LM74910-Q1 [TI]

具有断路器、200kHz ACS 以及欠压和过压保护功能的汽车类理想二极管;
LM74910-Q1
型号: LM74910-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有断路器、200kHz ACS 以及欠压和过压保护功能的汽车类理想二极管

断路器 二极管
文件: 总48页 (文件大小:4659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
LM749x0-Q1 具有断路器、欠压和过压保护以及故障输出功能的汽车类理想二  
极管  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
LM749x0-Q1 理想二极管控制器可驱动和控制外部背  
N MOSFET从而模拟具有电源路径开/关控  
制及过流和过压保护功能的理想二极管整流器。3V 至  
65V 的宽输入电源电压可保护和控制 12V 24V 汽车  
类电池供电的 ECU。该器件可以承受并保护负载免受  
低至 –65V 的负电源电压的影响。集成的理想二极管  
控制器 (DGATE) 可驱动第一个 MOSFET 来代替肖特  
基二极管以实现反向输入保护和输出电压保持。在电  
源路径中使用了第二个 MOSFET 的情况下该器件允  
许在发生过流和过压事件时使HGATE 控制将负载断  
/关控制。该器件具有集成电流检测放大器,  
可提供具有可调过流和短路阈值的精确电流监控。该器  
件具有可调节过压切断保护功能。该器件具有睡眠模  
可实现超低静态电流消耗 (6µA)同时在车辆处于  
停车状态时为始终开启的负载提供刷新电流。  
LM749x0-Q1 的最大额定电压65V。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
• 功能安全型  
可提供用于功能安全系统设计的文档  
3V 65V 输入范围  
• 反向输入保护低65V  
• 在共漏极配置下可驱动外部背对N 沟道  
MOSFET  
10.5mV 阳极至阴极正向压降调节下理想二极管  
正常运行  
• 低反向检测阈(-10.5mV)具有快速关断响应  
(0.5µs)  
20mA 峰值栅(DGATE) 导通电流  
2.6A DGATE 关断电流  
• 可调过流和短路保护  
• 精度10% 的模拟电流监视器输(IMON)  
• 可调节过压和欠压保护  
2.5µA 低关断电流EN = 低电平)  
• 睡眠模式电流6µAEN=高电平SLEEP=低  
电平)  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
LM74900-Q1(2)  
LM74910-Q1  
VQFN (24)  
4.00mm × 4.00mm  
• 采用合适TVS 二极管符合汽ISO7637 瞬态  
要求  
• 采用节省空间24 VQFN 封装  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 预发布信息非量产数据。  
2 应用  
汽车电池保护  
ADAS 域控制器  
信息娱乐系统与仪表组  
汽车音频外部放大器  
用于冗余电源的有ORing  
Q1  
Q2  
VBATT  
RSENSE  
VOUT  
RISCP  
RSET  
RG  
COUT  
CIN  
Cdvdt  
C
VS  
ISCP CS+  
CS-  
DGATE CAP  
HGATE  
A
OUT  
SW  
R1  
R2  
FLT  
EN  
LM749x0-Q1  
UVLO  
OV  
ON OFF  
ON  
SLEEP  
OFF  
TMR  
CT  
IMON  
ILIM  
RLIM  
GND  
R3  
RMON  
典型应用图  
具有过流保护功能的器件启动  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDE6  
 
 
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
9.3 Feature Description...................................................16  
10 Applications and Implementation..............................25  
10.1 Application Information........................................... 25  
10.2 Typical 12-V Reverse Battery Protection  
Application...................................................................25  
10.3 Addressing Automotive Input Reverse Battery  
Protection Topologies With LM749x0-Q1....................36  
10.4 Power Supply Recommendations...........................36  
10.5 Layout..................................................................... 38  
11 Device and Documentation Support..........................39  
11.1 接收文档更新通知................................................... 39  
11.2 支持资源..................................................................39  
11.3 Trademarks............................................................. 39  
11.4 静电放电警告...........................................................39  
11.5 术语表..................................................................... 39  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Compariosn Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 开关特性......................................................................9  
7.7 Typical Characteristics..............................................10  
8 Parameter Measurement Information..........................14  
9 Detailed Description......................................................15  
9.1 Overview...................................................................15  
9.2 Functional Block Diagram.........................................16  
Information.................................................................... 39  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2022) to Revision A (June 2023)  
Page  
• 将状态从预告信息 更改为量产数据 ................................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
2
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Compariosn Table  
Parameter  
LM74900-Q1  
LM74910-Q1  
Charge pump strength  
2.7 mA  
3.8 mA  
6 Pin Configuration and Functions  
24  
23  
22  
21  
20  
19  
ISCP  
DGATE  
A
1
2
3
4
18  
17  
16  
NC  
SLEEP_OV  
SW  
Exposed  
Thermal Pad  
UVLO  
15  
14  
13  
OUT  
HGATE  
OV  
EN  
5
6
GND  
7
8
9
10  
11  
12  
6-1. RGE Package, 24-Pin VQFN (Transparent Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DGATE  
A
NO.  
1
O
I
Diode controller gate drive output. Connect to the GATE of the external MOSFET.  
Anode of the ideal diode. Connect to the source of the external MOSFET.  
2
Voltage sensing disconnect switch terminal. VSNS and SW are internally connected  
through a switch. Use SW as the top connection of the battery sensing or OV resistor  
ladder network. When EN is pulled low, the switch is OFF disconnecting the resistor  
ladder from the battery line thereby cutting off the leakage current. If the internal  
disconnect switch between VSNS and SW is not used then short them together and  
connect to VS pin.  
SW  
3
I
Adjustable undervoltage threshold input. Connect a resistor ladder across SW to  
UVLO terminal to GND. When the voltage at UVLO goes below the undervoltage cut-  
off threshold then the HGATE is pulled low turning OFF the HSFET. HGATE turns ON  
when the sense voltage goes above the UVLO falling threshold.  
UVLO  
OV  
4
5
I
I
Adjustable overvoltage threshold input. Connect a resistor ladder across SW to OV  
terminal. When the voltage at OVP exceeds the overvoltage cut-off threshold then the  
HGATE is pulled low turning OFF the HSFET. HGATE turns ON when the sense  
voltage goes below the OVP falling threshold.  
EN input. Connect to VS pin for always ON operation. Can be driven externally from a  
microcontroller I/O. Pulling it low below V(ENF) makes the device enter into low Iq  
shutdown mode.  
EN  
6
7
I
I
Active low SLEEP mode input. Can be driven from the microcontroller. When pulled  
low device enters into low power state with charge pump and gate drive turned off.  
Internal bypass switch provides output voltage with limited current capacity.  
SLEEP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
NC  
8
No connect.  
Fault timer input. A capacitor across TMR pin to GND sets the times for fault warning,  
fault turn off (FLT), and retry periods. Leave it open for fastest setting. Connect TMR to  
GND to disable overcurrent protection.  
TMR  
9
I
Analog current monitor output. This pin sources a scaled down ratio of current through  
the external current sense resistor RSNS. A resistor from this pin to GND converts  
current to proportional voltage. If unused, leave it floating.  
IMON  
10  
O
Overcurrent detection setting. A resistor across ILIM to GND sets the overcurrent  
comparator threshold. Connect ILIM to GND if overcurrent protection feature is not  
desired.  
ILIM  
FLT  
11  
12  
I
Open drain fault output. FLT pin is pulled low in case of UVLO, OV, OCP, or SCP  
event.  
O
GND  
13  
14  
15  
G
O
I
Connect to the system ground plane.  
HGATE  
OUT  
GATE driver output for the HSFET. Connect to the GATE of the external FET.  
Connect to the output rail (external MOSFET source).  
SLEEP mode overvoltage protection pin. Connect this pin to VS for overvoltage cut-off  
functionality. Connect to OUT for overvoltage clamp functionality.  
SLEEP_OV  
NC  
16  
17  
I
No connect.  
Short circuit detection threshold setting.  
ISCP  
18  
I
Leave ISCP floating if short circuit protection is not desired. When ISCP is connected  
to CS+, device sets an internal fix threshold of 20 mV.  
19  
20  
21  
22  
I
I
Current sense negative input.  
CS–  
CS+  
NC  
Current sense positive input. Connect a TBD resistor across CS+ to the external  
current sense resistor.  
No connect.  
Input power supply to the IC. Connect VS to middle point of the common drain back to  
back MOSFET configuration. Connect a 100-nF capacitor across VS and GND pins.  
VS  
P
CAP  
C
23  
24  
O
I
Charge pump output. Connect a 100-nF capacitor across CAP and VS pins.  
Cathode of the ideal diode. Connect to the drain of the external MOSFET.  
Leave exposed pad floating. Do not connect to GND plane.  
RTN  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power, G = ground  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
4
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
65  
MAX  
70  
UNIT  
A to GND  
VS, CS+, CS-, ISCP, OUT, SLEEP_OV to GND  
SW, C, EN, SLEEP, FLT, UVLO, OV to GND, V(A) > 0 V  
SW, C, EN, SLEEP, FLT, UVLO, OV to GND, V(A) 0 V  
70  
1  
70  
V
0.3  
V(A)  
(70 + V(A)  
)
Input Pins  
RTN to GND  
ISW ,IFLT  
0.3  
10  
65  
mA  
V
1  
TMR, ILIM  
5.5  
0.3  
1  
IEN, IUVLO,IOV V(A) > 0 V  
mA  
Internally limited  
IEN, IUVLO,IOV V(A) 0 V  
ISCP, CS+ to CS-  
OUT to VS  
Input Pins  
0.3  
5
V
V
0.3  
65  
0.3  
0.3  
0.3  
-0.3  
CAP to VS  
15  
CAP to A  
85  
Output Pins  
DGATE to A  
FLT to GND  
15  
V
70  
IMON  
-1  
5.5  
15  
HGATE to OUT  
0.3  
5  
Output to Input Pins  
C to A  
85  
(2)  
Operating junction temperature, Tj  
Storage temperature, Tstg  
150  
150  
40  
40  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
±750  
±500  
V(ESD) Electrostatic discharge  
Corner pins  
Other pins  
V
Charged device model (CDM), per  
AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
65  
65  
65  
65  
5
UNIT  
A to GND  
V
V
V
V
V
60  
Input Pins  
0
0
0
0
VS, SW, CS+, CS, ISCP to GND  
EN,UVLO, OV, SLEEP to GND  
Output pins FLT to GND  
Output pins IMON to GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
 
 
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
UNIT  
External  
Capacitanc CAP to A, VS to GND, A to GND  
e
0.1  
µF  
External  
MOSFET  
max VGS  
DGATE to A and HGATE to OUT  
15  
V
rating  
Tj  
Operating Junction temperature(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.4 Thermal Information  
LM749x0-Q1  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
44  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
38.3  
21.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ΨJT  
21.3  
ΨJB  
RθJC(bot)  
5.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(OUT) = V(VS) = 12 V, C(CAP) = 0.1 µF, V(EN) , V(SLEEP)= 2 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
V(VS)  
Operating input voltage  
VS POR threshold, rising  
VS POR threshold, falling  
SHDN current, I(GND)  
3
2.4  
2.2  
65  
2.9  
2.7  
5
V
V
V(VS_PORR)  
V(VS_PORF)  
I(SHDN)  
2.6  
2.4  
V
V(EN) = 0 V  
2.5  
µA  
µA  
µA  
µA  
I(SLEEP)  
SLEEP mode current, I(GND)  
V(EN) = 2 V, V(SLEEP) = 0 V  
V(EN) = 2 V  
5.5  
10  
630  
635  
750  
750  
I(Q)  
Total System Quiescent current, I(GND)  
V(A) = V(VS) = 24 V, V(EN) = 2 V  
I(A) leakage current during Reverse  
Polarity,  
µA  
µA  
100  
1  
35  
I(REV)  
0 V V(A) 65 V  
I(OUT) leakage current during Reverse  
Polarity  
0.3  
ENABLE  
V(ENF)  
Enable rising threshold voltage  
0.6  
0.8  
0.7  
55  
1.05  
0.98  
200  
V
V
Enable threshold voltage for low Iq  
shutdown, falling  
V(ENF)  
I(EN)  
0.41  
nA  
0 V V(EN) 65 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
6
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(OUT) = V(VS) = 12 V, C(CAP) = 0.1 µF, V(EN) , V(SLEEP)= 2 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
UNDER VOLTAGE LOCKOUT COMPARATOR (SW, UVLO)  
V(UVLOR)  
V(UVLOF)  
I(UVLO)  
UVLO threshold voltage, rising  
UVLO threshold voltage, falling  
0.585  
0.533  
0.6  
0.55  
50  
0.63  
0.573  
200  
V
V
nA  
0 V V(UVLO) 5 V  
OVER VOLTAGE PROTECTION AND BATTERY SENSING (SW, OV) INPUT  
Battery sensing disconnect switch  
resistance  
R(SW)  
10  
22.5  
46  
3 V V(A) 65 V  
V(OVR)  
V(OVF)  
I(OV)  
Overvoltage threshold input, rising  
Overvoltage threshold input, falling  
OV Input leakage current  
0.585  
0.533  
0.6  
0.55  
50  
0.63  
0.573  
200  
V
V
nA  
0 V V(OV) 5 V  
CURRENT SENSE AMPLIFIER  
RSET = 50, RIMON = 5k,  
10k(corresponds to VSNS = 6mV to  
30mV) Gain of 45 and 90 respectively.  
Input referred offset (VSNS to VIMON  
scaling)  
V(OFFSET)  
-2.1  
82  
2.1  
97  
mV  
RSET = 50, RIMON = 5k,  
(corresponds to VSNS = 6mV to  
30mV)  
V(GE_SET)  
VSNS to VIMON scaling  
90  
OCP comparator threshold, rising  
(ILIM)  
V(SNS_TH)  
V(SNS_TH)  
1.08  
1.02  
1.22  
1.15  
1.32  
1.25  
OCP comparator threshold, falling  
(ILIM)  
V
ISCP  
SCP Input Bias current  
SCP threshold  
VISCP = 12V  
9.5  
10.5  
20  
12  
µA  
mV  
mV  
%
V(SNS_SCP)  
V(SNS_SCP)  
IMON_ACC  
FAULT  
R(FLT)  
17.86  
22.77  
R(ISCP) = 0(ISCP connected to VS)  
R(ISCP) = 1k(external)  
VSENSE = 20mV  
SCP threshold  
31  
Current monitor output accuracy  
-12.5  
12.5  
FLT_I Pull-down resistance  
FLT Input leakage current  
11  
25  
60  
I_FLT  
400  
nA  
0 V V(FLT) 20 V  
100  
DELAY TIMER (TMR)  
I(TMR_SRC_CB)  
I(TMR_SRC_FLT)  
I(TMR_SNK)  
TMR source current  
65  
1.94  
2
85  
2.7  
2.7  
1.2  
1.1  
97  
3.4  
µA  
µA  
µA  
V
TMR source current  
TMR sink current  
3.15  
1.4  
V(TMR_OC)  
Voltage at TMR pin for IWRN shut off  
Voltage at TMR pin for IFLT triggerring  
1.1  
V(TMR_FLT)  
1.04  
1.2  
V
Voltage at TMR pin for AR counter  
falling threshold  
V(TMR_LOW)  
N(A_R_Count)  
0.1  
0.2  
32  
0.3  
V
Number of autoretry cycles  
CHARGE PUMP (CAP)  
Charge Pump source current (Charge  
pump on)  
V
V
(CAP) V(A) = 7 V, 6 V V(S) 65  
I(CAP)  
1.3  
2.5  
2.7  
4.2  
mA  
mA  
V(CAP) V(A) = 7 V, VS= 65 V,  
LM74910-Q1 Only  
Charge Pump Turn ON voltage  
Charge Pump Turnoff voltage  
11  
12.2  
13.2  
13.2  
14.1  
V
V
VCAP VS  
11.9  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(OUT) = V(VS) = 12 V, C(CAP) = 0.1 µF, V(EN) , V(SLEEP)= 2 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Charge Pump UVLO voltage  
threshold, rising  
5.4  
6.6  
7.9  
6.6  
V
V
V(CAP UVLO)  
Charge Pump UVLO voltage  
threshold, falling  
4.4  
5.5  
IDEAL DIODE (A, C, DGATE)  
V(A_PORR) V(A) POR threshold, rising  
V(A_PORF)  
2.2  
2
2.45  
2.25  
2.7  
V
V
V(A) POR threshold, falling  
2.45  
Regulated Forward V(A)V(C)  
Threshold  
V(AC_REG)  
V(AC_REV)  
V(AC_FWD)  
3.6  
16  
150  
10.5  
10.5  
177  
13.4  
5  
mV  
mV  
mV  
V(A)V(C) Threshold for Fast Reverse  
Current Blocking  
V(A)V(C) Threshold for Reverse to  
Forward transition  
200  
3 V < V(S) < 5 V  
7
V
V
Gate Drive Voltage  
V
(DGATE) V(A)  
5 V < V(S) < 65 V  
9.2  
11.5  
18.5  
14  
V(A) V(C) = 100 mV, V(DGATE) V(A)  
= 1 V  
Peak Gate Source current  
Peak Gate Sink current  
mA  
mA  
V(A) V(C) = 12 mV, V(DGATE)  
V(A) = 11 V  
I(DGATE)  
2670  
V(A) V(C) = 0 V, V(DGATE) V(A) = 11  
V
Regulation sink current  
Cathode leakage Current  
5
4
13.5  
9
µA  
µA  
I(C)  
32  
V(A) = 14 V, V(C) = 12 V  
HIGH SIDE CONTROLLER (HGATE, OUT)  
3 V < V(S) < 5 V  
5 V < V(S) < 65 V  
7
10  
V
V
Gate Drive Voltage  
(HGATE) V(OUT)  
V
11.1  
55  
14.5  
75  
Source Current  
Sink Current  
39  
µA  
mA  
I(HGATE)  
V(OV) > V(OVR)  
128  
180  
SLEEP MODE  
V(SLEEPR)  
SLEEP high threshold voltage  
0.85  
0.7  
1.05  
V
V
SLEEP threshold voltage for low Iq  
shutdown, falling  
V(SLEEPF)  
I(SLEEP)  
0.41  
SLEEP input leakage current  
100  
21.3  
160  
23  
nA  
V
Overvoltage  
threshold  
SLEEP mode overvoltage rising  
threshold  
SLEEP=Low, EN=High  
SLEEP=Low, EN=High  
19.3  
18.4  
150  
Overvoltage  
threshold  
SLEEP mode overvoltage threshold  
21  
22.2  
310  
V
Overcurrent  
threshold  
SLEEP mode overcurrent threshold  
(device Latch-off)  
250  
mA  
T(TSD)  
SLEEP mode TSD Threshold, rising  
TSD Hysteresis  
SLEEP=Low, EN=High  
SLEEP=Low, EN=High  
155  
10  
T(TSDhyst)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
8
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 开关特性  
TJ = 40°C +125°CTJ = 25°CV(A) = V(OUT) = V(VS) = 12VC(CAP) = 0.1µFV(EN)V(SLEEP) = 2V 时的典型值在自然  
通风条件下的工作温度范围内除非另有说明)  
参数  
测试条件  
最小值 典型值 最大值 单位  
V(A) V(C) = +30mV 100mV  
tDGATE_OFF(dly)  
0.5  
2
0.95  
3.8  
µs  
µs  
µs  
反向电压检测期间DGATE 关断延迟  
V(DGATEA) < 1VC(DGATEA)  
=
10nF  
V(A)V(C) = 20mV +700mV 至  
V(DGATE-A) > 5VC(DGATE-A) = 10nF,  
LM74900-Q1  
tDGATE_ON(dly)  
正向电压检测期间DGATE 导通延迟  
V(A)V(C) = 20mV +700mV 至  
V(DGATE-A) > 5VC(DGATE-A) = 10nF,  
LM74910-Q1  
tDGATE_ON(dly)  
0.75  
1.6  
正向电压检测期间DGATE 导通延迟  
EN 期间DGATE 导通延迟  
EN V(DGATE-A) > 5VC(DGATE-A)  
= 10nF  
tEN(dly)_DGATE  
180  
5
270  
7
µs  
µs  
µs  
tUVLO_OFF(deg)_HGA  
UVLO 期间HGATE 关断抗尖峰脉冲 UVLO HGATE ↓  
UVLO 期间HGATE 关断抗尖峰脉冲 UVLO HGATE ↑  
TE  
tUVLO_ON(deg)_HGAT  
8.5  
E
tOVP_OFF(deg)_HGAT  
4
9
3
7
µs  
µs  
µs  
OV 期间HGATE 关断抗尖峰脉冲  
OV 期间HGATE 关断抗尖峰脉冲  
OV HGATE ↓  
OV HGATE ↑  
E
tOVP_ON(deg)_HGATE  
tSCP_DLY  
(VISCP - VCS-) = 0mv 100mV  
HGATECGS = 4.7nF  
5.5  
短路保护关闭延迟  
(VCS+ - VCS-)HGATECTMR  
=
=
35  
190  
1.5  
µs  
µs  
50pF  
过流保护关闭延迟  
tOCP_TMR_DLY  
(VCS+ - VCS-)HGATECTMR  
10nF  
过流保护关闭延迟  
(VCS+ - VCS-) HGATE CTMR  
50pF  
=
=
ms  
过流/短路保护自动重试延迟  
tAUTO_RETRY_DLY  
(VCS+ - VCS-) HGATE CTMR  
10nF  
230  
35  
ms  
µs  
过流/短路保护自动重试延迟  
(VCS+ - VCS-)FLTCTMR = 50pF  
OV FLT ↓  
故障置位延迟  
tFLT_ASSERT  
3
4
µs  
µs  
µs  
µs  
µs  
故障置位延迟  
tFLT_DE-ASSERT  
tSLEEP_OCP_LATCH  
tSLEEP_MODE  
tOVCLAMP  
故障取消置位延迟  
OCP 锁存延迟  
3.5  
95  
3.5  
7.5  
SLEEP=低电平EN=高电平  
睡眠模式进入延迟  
OV 钳位响应延迟  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Typical Characteristics  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
20  
16  
12  
8
40C  
25C  
85C  
125C  
150C  
40C  
25C  
85C  
125C  
150C  
4
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS Supply Voltage (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS Supply Voltage (V)  
7-1. Operating Quiescent Current vs Supply Voltage  
7-2. Shutdown Current vs Supply Voltage  
18  
16  
14  
12  
3.3  
3
2.7  
2.4  
2.1  
1.8  
10  
40C  
40C  
1.5  
1.2  
0.9  
0.6  
0.3  
25C  
25C  
8
85C  
85C  
125C  
125C  
150C  
6
150C  
4
2
3
4
5
6
7
8
9
10  
11  
12  
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS Supply Voltage (V)  
VS Supply Voltage (V)  
7-4. Charge Pump Current vs Supply Voltage at CAP VS ≥  
7-3. SLEEP Mode Current vs Supply Voltage  
6 V (LM74900-Q1)  
5
6
5
4
40C  
25C  
4.5  
4
85C  
125C  
150C  
3.5  
3
3
40C  
2.5  
2
25C  
2
1
0
85C  
125C  
150C  
1.5  
1
0
2
4
6
8
10  
12  
3
4
5
6
7
8
9
10  
11  
12  
VCAP VS Voltage (V)  
VS Supply Voltage (V)  
7-6. Charge Pump V-I Characteristics at VS 12 V (LM74900-  
7-5. Charge Pump Current vs Supply Voltage at CAP VS ≥  
Q1)  
6 V (LM74910-Q1)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
7.5  
12.6  
12  
40C  
7
6.5  
6
25C  
85C  
125C  
150C  
11.4  
10.8  
10.2  
9.6  
5.5  
5
4.5  
4
40C  
25C  
85C  
125C  
150C  
3.5  
3
2.5  
2
9
1.5  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS Supply voltage (V)  
0
2
4
6
8
10  
12  
VCAP VS (V)  
7-8. DGATE Drive Voltage vs Supply Voltage  
7-7. Charge Pump V-I Characteristics at VS 12 V (LM74910-  
Q1)  
12.6  
12  
11.4  
10.8  
40C  
10.2  
25C  
85C  
125C  
9.6  
150C  
9
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS Supply Voltage (V)  
7-9. HGATE Drive Voltage vs Supply Voltage  
7-10. ANODE Leakage Current vs Reverse ANODE Voltage  
0.65  
0.65  
0.61  
0.57  
0.53  
0.61  
0.57  
0.53  
OV Rising  
OV Falling  
UVLO Rising  
UVLO Falling  
0.49  
0.49  
0.45  
0.45  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Temperature (C)  
Temperature (C)  
7-11. UVLO Thresholds vs Temperature  
7-12. OVP Thresholds vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
7.5  
20.8  
20.6  
20.4  
20.2  
20  
CP UVLO Rising  
CP UVLO Falling  
6.9  
6.3  
5.7  
5.1  
4.5  
19.8  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Temperature (C)  
Temperature (C)  
7-14. ISCP to CSThreshold vs Temperature  
7-13. Charge Pump UVLO Threshold vs Temperature  
11.2  
2.6  
VA POR RISING  
VA POR FALLING  
2.5  
11  
10.8  
10.6  
10.4  
10.2  
2.4  
2.3  
2.2  
2.1  
2
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Temperature (C)  
Temperature (C)  
7-15. ISCP Bias Current vs Temperature  
7-16. VA POR Threshold vs Temperature  
2.7  
0.85  
2.65  
0.77  
0.69  
0.61  
0.53  
0.45  
2.6  
2.55  
2.5  
VS_POR_RISING  
VS_POR_FALLING  
2.45  
2.4  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Temperature (C)  
Temperature (C)  
7-17. VS POR Threshold vs Temperature  
7-18. DGATE Turn OFF Delay  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
12  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
3
5
4.6  
4.2  
3.8  
3.4  
3
LM74910-Q1  
LM74900-Q1  
2.4  
1.8  
1.2  
0.6  
0
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Temperature (C)  
Temperature (C)  
7-19. DGATE Turn On Delay During Forward Conduction  
7-20. HGATE Turn OFF Delay During OV  
3
5
4.5  
2.8  
2.6  
2.4  
2.2  
2
4
3.5  
3
2.5  
2
40C  
25C  
85C  
125C  
150C  
1.5  
1
0.5  
0
-40  
0
40  
80  
120  
160  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Temperature (C)  
VRSENSE (V)  
7-21. HGATE Turn OFF Delay During SCP  
7-22. IMON Voltage vs Sense Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
8 Parameter Measurement Information  
700 mV  
30 mV  
VA > VC  
0 mV  
VA > VC  
0 mV  
VC > VA  
-100 mV  
VC > VA  
-20 mV  
VDGATE  
VDGATE  
5V  
1V  
0 V  
0 V  
ttDGATE_OFF(DLY)  
t
ttDGATE_ON(DLY)t  
0.1 V  
+
VOVR  
VUVLOF  
0.1 V  
0 V  
0 V  
11 V  
11 V  
1 V  
0 V  
1 V  
0 V  
ttOVP_OFF(deg)HGATE  
t
ttUVLO_OFF(deg)HGATE  
t
0.1 V  
VOVF  
0.1 V  
+
VSNS  
0 V  
0 V  
12.4 V  
11 V  
5 V  
0 V  
0 V  
ttOVP_ON(deg)GATE  
t
ttSCP_DLY  
8-1. Timing Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
14  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LM749x0-Q1 family of ideal diode controllers drive back-to-back external N-Channel MOSFETs to realize  
low-loss power path protection with circuit breaker, undervoltage, and overvoltage protection functionality.  
The wide input supply of 3 V to 65 V allows protection and control of 12-V and 24-V automotive battery powered  
ECUs. The device can withstand and protect the loads from negative supply voltages down to 65 V. An  
integrated ideal diode controller (DGATE) drives the first MOSFET to replace a Schottky diode for reverse input  
protection and output voltage holdup. With a second MOSFET in the power path the device allows load  
disconnect (ON/OFF control) and overvoltage protection using HGATE control. The device features an  
adjustable overvoltage cut-off protection feature. With common drain configuration of the power MOSFETs, the  
mid-point can be utilized for OR-ing designs using another ideal diode. The LM749x0-Q1 has a maximum  
voltage rating of 65 V.  
The device has accurate current sensing output (IMON) with typical accuracy of (±10%) enabling systems for  
energy management. It has integrated two level overcurrent protection with circuit breaker functionality (TMR)  
and fault (FLT) output with complete adjustability of thresholds and response time. Auto-retry and latch-off fault  
behavior can be configured.  
The device offers adjustable overvoltage and undervoltage protection, providing robust load disconnect in case  
of voltage transient events.  
LM749x0-Q1 features two different low power modes based on status of EN and SLEEP pin. In SLEEP mode  
(SLEEP = Low, EN = High) the device consumes only 6-μA current by turning off both the external MOSFET  
gate drives and internal charge pump but at the same time providing internal bypass path to power up always  
ON loads with limited current capacity. With the enable pin low, device enters into ultra-low-power mode by  
completely cutting off loads with typical current consumption of 2.87 μA. The high voltage rating of LM749x0-Q1  
helps to simplify the system designs for automotive ISO7637 protection. The LM749x0-Q1 is also suitable for  
ORing and priority power MUX applications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.2 Functional Block Diagram  
9.3 Feature Description  
9.3.1 Charge Pump  
The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge  
pump capacitor is placed between CAP and VS pins to provide energy to turn on the external MOSFET. In order  
for the charge pump to supply current to the external capacitor, the EN and SLEEP pin voltage must be above  
the specified input high threshold. When enabled the charge pump sources a charging current of 2.7-mA typical.  
If EN and SLEEP pin is pulled low, then the charge pump remains disabled. To ensure that the external  
MOSFET can be driven above its specified threshold voltage, the CAP to VS voltage must be above the  
undervoltage lockout threshold, typically 6.6 V, before the internal gate driver is enabled. Use 方程式 1 to  
calculate the initial gate driver enable delay.  
C
(CAP) × V(CAP_UVLOR)  
2.7 mA  
T
(DRV_EN) = 175 µs +  
(1)  
where  
C(CAP) is the charge pump capacitance connected across VS and CAP pins  
V(CAP_UVLOR) = 6.6 V (typical)  
To remove any chatter on the gate drive approximately 1 V of hysteresis is added to the VCAP undervoltage  
lockout. The charge pump remains enabled until the CAP to VS voltage reaches 13.2 V, typically, at which point  
the charge pump is disabled decreasing the current draw on the VS pin. The charge pump remains disabled until  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
16  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
the CAP to VS voltage is below to 12.2 V typically at which point the charge pump is enabled. The voltage  
between CAP and VS continue to charge and discharge between 12.2 V and 13.2 V as shown in 9-1. By  
enabling and disabling the charge pump, the operating quiescent current of the LM749x0-Q1 is reduced. When  
the charge pump is disabled it sinks 15 µA.  
TON  
TDRV_EN  
TOFF  
VIN  
VA=Vs  
0V  
VEN/UVLO  
13.2 V  
12.2 V  
VCAP-VS  
6.6 V  
V(VCAP UVLOR)  
GATE DRIVER  
ENABLE  
9-1. Charge Pump Operation  
9.3.2 Dual Gate Control (DGATE, HGATE)  
The LM749x0-Q1 features two separate gate control and driver outputs i.e DGATE and HGATE to drive back to  
back N-channel MOSFETs.  
9.3.2.1 Reverse Battery Protection (A, C, DGATE)  
A, C, DGATE comprises of Ideal Diode stage. Connect the Source of the external MOSFET to A, Drain to C and  
Gate to DGATE. The LM749x0-Q1 has integrated reverse input protection down to 65 V.  
Before the DGATE driver is enabled, following conditions must be achieved:  
The EN and SLEEP pin voltage must be greater than the specified input high voltage.  
The CAP to VS voltage must be greater than the undervoltage lockout voltage.  
Voltage at A pin must be greater than VA POR Rising threshold.  
Voltage at VS pin must be greater than Vs POR Rising threshold.  
If the above conditions are not achieved, then the DGATE pin is internally connected to the A pin, assuring that  
the external MOSFET is disabled.  
In LM749x0-Q1 the voltage drop across the MOSFET is continuously monitored between the A and C pins, and  
the DGATE to A voltage is adjusted as needed to regulate the forward voltage drop at 10.5 mV (typ). This closed  
loop regulation scheme enables graceful turn off of the MOSFET during a reverse current event and ensures  
zero DC reverse current flow. This scheme ensures robust performance during slow input voltage ramp down  
tests. Along with the linear regulation amplifier scheme, the LM749x0-Q1 also integrates a fast reverse voltage  
comparator. When the voltage drop across A and C reaches V(AC_REV) threshold then the DGATE goes low  
within 0.5-µs (typ). This fast reverse voltage comparator scheme ensures robust performance during fast input  
voltage ramp down tests such as input micro-shorts. The external MOSFET is turned ON back when the voltage  
across A and C hits V(AC_FWD) threshold within 2.8 µs (typ).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
In LM749x0-Q1, reverse current blocking is by fast reverse voltage comparator only. When the voltage drop  
across A and C reaches V(AC_REV) threshold then the DGATE goes low within 0.5 µs (typ). This fast reverse  
voltage comparator scheme ensures robust performance during fast input voltage ramp down tests such as input  
micro-shorts. The external MOSFET is turned ON back when the voltage across A and C hits V(AC_FWD)  
threshold within 2.8 µs (typ).  
9.3.2.2 Load Disconnect Switch Control (HGATE, OUT)  
HGATE and OUT comprises of Load disconnect switch control stage. Connect the Source of the external  
MOSFET to OUT and Gate to HGATE.  
Before the HGATE driver is enabled, following conditions must be achieved:  
The EN and SLEEP pin voltage must be greater than the specified input high voltage.  
The CAP to VS voltage must be greater than the undervoltage lockout voltage.  
Voltage at VS pin must be greater than Vs POR Rising thershold.  
If the above conditions are not achieved, then the HGATE pin is internally connected to the OUT pin, assuring  
that the external MOSFET is disabled.  
For Inrush Current limiting, connect CdVdT capacitor and R1 as shown in 9-2.  
Q1  
RG  
Cdvdt  
HGATE  
OUT  
LM749x0-Q1  
9-2. Inrush Current Limiting  
The CdVdT capacitor is required for slowing down the HGATE voltage ramp during power up for inrush current  
limiting. Use 方程2 to calculate CdVdT capacitance value .  
I(HGATE_DRV)  
C
(dVdT) = COUT ×  
IINRUSH  
(2)  
where IHATE_DRV is 55 μA (typ), IINRUSH is the inrush current and COUT is the output load capacitance. An extra  
resistor, R1, in series with the CdVdT capacitor improves the turn off time.  
9.3.3 Overcurrent Protection (CS+, CS-, ILIM, IMON, TMR)  
LM749x0 has two level overcurrent protection. The device senses the voltage across the external current sense  
resistor through CS+ and CS.  
9.3.3.1 Pulse Overload Protection, Circuit Breaker  
LM749x0-Q1 provides programmable overcurrent threshold setting by means of resistor (RLIM) connected from  
ILIM pin to GND.  
12 × RSET  
R(ILIM)  
=
R
SENSE × ILIM  
(3)  
where  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
18  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
RSET is the resistor connected across CS+ and VS  
RSNS is the current sense resistor  
ILIM is the overcurrent level  
The CTMR programs the circuit breaker and auto-retry time. Once the voltage across CS+ and CSexceeds the  
set point, the CTMR starts charging with 85-µA pull up current. Once the CTMR charges to VTMR_FLT, FLT asserts  
low providing warning on impending FET turn OFF. Once CTMR charges to VTMR_OC, HGATE is pulled to OUT  
turning OFF the HFET. After this event, the auto-retry behavior starts. The CTMR capacitor starts discharging with  
2.7-µA pull down current. Once the voltage reaches VTMR_Low level, the capacitor starts charging with 2.7-µA  
pull up. After 32 charging/discharging cycles of CTMR, the FET turns ON and FLT de-asserts after de-assertion  
delay.  
CTMR  
T
(OC) = 1.2 ×  
82.3 µA  
(4)  
where  
TOC is the delay to turn OFF the FET  
CTMR is the capacitance across TMR to GND  
The auto-retry time can be computed as  
T
RETRY = 22.7 × 106 × CTMR  
(5)  
If the overcurrent pulse duration is below TOC then the FET remains ON and CTMR gets discharged using internal  
pull down switch.  
When not used, ILIM is connected to ground while TMR can be left floating.  
VINT  
85 µA / 5.4 µA  
TMR  
2.7 µA  
LM749x0-Q1  
9-3. LM749x0 Auto Retry TIMER Functionality  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
ILIM  
I_LOAD  
TPULSE  
0-A  
TOC = TCB  
VTMR_OC  
VTMR_FLT  
VTMR_Low  
VTMR  
FLT  
1st  
2nd  
32nd  
Vcc  
0 V  
TLIM  
TFLT = 0.9xTCB  
12 V  
0 V  
HGATE-  
OUT  
9-4. Overcurrent Protection With Auto Retry Timing Diagram  
If the overcurrent pulse duration is below TOC then the HFET remains ON and CTMR gets discharged using  
internal pull down switch.  
9.3.3.2 Overcurrent Protection With Latch-Off  
With about a 100-kresistor across CTMR as shown in figure, overcurrent latch-off functionality can be achieved.  
With this resistor, during the charging cycle the voltage across CTMR gets clamped to a level below VTMR_OC  
resulting in a latch-off behavior.  
VINT  
85 µA / 5.4 µA  
TMR  
2.7 µA  
100 k  
LM749x0-Q1  
9-5. LM749x0 Overcurrent Protection With Latch  
Toggle EN (below ENF) or power cycle Vs below VSPORF to reset the latch. At low edge, the timer counter is  
reset and CTMR is discharged.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
20  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
ILIM  
I_LOAD  
TPULSE  
0 A  
TOC = TCB  
VTMR_OC  
The resistor across TMR to GND prevents the VTMR to charge to upper threshold and the  
counter does not see next counts, resulting in FET to stay latch OFF  
VTMR_FLT  
VTMR_Low  
VTMR  
FLT  
1st  
Vcc  
0 V  
TLIM  
TFLT = 0.9xTCB  
12 V  
0 V  
HGATE-  
OUT  
When EN is pulled low, the timer counter is reset  
and TMR cap is discharged  
EN  
Starts a fresh turn ON cycle  
9-6. Overcurrent Protection With Latch Timing Diagram  
9.3.3.3 Short Circuit Protection (ISCP)  
LM749x0-Q1 offers fast response to any short circuit events with the short circuit protection feature. Once the  
voltage across CS+ and CSexceeds the ISCP set point of 20-mV typical (default threshold), HGATE is pulled  
to OUT within 5 µs protecting the HFET. FLT asserts low at the same time. Subsequent to this event, the charge/  
discharge cycles of CTMR starts similar to the behavior post FET OFF event in circuit breaker operation.  
Short circuit protection threshold can be increased using an external series resistor (RISCP) from ISCP pin to  
common drain point. The shift in the short circuit protection threshold can be calculated using 方程6.  
V
SNS_SCP = (10.5 µA × RISCP) + 20 mV  
(6)  
An additional deglitch filter consisting of RSCP and CSCP can be added from ISCP pin to CSpin as shown in 图  
9-7 to avoid any false short circuit trigger in case of fast automotive transients such as Input Micro cuts (LV124,  
E-10), AC superimpose (LV124, E-06), ISO7637-2 Pulse 2A.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
Q2  
RSENSE  
VOUT  
RISCP  
RSET  
CSET  
COUT  
CISCP  
ISCP  
C
CS-  
VS  
CS+  
HGATE  
OUT  
10.5µA  
+
+20mV  
LM749x0-Q1  
9-7. Short Circuit Protection With Deglitch Filter  
Latch off can also achieved in the similar way as explained in the circuit breaker section.  
9.3.3.4 Analog Current Monitor Output (IMON)  
LM749x0 features analog load current monitor output (IMON) with adjustable gain. The resistor connected from  
IMON pin to ground sets the current monitor output voltage given by 方程7.  
0.9 × VSENSE × RIMON  
VIMON  
=
RSET  
(7)  
RSNS  
VIN  
RISCP  
ISCP  
RSET  
50  
CS+  
CS-  
10.5 µA  
+
CS-  
To OCP Logic  
VREF  
+
LM749x0-Q1  
ILIM  
RLIM  
IMON  
RIMON  
9-8. Analog Current Monitoring  
9.3.4 Undervoltage Protection, Overvoltage Protection, and Battery Voltage Sensing (UVLO, OV, SW)  
Connect a resistor ladder as shown in 9-9 for overvoltage threshold programming.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
22  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
VIN  
A
EN / SLEEP  
SW  
R1  
R2  
R3  
UVLO  
OV  
+
UVLOb  
0.6 V  
0.55 V  
+
OVP  
0.6 V  
0.55 V  
LM749x0-Q1  
9-9. Programming Overvoltage Threshold and Battery Sensing  
A disconnect switch is integrated between A and SW pins. This switch is turned OFF when EN or SLEEP pin is  
pulled low. This helps to reduce the leakage current through the resistor divider network during system shutdown  
state (IGN_OFF state).  
When undervoltage functionality is not required then it is recommended to connect UVLO pin to EN or VS. It is  
recommended to connect OV pin to ground when overvoltage protection feature is not used.  
9.3.5 Low IQ SLEEP Mode (SLEEP)  
LM749x0-Q1 supports low IQ SLEEP mode operation. This mode can be enabled by pulling SLEEP pin low (EN  
= High). In SLEEP mode, device turns off internal charge pump, SW switch and disables DGATE and HGATE  
drive thus achieving low current consumption of 6-μA typical. However at the same time device power up  
always on loads connected on OUT pin through an internal low power MOSFET with typical on resistance of 7  
Ω. In this mode device can support peak load current of 100 mA. As load is increased, voltage drop across  
internal MOSFET increases. Device offers overcurrent protection during sleep mode with typical overcurrent  
threshold of 250 mA. In case of overcurrent event during sleep mode, device protects internal FET by  
disconnecting the internal MOSFET switch and latching off the device. As an additional layer of protection,  
device also features thermal shutdown with latch off feature in SLEEP mode in case of any overheating of the  
device in SLEEP mode. To put the device out of the latch mode user has to toggle the SLEEP or EN pin.  
In SLEEP mode LM749x0-Q1 offers protection against input overvoltage events. Device can be configured in  
either overvoltage cut-off (SLEEP_OV connected to C) or overvoltage clamp mode (SLEEP_OV connected to  
VOUT) with default overvoltage threshold of 21-V typical.  
If SLEEP mode feature is not required then SLEEP pin should be tied to EN. When not used SLEEP_OV pin can  
be left floating.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
Q2  
Q1  
VOUT  
RSENSE  
VBATT  
COUT  
VS  
C
HGATE  
OUT  
DGATE  
CAP  
A
SLEEP Switch  
FLT  
EN  
SLEEP  
mode  
control logic  
UVLO  
EN = High  
ON  
OFF  
ON  
SLEEP = Low  
SLEEP  
OFF  
LM749x0-Q1  
9-10. LM749x0-Q1 SLEEP Mode Operation  
A higher overvoltage threshold for SLEEP mode can be achieved by adding an external Zener diode between  
SLEEP_OV pin to OUT/C as shown in 9-11. This feature is useful while configuring overvoltage threshold for  
24-V or 48-V powered systems.  
Q2  
Q1  
VOUT  
RSENSE  
VBATT  
COUT  
C
VS  
HGATE  
OUT  
DGATE  
CAP  
A
Vz  
“C” (OV cutoff)  
SLEEP_OV  
VOUT (OV clamp)  
SLEEP  
mode  
control logic  
ON  
SLEEP  
EN  
OFF  
ON  
OFF  
LM749x0-Q1  
9-11. Increasing SLEEP_OV Threshold Using an External Zener Diode  
9.3.6 Ultra Low IQ Shutdown (EN)  
The enable pin allows for the gate driver to be either enabled or disabled by an external signal. If the EN pin  
voltage is greater than the rising threshold, the gate driver and charge pump operates as described in Charge  
Pump. If EN pin voltage is less than the input low threshold, V(ENF), the charge pump and both the gate drivers  
(DGATE and HGATE) are disabled placing the LM749x0-Q1 in shutdown mode with ultra-low-current  
consumption of 3 μA. The EN pin can withstand a maximum voltage of 65 V. For always ON operation, connect  
EN pin to VS.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
24  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10 Applications and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
LM749x0-Q1 controls two N-channel power MOSFETs with DGATE used to control diode MOSFET to emulate  
an ideal diode and HGATE controlling second MOSFET for power path cut-off when disabled or during an  
overcurrent, overvoltage, undervoltage events. HGATE controlled MOSFET can be used to clamp the output  
during overvoltage or load dump conditions. LM749x0-Q1 can be placed into low quiescent current mode using  
EN or SLEEP, where both DGATE and HGATE are turned OFF.  
The device has a separate supply input pin (VS). The charge pump is derived from this supply input. With the  
separate supply input provision and separate GATE control architecture, the LM749x0-Q1 device drives back to  
back connected MOSFET in common drain topology thus enabling various system architectures such as power  
supply ORing and Power supply priority MUX applications. With these various topologies, the system designers  
can design the front-end power system to meet various system design requirements.  
10.2 Typical 12-V Reverse Battery Protection Application  
A typical application circuit of LM749x0-Q1 configured in common-drain topology to provide reverse battery  
protection with overvoltage protection is shown in 10-1.  
RSENSE  
1 m  
Q1  
Q2  
VBATT  
VOUT  
RG  
RSET  
RISCP  
CVS  
0.1µF  
COUT  
100 µF  
CIN  
0.1µF  
CCS+  
10 nF  
Cdvdt  
CCAP  
SMBJ33CA  
0.1µF  
CISCP  
10 nF  
ISCP  
VS  
CAP  
C
DGATE  
CS+  
CS-  
HGATE  
OUT  
A
SW  
SLEEP_OV  
R1  
100 k  
RFLT  
10 k  
VVCC_MCU  
UVLO  
OV  
LM74900-Q1  
FLT  
EN  
R2  
11.5 k  
CUV  
0.1 µF  
R3  
100 k  
ON  
OFF  
ON  
R4  
1.65 k  
TMR  
IMON  
SLEEP  
ILIM  
GND  
OFF  
CT  
10 nF  
RMON  
30 k  
RLIM  
60 k  
10-1. Typical Application Circuit - 12-V Reverse Battery Protection and Overcurrent, Overvoltage  
Protection  
10.2.1 Design Requirements for 12-V Battery Protection  
The system design requirements are listed in 10-1.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-1. Design Parameters - 12-V Reverse Battery Protection and Overvoltage Protection  
DESIGN PARAMETER  
EXAMPLE VALUE  
12-V battery, 12-V nominal with 3.2-V Cold Crank and 35-V Load  
Dump  
Operating Input Voltage Range  
Output Power  
Output Current Range  
Input Capacitance  
50 W  
4-A Nominal, 5-A maximum  
0.1-µF minimum  
0.1-µF minimum, (optional 100 µF for E-10 functional class A  
performance)  
Output Capacitance  
Short circuit current limit  
20-A  
Overcurrent limit  
Overvoltage Cut-off  
10-A  
37.0 V, output cut-off > 37.0 V  
ISO 7637-2, ISO 16750-2 and LV124  
Automotive Transient Immunity Compliance  
10.2.2 Automotive Reverse Battery Protection  
The LM749x0-Q1 feature two separate gate control and driver outputs i.e DGATE and HGATE to drive back to  
back N-channel MOSFETs. This enables LM749x0-Q1 to provide comprehensive immunity with robust system  
protection during various automotive transient tests as per ISO 7637-2 and ISO 16750-2 standard as well as  
other automotive OEM standards. For more information, see the Automotive EMC-compliant reverse-battery  
protection with ideal-diode controllers article.  
LM749x0-Q1 gate drive output DGATE controls MOSFET Q1 to provide reverse battery protection and true  
reverse current blocking functionality. HGATE controls MOSFET Q2 to turn off the power path during input  
overvoltage condition. Resistor network R1, R2 and R3, R4 connected from SW pin to ground can be configured  
for undervoltage and overvoltage protection. Bi-directional TVS D1 clamps the automotive transient input  
voltages on the 12-V battery, both positive and negative transients, to voltage levels safe for MOSFET Q1 and  
LM749x0-Q1.  
Fast reverse current blocking response and quick reverse recovery enables LM749x0-Q1 to turn ON/OFF  
MOSFET Q1 during AC super imposed input specified by ISO 16750-2 and LV124 E-06 and provide active  
rectification of the AC input superimposed on DC battery voltage. Fast reverse current blocking response of  
LM749x0-Q1 helps to turn off MOSFET Q1 during negative transients inputs such as 150-V 2-ms Pulse 1  
specified in ISO 7637-2 and input micro short conditions such as LV124 E-10 test.  
10.2.2.1 Input Transient Protection: ISO 7637-2 Pulse 1  
ISO 7637-2 Pulse 1 specifies negative transient immunity of electronic modules connected in parallel with an  
inductive load when the battery is disconnected. A typical pulse 1 specified in ISO 7637-2 starts with battery  
disconnection where supply voltage collapses to 0 V followed by 150 V 2 ms applied with a source impedance  
of 10 Ω at a slew rate of 1 µs on the supply input. LM749x0-Q1 blocks reverse current and prevents the output  
voltage from swinging negative, protecting the rest of the electronic circuits from damage due to negative  
transient voltage. MOSFET Q1 is quickly turned off within 0.5 µs by fast reverse comparator of LM749x0-Q1. A  
single bi-directional TVS is required at the input to clamp the negative transient pulse within the operating  
maximum voltage across cathode to anode of 85 V and does not violate the MOSFET Q1 drain-source  
breakdown voltage rating.  
ISO 7637-2 Pulse 1 performance of LM749x0-Q1 is shown in 10-2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
26  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-2. ISO 7637-2 Pulse 1  
10.2.2.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06  
Alternators are used to power the automotive electrical system and charge the battery during normal runtime of  
the vehicle. Rectified alternator output contains residual AC ripple voltage superimposed on the DC battery  
voltage due to various reasons which includes engine speed variation, regulator duty cycle with field switching  
ON/OFF and electrical load variations. On a 12-V battery supply, alternator output voltage is regulated by a  
voltage regulator between 14.5 V to 12.5 V by controlling the field current of alternator's rotor. All electronic  
modules are tested for proper operation with superimposed AC ripple on the DC battery voltage. AC super  
imposed test specified in ISO 16750-2 and LV124 E-06 requires AC ripple of 2-V Peak-Peak on a 13.5-V DC  
battery voltage, swept from 15 Hz to 30 kHz. LM74900-Q1 rectifies the AC superimposed voltage by turning the  
MOSFET Q1 OFF quickly to cut-off reverse current and turning the MOSFET Q1 ON quickly during forward  
conduction. Active rectification of 2-V peak-peak 30-kHz AC input by LM749x0-Q1 is shown in Figure 10-3.  
LM74910-Q1 has higher DGATE strength and is capable of achieving active rectification at AC superimpose  
frequency of 200-kHz as shown in 10-4. Fast turn off and quick turn ON of the MOSFET reduces power  
dissipation in the MOSFET Q1 and active rectification reduces power dissipation in the output hold-up  
capacitor's ESR by half.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-3. AC Super Imposed Test - 2-V Peak-Peak 30 kHz  
10-4. AC Super Imposed Test - 2-V Peak-Peak 200 kHz (LM74910-Q1)  
10.2.2.3 Input Micro-Short Protection: LV124 E-10  
E-10 test specified in LV124 standard checks for immunity of electronic modules to short interruptions in power  
supply input due to contact issues or relay bounce. During this test (case 2), micro-short is applied on the input  
for a duration as low as 10 µs to several ms. For a functional pass status A, electronic modules are required to  
run uninterrupted during the E-10 test (case 2) with 100-µs duration. Dual-Gate drive architecture of LM749x0-  
Q1 - DGATE and HGATE - enables to achieve a functional pass status A with optimum hold up capacitance on  
the output when compared to a single gate drive controller. When input micro-short is applied for 100 µs,  
LM749x0-Q1 quickly turns off MOSFET Q1 by shorting DGATE to ANODE (source of MOSFET) within 0.5µs to  
prevent the output from discharging and the HGATE remains ON keeping MOSFET Q2 ON, enabling fast  
recovery after the input short is removed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
28  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
Performance of LM749x0-Q1 during E10 input power supply interruption test case 2 is shown in Figure 10-4.  
After the input short is removed, input voltage recovers and VAC voltage crosses forward turn on threshold  
(VAC_FWD), MOSFET Q1 is turned back ON quickly. Note that dual-gate drive topology allows MOSFET Q2 to  
remain ON during the test and helps in restoring the input power faster. Output voltage remains unperturbed  
during the entire duration, achieving functional status A.  
10-5. Input Micro-Short - LV124 E10 TC 2 100 µs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.2.3 Detailed Design Procedure  
10.2.3.1 Design Considerations  
10-1 summarizes the design parameters that must be known for designing an automotive reverse battery  
protection circuit with overvoltage cut-off. During power up, inrush current through MOSFET Q2 needs to be  
limited so that the MOSFET operates well within its SOA. Maximum load current, maximum ambient temperature  
and thermal properties of the PCB determine the RDSON of the MOSFET Q2 and maximum operating voltage  
determines the voltage rating of the MOSFET Q2. Selection of MOSFET Q1 is determined mainly by the  
maximum operating load current, maximum ambient temperature, maximum frequency of AC super imposed  
voltage ripple and ISO 7637-2 pulse 1 requirements. overvoltage threshold is decided based on the rating of  
downstream DC/DC converter or other components after the reverse battery protection circuit. A single bi-  
directional TVS or two back-back uni-directional TVS are required to clamp input transients to a safe operating  
level for the MOSFETs Q1, Q2 and LM749x0-Q1.  
10.2.3.2 Charge Pump Capacitance VCAP  
Minimum required capacitance for charge pump VCAP is based on input capacitance of the MOSFET Q1,  
CISS(MOSFET_Q1)and input capacitance of Q2 CISS(MOSFET)  
.
Charge Pump VCAP: Minimum 0.1 µF is required; recommended value of VCAP (µF) 10 x ( CISS(MOSFET_Q1)  
+ CISS(MOSFET_Q2) ) (µF)  
10.2.3.3 Input and Output Capacitance  
A minimum input capacitance CIN of 0.1 µF and output capacitance COUT of 0.1 µF is recommended.  
10.2.3.4 Hold-Up Capacitance  
Usually bulk capacitors are placed on the output due to various reasons such as uninterrupted operation during  
power interruption or micro-short at the input, hold-up requirements for doing a memory dump before turning of  
the module and filtering requirements as well. This design considers minimum bulk capacitors requirements for  
meeting functional status "A" during LV124 E10 test case 2 100-µs input interruption. To achieve functional pass  
status A, acceptable voltage droop in the output of LM74900-Q1 is based on the UVLO settings of downstream  
DC-DC converters. For this design, drop from 12-V to 6.5V in output voltage for 100 µs is considered (assuming  
downstram converter with 5-V output) and the minimum hold-up capacitance required is calculated by  
I
LOAD × 100 µs  
VOUT  
CHOLD_UP_MIN  
=
(8)  
Minimum hold-up capacitance required for 5.5-V drop in 100 µs is 100 µF. Note that the typical application circuit  
shows the hold-up capacitor as optional because not all designs require hold-up capacitance.  
10.2.3.5 Selection of Current Sense Resistor, RSNS  
LM749x0-Q1 has integrated short circuit detection comparator with deafult sense threshold of 20-mV. For this  
application, short circuit limit is set to 20-A. The sense resistor value based on short circuit comparator can be  
calculated by 方程9.  
VSENSE  
RSENSE  
=
ISCP  
(9)  
Select a 1-mwith 1% tolerance to set short circuit protection limit of 20-A.  
10.2.3.6 Selection of Scaling Resistor (RSET) and Short-Circuit Protection Setting Resistor (RSCP  
)
RSET is the resistor connected between VS and CS+ pins. This resistor scales the overcurrent protection  
threshold voltage and coordinates with RILIM and RIMON to determine the overcurrent protection threshold and  
current monitoring output. The recommended range of RSET is 50 100 . RSET is selected as 50 , 1% for  
this design example.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
30  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
LM749x0-Q1 default short circuit threshold of 20-mV can be shifted to higher value as given by 方程10.  
SNS_SCP = (10.5 µA × RISCP) + 20 mV  
V
(10)  
For this application, ISCP pin is shorted directly to common drain point. User has a flexibility to populate suitable  
value of RSCP resistor to adjust short circuit protection current limit and also gives flexibility in terms of selecting  
different current sense resistor value.  
An additional de-glitch filter (optional) consisting of RSCP and CSCP can be added from ISCP pin to CS- pin as  
shown in 10-1 to avoid any false short circuit trigger in case of fast automotive transients such as Input Micro  
cuts (LV124, E-10), AC superimpose (LV124, E-06), ISO7637-2 Pulse 2A.  
10.2.3.7 Overcurrent Limit (ILIM), Circuit Breaker Timer (TMR), and Current Monitoring Output (IMON)  
Selection  
Programming the Overcurrent Protection Threshold RILIM Selection  
The RILIM sets the overcurrent protection (circuit breaker detection) threshold, whose value can be calculated  
using 方程11.  
12 × RSET  
R(ILIM)  
=
R
SENSE × ILIM  
(11)  
To set 10 A as overcurrent protection threshold, RILIM value is calculated to be 60 kΩ. Choose the closest  
available standard value: 60 k, 1%.  
Programming the Circuit Breaker Time CTMR Selection  
For the design example under discussion, overcurrent transients are allowed for 1-ms duration. This blanking  
interval, TOC (or circuit breaker interval, TCB) can be set by selecting appropriate capacitor CTMR from TMR pin to  
ground. The value of CTMR to set 1 ms for TOC can be calculated using 方程12.  
CTMR  
T
(OC) = 1.2 ×  
82.3 µA  
(12)  
Choose closest available standard value: 68 nF, 10%.  
Programming Current Monitoring Output RIMON Selection  
Voltage at IMON pin VIMON is proportional to the output load current. This can be connected to an ADC of the  
downstream system for monitoring the operating condition and health of the system. The RIMON must be  
selected based on the maximum load current and the input voltage range of the ADC used. RIMON is set using 方  
13.  
0.9 × VSENSE × RIMON  
VIMON  
=
RSET  
(13)  
For this application example, VIMON is selected to be 2.7 V at full load current of 5 A. RIMON value of 30.1 k,  
1% is selected.  
10.2.3.8 Overvoltage Protection and Battery Monitor  
Resistors R1, R2 and R3, R4 connected from SW pin to ground is used to program the undervoltage and  
overvoltage threshold. The resistor values required for setting the undervoltage threshold (VUVLO to 5.5 V) and  
overvoltage threshold (VOV to 37.0 V) a are calculated by solving  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
R2 × VUVSET  
VUVLOF  
=
(R1 + R2)  
(14)  
(15)  
R4 × VOVSET  
(R3 + R4)  
VOVR  
=
For minimizing the input current drawn from the battery through resistors R1, R2 and R3, it is recommended to  
use higher value of resistance. Using high value resistors will add error in the calculations because the current  
through the resistors at higher value will become comparable to the leakage current into the OV pin. Maximum  
leakage current into the OV pin is 1 µA and choosing total ladder resistor < 120 kΩ ensures current through  
resistors is 100 times greater than leakage through OV pin.  
Based on the device electrical characteristics, VUVLOF is 0.55 V. Select R1 = 100 kΩ. Solving Equation 14 gives  
R2 = 11.5 kΩ. Solving Equation 15 with R3 selected as 100 kΩ and VOVR = 0.6V gives R4 = 1.65 kΩ as  
standard 1% resistor values closest to the calculated resistor values.  
An optional capacitor CUV can be placed in parallel with R2 on UVLO resistor ladder in order to filter out any fast  
undervoltage transients on battery lines to avoid false UVLO trigger.  
For this application example separate resistor ladder is selected to program overvoltage and undervoltage  
threshold. However common resistor ladder from SW pin to ground can also be used as shown in 9-9.  
10.2.4 MOSFET Selection: Blocking MOSFET Q1  
For selecting the blocking MOSFET Q1, important electrical parameters are the maximum continuous drain  
current ID, the maximum drain-to-source voltage VDS(MAX), the maximum drain-to-source voltage VGS(MAX), the  
maximum source current through body diode and the drain-to-source ON resistance RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current.  
The maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential  
voltage seen in the application. This would include all the automotive transient events and any anticipated fault  
conditions. It is recommended to use MOSFETs with VDS voltage rating of 60 V along with a single bidirectional  
TVS or a VDS rating 40-V maximum rating along with two unidirectional TVS connected back-back at the input.  
The maximum VGS LM74900-Q1 can drive is 14 V, so a MOSFET with 15-V minimum VGS rating should be  
selected. If a MOSFET with < 15-V VGS rating is selected, a zener diode can be used to clamp VGS to safe level,  
but this would result in increased IQ current.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred, but selecting a MOSFET based  
on low RDS(ON) may not be beneficial always. Higher RDS(ON) will provide increased voltage information to  
LM74900-Q1's reverse comparator at a lower reverse current. Reverse current detection is better with increased  
RDS(ON). Choosing a MOSFET with < 50-mV forward voltage drop at maximum current is a good starting point.  
For active rectification of AC super imposed ripple on the battery supply voltage, gate-source charge QGS of Q1  
must be selected to meet the required AC ripple frequency. Maximum gate-source charge QGS (at 4.5-V VGS) for  
active rectification every cycle is  
1.3mA  
QGS_MAX  
=
FAC_RIPPLE  
(16)  
Where 1.3 mA is minimum charge pump current at 7-V VDGATE-VA, FAC_RIPPLE is frequency of the AC ripple  
superimposed on the battery and QGS_MAX is the QGS value specified in manufacturer datasheet at 6-V VGS. For  
active rectification at FAC_RIPPLE = 30 KHz, QGS_MAX = 43 nC.  
Based on the design requirements, BUK7Y4R8-60E MOSFET is selected and its ratings are:  
60-V VDS(MAX) and ±20-V VGS(MAX)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
32  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
RDS(ON) 5.0-mΩtypical at 5-V VGS and 2.9-mΩrated at 10-V VGS  
MOSFET QGS 17.4 nC  
Thermal resistance of the MOSFET should be considered against the expected maximum power dissipation in  
the MOSFET to ensure that the junction temperature (TJ) is well controlled.  
10.2.5 MOSFET Selection: Hot-Swap MOSFET Q2  
The VDS rating of the MOSFET Q2 should be sufficient to handle the maximum system voltage along with the  
input transient voltage. For this 12-V design, transient overvoltage events are during suppressed load dump 35  
V 400 ms and ISO 7637-2 pulse 2 A 50 V for 50 µs. Further, ISO 7637-2 Pulse 3B is a very fast repetitive pulse  
of 100 V 100 ns that is usually absorbed by the input and output ceramic capacitors and the maximum voltage  
on the 12-V battery can be limited to < 40 V the minimum recommended input capacitance of 0.1 µF. The 50-V  
ISO 7637-2 Pulse 2 A can also be absorbed by input and output capacitors and its amplitude could be reduced  
to 40-V peak by placing sufficient amount of capacitance at input and output. However for this 12-V design,  
maximum system voltage is 50 V and a 60-V VDS rated MOSFET is selected.  
The VGS rating of the MOSFET Q2 should be higher than that maximum HGATE-OUT voltage 15 V.  
Inrush current through the MOSFET during input hot-plug into the 12-V battery is determined by output  
capacitance. External capacitor on HGATE, CDVDT is used to limit the inrush current during input hot-plug or  
start-up. The value of inrush current determined by 方程2 need to be selected to ensure that the MOSFET Q2  
is operating well within its safe operating area (SOA). To limit inrush current to 0.5 A, CDVDT value of 10.0 nF is  
chosen.  
Duration of inrush current is calculated by 方程17.  
VIN × COUT  
TINRUSH  
=
IINRUSH  
(17)  
Calculated inrush current duration is 2.5 ms with 0.5-A inrush current.  
MOSFET BUK7Y4R8-60E having 60-V VDS and ±20-V VGS rating is selected for Q2. Power dissipation during  
inrush is well within the MOSFET's safe operating area (SOA).  
10.2.6 TVS Selection  
A 600-W SMBJ TVS such as SMBJ33CA is recommended for input transient clamping and protection. For  
detailed explanation on TVS selection for 12-V battery systems, refer to TVS Selection for 12-V Battery Systems.  
10.2.7 Application Curves  
10-6. Start-Up 12 V With EN Pulled to VS  
10-7. Start-Up 12 V With EN Going Low to High  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-9. Inrush Current With No Load at Output  
10-8. Reverse Input Voltage 14 V  
10-11. Device Start-Up With Output Short Circuit  
10-10. Output Short Circuit Protection (On-The-  
(TIMER Duration 1 ms)  
Fly)  
10-13. Output Overcurrent Protection (TIMER  
10-12. Output Overcurrent Protection (TIMER  
Duration 1 ms): Auto Retry  
Duration 1 ms)  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-14. Overvoltage Protection  
10-15. Overvoltage Recovery  
10-17. Undervoltage Lockout (UVLO) Protection  
10-16. Overvoltage Clamp Response (OV  
(VIN_UVLO = 5.5 V)  
Resistor Ladder Referred to VOUT)  
10-18. Undervoltage Lockout (UVLO) Recovery  
10-19. SLEEP Mode Entry (SLEEP = Low, EN =  
High)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-21. SLEEP Mode Exit (SLEEP = High, EN =  
10-20. SLEEP Mode Overcurrent Protection (250  
High)  
mA Typical)  
10-22. Load Transient 100 mA to 5 A  
10.3 Addressing Automotive Input Reverse Battery Protection Topologies With LM749x0-Q1  
The LM749x0-Q1 dual gate drive architecture can address various MOSFET control topologies such as ideal  
diode FET only, high-side switch controller only, dual OR-ing with load disconnect, and priority power muxing.  
This enables system designers to use LM749x0-Q1 as a plug and place component to meet various automotive  
front end protection solutions with a common controller. For additional details on overview of different automotive  
reverse battery protection topologies that can be addressed using LM749x0-Q1, refer to Addressing Automotive  
Reverse Battery Protection Toplogies using LM749x0-Q1  
10.4 Power Supply Recommendations  
10.4.1 Transient Protection  
When the external MOSFETs turn OFF during the conditions such as overvoltage cut-off, reverse current  
blocking, overcurrent cut-off, EN causing an interruption of the current flow, the input line inductance generates a  
positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The  
peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output  
of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to  
address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device.  
Using large PCB GND plane.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
36  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
Use of a Schottky diode across the output and GND to absorb negative spikes.  
A low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with Equation 8.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
( ) )  
´
(
)
(
C IN  
( )  
(18)  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications may require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during EMC testing such as  
automotive ISO7637 pulses.  
RSENSE  
Q1  
Q2  
VBATT  
VOUT  
RSET  
RISCP  
COUT  
CVS  
0.1µF  
*
*
CIN  
0.1µF  
CCAP  
0.1µF  
ISCP  
VS  
CAP  
C
DGATE  
CS+  
CS-  
HGATE  
OUT  
A
SW  
SLEEP_OV  
R1  
R4  
VEXT  
RFLT  
UVLO  
OV  
LM74900/910-Q1  
FLT  
EN  
R3  
R4  
ON  
OFF  
ON  
TMR  
CT  
IMON  
SLEEP  
ILIM  
RLIM  
GND  
OFF  
RMON  
* Optional Components for Transient Suppression  
10-23. Typical Application Diagram  
10.4.2 TVS Selection for 12-V Battery Systems  
In selecting the TVS, important specifications are breakdown voltage and clamping voltage. The breakdown  
voltage of the TVS for positive transients must be higher than 24-V jump start voltage and 35-V suppressed load  
dump voltage and less than the maximum ratings of LM749x0-Q1 (65 V). The breakdown voltage of TVS for  
negative transients must be beyond than maximum reverse battery voltage 16 V, so that the TVSis not  
damaged due to long time exposure to reverse connected battery.  
Clamping voltage is the voltage the TVS diode clamps in high current pulse situations and this voltage is much  
higher than the breakdown voltage. In the case of an ISO 7637-2 pulse 1, the input voltage goes up to 150 V  
with a generator impedance of 10 Ω. This action translates to 15 A flowing through the TVS, and the voltage  
across the TVS is close to its clamping voltage.  
The next criterion is that the absolute maximum rating of cathode to anode voltage of the LM749x0-Q1 (85 V)  
and the maximum VDS rating MOSFET are not exceeded. In the design example, 60-V rated MOSFET is  
chosen and maximum limit on the cathode to anode voltage is 60 V.  
During ISO 7637-2 pulse 1, the anode of LM749x0-Q1 is pulled down by the ISO pulse, clamped by TVSand  
the MOSFET Q1 is turned off quickly to prevent reverse current from discharging the bulk output capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
When the MOSFET turns off, the cathode to anode voltage seen is equal to (TVS Clamping voltage + Output  
capacitor voltage). If the maximum voltage on output capacitor is 16 V (maximum battery voltage), then the  
clamping voltage of the TVSmust not exceed, (60 V 16) V = 44 V.  
The SMBJ33CA TVS diode can be used for 12-V battery protection application. The breakdown voltage of 36.7  
V meets the jump start, load dump requirements on the positive side and 16-V reverse battery connection on the  
negative side. During ISO 7637-2 pulse 1 test, the SMBJ33CA clamps at 44 V with 12 A of peak surge current  
as shown in and it meets the clamping voltage 44 V. SMBJ series of TVS' are rated up to 600-W peak pulse  
power levels and are sufficient for ISO 7637-2 pulses.  
10.5 Layout  
10.5.1 Layout Guidelines  
For the ideal diode stage, connect A, DGATE, and C pins of LM749x0-Q1 close to the MOSFET SOURCE,  
GATE and, DRAIN pins.  
For the load disconnect stage, connect HGATE and OUT pins of LM749x0-Q1 close to the MOSFET GATE  
and SOURCE pins.  
The high current path of for this solution is through the MOSFET, therefore it is important to use thick and  
short traces for source and drain of the MOSFET to minimize resistive losses.  
The DGATE pin of the LM749x0-Q1 must be connected to the MOSFET GATE with short trace.  
Place transient suppression components close to LM749x0-Q1.  
Place the decopuling capacitor, CVS close to VS pin and chip GND.  
The charge pump capacitor across CAP and VS pins must be kept away from the MOSFET to lower the  
thermal effects on the capacitance value.  
S
D
D
D
D
RSENSE  
S
Q1  
Q2  
S
ISCP  
G
HGATE  
CVCAP  
VIN PLANE  
CVS  
GND  
21  
VOUT PLANE  
24  
23  
22  
20  
19  
DGATE  
A
1
2
3
4
18  
17  
16  
ISCP  
NC  
SLEEPOV  
SW  
Exposed  
Thermal Pad  
R1  
UVLO  
CIN  
15  
14  
13  
OUT  
R2  
COUT  
OV  
EN  
5
6
HGATE  
ON/OFF  
Control  
GND  
7
8
9
10  
11  
12  
RIMON  
VFLT  
RILIM  
SLEEP  
CTMR  
RFLT  
ON/OFF  
Control  
Signal Via  
Bottom Layer  
GND PLANE  
10-24. Example Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSDE6  
38  
Submit Document Feedback  
Product Folder Links: LM74900-Q1 LM74910-Q1  
 
LM74900-Q1, LM74910-Q1  
ZHCSO86A DECEMBER 2022 REVISED JUNE 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LM74900-Q1 LM74910-Q1  
English Data Sheet: SNOSDE6  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74900QRGERQ1  
LM74910QRGERQ1  
ACTIVE  
VQFN  
VQFN  
RGE  
24  
24  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
LM  
74900Q  
Samples  
Samples  
ACTIVE  
RGE  
NIPDAU  
LM  
74910Q  
PLM74900QRGERQ1  
PLM74910QRGERQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
Samples  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jul-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM74900QRGERQ1  
LM74910QRGERQ1  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM74900QRGERQ1  
LM74910QRGERQ1  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024T  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
4.1  
3.9  
PIN 1 INDEX AREA  
(0.1) MIN  
(0.13)  
A
-
A
2
5
.
0
0
0
SECTION A-A  
TYPICAL  
C
1.0  
0.8  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
2.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
7
12  
A
(0.16) TYP  
20X 0.5  
6
A
13  
2X  
SYMM  
25  
2.5  
1
18  
0.3  
0.2  
24X  
24  
19  
0.5  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
24X  
0.3  
4228214/A 11/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024T  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.1)  
SYMM  
24  
19  
24X (0.6)  
18  
1
24X (0.25)  
25  
SYMM  
(3.8)  
(0.8)  
20X (0.5)  
6
13  
(
0.2) TYP  
VIA  
7
12  
(0.8)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4228214/A 11/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024T  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.57)  
TYP  
24  
19  
24X (0.6)  
25  
18  
1
24X (0.25)  
(0.57)  
TYP  
SYMM  
(3.8)  
4X  
0.94)  
20X (0.5)  
(
6
13  
EXPOSED METAL  
TYP  
12  
7
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
THERMAL PAD 25:  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY