125°C  
3
85°C  
1.5  
1
25°C  
2.5  
25°C  
-40°C  
2
-40°C  
1.5  
1
0.5  
0
0.5  
0
+
V
= V -0.5V  
CM  
5
5
15  
25  
35  
0
10 15 20 25 30 35 40  
(V)  
0
10  
20  
(V)  
30  
40  
V
V
S
S
Figure 40.  
Figure 41.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
IS vs. VS (LM7322)  
Positive Output Swing vs. Supply Voltage  
0.3  
3
85°C  
R
L
= 2 kW  
125°C  
125°C  
2.5  
0.25  
0.2  
85°C  
25°C  
2
1.5  
1
25°C  
-40°C  
0.15  
0.1  
-40°C  
0.05  
0.5  
0
-
= V +0.5V  
V
CM  
5
0
0
10 15 20 25 30 35 40  
(V)  
0
10  
20  
(V)  
30  
40  
V
S
V
S
Figure 42.  
Figure 43.  
Positive Output Swing vs. Supply Voltage  
Negative Output Swing vs. Supply Voltage  
0.16  
0.16  
125°C  
R
= 2 kW  
R
= 10 kW  
125°C  
L
L
0.14  
0.12  
0.1  
0.14  
0.12  
85°C  
25°C  
85°C  
0.1  
0.08  
0.06  
25°C  
-40°C  
0.08  
0.06  
0.04  
0.02  
0
-40°C  
0.04  
0.02  
0
0
5
10 15 20 25 30 35 40  
(V)  
0
10  
20  
30  
40  
V
S
V
(V)  
S
Figure 44.  
Figure 45.  
Open Loop Frequency Response with Various Capacitive  
Load  
Negative Output Swing vs. Supply Voltage  
0.07  
0.06  
0.05  
140  
120  
100  
80  
158  
135  
113  
90  
V
R
= ê15V  
= 10 MW  
S
R
= 10 kW  
L
L
125°C  
25°C  
1000 pF  
500 pF  
200 pF  
PHASE  
GAIN  
85°C  
100 pF  
50 pF  
0.04  
0.03  
0.02  
60  
68  
20 pF  
-40°C  
40  
45  
50 pF  
100 pF  
200 pF  
500 pF  
1000 pF  
20  
23  
0.01  
0
0
0
-20  
-23  
0
10  
20  
(V)  
30  
40  
1k  
10k  
100k  
1M  
10M  
100M  
V
S
FREQUENCY (Hz)  
Figure 46.  
Figure 47.  
14  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
Open Loop Frequency Response with Various Resistive  
Open Loop Frequency Response with Various Supply  
Voltage  
Load  
140  
120  
100  
80  
140  
120  
100  
80  
158  
135  
113  
90  
158  
135  
113  
90  
V
C
= ê15V  
= 20 pF  
R
C
= 2 kW  
= 20 pF  
PHASE  
S
L
L
L
PHASE  
10 kW  
600W  
600W  
V
= 30V  
S
2 kW  
GAIN  
V
= 10V  
S
V
= 2.7V  
S
60  
60  
68  
68  
V
= 30V  
GAIN  
S
100 kW  
10 MW  
40  
40  
45  
45  
V
= 2.7V  
S
2 kW  
20  
20  
23  
23  
0
0
0
0
V
= 10V  
1M  
S
-20  
-23  
100M  
-20  
-23  
100M  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48.  
Figure 49.  
Phase Margin vs. Capacitive Load  
CMRR vs. Frequency  
70  
60  
50  
40  
100  
90  
V
S
= ±15V  
R
= 600W  
L
80  
70  
R
L
= 2 kW  
60  
50  
40  
30  
20  
10  
30  
20  
10  
R
= 10 MW, 10 kW, 100 kW  
L
V
= ±15V  
S
0
10  
0
10k  
100k  
100  
1k  
1M  
10  
1000  
100  
FREQUENCY (Hz)  
CAPACITIVE LOAD (pF)  
Figure 50.  
Figure 51.  
+PSRR vs. Frequency  
PSRR vs. Frequency  
120  
100  
100  
90  
V
V
= 2.7V  
V
V
= 30V  
S
S
= 0.7V  
= 2V  
CM  
CM  
80  
70  
V
V
= 10V  
S
V
V
= 10V  
S
= 8V  
CM  
80  
60  
= 2V  
V
V
= 2.7V  
CM  
S
60  
50  
V
= 30V  
S
= 2V  
CM  
V
= 28V  
CM  
40  
30  
40  
20  
20  
10  
0
0
10  
10k  
100  
1k  
100k  
1M  
10k  
1k  
100k  
1M  
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52.  
Figure 53.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
Small Signal Step Response  
Large Signal Step Response  
12,200 pF  
V
= ±5V  
S
V
A
= +1  
1000 pF  
8,600 pF  
2,200 pF  
750 pF  
500 pF  
V
= ±15V, A = +1  
V
S
330 pF  
100 pF  
10 pF  
10 pF  
INPUT  
INPUT  
200 ns/DIV  
Figure 54.  
5 ms/DIV  
Figure 55.  
Input Referred Noise Density vs. Frequency  
Input Referred Noise Density vs. Frequency  
1000  
100  
10  
1
1000  
100  
10  
100  
10  
1
V
= ±5V  
V
= 2.7V  
S
S
100  
10  
1
CURRENT  
VOLTAGE  
VOLTAGE  
CURRENT  
0.1  
100k  
0.1  
100k  
1
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 56.  
Figure 57.  
Input Referred Noise Density vs. Frequency  
THD+N vs. Frequency  
= +2  
1000  
100  
10  
1
0
A
V
V
V
= ±15V  
S
-10  
= 520 mV  
IN  
PP  
R
= 100 kW  
L
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
10  
1
CURRENT  
VOLTAGE  
V
= 2.7V, V = 0.8V  
CM  
S
V
= ±5V  
S
V
S
= ±15V  
10k  
0.1  
100k  
1
10  
100  
1k  
10k  
1k  
100k  
1M  
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58.  
Figure 59.  
16  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C.  
THD+N vs. Output Amplitude  
THD+N vs. Output Amplitude  
0
0
-10  
-20  
V
V
= 2.7V  
S
V
= ±5V  
f = 1 kHz  
S
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
= 0.8V  
CM  
f = 1 kHz  
R
A
= 100 kW  
L
R
= 100 kW  
= +2  
L
V
-30  
-40  
-50  
A
= +2  
V
-60  
-70  
-80  
-90  
1
0.001  
0.01  
0.1  
1
10  
0.1  
10  
100  
0.001 0.01  
OUTPUT AMPLITUDE (V  
)
OUTPUT AMPLITUDE (V  
)
PP  
PP  
Figure 60.  
Figure 61.  
THD+N vs. Output Amplitude  
Crosstalk Rejection vs. Frequency  
0
90  
80  
70  
V
= ±15V  
S
-10  
-20  
f = 1 kHz  
R
= 100 kW  
L
A
= +2  
V
V
= ±15V  
S
-30  
-40  
-50  
60  
50  
40  
30  
V
= ±5V  
+
S
V
V
= 1.8V  
= 0.9V  
-60  
CM  
-70  
-80  
20  
10  
0
-90  
1
1k  
10k  
100k  
1M  
10M  
100M  
0.1  
10  
100  
0.001 0.01  
FREQUENCY (Hz)  
OUTPUT AMPLITUDE (V  
)
PP  
Figure 62.  
Figure 63.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
APPLICATION INFORMATION  
DRIVING CAPACITIVE LOADS  
The LM7321/LM7321Q/LM7322/LM7322Q are specifically designed to drive unlimited capacitive loads without  
oscillations as shown in Figure 64.  
Figure 64. ±5% Settling Time vs. Capacitive Load  
In addition, the output current handling capability of the device allows for good slewing characteristics even with  
large capacitive loads as shown in Figure 65 and Figure 66.  
Figure 65. +SR vs. Capacitive Load  
18  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Figure 66. SR vs. Capacitive Load  
The combination of these features is ideal for applications such as TFT flat panel buffers, A/D converter input  
amplifiers, etc.  
However, as in most op amps, addition of a series isolation resistor between the op amp and the capacitive load  
improves the settling and overshoot performance.  
Output current drive is an important parameter when driving capacitive loads. This parameter will determine how  
fast the output voltage can change. Referring to the Slew Rate vs. Capacitive Load Plots (Typical Performance  
Characteristics section), two distinct regions can be identified. Below about 10,000 pF, the output Slew Rate is  
solely determined by the op amp’s compensation capacitor value and available current into that capacitor.  
Beyond 10 nF, the Slew Rate is determined by the op amp’s available output current. Note that because of the  
lower output sourcing current compared to the sinking one, the Slew Rate limit under heavy capacitive loading is  
determined by the positive transitions. An estimate of positive and negative slew rates for loads larger than 100  
nF can be made by dividing the short circuit current value by the capacitor.  
For the LM7321/LM7321Q/LM7322/LM7322Q, the available output current increases with the input overdrive.  
Referring to Figure 67 and Figure 68, Output Short Circuit Current vs. Input Overdrive, it can be seen that both  
sourcing and sinking short circuit current increase as input overdrive increases. In a closed loop amplifier  
configuration, during transient conditions while the fed back output has not quite caught up with the input, there  
will be an overdrive imposed on the input allowing more output current than would normally be available under  
steady state condition. Because of this feature, the op amp’s output stage quiescent current can be kept to a  
minimum, thereby reducing power consumption, while enabling the device to deliver large output current when  
the need arises (such as during transients).  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM7321 LM7322  
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Figure 67. Output Short Circuit Sourcing Current vs. Input Overdrive  
Figure 68. Output Short Circuit Sinking Current vs. Input Overdrive  
Figure 69 shows the output voltage, output current, and the resulting input overdrive with the device set for AV =  
+1 and the input tied to a 1 VPP step function driving a 47 nF capacitor. As can be seen, during the output  
transition, the input overdrive reaches 1V peak and is more than enough to cause the output current to increase  
to its maximum value (see Figure 67 and Figure 68 plots). Note that because of the larger output sinking current  
compared to the sourcing one, the output negative transition is faster than the positive one.  
20  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Figure 69. Buffer Amplifier Scope Photo  
ESTIMATING THE OUTPUT VOLTAGE SWING  
It is important to keep in mind that the steady state output current will be less than the current available when  
there is an input overdrive present. For steady state conditions, the Output Voltage vs. Output Current plot  
(Typical Performance Characteristics section) can be used to predict the output swing. Figure 70 and Figure 71  
show this performance along with several load lines corresponding to loads tied between the output and ground.  
In each cases, the intersection of the device plot at the appropriate temperature with the load line would be the  
typical output swing possible for that load. For example, a 1 kload can accommodate an output swing to within  
250 mV of Vand to 330 mV of V+ (VS = ±15V) corresponding to a typical 29.3 VPP unclipped swing.  
Figure 70. Output Sourcing Characteristics with Load Lines  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
Figure 71. Output Sinking Characteristics with Load Lines  
SETTLING TIME WITH LARGE CAPACITIVE LOADS  
Figure 72 below shows a typical application where the LM7321/LM7321Q/LM7322/LM7322Q is used as a buffer  
amplifier for the VCOM signal employed in a TFT LCD flat panel:  
Figure 72. VCOM Driver Application Schematic  
Figure 73 shows the time domain response of the amplifier when used as a VCOM buffer/driver with VREF at  
ground. In this application, the op amp loop will try and maintain its output voltage based on the voltage on its  
non-inverting input (VREF) despite the current injected into the TFT simulated load. As long as this load current is  
within the range tolerable by the LM7321/LM7321Q/LM7322/LM7322Q (45 mA sourcing and 65 mA sinking for  
±5V supplies), the output will settle to its final value within less than 2 μs.  
22  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Figure 73. VCOM Driver Performance Scope Photo  
OUTPUT SHORT CIRCUIT CURRENT AND DISSIPATION ISSUES  
The LM7321/LM7321Q/LM7322/LM7322Q output stage is designed for maximum output current capability. Even  
though momentary output shorts to ground and either supply can be tolerated at all operating voltages, longer  
lasting short conditions can cause the junction temperature to rise beyond the absolute maximum rating of the  
device, especially at higher supply voltage conditions. Below supply voltage of 6V, the output short circuit  
condition can be tolerated indefinitely.  
With the op amp tied to a load, the device power dissipation consists of the quiescent power due to the supply  
current flow into the device, in addition to power dissipation due to the load current. The load portion of the  
power itself could include an average value (due to a DC load current) and an AC component. DC load current  
would flow if there is an output voltage offset, or the output AC average current is non-zero, or if the op amp  
operates in a single supply application where the output is maintained somewhere in the range of linear  
operation.  
Therefore:  
PTOTAL = PQ + PDC + PAC  
PQ = IS · VS  
Op Amp Quiescent Power Dissipation  
DC Load Power  
PDC = IO · (Vr - Vo)  
PAC = See Table 1  
AC Load Power  
where:  
IS: Supply Current  
VS: Total Supply Voltage (V+ V)  
VO: Average Output Voltage  
Vr: V+ for sourcing and Vfor sinking current  
Table 1 shows the maximum AC component of the load power dissipated by the op amp for standard Sinusoidal,  
Triangular, and Square Waveforms:  
Table 1. Normalized AC Power Dissipated in the Output Stage for Standard Waveforms  
PAC (W./V2)  
Sinusoidal  
50.7 x 103  
Triangular  
46.9 x 103  
Square  
62.5 x 103  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
2
The table entries are normalized to VS /RL. To figure out the AC load current component of power dissipation,  
2
simply multiply the table entry corresponding to the output waveform by the factor VS /RL. For example, with  
±12V supplies, a 600load, and triangular waveform power dissipation in the output stage is calculated as:  
PAC = (46.9 x 103) · (242/600) = 45.0 mW  
(1)  
The maximum power dissipation allowed at a certain temperature is a function of maximum die junction  
temperature (TJ(MAX)) allowed, ambient temperature TA, and package thermal resistance from junction to ambient,  
θJA.  
TJ(MAX) - TA  
PD(MAX)  
=
qJA  
(2)  
For the LM7321/LM7321Q/LM7322/LM7322Q, the maximum junction temperature allowed is 150°C at which no  
power dissipation is allowed. The power capability at 25°C is given by the following calculations:  
For VSSOP package:  
150°C œ 25°C  
= 0.53W  
PD(MAX)  
=
235°C/W  
(3)  
(4)  
For SOIC package:  
150°C œ 25°C  
PD(MAX)  
=
= 0.76W  
165°C/W  
Similarly, the power capability at 125°C is given by:  
For VSSOP package:  
150°C œ 125°C  
PD(MAX)  
=
= 0.11W  
235°C/W  
(5)  
(6)  
For SOIC package:  
150°C œ 125°C  
PD(MAX)  
=
= 0.15W  
165°C/W  
Figure 74 shows the power capability vs. temperature for VSSOP and SOIC packages. The area under the  
maximum thermal capability line is the operating area for the device. When the device works in the operating  
area where PTOTAL is less than PD(MAX), the device junction temperature will remain below 150°C. If the  
intersection of ambient temperature and package power is above the maximum thermal capability line, the  
junction temperature will exceed 150°C and this should be strictly prohibited.  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
Operating area  
0
-40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
Figure 74. Power Capability vs. Temperature  
When high power is required and ambient temperature can't be reduced, providing air flow is an effective  
approach to reduce thermal resistance therefore to improve power capability.  
24  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
www.ti.com  
SNOSAW8D MAY 2008REVISED MARCH 2013  
Other Application Hints  
The use of supply decoupling is mandatory in most applications. As with most relatively high speed/high output  
current Op Amps, best results are achieved when each supply line is decoupled with two capacitors; a small  
value ceramic capacitor (0.01 μF) placed very close to the supply lead in addition to a large value Tantalum or  
Aluminum (> 4.7 μF). The large capacitor can be shared by more than one device if necessary. The small  
ceramic capacitor maintains low supply impedance at high frequencies while the large capacitor will act as the  
charge "bucket" for fast load current spikes at the op amp output. The combination of these capacitors will  
provide supply decoupling and will help keep the op amp oscillation free under any load.  
SIMILAR HIGH OUTPUT DEVICES  
The LM7332 is a dual rail-to-rail amplifier with a slightly lower GBW capable of sinking and sourcing 100 mA. It is  
available in SOIC and VSSOP packages.  
The LM4562 is dual op amp with very low noise and 0.7 mV voltage offset.  
The LME49870 and LME49860 are single and dual low noise amplifiers that can work from ±22 volt supplies.  
OTHER HIGH PERFORMANCE SOT-23 AMPLIERS  
The LM7341 is a 4 MHz rail-to-rail input and output part that requires only 0.6 mA to operate, and can drive  
unlimited capacitive load. It has a voltage gain of 97 dB, a CMRR of 93 dB, and a PSRR of 104 dB.  
The LM6211 is a 20 MHz part with CMOS input, which runs on ±12 volt or 24 volt single supplies. It has rail-to-  
rail output and low noise.  
The LM7121 has a gain bandwidth of 235 MHz.  
Detailed information on these parts can be found at www.ti.com.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM7321 LM7322  
 
LM7321, LM7322  
SNOSAW8D MAY 2008REVISED MARCH 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision C (March 2013) to Revision D  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 25  
26  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LM7321 LM7322  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
LM7321MA/NOPB  
LM7321MAX/NOPB  
LM7321MF/NOPB  
LM7321MFE/NOPB  
LM7321MFX/NOPB  
LM7321QMF/NOPB  
LM7321QMFE/NOPB  
LM7321QMFX/NOPB  
LM7322MA/NOPB  
LM7322MAX/NOPB  
LM7322MM/NOPB  
LM7322MME/NOPB  
LM7322MMX/NOPB  
LM7322QMA/NOPB  
LM7322QMAX/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOIC  
SOIC  
D
8
8
5
5
5
5
5
5
8
8
8
8
8
8
8
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
LM732  
1MA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
2500  
1000  
250  
Green (RoHS  
& no Sb/Br)  
LM732  
1MA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
D
Green (RoHS  
& no Sb/Br)  
AU4A  
AU4A  
AU4A  
AR8A  
AR8A  
AR8A  
Green (RoHS  
& no Sb/Br)  
3000  
1000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
95  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM732  
2MA  
SOIC  
D
2500  
1000  
250  
Green (RoHS  
& no Sb/Br)  
LM732  
2MA  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
Green (RoHS  
& no Sb/Br)  
AZ4A  
AZ4A  
AZ4A  
Green (RoHS  
& no Sb/Br)  
3500  
95  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM732  
2QMA  
SOIC  
D
2500  
Green (RoHS  
& no Sb/Br)  
LM732  
2QMA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM7321, LM7321-Q1, LM7322, LM7322-Q1 :  
Catalog: LM7321, LM7322  
Automotive: LM7321-Q1, LM7322-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM7321MAX/NOPB  
LM7321MF/NOPB  
SOIC  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
5
5
5
5
8
8
8
8
8
2500  
1000  
250  
330.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
178.0  
178.0  
330.0  
330.0  
12.4  
8.4  
6.5  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
6.5  
5.3  
5.3  
5.3  
6.5  
5.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
5.4  
3.4  
3.4  
3.4  
5.4  
2.0  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
2.0  
1.4  
1.4  
1.4  
2.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
8.0  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
D
LM7321MFE/NOPB  
LM7321MFX/NOPB  
LM7321QMF/NOPB  
LM7321QMFE/NOPB  
LM7321QMFX/NOPB  
LM7322MAX/NOPB  
LM7322MM/NOPB  
LM7322MME/NOPB  
LM7322MMX/NOPB  
LM7322QMAX/NOPB  
8.4  
8.0  
3000  
1000  
250  
8.4  
8.0  
8.4  
8.0  
8.4  
8.0  
3000  
2500  
1000  
250  
8.4  
8.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
12.0  
12.0  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
3500  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM7321MAX/NOPB  
LM7321MF/NOPB  
SOIC  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
5
5
5
5
8
8
8
8
8
2500  
1000  
250  
367.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
367.0  
210.0  
210.0  
367.0  
367.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
367.0  
185.0  
185.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
D
LM7321MFE/NOPB  
LM7321MFX/NOPB  
LM7321QMF/NOPB  
LM7321QMFE/NOPB  
LM7321QMFX/NOPB  
LM7322MAX/NOPB  
LM7322MM/NOPB  
LM7322MME/NOPB  
LM7322MMX/NOPB  
LM7322QMAX/NOPB  
3000  
1000  
250  
3000  
2500  
1000  
250  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
3500  
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY