LM74670-Q1 [TI]

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器;
LM74670-Q1
型号: LM74670-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器

栅极驱动 控制器 二极管 驱动器
文件: 总26页 (文件大小:1428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
LM74670-Q1 IQ 智能二极管整流器控制器  
1 特性  
3 说明  
1
符合 AEC-Q100 标准,其中包括以下内容:  
LM74670-Q1 是一种控制器器件,可在交流发电机的  
全桥或半桥整流器架构中与 N 通道 MOSFET 搭配使  
用。它旨在驱动外部 MOSFET 以模拟理想二极管。此  
方案独一无二的优势在于其并无接地基准,因此其具有  
IQ。采用全桥或半桥整流器和交流发电机的肖特基  
二极管可以替换为 LM74670-Q1 解决方案,以避免正  
向导电二极管损耗并使交流/直流转换器更加高效。  
器件温度 1 级:-40℃ 至 +125℃ 的环境工作温  
度范围  
超出人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
器件充电器件模型 (CDM) ESD 分类等级 C4B  
峰值输入交流电压:42V  
IQ  
LM74670-Q1 控制器为外部 N 通道 MOSFET 提供栅  
极驱动,并配有快速响应内部比较器,可使 MOSFET  
栅极在反极性情况下放电。此器件支持频率高达  
300Hz 的交流信号。  
适用于外部 N 通道 MOSFET 的电荷泵栅极驱动器  
与肖特基二极管相比,正向压降和功耗更低  
能够处理频率高达 300Hz 的交流信号  
2 应用  
器件信息(1)  
交流整流器  
器件型号  
封装  
VSSOP (8)  
封装尺寸(标称值)  
交流发电机  
电动工具  
LM74670-Q1  
3.00mm x 5.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
反极性保护  
智能二极管全桥整流器应用  
智能二极管配置  
Q1  
VIN  
VOUT  
S
D
G
AC Input  
GATE DRIVE GATE PULL DOWN  
ANODE  
CATHODE  
LM74670  
VCAPH  
VCAPL  
VCAP  
C
OUT  
LOAD  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSD08  
 
 
 
 
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description .................................................. 7  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 12  
8.1 Typical Rectifier Application ................................... 12  
8.2 Design Requirements.............................................. 16  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 社区资源................................................................ 19  
11.2 ....................................................................... 19  
11.3 静电放电警告......................................................... 19  
11.4 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2015) to Revision A  
Page  
产品预览更改为生产数据................................................................................................................................................ 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
VCAP  
L
1
8
Cathode  
Gate Pull Down  
NC  
2
3
4
7
6
5
VCAPH  
LM74670-Q1  
Gate Drive  
NC  
Anode  
Pin Functions  
PIN NO.  
NAME  
I/O  
DESCRIPTION  
1
2
VcapL  
Charge Pump Output, connect to an external charge pump capacitor  
Gate Pull Down  
Connect to the gate of the external MOSFET for fast turn OFF in the case of  
reverse polarity  
3
4
5
6
7
8
NC  
No connect. Leave floating or connect to Anode pin  
Anode  
NC  
Anode of the diode, connect to source of the external MOSFET  
No connect. Leave floating or connect to gate drive pin  
Gate Drive  
VcapH  
Cathode  
Gate Drive output, Connect to the Gate of the external MOSFET  
Charge Pump Output, connect to an external charge pump capacitor  
Cathode of the diode, connect to Drain of the external MOSFET  
Copyright © 2015, Texas Instruments Incorporated  
3
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-3  
MAX  
45  
UNIT  
V
(2) (3)  
Cathode to Anode (For a 2ms time duration)  
Cathode to Anode (Continuous)(3)  
VcapH to VcapL  
,
-3  
42  
V
-0.3  
-0.3  
-0.3  
-40  
-40  
-65  
7
V
Anode to VcapL  
3
V
Gate Drive, Gate Pull Down to VcapL  
7
V
(4)  
Ambient Temperature (TA-MAX)  
125  
125  
150  
°C  
°C  
°C  
Case Temperature (TC-MAX)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) 42V continuous (and 45V transients for 2ms) absmax condition from Cathode to Anode. Suitable to use with TVS SMBJ28A and  
SMBJ14A at the anode.  
(3) Reverse voltage rating only. There is no positive voltage limitation for the LM74670-Q1 Anode terminal.  
(4) The device performance is ensured over this Ambient Temperature range as long the Case Temperature does not exceed the MAX  
value.  
6.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(2)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge(1)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
42  
UNIT  
Cathode To Anode  
V
Ambient Temperature (TA-MAX)  
Case Temperature (TC-MAX)  
-40  
125  
125  
°C  
°C  
6.4 Thermal Information  
LM74670-Q1  
THERMAL METRIC(1)  
DGK (VSSOP)  
UNIT  
8 PINS  
181  
73  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
102  
11  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
100  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
6.5 Electrical Characteristics  
(1)TA= 25°C unless otherwise noted. Minimum and Maximum limits are specified through test, design, validation or statistical  
correlation. Typical values represent the most likely parametric norm at TA= 25°C and are provided for reference purpose  
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which  
operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits  
and associated test conditions, see the table of Electrical Characteristics.  
4
Copyright © 2015, Texas Instruments Incorporated  
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
Electrical Characteristics (continued)  
(1)TA= 25°C unless otherwise noted. Minimum and Maximum limits are specified through test, design, validation or statistical  
correlation. Typical values represent the most likely parametric norm at TA= 25°C and are provided for reference purpose  
only. VAnode-Cathode= 0.55V for all tests.  
only. VAnode-Cathode= 0.55V for all tests.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VAnode to Cathode  
VcapThreshold  
Minimum Startup Voltage across External MOSFET VGS = 0V  
External MOSFET's Body Diode  
0.48  
V
Charge Pump Capacitor Drive  
Thresholds  
Vcap Upper Threshold  
Vcap Lower Threshold  
VGate to Anode = 2V  
6.3  
5.15  
67  
V
V
IGate up  
Gate Drive Pull up current  
60  
55  
µA  
µA  
IGate down  
Gate Drive pull down current  
during forward voltage  
VGate to Anode = 4V  
62  
IGate pull down  
ICharge  
Gate drive pull down current  
when reverse voltage is sensed  
VGate Pull Down = VAnode + 2V  
VAnode to Cathode = 0.55 V  
Vcap = 6.6V  
160  
46  
mA  
µA  
µA  
Charging current for the charge  
pump capacitor  
40  
IDischarge  
VCAP Current Consumption to  
power the controller when  
MOSFET is ON  
0.95  
TRecovery  
Time to shut off MOSFET when  
VAnode to Cathode = -20 mV  
2.2  
5(2)  
µs  
voltage is reversed (Equivalent to Cgate = 4 nF  
diode reverse recovery time)  
D
Duty Cycle  
Iload = 3 A, TA = 25°C  
98%  
92%  
60  
Iload = 3 A, TA = 125°C  
VAnode to Cathode = -13.5 V  
ILKG  
Iq  
Reverse Leakage Current  
Quiescent Current to GND  
Current into Anode pin  
110(2)  
µA  
µA  
µA  
0
IAnode  
Current into Anode pin when VAnode -  
Cathode = 0.3V.  
30  
(2) Limit applies over the full Operating Temperature Range TA = -40°C to +125°C.  
30 mV  
VANODE > VCATHODE  
VCATHODE > VANODE  
0 mV  
-20 mV  
tTRECOVERY  
t
VGATE  
0 V  
Figure 1. Gate Shut Down Timing in the Event of Reverse Polarity  
Copyright © 2015, Texas Instruments Incorporated  
5
 
 
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
300  
0.465  
0.46  
V_Reverse = 13.5 V  
V_Reverse = 37 V  
250  
200  
150  
100  
50  
0.455  
0.45  
0.445  
0.44  
0.435  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
Figure 2. Reverse Leakage at Negative Voltages  
Figure 3. Anode to Cathode Startup Voltage  
3.25  
3
6.5  
6.25  
6
VCAP H  
VCAP L  
2.75  
2.5  
2.25  
2
5.75  
5.5  
5.25  
5
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (èC)  
D009  
D003  
Figure 4. Reverse Recovery Time (TRecovery  
)
Figure 5. VcapH and VcapL Voltage Threshold  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
-20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Current (A)  
1
0
1
2
3
4
5
6
7
8
9
10  
Current (A)  
D005  
D004  
Figure 6. Duty Cycle of the Output Voltage at Startup  
Figure 7. Duty Cycle of the Output Voltage  
6
Copyright © 2015, Texas Instruments Incorporated  
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
7 Detailed Description  
7.1 Overview  
Using N-Channel MOSFETs with controller ICs can be highly effective and more efficient substitutes of lossy  
diodes in a bridge rectifier application. The LM74670-Q1 is designed to control a single N-Channel MOSFET in a  
full or half bridge rectifier as replacement for diode. In a full bridge rectifier, each diode can be replaced by the  
LM74670-Q1 and a MOSFET. Diodes used in bridge rectifiers cause high power losses associated with the  
forward voltage drop of each diode. In each cycle of sinusoidal AC voltage, two diodes conduct at the same time.  
Power losses during diode forward conduction increase as the output current increases. Diode rectification also  
increases peak current for applications that require high value output capacitance due to charge and discharge  
with the diode drop voltage. The ON state forward voltage loss in a MOSFET depends upon the RDSON of the  
MOSFET. The power losses become substantially lower than diodes for the equivalent current. This solution has  
a small increase in complexity; however it eliminates the need for diode heatsinks and thermal management for  
high power AC bridge rectifier applications.  
The LM74670-Q1 is a zero Iq controller that is combined with an external N-channel MOSFET to replace each  
diode in a bridge rectifier. The voltage across the MOSFET source and drain is constantly monitored by the  
LM74670-Q1 Anode and Cathode pins. An internal charge pump is used to provide the GATE drive for the  
external MOSFET. The forward conduction is through the MOSFET 98% of the time. The forward conduction is  
through the MOSFET body diode for 2% of time when energy is stored in an external charge pump capacitor  
Vcap Figure 9. This stored energy is used to drive the gate of MOSFET. The voltage drop and power losses  
depend on the RDSONof MOSFETs used to replace the rectifier diodes. The LM74670-Q1 has no ground  
reference which makes it identical to a diode.  
7.2 Functional Block Diagram  
Input  
Output  
S
D
G
ANODE  
GATE DRIVE GATE PULL DOWN  
11.5 V  
CATHODE  
VCAP  
L
LOGIC  
Reverse Batt  
Shut Off  
VCAP  
H
Charge  
Pump  
7.3 Feature Description  
7.3.1 During T0  
When power is initially applied, the load current (ID) will flow through the body diode of the MOSFET and produce  
a voltage drop (Vf) during T0 in Figure 8. This forward voltage drop (Vf) across the body diode of the MOSFET is  
used to charge up the charge pump capacitor Vcap. During this time, the charge pump capacitor Vcap is  
charged to a higher threshold of 6.3V (typical).  
Copyright © 2015, Texas Instruments Incorporated  
7
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
VOUT  
Body Diode Voltage Drop  
T0  
tT1t  
FET is ON  
VGS  
FET is OFF  
0 V  
Figure 8. Output Voltage and VGSOperation at 1A Output Current  
7.3.2 During T1  
Once the voltage on the capacitor reaches a higher voltage level of 6.3V (typical), the charge pump is disabled  
and the MOSFET turns ON. The energy stored in the capacitor is used to provide the gate drive for the MOSFET  
(T1 in Figure 8). When the MOSFET is ON, it provides a low resistive path for the drain current to flow and  
minimizes the power dissipation associated with forward conduction. The power losses during the MOSFET ON  
state depend primarily on the RDSON of the selected MOSFET and load current. At time when the capacitor  
voltage reaches its lower threshold VcapL 5.15V (typical), the MOSFET gate turns OFF. The drain current ID will  
then begin to flow through the body diode of the MOSFET, causing the MOSFET body diode voltage drop to  
appear across Anode and Cathode pins. The charge pump circuitry is re-activated and begins charging the Vcap.  
The LM74670-Q1 operation keeps the MOSFET ON at approximately 98% duty cycle (typical) regardless of the  
external charge pump capacitor value. This is the key factor to minimizing the power losses. The forward voltage  
drop during this time is limited by the RDSON of the MOSFET.  
7.3.3 Pin Operation  
7.3.3.1 Anode and Cathode Pins  
The LM74670-Q1 Anode and Cathode pins are connected to the source and drain of the external MOSFET. The  
current into the Anode pin is 30 µA (typical). When power is initially applied, the load current flows through the  
body diode of the external MOSFET, the voltage across Anode and Cathode pins is equal to the forward diode  
drop . The minimum value of diode voltage drop required to enable the charge pump circuitry is 0.48V. Once the  
MOSFET is turned ON, the Anode and Cathode pins constantly sense the voltage difference across the  
MOSFET to determine the magnitude and polarity of the voltage across it. When the MOSFET is on, the voltage  
difference across Anode and Cathode pins depends on the RDSON and load current. If voltage difference across  
source and drain of the external MOSFET becomes negative, this is sensed as a fault condition by Anode and  
Cathode pins and gate is turned off by Gate Pull Down pin as shown in Figure 1. The reverse voltage threshold  
across Anode and Cathode to detect the fault condition is -20 mV. The consistent sensing of voltage polarity  
across the MOSFET enables the LM74670-Q1 to provide a fast response to the power source failure and limit  
the amount and duration of the reverse current flow.  
7.3.3.2 VcapH and VcapL Pins  
VcapH and VcapL are high and low voltage thresholds respectively that the LM74670-Q1 uses to detect when to  
turn the charge pump circuitry ON and OFF. The capacitor charging and discharging time can be correlated to  
the duty cycle of the MOSFET gate. Figure 9 shows the voltage behavior across the Vcap. During the time  
period T0, the capacitor is storing energy from the charge pump. The MOSFET is turned off and current flow is  
only through the body diode during this time period. The conduction though body diode of the MOSFET is for a  
8
Copyright © 2015, Texas Instruments Incorporated  
 
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
Feature Description (continued)  
very small period of time (2% typical) which rules out the chances of overheating the MOSFET, regardless of the  
output current. Once the capacitor voltage reaches its high threshold, the MOSFET is turned off and charge  
pump circuity is deactivated until the Vcap reaches its low voltage threshold (T1). The voltage difference between  
Vcap high and low threshold is typically 1.15V. The LM74670-Q1 charge pump has 46µA charging capability with  
5-8MHz frequency.  
VCAP  
H
1.1 V  
VCAP  
L
VOUT  
Body Diode Voltage Drop  
T0  
tT1t  
Figure 9. Vcap Charging and Discarding by the Charge Pump  
The Vcap current consumption is 0.95µA (typical) to drive the gate. The MOSFET OFF time (T0) and ON time  
(T1) can be calculated using the following expression  
dV  
DT = C  
dI  
(1)  
Where:  
C = Vcap Capacitance  
dV = 1.15V  
dI = 46 µA for charging  
dI = 0.95 µA for discharging  
Note: Temperature dependence of these parameters – The duty cycle is dependent on temperature since the  
capacitance variation over temperature has a direct correlation to the MOSFET OFF and ON periods and the  
frequency. If the capacitor varies 20% the periods and the frequency will also vary by 20% so it is recommended  
to use a quality X7R/COG cap and not to place the cap in close proximity to high temperature devices. The  
variation of the capacitor does not have a thermal impact in the application as the duty cycle does not change.  
7.3.3.3 Gate Drive Pin  
When the charge pump capacitor is charged to the high voltage level of 6.3V (typ), the Gate Drive pin provides a  
67µA (typ) of drive current. When the charge pump capacitor reaches its lower voltage threshold of 5.15V (typ),  
Gate is pulled down to the Anode voltage (Vin). During the positive cycle of AC sinusoid, the MOSFET gate is  
turned ON by the LM74670-Q1 gate drive to ensure the forward conduction through the MOSFET.  
7.3.3.4 Gate Pull Down Pin  
The Gate Pull Down pin of the LM74670-Q1 is connected to the Gate Drive pin in a bridge rectifier application.  
When the controller detects negative polarity during the negative cycle of AC sinusoidal, the Pull-Down quickly  
discharges the MOSFET gate through a discharge transistor. This fast pull down reacts regardless of the Vcap  
charge level. When the negative voltage across the Anode and Cathode pins due to reverse current reaches  
-20mV (typical), the LM74670-Q1 immediately reacts and discharges the MOSFET gate capacitance as shown in  
Figure 10 . The Gate voltage is pulled down to Anode voltage with 160mA pull down current when the negative  
Copyright © 2015, Texas Instruments Incorporated  
9
 
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
cycle of the AC input starts. . A MOSFET with 4nF of effective gate capacitance can be turned off by the  
LM74670-Q1 within 2.2µs (typical). The fast turnoff time minimizes the reverse current flow from MOSFET drain  
by opening the circuit. The reverse leakage current does not exceed 110µA for a constant 13.5V reverse voltage  
across Anode and Cathode pins. The reverse leakage current for a Schottky diode is 15mA under the same  
voltage and temperature conditions.  
Figure 10. Gate Pull Down in the Event of Reverse Polarity  
7.4 Device Functional Modes  
The LM74670-Q1 operates in two modes:  
Body Diode Conduction Mode  
The LM74670-Q1 solution works like a conventional diode during this time with higher forward voltage drop.  
The power dissipation during this time can be given as:  
PDissipation = V  
ì I  
(
ForwardDrop
) (
 
Drain Current  
)
(2)  
However, the current only flows through the body diode while the MOSFET gate is being charged to VGS(TH)  
This conduction is only for 2% duty cycle, therefore it does not cause any thermal issues.  
.
Cì(VcapH- VcapL)  
Body Diode ON Time =  
ICharge Current  
(3)  
The MOSFET Conduction Mode  
The MOSFET is turned on during this time and current flow is only through the MOSFET. The forward voltage  
drop and power losses are limited by the RDSON of the specific MOSFET used in the solution. The LM74670-  
Q1 solution output is comprised of the MOSFET conduction mode for 98% of its duty cycle. This time period  
is given by the following expression:  
Cì(VcapH - VcapL)  
MOSFET ON Time =  
IDischarge Current  
(4)  
10  
Copyright © 2015, Texas Instruments Incorporated  
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
Device Functional Modes (continued)  
7.4.1 Duty Cycle Calculation  
The LM74670-Q1 has an operating duty cycle of 98% at 25 C̊ and >90% at 125 C̊ . The duty cycle doesn’t  
depend on the Vcap capacitance value. However, the variation in capacitance value over temperature has direct  
correlation to the switching frequency between the MOSFET and body diode. If the capacitance value decreases,  
the charging and discharging time will also decrease, causing more frequent switching between body diode and  
the MOSFET condition. The following expression can be used to calculate the duty cycle of the LM74670-Q1:  
(MOSFET ON Time)  
Duty Cycle (%) =  
ì100  
(MOSFET ON Time + Body Diode ON Time)  
(5)  
7.4.2 Startup Voltage  
The LM74670-Q1 will not initiate the charge pump operation if a closed loop system is in standby mode or the  
drain current is smaller than 1mA (typical). This is due to a minimum body diode voltage requirement of the  
LM74670-Q1 controller. If the drain current is too small to produce a minimum voltage drop of 0.48V at 25 ͦC, the  
charge pump circuitry will remain off and the MOSFET will act just like a diode. It is very important to know the  
body diode voltage parameter of a MOSFET before implementing it into the Smart Diode solution. Some N-  
channels MOSFETs have very low body diode voltage at higher temperature. This makes their drain current  
requirement higher to achieve 0.48V across the body diode in order to initiate the LM74670-Q1 controller at  
higher temperatures.  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Typical Rectifier Application  
The LM74670-Q1 can be used with appropriate N-channel MOSFET to replace a diode in a typical rectifier  
application. The rectifier could be industrial for a 12/24AC supply or an automotive rectifier for a single phase or  
three phase field winding controlled alternator. The schematic for a typical implementation is shown in Figure 11  
to implement a full bridge rectifier. The same schematic can also be extended to six legs for a three phase  
alternator rectification. Following considerations need to be made when selecting the appropriate MOSFET for  
this application:  
1. An input voltage of 24V AC can reach a 34V peak. The MOSFET selected should have a VDS greater than  
this voltage.  
2. The Continuous drain current of the MOSFET should be nearly 2.5X IAVG to cover peak currents during  
rectification.  
3. The VGS(TH) threshold voltage of the selected MOSFET should be 3V to ensure error-free operation.  
+OUT  
Q2  
LM74670-Q1  
Q3  
LM74670-Q1  
VCAP  
L
VCAPH  
VCAP  
L
VCAPH  
1 µF  
1 µF  
IN~  
IN~  
Q1  
LM74670-Q1  
Q4  
LM74670-Q1  
VCAP  
L
VCAPH  
VCAP  
L
VCAPH  
1 µF  
1 µF  
œOUT  
Figure 11. Typical Full Bridge Rectifier Application  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
Typical Rectifier Application (continued)  
8.1.1 Design Requirements  
For this design example, use the parameters listed in Table 1 as the input parameters  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input Voltage Range  
Output Voltage  
EXAMPLE VALUE  
4 – 42V peak AC  
rectified positive amplitude  
Maximum Drain current of MOSFET  
3V Max  
Output current range  
Threshold voltage of FET VGS(TH)  
Vcap value  
1µF  
8.1.2 Detailed Design Procedure  
To begin the design process, determine the following:  
8.1.2.1 Design Considerations  
Input voltage range  
Output current range  
Body Diode forward voltage drop for the selected MOSFET  
MOSFET Gate threshold voltage  
8.1.2.2 Capacitor Selection  
A ceramic capacitor should be placed between VcapL and VcapH. The capacitor acts as a holding tank to power  
up the control circuitry when the MOSFET is on.  
When the MOSFET is off, this capacitor is charged up to higher voltage threshold of ~6.3V. Once this voltage is  
reached, the Gate Drive of LM74670-Q1 will provide drive for the external MOSFET. When the MOSFET is ON,  
the voltage across its body diode is collapsed because the forward conduction is through the MOSFET. During  
this time, the capacitor acts as a supply for the Gate Drive to keep the MOSFET ON.  
The capacitor voltage will gradually decay when the MOSFET is ON. Once the capacitor voltage reaches a lower  
voltage threshold of 5.15V, the MOSFET is turned off and the capacitor gets recharged again for the next cycle.  
A capacitor value of 220nF to 2.2uF with X7R/COG characteristic and 16V rating or higher is recommended for  
this application. A higher value capacitor sets longer MOSFET ON time and OFF time; however, the duty cycle  
remains at ~98% for MOSFET ON time irrespective of capacitor value.  
If the Vcap value is 1µF, the MOSFET ON time and OFF time can be calculated using Equation 1 :  
MOSFET ON Time = (1µF x 1.15V)/0.95µA = 1.21 seconds  
Body Diode ON Time = (1µF x 1.15V)/46µA = 25 miliseconds  
(6)  
(7)  
The duty cycle can be calculated using Equation 5 :  
Duty Cycle % = 1.21 sec / (1.21 sec + 0.025sec) = 98%  
(8)  
8.1.2.3 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous Drain current ID, the maximum drain-  
to-source voltage VDS(MAX), the gate-to-source threshold voltage VGS(TH) and the drain-to-source On resistance  
RDSON. The maximum continuous drain current, ID, rating must exceed the maximum continuous load current.  
The rating for the maximum current through the body diode, IS, is typically rated the same as, or slightly higher  
than the drain current, but body diode current only flows for a small period while the MOSFET gate is being  
charged to VGS(TH).The LM74670-Q1 can provide up to 5V VGS to drive the external MOSFET, therefore the VGS  
threshold of the selected MOSFET must be 3V.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
The voltage across the MOSFET's body diode must be higher than 0.48V at low current. The body diode voltage  
for MOFETS typically decreases as the ambient temperature increases. This will increase the source current  
requirement to achieve the minimum body diode drain-to-source voltage for the charge pump to initiate. The  
maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential voltage  
seen in the application. This would include any anticipated fault conditions. Although there are no positive VDS  
limitation. However, it is recommended to use MOSFETS with voltage rating up to 45V for automotive  
applications, since the LM74670-Q1 has a reverse voltage limit of -45V. Table 2 shows the examples of  
recommended MOSFETs to be used with the LM74670-Q1.  
8.1.3 Application Curves  
In the following plots, the input voltage is 20V AC. The output current is 5A for all frequencies.  
VIN (5 V/DIV)  
VGS of Q1 (5 V/DIV)  
VOUT (5 V/DIV)  
Time (5 ms/DIV)  
Figure 12. Response to 60Hz AC Input  
VIN (5 V/DIV)  
VGS of Q1 (5 V/DIV)  
VOUT (5 V/DIV)  
Time (5 ms/DIV)  
Figure 13. Response to 100Hz AC Input  
14  
Copyright © 2015, Texas Instruments Incorporated  
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
VIN (5 V/DIV)  
VGS of Q1 (5 V/DIV)  
VOUT (5 V/DIV)  
Time (2 ms/DIV)  
Figure 14. Response to a 300Hz AC Input  
Copyright © 2015, Texas Instruments Incorporated  
15  
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8.2 Design Requirements  
NOTE  
Startup voltage is the voltage drop is needed for the controller to turn ON. It directly  
influences the Minimum output current at which the MOSFET turns ON.  
Table 2. Recommended MOSFET Examples(1)  
Diode  
Voltage  
@ 2A at  
Voltage Drain  
Vgs  
Threshold  
(V)  
Rdson  
m@ 4.5V  
Part No  
(V)  
Current  
Package; Footprint  
Qual  
Current at 25C  
125C/175C  
CSD17313Q2Q1  
SQJ886EP  
30  
40  
40  
40  
40  
40  
40  
60  
60  
60  
40  
60  
40  
5
60  
29  
23.5  
12  
30  
22  
40  
12  
23  
20  
45  
50  
26  
5.5  
5.6  
6
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.3  
2.5  
2.5  
2.2  
2.2  
3.3  
2.2  
0.65  
0.5  
SON; 2 x 2  
Auto  
PowerPAK SO-8L; 5 x 6  
SO-8; 5 x 6  
Auto  
SQ4184EY  
0.5  
Auto  
Si4122DY  
0.5  
SO-8; 5 x 6  
Auto  
RS1G120MN  
RS1G300GN  
CSD18501Q5A  
SQD40N06-14L  
SQ4850EY  
20.7  
2.5  
3.3  
17  
0.6  
HSOP8; 5 x 6  
Auto  
0.5  
HSOP8; 5 x 6  
Auto  
0.53  
0.5  
SON; 5 x 6  
Industrial  
Auto  
TO-252; 6 x 10  
SO-8; 5 x 6  
31  
0.55  
0.53  
0.48  
0.55  
0.50  
Auto  
CSD18532Q5B  
IPG20N04S4L-07A  
IPB057N06N  
IPD50N04S4L  
3.3  
7.2  
5.7  
7.3  
SON;5 x 6  
Industrial  
Auto  
PG-TDSON-8-10; 5 x 6  
PG-TO263-3; 10 x 15  
PG-TO252-3-313; 6 x10  
Auto  
Auto  
LFPAK56; Power-SO8  
(SOT669); 5 x 6  
BUK9Y3R5-40E  
40  
100  
3.8  
2.1  
0.48  
Auto  
IRF7478PbF-1  
SQJ422EP  
IRL1004  
60  
40  
40  
40  
7
30  
4.3  
6.5  
2.2  
3
2.5  
1
0.55  
0.50  
0.60  
0.65  
SO-8; 5 x 6  
Industrial  
Auto  
75  
PowerPAK SO-8L; 5 x 6  
TO-220AB  
130  
112  
Auto  
AUIRL7736  
3
DirectFET®; 5 x 6  
Auto  
(1) The LM74670-Q1 solution is not limited to the MOSFETs included in this table. It only shows examples of compatible MOSFETs.  
16  
Copyright © 2015, Texas Instruments Incorporated  
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
9 Power Supply Recommendations  
While testing the LM74670-Q1 solution, it is important to use low impedance power supply which allows current  
sinking. If the power supply does not allow current sinking, it would prevent the current flow in the reverse  
direction in the event of reverse polarity. The MOSFET gate won't get pulled down immediately due to the  
absence of reverse current flow.  
10 Layout  
10.1 Layout Guidelines  
The VIN terminal is recommended to have a low-ESR ceramic bypass-capacitor. The typical recommended  
bypass capacitance is a 10-μF ceramic capacitor with a X5R or X7R dielectric.  
The VIN terminal must be tied to the source of the MOSFET using a thick trace or polygon.  
The Anode pin of the LM74670-Q1 is connected to the Source of the MOSFET for sensing.  
The Cathode pin of the LM74670-Q1 is connected to the drain of the MOSFET for sensing.  
The high current path of for this solution is through the MOSFET, therefor it is important to use thick traces for  
source and drain of the MOSFET.  
The charge pump capacitor Vcap must be kept away from the MOSFET to lower the thermal effects on the  
capacitance value.  
The Gate Drive and Gate pull down pins of the LM74670-Q1 must be connected to the MOSFET gate without  
using vias.  
Obtaining acceptable performance with alternate layout schemes is possible, however this layout has been  
shown to produce good results and is intended as a guideline.  
版权 © 2015, Texas Instruments Incorporated  
17  
LM74670-Q1  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
10.2 Layout Example  
1. VcapL  
2. PullDown  
3. NC  
8. Cathode  
7. VcapH  
6. Gate Drive  
5. NC  
4. Anode  
Figure 15. Layout Example  
18  
版权 © 2015, Texas Instruments Incorporated  
LM74670-Q1  
www.ti.com.cn  
ZHCSGN3A SEPTEMBER 2015REVISED OCTOBER 2015  
11 器件和文档支持  
11.1 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74670QDGKRQ1  
LM74670QDGKTQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ZGPK  
ZGPK  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM74670QDGKRQ1  
LM74670QDGKTQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM74670QDGKRQ1  
LM74670QDGKTQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
366.0  
366.0  
364.0  
364.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY