LM74720QDRRRQ1 [TI]

具有有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器 | DRR | 12 | -40 to 125;
LM74720QDRRRQ1
型号: LM74720QDRRRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器 | DRR | 12 | -40 to 125

控制器 二极管
文件: 总28页 (文件大小:3108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
LM74720-Q1 具有有源整流和负载突降保护功能的IQ 汽车类理想二极管控制  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
LM74720-Q1 理想二极管控制器可驱动和控制外部背  
N MOSFET从而模拟具有电源路径开/关控  
制和过压保护功能的理想二极管整流器。3V 65V 的  
宽输入电源电压可保护和控制 12V 24V 汽车类电池  
供电的 ECU。该器件可承受并保护负载免受低至 –  
65V 的负电源电压的影响。集成的理想二极管控制器  
(GATE) 可驱动第一个 MOSFET 来代替肖特基二极  
实现反向输入保护和输出电压保持功能。具有快速  
导通和关断比较器的强大升压稳压器可确保在汽车测试  
ISO16750 LV124期间实现稳健、高效的  
MOSFET 开关性能期间 ECU 会收到输入短时中断  
以及频率高达 100 kHz 的交流叠加输入信号。运行期  
间的低静态电流 35 µA最大值可实现常开型系统设  
计。在电源路径中使用了第二个 MOSFET 的情况下,  
该器件允许使用 EN 引脚实现负载断开控制。EN 处  
于低电平时静态电流降至 3.3 μA最大值。该器  
件具有可调节过压切断保护功能可提供负载突降保  
护。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
3V 65V 输入范围  
• 反向输入保护低65V  
• 低静态电流运行35 µA最大值)  
3.3 µA最大值低关断电流EN = 低电平)  
17 mV 阳极至阴极正向压降调节下理想二极管正  
常运行  
• 驱动外部背对N MOSFET  
• 集成29 mA 升压稳压器  
• 快速响应反向电流阻断0.5 µs  
• 高100 kHz 的有源整流  
• 可调节过压保护  
• 采用合适TVS 二极管符合汽ISO7637 瞬态  
要求  
• 采用节省空间12 WSON 封装  
LM74721-Q1 引脚对引脚兼容  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
LM74720-Q1  
WSON (12)  
3.0mm × 3.0mm  
2 应用  
• 汽车电池保护  
ADAS 域控制器  
出色的音频放大器  
音响主机  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
网关  
Q1  
Q1  
Q2  
VBATT  
12 V  
VOUT  
VBATT  
12 V  
VOUT  
PD  
C VS CAP LX  
GATE  
A
D1  
C VS CAP LX  
PD  
GATE  
A
D1  
SMBJ36CA  
SMBJ36CA  
VSNS  
SW  
VSNS  
SW  
R1  
BATT_MON  
LM74720-Q1  
GND  
R1  
BATT_MON  
LM74720-Q1  
GND  
R2  
EN  
R2  
ON OFF  
OV  
EN  
R3  
ON OFF  
OV  
R3  
具有开关输出的IQ 理想二极管  
IQ 理想二极管  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFH8  
 
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
9.1 Application Information............................................. 14  
9.2 Typical 12-V Reverse Battery Protection  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................11  
8.4 Device Functional Mode (Shutdown Mode)..............13  
9 Application and Implementation..................................14  
Application...................................................................14  
9.3 Do's and Don'ts.........................................................22  
10 Power Supply Recommendations..............................23  
10.1 Transient Protection................................................23  
10.2 TVS Selection for 12-V Battery Systems................ 24  
10.3 TVS Selection for 24-V Battery Systems................ 24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 第三方产品免责声明................................................26  
12.2 接收文档更新通知................................................... 26  
12.3 支持资源..................................................................26  
12.4 Trademarks.............................................................26  
12.5 Electrostatic Discharge Caution..............................26  
12.6 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (January 2022) to Revision B (March 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Changes from Revision * (September 2021) to Revision A (January 2022)  
Page  
Updated the Electrical Characteristics and Switching Characteristics with specification limits.......................... 4  
Added the Typical Characteristics section..........................................................................................................7  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
12  
11  
10  
1
2
3
4
GATE  
A
C
VS  
CAP  
LX  
VSNS  
SW  
RTN  
9
8
7
Exposed  
Thermal  
Pad  
PD  
5
6
OV  
EN  
GND  
5-1. WSON 12-Pin DRR Transparent Top View  
5-1. Pin Functions  
PIN  
LM74720-Q1  
TYPE  
DESCRIPTION  
NAME  
DRR-12 (WSON)  
Diode controller gate drive output. Connect to the GATE of the external  
MOSFET.  
GATE  
1
O
A
2
3
I
I
Anode of the ideal diode. Connect to the source of the external MOSFET.  
Voltage sensing input  
VSNS  
Voltage sensing disconnect switch terminal. VSNS and SW are internally  
connected through a switch. Use SW as the top connection of the battery  
sensing or OV resistor ladder network. When EN is pulled low, the switch is  
OFF, disconnecting the resistor ladder from the battery line, thereby cutting off  
the leakage current. If the internal disconnect switch between VSNS and SW  
is not used, then short them together and connect to C pin.  
SW  
4
I
Adjustable overvoltage threshold input. Connect a resistor ladder across SW  
to OV terminal. When the voltage at OV exceeds the overvoltage cut-off  
threshold, then the PD is pulled low turning OFF the HSFET. PD is driven high  
when the sense voltage goes below the OV falling threshold.  
OV  
EN  
5
6
I
I
EN Input. Connect to A or C pin for always ON operation. In this mode, the  
device consumes an IQ of 35 µA (maximum). Can be driven externally from a  
micro controller I/O. Pulling the pin low below 0.5 V enters the device in low Iq  
shutdown mode.  
GND  
PD  
7
8
G
O
Connect to the system ground plane.  
Pull down connection for the external load disconnect FET. Connect to the  
GATE of the external FET to PD pin.  
Leave PD pin floating if the load disconnect FET is not used.  
Switch node of the internal boost regulator. This node must be kept small on  
the PCB for good performance and low EMI. Connect the boost inductor  
between this pin and the DRAIN connection of the external FET.  
LX  
9
I
Boost Regulator Output. This pin is used to provide a drive voltage to the gate  
driver of the ideal diode stage as well as drive supply for the HSFET. Connect  
a 1-µF capacitor between this pin and the VS pin.  
CAP  
10  
O
VS  
C
11  
12  
I
I
Supply voltage pin  
Cathode of the ideal diode. Connect to the DRAIN of the external MOSFET.  
The voltage sensed at this pin is used to control the external MOSFET GATE.  
RTN  
Thermal Pad  
Leave exposed pad floating. Do not connect to GND plane.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74720-Q1  
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
65  
MAX  
70  
UNIT  
A to GND  
VS, C to GND  
70  
0.3  
0.3  
V(A)  
VSNS, SW, EN, OV to GND, V(A) > 0 V  
70  
V
(70 + V(A)  
)
VSNS, SW, EN, OV to GND, V(A) 0 V  
Input Pins  
RTN to GND  
0.3  
10  
65  
IVSNS, ISW  
1  
mA  
IEN, IOV, V(A) > 0 V  
IEN, IOV, V(A) 0 V  
CAP to C  
1  
Internally limited  
0.3  
0.3  
0.3  
0.3  
5  
15.9  
85  
CAP to A  
Output Pins  
GATE to A  
15  
V
LX, CAP, PD to GND  
85  
Output to Input Pins  
C to A  
85  
(2)  
Operating junction temperature, Tj  
Storage temperature, Tstg  
150  
150  
40  
°C  
40  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins (GATE, EN, GND,  
C)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged device model (CDM),  
per AEC Q100-011  
Other pins  
(1) AEC-Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specifications.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
65  
UNIT  
A to GND  
C to GND  
EN to GND  
A
60  
Input Pins  
65  
V
65  
60  
0.1  
1
µF  
µF  
External  
capacitance  
VS, CAP to C  
External  
Inductor  
LX  
100  
µH  
External  
MOSFET max GATE to A  
VGS rating  
15  
V
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
 
 
 
 
 
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
conditions, see Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.4 Thermal Information  
LM74720-Q1  
THERMAL METRIC(1)  
DRR (WSON)  
UNIT  
12 PINS  
61.6  
50  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
32.7  
1.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
32.7  
6.9  
ΨJB  
RθJC  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(VS) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
VA POR Rising threshold  
VA POR Falling threshold  
Minimum Voltage at VS  
Shutdown Supply Current  
3.1  
2.2  
3.4  
2.6  
3.85  
2.9  
3
V
V
V(A POR)  
V(VS)  
V
I(SHDN)  
V(EN) = 0 V  
1.5  
27  
3.3  
µA  
V(EN) = 2 V, Active Rectifier Controller  
In Regulation, 40°C TJ +85°C  
32  
35  
µA  
µA  
I(Q)  
Total System Quiescent Current  
V(EN) = 2 V, Active Rectifier Controller  
In Regulation, 40°C TJ +125°C  
27  
ENABLE INPUT  
V(EN_IH)  
Enable input high threshold  
Enable input low threshold  
Enable Hysteresis  
2
V
V(EN_IL)  
0.5  
0.85  
380  
52  
1.2  
V(EN_Hys)  
I(EN)  
mV  
nA  
Enable sink current  
V(EN) = 12 V  
155  
VANODE to VCATHODE (VA C  
)
V(AC REG)  
V(AC_FWD)  
Regulated Forward V(AC) Threshold  
V(AC) threshold from RCB to oFCB  
9
16.4  
105  
22.7  
140  
mV  
mV  
75  
V(AC) threshold for reverse current  
blocking  
V(AC_REV)  
mV  
12  
5.65  
1.3  
GATE DRIVE  
3 V < V(VS) < 65 V  
V(A) V(C) = 20 mV  
V(A) V(C) = 0 V,  
9.5  
13  
V
A
V
(GATE) V(A)  
Peak sink current  
2.5  
26  
I(GATE)  
Regulation max sink current  
14  
39  
µA  
V
(GATE) V(A) = 5 V  
V(A) V(C) = 20 mV,  
(GATE) V(A) = 100 mV  
RGATE  
GATE pulldown resistance  
1.2  
V
BOOST REGULATOR  
Boost output rising threshold  
Hysteresis  
13  
15.5  
V
V
V
(CAP) V(VS)  
1.1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74720-Q1  
 
 
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(VS) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
(CAP) V(VS) = 7.5 V  
MIN  
110  
1.3  
TYP  
29  
MAX UNIT  
I(CAP)  
I(LX)  
Boost load capacity  
mA  
V
V(VS) = 12 V  
V(VS) = 3 V  
140  
170  
210  
5.1  
mA  
mA  
Peak inductor current limit threshold  
Low side switch On-Resistance  
R(LX)  
2.7  
BATTERY SENSING (VSNS, SW) AND OVER VOLTAGE DETECTION (OV, PD)  
Battery sensing disconnect switch  
resistance  
R(SW)  
104  
226  
430  
V(OVR)  
V(OVF)  
V(OV_Hys)  
I(OV)  
Overvoltage threshold input, rising  
Overvoltage threshold input, falling  
OV Hysteresis  
1.13  
1.03  
1.231  
1.125  
110  
50  
1.33  
V
1.215  
V
mV  
nA  
µA  
mA  
mA  
OV Input leakage current  
Pullup current  
0 V < V(OV) < 5 V  
3 V < V(VS) < 65 V  
110  
60  
I(PD_SRC)  
43  
55  
7
50  
Peak pulldown current  
DC pulldown current  
88  
117  
14  
I(PD_SINK)  
CATHODE (C)  
I(C)  
V(OV) > V(OVR)  
10  
8.5  
15  
18  
µA  
µA  
V(A) = 12 V, V(A) V(C) = 100 mV  
V(A) = 14 V, V(C) = 14 V  
CATHODE sink current  
10.6  
6.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(VS) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(A) V(A POR) to V(GATE A) > 5 V,  
C(GATE A) = 10 nF,  
ENTDLY  
A (low to high) to GATE Turn On delay  
200  
µs  
V(A) V(C) = +30 mV to 100  
mV, V(GATE) V(A) < 1 V, C(GATE A)  
10 nF  
Reverse voltage detection to Gate Turn  
Off delay  
tGATE_OFF(DLY)  
0.47  
1.9  
0.81  
µs  
=
=
V(A) V(C) = 100 mV to +700  
mV, V(GATE) V(A) > 5 V, C(GATE A)  
10 nF  
Forward voltage detection to Gate Turn  
On delay  
tGATE_ON(DLY)  
2.9  
µs  
tEN_OFF(DLY)PD EN to PD Delay  
tOV_OFF(DLY)PD OV to PD Delay  
6.5  
0.9  
38  
12  
1.5  
65  
µs  
µs  
µs  
EN to PD ↓  
OV to PD ↓  
tPD_Pk  
Peak Pull Down duration  
11  
I(PD_SINK, Pk) to I(PD_SINK, DC)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
8
7
6
5
4
3
2
1
0
40C  
25C  
85C  
125C  
150C  
40C  
25C  
85C  
125C  
150C  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VA (V)  
6-1. Operating Quiescent Current vs Supply Voltage  
6-2. Shutdown Supply Current vs Supply Voltage  
3.5  
3
2.5  
2
1.5  
VS PORR  
VS PORF  
1
-50  
0
50  
100  
150  
200  
Temperature (C)  
6-3. VA POR Threshold vs Temperature  
6-4. VS POR Threshold vs Temperature  
14  
40  
35  
30  
25  
20  
15  
10  
5
VS = 12 V  
VS = 3 V  
13  
12  
11  
(VCAPVS) R  
(VCAPVS) F  
10  
0
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Temperature (C)  
Temperature (C)  
6-5. Boost Comparator Threshold vs Temperature  
6-6. Boost Loading Capacity vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74720-Q1  
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
1.2  
1
1.3  
1.2  
1.1  
1
0.8  
0.6  
0.4  
0.2  
VOV_R  
VOV_F  
-50  
0
50  
100  
150  
200  
Temperature (C)  
-50  
0
50  
100  
150  
200  
Temperature (C)  
6-8. PD Turn-off Delay During OV  
6-7. OV Threshold vs Temperature  
8
7
6
5
4
3
2
4
3
2
1
0
C(GATE A) = 4.7 nF  
C(GATE A) = 10 nF  
C(GATE A) = 22 nF  
C(GATE A) = 33 nF  
C(GATE A) = 47 nF  
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Temperature (C)  
Temperature (C)  
6-9. PD Turn-off Delay During EN  
6-10. Forward Turn-on Delay vs Temperature  
90  
60  
5
RPD = 270   
RPD = 330   
4.5  
4
30  
0
3.5  
3
-30  
-60  
-90  
2.5  
2
-10  
0
10  
20  
30  
40  
50  
V(AC) mV  
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
6-11. Gate Current vs Forward Voltage Drop  
6-12. PD Turn-off Delay vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
30 mV  
VA > VC  
0 mV  
VC > VA  
–100 mV  
VGATE  
1 V  
0 V  
ttGATE_OFF(DLY)  
t
700 mV  
VA > VC  
0 mV  
VC > VA  
–100 mV  
VGATE  
5 V  
0 V  
ttGATE_ON(DLY)  
t
VOVR + 0.1 V  
0 V  
VPD  
0 V  
ttOV_OFF(DLY)PD  
t
7-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74720-Q1  
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM74720-Q1 ideal diode controller drives and controls external back-to-back N-Channel MOSFETs to  
emulate an ideal diode rectifier with power path ON and OFF control and overvoltage protection. The wide input  
supply of 3 V to 65 V allows protection and control of 12-V and 24-V automotive battery powered ECUs. IQ  
during operation (EN = High) is < 35 µA and < 3.3 µA during shutdown mode (EN = Low). The device can  
withstand and protect the loads from negative supply voltages down to 65 V. An integrated ideal diode  
controller (GATE) drives the first MOSFET to replace a Schottky diode for reverse input protection and output  
voltage holdup. A strong 29-mA boost regulator and short turn-ON and turn-OFF delay times of comparators  
ensures fast transient response ensuring robust and efficient MOSFET switching performance during automotive  
testing such as ISO16750 or LV124 where an ECU is subjected to input short interruptions and AC superimpose  
input signals up to 100-kHz frequency. The device features an adjustable over voltage cut-off protection feature  
for load dump protection.  
The LM74720-Q1 controls the GATE of the MOSFET to regulate the forward voltage drop at 17 mV. The linear  
regulation scheme in these devices enables graceful control of the GATE voltage and turns off of the MOSFET  
during a reverse current event and ensures zero DC reverse current flow.  
Low quiescent current (< 35 µA) in operation enables always ON system designs. With a second MOSFET in the  
power path, the device allows load disconnect control using EN pin. Quiescent current reduces to 3.3 μA with  
EN low.  
8.2 Functional Block Diagram  
Q1  
Q2  
VBATT  
VOUT  
18V  
CAP LX  
PD  
C
VS  
A
GATE  
VSNS  
SW  
50 µA  
EN  
Boost  
Converter and  
control  
Reverse Current  
Protection controller and  
Gate Driver  
EN  
R1  
BATT_MON  
A+10 V  
88 mA  
10 mA  
R2  
OV  
+
OV  
RTN  
1.231 V  
1.125 V  
R3  
EN  
C
+
2.55 V  
2.5 V  
OV  
EN  
+
VCAP  
VA  
A+10 V  
2 V  
Bias Rails  
0.5 V  
RTN  
A
Reverse  
Protection Logic  
GND  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Dual Gate Control (GATE, PD)  
The LM74720-Q1 features two separate gate control and driver outputs. That is, GATE and PD to drive back-to-  
back N-channel MOSFETs.  
8.3.1.1 Reverse Battery Protection (A, C, GATE)  
A, C, GATE comprises of Ideal Diode stage. Connect the Source of the external MOSFET to A, Drain to C and  
Gate to GATE pin. The LM74720-Q1 has integrated reverse input protection down to 65 V.  
In LM74720-Q1, the voltage drop across the MOSFET is continuously monitored between the A and C pins, and  
the GATE to A voltage is adjusted as needed to regulate the forward voltage drop at 17 mV (typical) for  
LM74720-Q1. This closed loop regulation scheme enables graceful turn-off of the MOSFET during a reverse  
current event and ensures zero DC reverse current flow. This scheme ensures robust performance during slow  
input voltage ramp down tests. Along with the linear regulation amplifier scheme, the LM74720-Q1 also  
integrates a fast reverse voltage comparator. When the voltage drop across A and C reaches V(AC_REV)  
threshold, then the GATE goes low within 0.5 µs (typical). This fast reverse voltage comparator scheme ensures  
robust performance during fast input voltage ramp down tests such as input micro-shorts. The external MOSFET  
is turned back ON when the voltage across A and C hits V(AC_FWD) threshold within 1.9 µs (typical). For ideal  
diode only designs, connect LM74720-Q1 as shown in 8-1.  
Q1  
VBATT  
12 V  
VOUT  
C VS CAP LX  
PD  
GATE  
A
D1  
SMBJ36CA  
VSNS  
SW  
R1  
BATT_MON  
LM74720-Q1  
R2  
EN  
ON OFF  
GND  
OV  
R3  
8-1. Configuring LM74720-Q1 for Ideal Diode Only  
8.3.1.2 Load Disconnect Switch Control (PD)  
PD pin provides a 50-µA drive and 88-mA peak pulldown strength for the load disconnect switch stage. Connect  
the Gate of the FET to PD pin. Place a 18-V Zener (Dz) across the FET gate and source.  
For inrush current limiting, connect CdVdT capacitor and R1 as shown in 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74720-Q1  
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
Q1  
Dz  
18 V  
R1  
COUT  
RPD  
CdVdT  
50 µA  
PD  
Fault  
Off  
88 mA  
10 mA  
GND  
8-2. Inrush Current Limiting  
The CdVdT capacitor is required for slowing down the PD voltage ramp during power up for inrush current  
limiting. Use 方程1 to calculate CdVdT capacitance value.  
IPD_DRV  
CdVdT  
=
x COUT  
IINRUSH  
(1)  
where IPD_DRV is 50 μA (typical), IINRUSH is the inrush current, and COUT is the output load capacitance. An extra  
resistor, R1, in series with the CdVdT capacitor improves the turn-off time.  
PD is pulled low during the following conditions:  
During an OV event with the OV pin voltage rising above the V(OVR) threshold  
When the EN pin is pulled low with V(EN) driven lower than V(EN_IL) level  
When the voltage at VS pin drops below the V(VS POR) falling threshold  
During these conditions, the FET Q1 turns OFF with its GATE connected to its SOURCE terminal through the  
external Zener (Dz).  
The peak power dissipated in the LM74720-Q1 at the instance of PD pulldown can be calculated approximately  
using 方程2.  
PPD_peak = VOUT × IPD_SINK  
(2)  
where  
IPDSINK_peak is the peak sink current of 88 mA (typical)  
In the system designs with input voltage above 48 V, TI recommends to place a resistor, RPD, in series with the  
PD pin as shown in 8-2. The peak power dissipation during the pulldown events gets distributed in RPD and  
the internal PD switch. A resistor value in the range of 270 to 330 can be selected to limit the device power  
dissipation within the safe limits. 6-12 shows the turn-OFF delay characteristics with various resistors.  
8.3.2 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV)  
Connect a resistor ladder as shown in 8-3 for overvoltage threshold programming.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
VBATT  
A
SNS  
SW  
EN  
R1  
R2  
R3  
BATT_MON  
LM74720-Q1  
OV  
+
PD_OFF  
1.231 V  
1.125 V  
8-3. Programming Overvoltage Threshold and Battery Sensing  
A disconnect switch is integrated between VSNS and SW pins. This switch is turned OFF when EN pin is pulled  
low. This action helps to reduce the leakage current through the resistor divider network during system shutdown  
state (IGN_OFF state).  
8.3.3 Boost Regulator  
The LM74720-Q1 integrates a boost converter to provide voltage necessary to drive the external N-channel  
MOSFETs for the ideal diode and the load disconnect stages. The boost converter uses hysteretic mode control  
scheme for the output voltage (VCAPVVS) regulation along with the constant peak inductor current limit (ILX).  
When the CAPVS voltage is below its nominal value of typically 11.9 V, the low side switch of the boost is  
turned on and the inductor current rises with the slope of VS/L approximately. After the current hits the limit of  
ILX , that is,140 mA (typical), then the low side switch is turned off and the inductor current discharges to the  
output till it reaches zero. The low side switch is turned on again and the switching cycle repeats until the CAP–  
VS voltage has risen above the boost rising threshold of 13 V (typical). After this threshold level is reached, the  
boost converter switching is turned OFF to reduce the quiescent current.  
For the boost converter to be enabled, the EN pin voltage must be above the specified input high threshold,  
V(ENR). The boost converter has a maximum output load capacity of 29-mA typical. If EN pin is pulled low, then  
the boost converter remains disabled.  
8.4 Device Functional Mode (Shutdown Mode)  
The LM74720-Q1 enters shutdown mode when the EN pin voltage is below the specified input low threshold,  
V(EN_IL). Both the gate drivers (GATE and PD) and the boost regulator are disabled in shutdown mode. During  
shutdown mode, the LM74720-Q1 enters low IQ operation with a total input quiescent consumption of 1.5 µA  
(typical).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74720-Q1  
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
LM74720-Q1 controls two N-channel power MOSFETs with GATE used to control diode MOSFET to emulate an  
ideal diode and PD controlling second MOSFET for power path cut-off when disabled or during an overvoltage  
protection and provide inrush current limiting. IQ during operation (EN = High) is < 35 µA and <3.3 µA during  
shutdown mode (EN = Low). LM74720-Q1 can be placed into low quiescent current mode using EN = low, where  
both GATE and PD are turned OFF.  
9.2 Typical 12-V Reverse Battery Protection Application  
A typical application circuit of LM74720-Q1 configured to provide reverse battery protection with overvoltage  
protection and inrush current limiting is shown in 9-1.  
C2  
1 µF, 50 V  
Q1  
Q2  
VOUT  
VBATT  
12 V  
D2  
18 V  
CLOAD  
470 µF  
C1  
0.1 µF,  
50 V  
L1  
100 µH  
C3  
1 µF, 50 V  
D1  
SMBJ36CA  
R4  
100  
R5  
0
C4  
10 nF  
PD  
C VS CAP LX  
GATE  
A
VSNS  
SW  
R1  
LM74720-Q1  
GND  
90.9 k  
BATT_MON  
R2  
EN  
9.09 k  
ON OFF  
OV  
R3  
3.48 k  
9-1. Typical Application Circuit 12-V Reverse Battery Protection and Overvoltage Protection  
9.2.1 Design Requirements for 12-V Battery Protection  
The system design requirements are listed in 9-1.  
9-1. Design Parameters 12-V Reverse Battery Protection and Overvoltage Protection  
DESIGN PARAMETER  
Operating input voltage range  
Output power  
EXAMPLE VALUE  
12-V battery, 12-V nominal with 3.2-V cold crank and 35-V load dump  
50 W  
4-A nominal, 5-A maximum  
Output current range  
Input capacitance  
0.1-µF minimum  
Output capacitance  
0.1-µF minimum, (optional 220 µF for E-10 functional class A performance)  
37 V, output cut-off > 37 V  
Overvoltage cut-off  
AC super imposed test  
Automotive transient immunity compliance  
Battery monitor ratio  
2-V peak-peak 30 kHz, extendable to 6-V peak-peak 30 kHz  
ISO 7637-2, ISO 16750-2 and LV124  
8:1  
9.2.2 Automotive Reverse Battery Protection  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.2.1 Input Transient Protection: ISO 7637-2 Pulse 1  
ISO 7637-2 pulse 1 specifies negative transient immunity of electronic modules connected in parallel with an  
inductive load when the battery is disconnected. A typical pulse 1 specified in ISO 7637-2 starts with battery  
disconnection where supply voltage collapses to 0 V followed by 150 V 2 ms applied with a source impedance  
of 10 Ω at a slew rate of 1 µs on the supply input. LM74720-Q1 blocks reverse current and prevents the output  
voltage from swinging negative, protecting the rest of the electronic circuits from damage due to negative  
transient voltage. MOSFET Q1 is quickly turned off within 0.5 µs by fast reverse comparator of LM74720-Q1. A  
single bidirectional TVS is required at the input to clamp the negative transient pulse within the operating  
maximum voltage across cathode to anode of 85 V and does not violate the MOSFET Q1 drain-source  
breakdown voltage rating.  
9-2 shows ISO 7637-2 pulse 1 performance of LM74720-Q1.  
VOUT  
VIN  
IIN  
VGATE  
9-2. Performance During ISO 7637-2 Pulse 1 Test  
9.2.2.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06  
All electronic modules are tested for proper operation with superimposed AC ripple on the DC battery voltage.  
AC super imposed test specified in ISO 16750-2 and LV124 E-06 requires AC ripple of 2-V peak-peak on a 13.5-  
V DC battery voltage, swept from 15 Hz to 30 kHz. LM74720-Q1 rectifies the AC superimposed voltage by  
turning the MOSFET Q1 OFF quickly to cut off reverse current and turning the MOSFET Q1 ON quickly during  
forward conduction. Active rectification of 2-V peak-peak 5-kHz AC input by LM74720-Q1 is shown in 9-3.  
Fast turn-OFF and quick turn-ON of the MOSFET reduces power dissipation in the MOSFET Q1 and active  
rectification reduces power dissipation in the output hold-up capacitor's ESR by half. Active rectification of 2-V  
peak-peak 30-kHz AC input is shown in 9-4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74720-Q1  
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
VGATE  
VGATE  
IIN  
IIN  
9-3. AC Super Imposed Test 2-V Peak-Peak 5 9-4. AC Super Imposed Test 2-V Peak-Peak 30  
kHz  
kHz  
9.2.2.3 Input Micro-Short Protection: LV124 E-10  
E-10 test specified in LV124 standard checks for immunity of electronic modules to short interruptions in power  
supply input due to contact issues or relay bounce. During this test (case 2), micro-short is applied on the input  
for a duration as low as 10 µs to several ms. For a functional pass status A, electronic modules are required to  
run uninterrupted during the E-10 test (case 2) with 100-µs duration. When input micro-short is applied for 100  
µs, LM74720-Q1 quickly turns off MOSFET Q1 by shorting GATE to ANODE (source of MOSFET) within 0.5 µs  
to prevent the output from discharging and the PD remains ON keeping MOSFET Q2 ON, enabling fast recovery  
after the input short is removed.  
9-5 shows performance of LM74720-Q1 during E10 input power supply interruption test case 2. After the input  
short is removed, input voltage recovers and MOSFET Q1 is turned back ON within 200 µs. Note that dual-gate  
drive topology allows MOSFET Q2 to remain ON during the test and helps in restoring the input power faster.  
Output voltage remains unperturbed during the entire duration, achieving functional status A.  
VIN  
VIN  
VOUT  
VOUT  
VGATE  
VGATE  
VPD  
IIN  
9-5. Input Micro-Short LV124 E10 TC 2 100 µs 9-6. Input Micro-Short LV124 E10 TC 2 100 µs  
With PD  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.3 Detailed Design Procedure  
9.2.3.1 Design Considerations  
9-1 summarizes the design parameters that must be known for designing an automotive reverse battery  
protection circuit with overvoltage cut-off. During power up, inrush current through MOSFET Q2 must be limited  
so that the MOSFET operates well within its SOA. Maximum load current, maximum ambient temperature, and  
thermal properties of the PCB determine the RDSON of the MOSFET Q2 and maximum operating voltage  
determines the voltage rating of the MOSFET Q2. Selection of MOSFET Q2 is determined mainly by the  
maximum operating load current, maximum ambient temperature, maximum frequency of AC super imposed  
voltage ripple, and ISO 7637-2 pulse 1 requirements. Overvoltage threshold is decided based on the rating of  
downstream DC/DC converter or other components after the reverse battery protection circuit. A single  
bidirectional TVS or two back-back unidirectional TVS are required to clamp input transients to a safe operating  
level for the MOSFETs Q1, Q2, and LM74720-Q1.  
9.2.3.2 Boost Converter Components (C2, C3, L1)  
Place a minimum of a 1-μF capacitor across drain of the FET to GND (C2) and across CAP pin of LM74720- Q1  
to drain of the FET (C3). Use a 100-μH inductor (L1) with saturation current rating > 175 mA. Example:  
XPL2010-104ML from coil craft.  
9.2.3.3 Input and Output Capacitance  
TI recommends a minimum input capacitance C1 of 0.1 µF and output capacitance COUT of 0.1 µF.  
9.2.3.4 Hold-Up Capacitance  
Usually bulk capacitors are placed on the output due to various reasons such as uninterrupted operation during  
power interruption or micro-short at the input, hold-up requirements for doing a memory dump before turning of  
the module and filtering requirements as well. This design considers minimum bulk capacitors requirements for  
meeting functional status "A" during LV124 E10 test case 2 100-µs input interruption. To achieve functional pass  
status A, acceptable voltage droop in the output of LM74720-Q1 is based on the UVLO settings of downstream  
DC/DC converters. For this design, a 1-V drop in output voltage for 100 µs is considered and the minimum hold-  
up capacitance required is calculated by  
ILOAD_MAX  
CHOLD_UP_MIN  
=
x100m s  
dVOUT  
(3)  
Hold-up capacitance required for 1-V drop in 100 µs is 470 µF.  
9.2.3.5 Overvoltage Protection and Battery Monitor  
Resistors R1, R2 and R3 connected in series are used to program the overvoltage threshold and battery monitor  
ratio. The resistor values required for setting the overvoltage threshold VOV to 37 V and battery monitor ratio  
VBATT_MON : VBATT to 1:8 are calculated by solving Equation 3 and Equation 4.  
R3  
VOVR  
=
x VOV  
R1+ R2 + R3  
(4)  
R2 + R3  
VBAT_MON  
=
x VBATT  
R1+ R2 + R3  
(5)  
For minimizing the input current drawn from the battery through resistors R1, R2 and R3, TI recommends to use  
higher value of resistance. Using high value resistors adds error in the calculations because the current through  
the resistors at higher value become comparable to the leakage current into the OV pin. Maximum leakage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74720-Q1  
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
current into the OV pin is 1 µA and choosing (R1 + R2 + R3) < 120 kΩ ensures current through resistors is 100  
times greater than leakage through OV pin.  
Based on the device electrical characteristics, VOVR is 1.23 V and battery monitor ratio (VBATT_MON / VBATT) is  
designed for a ratio of 1:8. To limit (R1 + R2 + R3) < 120 kΩ, select (R1 + R2) = 100 kΩ. Solving Equation 3 gives  
R3 = 3.45 kΩ. Solving Equation 4 for R2 using (R1 + R2) = 100 kΩ and R3 = 3.45 kΩ, gives R2 = 9.48 kΩ and  
R1 = 90.52 kΩ.  
Standard 1% resistor values closest to the calculated resistor values are R1 = 90.9 kΩ, R2 = 9.09 kΩ, and R3 =  
3.48 kΩ.  
9.2.3.6 MOSFET Selection: Blocking MOSFET Q1  
For selecting the blocking MOSFET Q1, important electrical parameters are the maximum continuous drain  
current ID, the maximum drain-to-source voltage VDS(MAX), the maximum drain-to-source voltage VGS(MAX), the  
maximum source current through body diode and the drain-to-source ON resistance RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current.  
The maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential  
voltage seen in the application. This action includes all the automotive transient events and any anticipated fault  
conditions. TI recommends to use MOSFETs with VDS voltage rating of 60 V along with a single bidirectional  
TVS or a VDS rating 40-V maximum rating along with two unidirectional TVS connected back-to-back at the  
input.  
The maximum VGS LM74720-Q1 can drive is 14 V, so a MOSFET with 15-V minimum VGS rating must be  
selected. If a MOSFET with < 15-V VGS rating is selected, a zener diode can be used to clamp VGS to safe level,  
but this results in increased IQ current.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred, but selecting a MOSFET based  
on low RDS(ON) cannot be beneficial always. Higher RDS(ON) provides increased voltage information to LM74720-  
Q1's reverse comparator at a lower reverse current. Reverse current detection is better with increased RDS(ON)  
.
Choosing a MOSFET with < 50-mV forward voltage drop at maximum current is a good starting point. Based on  
the design requirements, BUK7Y4R8-60E MOSFET is selected  
9.2.3.7 MOSFET Selection: Load Disconnect MOSFET Q2  
The VDS rating of the MOSFET Q2 must be sufficient to handle the maximum system voltage along with the  
input transient voltage. For this 12-V design, transient overvoltage events are during suppressed load dump 35  
V 400 ms and ISO 7637-2 pulse 2 A 50 V for 50 µs. Furthermore, ISO 7637-2 Pulse 3B is a very fast repetitive  
pulse of 100 V 100 ns that is usually absorbed by the input and output ceramic capacitors and the maximum  
voltage on the 12-V battery can be limited to < 40 V the minimum recommended input capacitance of 0.1 µF.  
The 50-V SO 7637-2 Pulse 2 A can also be absorbed by input and output capacitors and its amplitude can be  
reduced to 40-V peak by placing sufficient amount of capacitance at input and output. Choose a MOSFET with  
40-V VDS rating.  
The VGS rating of the MOSFET Q2 must be higher than that maximum boost drive output of 15.5 V. FET with  
VGS absolute maximum rating of +/20 VGS is selected.  
Inrush current through the MOSFET during input hot-plug into the 12-V battery is determined by output  
capacitance. External capacitor on PD, CDVDT, is used to limit the inrush current during input hot-plug or startup.  
The value of inrush current determined by 方程式 1 must be selected to ensure that the MOSFET Q2 is  
operating well within its safe operating area (SOA). To limit inrush current to 1.8-A, value of CDVDT is 10.43 nF,  
closest standard value of 10.0 nF is chosen.  
Duration of inrush current is calculated by:  
12  
dT  
=
x COUT  
INRUSH  
IINRUSH  
(6)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
Calculated inrush current duration is 3.13 ms with 1.8-A inrush current.  
MOSFET BUK7Y4R8-60E having 60-V VDS and ±20-V VGS rating is selected for Q2. Power dissipation during  
inrush is well within the MOSFET's safe operating area (SOA).  
9.2.3.8 TVS Selection  
TI recommends a 600-W SMBJ TVS such as SMBJ33CA for input transient clamping and protection. For  
detailed explanation on TVS selection for 12-V battery systems, refer to TVS Selection for 12-V Battery Systems.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74720-Q1  
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.4 Application Curves  
VIN  
VIN  
VOUT  
VCAP  
VLX  
IL  
VGATE  
VPD  
9-8. Start-up 12 V Showing Boost Output (VCAP  
)
9-7. Start-up 12 V with EN Pulled to VIN  
and Switching (VLX)  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VGATE  
IIN  
IIN  
9-9. Reverse Input Voltage 14 V for 60 s  
9-10. Inrush Current with No Load at Output  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VPD  
IIN  
IIN  
9-11. Inrush Current with 60-ΩLoad  
9-12. Hot-Plug into 12 V  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
VEN  
VGATE  
VEN  
IIN  
9-13. Output Turn-on with Enable  
9-14. GATE Turn-on with Enable  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VPD  
IIN  
VEN  
9-15. PD Turn-on with Enable  
9-16. Overvoltage Protection  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VEN  
VPD  
IIN  
9-18. Turn-on Delay PD  
9-17. Overvoltage Recovery  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74720-Q1  
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
VPD  
VGATE  
VEN  
VEN  
9-19. Turn-off Delay GATE  
9-20. Turn-off Delay PD  
9.3 Do's and Don'ts  
Leave the exposed pad (RTN) of the IC floating. Do not connect the exposed pad to the GND plane.  
Connecting RTN to GND disables the reverse polarity protection feature.  
Connect a limiting resistor RPD in series with the PD pin in the system application designs with input voltage  
above 48 V. This resistor value can be chosen in the range of 270 to 330 .  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Transient Protection  
When the external MOSFETs turn OFF during the conditions, such as overvoltage cut-off, reverse current  
blocking, EN causing an interruption of the current flow, the input line inductance generates a positive voltage  
spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude  
of voltage spikes (transients) depends on the value of inductance in series to the input or output of the device.  
These transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to address the  
issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Using a Schottky diode across the output and GND to absorb negative spikes  
Using a low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with 方程7.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
( ) )  
´
(
)
(
C IN  
( )  
(7)  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications can require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during EMC testing such as  
automotive ISO7637 pulses.  
The circuit implementation with optional protection components (a ceramic capacitor, TVS, and Schottky diode)  
is shown in 10-1.  
Q1  
Q2  
VOUT  
*
VIN  
D1  
C2  
C3  
*
CIN  
D3  
L1  
D2  
PD  
C VS CAP LX  
GATE  
A
VSNS  
SW  
R1  
BATT_MON  
R2  
LM74720-Q1  
GND  
EN  
ON OFF  
OV  
R3  
* Optional components needed for suppression of transients  
10-1. Circuit Implementation With Optional Protection Components for LM74720-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM74720-Q1  
 
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
10.2 TVS Selection for 12-V Battery Systems  
In selecting the TVS, important specifications are breakdown voltage and clamping voltage. The breakdown  
voltage of the TVS+ must be higher than 24-V jump start voltage and 35-V suppressed load dump voltage and  
less than the maximum ratings of LM74720-Q1 (65 V). The breakdown voltage of TVSmust be beyond than  
maximum reverse battery voltage 16 V, so that the TVSis not damaged due to long time exposure to  
reverse connected battery.  
Clamping voltage is the voltage the TVS diode clamps in high current pulse situations and this voltage is much  
higher than the breakdown voltage. In the case of an ISO 7637-2 pulse 1, the input voltage goes up to 150 V  
with a generator impedance of 10 Ω. This action translates to 15 A flowing through the TVS, and the voltage  
across the TVS is close to its clamping voltage.  
The next criterion is that the absolute maximum rating of cathode to anode voltage of the LM74720-Q1 (85 V)  
and the maximum VDS rating MOSFET are not exceeded. In the design example, 60-V rated MOSFET is chosen  
and maximum limit on the cathode to anode voltage is 60 V.  
During ISO 7637-2 pulse 1, the anode of LM74720-Q1 is pulled down by the ISO pulse, clamped by TVSand  
the MOSFET Q1 is turned off quickly to prevent reverse current from discharging the bulk output capacitors.  
When the MOSFET turns off, the cathode to anode voltage seen is equal to (TVS Clamping voltage + Output  
capacitor voltage). If the maximum voltage on output capacitor is 16 V (maximum battery voltage), then the  
clamping voltage of the TVSmust not exceed, (60 V 16) V = 44 V.  
The SMBJ33CA TVS diode can be used for 12-V battery protection application. The breakdown voltage of 36.7  
V meets the jump start, load dump requirements on the positive side and 16-V reverse battery connection on the  
negative side. During ISO 7637-2 pulse 1 test, the SMBJ33CA clamps at 44 V with 12 A of peak surge current  
as shown in and it meets the clamping voltage 44 V.  
SMBJ series of TVS' are rated up to 600-W peak pulse power levels and are sufficient for ISO 7637-2 pulses.  
10.3 TVS Selection for 24-V Battery Systems  
For 24-V battery protection application, the TVS and MOSFET in 9-1 must be changed to suit 24-V battery  
requirements.  
The breakdown voltage of the TVS+ must be higher than 48-V jump start voltage, less than the absolute  
maximum ratings of anode and enable pin of LM74720-Q1 (70 V) and must withstand 65-V suppressed load  
dump. The breakdown voltage of TVSmust be lower than maximum reverse battery voltage 32 V, so that  
the TVSis not damaged due to long time exposure to reverse connected battery.  
During ISO 7637-2 pulse 1, the input voltage goes up to 600 V with a generator impedance of 50 Ω. This  
translates to 12 A flowing through the TVS. The clamping voltage of the TVScannot be same as that of 12-  
V battery protection circuit. Because during the ISO 7637-2 pulse, the Anode to Cathode voltage seen is equal  
to (TVS Clamping voltage + Output capacitor voltage). For 24-V battery application, the maximum battery  
voltage is 32 V, then the clamping voltage of the TVS- must not exceed, 85 V 32 V = 53 V.  
Single bidirectional TVS cannot be used for 24-V battery protection because breakdown voltage for TVS+ 65  
V, maximum clamping voltage is 53 V and the clamping voltage cannot be less than the breakdown voltage.  
Two un-directional TVS connected back-to-back must be used at the input. For positive side TVS+, TI  
recommends SMBJ58A with the breakdown voltage of 64.4 V (minimum), 67.8 (typical). For the negative side  
TVS, TI recommends SMBJ28A with breakdown voltage close to 32 V (to withstand maximum reverse battery  
voltage 32 V) and maximum clamping voltage of 42.1 V.  
For 24-V battery protection, TI recommends a 75-V rated MOSFET to be used along with SMBJ28A and  
SMBJ58A connected back-to-back at the input.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For the ideal diode stage, connect A, GATE and C pins of LM74720-Q1 close to the MOSFET's SOURCE,  
GATE and DRAIN pins.  
The high current path of for this solution is through the MOSFET; therefore, it is important to use thick and  
short traces for source and drain of the MOSFET to minimize resistive losses.  
The GATE pin of the LM74720-Q1 must be connected to the MOSFET GATE with short trace.  
Boost converter switching currents flow into LX, CAP, GND pins and C3 (across DRAIN of the FET to GND).  
The loops formed by capacitor across CAP pin and DRAIN of the FET and C3 to GND must be minimized by  
placing these capacitors as close as possible. Keep the GND side of the C3 capacitor close to GND pin of  
LM74720-Q1.  
Place transient suppression components like input TVS and output Schottky close to LM74720-Q1.  
11.2 Layout Example  
G
S
s
S
Q1  
Q2  
s
s
S
G
D2  
GTE  
C
C2  
VIN PLANE  
VS  
CAP  
VOUT PLANE  
A
L1  
VSNS  
C3  
LX  
PD  
SW  
COUT  
D1  
OV  
EN  
GND  
GND PLANE  
11-1. LM74720-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM74720-Q1  
 
 
 
LM74720-Q1  
ZHCSOW4B SEPTEMBER 2021 REVISED MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM74720-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74720QDRRRQ1  
ACTIVE  
WSON  
DRR  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
L74720  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM74721-Q1

具有有源整流功能的汽车类无 TVS、低 IQ 反向电池保护理想二极管控制器
TI

LM74721QDRRRQ1

具有有源整流功能的汽车类无 TVS、低 IQ 反向电池保护理想二极管控制器 | DRR | 12 | -40 to 125
TI

LM74722-Q1

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器
TI

LM74722QDRRRQ1

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器 | DRR | 12 | -40 to 125
TI

LM747A

Dual Operational Amplifier
NSC

LM747AH

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, MBCY10, METAL CAN-10, Operational Amplifier
NSC

LM747AH-MIL

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, MBCY8, Operational Amplifier
NSC

LM747AH-MIL

Operational Amplifier, 2 Func, 4000uV Offset-Max, BIPolar, MBCY8, METAL, CAN-8
ROCHESTER

LM747AJ

Operational Amplifier, 2 Func, 4000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
ROCHESTER

LM747C

Dual Operational Amplifier
NSC

LM747CH

IC DUAL OP-AMP, 7500 uV OFFSET-MAX, MBCY10, METAL CAN, TO-100, 10 PIN, Operational Amplifier
NSC

LM747CH

Operational Amplifier, 2 Func, 7500uV Offset-Max, BIPolar, MBCY10, METAL CAN, TO-100, 10 PIN
ROCHESTER