LM76202-Q1 [TI]

具有集成 FET 的 4.2V 至 60V、2.2A 300uA IQ 汽车理想二极管;
LM76202-Q1
型号: LM76202-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 FET 的 4.2V 至 60V、2.2A 300uA IQ 汽车理想二极管

二极管
文件: 总37页 (文件大小:2277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
具有过压和过流保护的 LM76202-Q1 60V2.2A 集成式理想二极管  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准  
LM76202-Q1 器件是一款功能丰富的紧凑型 60V 集成  
式理想二极管,具有一整套保护 特性。宽电源输入范  
围允许控制 12V 24V 汽车电池驱动 应用。此器件  
可以承受并保护由高达 ±60V 的正负电源供电的负载。  
负载、电源和器件保护还具有许多可编程 特性 ,包括  
过流保护、浪涌电流控制、过压保护和欠压阈值保护。  
此器件内部可靠的保护控制模块以及 60V 额定电压简  
化了针对 ISO 标准脉冲测试的系统设计。  
温度等级 1–40°C TA +125°C  
AEC-Q100-012 A 级短路可靠性  
HBM ESD 分类等级 2  
CDM ESD 分类等级 C6  
4.2V 60V 工作电压,最大值 62V  
集成反向输入极性保护,低至 -60V  
RON 150mΩ 的集成背对背 MOSFET  
高达 65V 的瞬态抗扰度  
借助关断引脚,可以从外部控制内部 FET 的启用和禁  
用,还可以将器件置于低电流关断模式。为实现系统状  
态监视和下游负载控制,此器件提供故障输出和精密电  
流监视输出。MODE 引脚可用于在三种电流限制故障  
响应(断路器、闭锁以及自动重试模式)之间灵活地对  
器件进行配置。此器件可监视 V(IN) V(OUT),以便在  
V(IN) < (V(OUT)-10mV) 时提供反向电流阻断。该功能  
可在输出端发生电池短路故障期间保护系统总线不受过  
压影响,并且有助于在电源故障和欠压条件下满足保持  
电压的要求。  
0.1A 2.23A 可调节电流限制  
1A 时精确度为 ±5%)  
ISO7637 ISO16750-2 测试期间的负载保护  
电池短路和接地短路保护  
反向电流阻断,可提供输出对电池短路保护  
IMON 电流指示器输出(精度为 ±8.5%)  
低静态电流(工作时为 285µA,关断时为 16µA)  
可调节的 UVLOOVP 切断、浪涌电流控制  
出厂设置 38V 过压钳位选项  
可选电流限制故障响应选项(自动重试、闭锁、CB  
模式)  
此器件采用 5mm × 4.4mm 16 引脚 HTSSOP,额定工  
作温度范围为 -40°C +125°C。  
采用易于使用的 16 引脚 HTSSOP 封装  
器件信息(1)  
2 应用  
器件型号  
封装  
封装尺寸(标称值)  
前置摄像头后置摄像头  
LM76202-Q1  
HTSSOP (16)  
5.00mm x 4.40mm  
驾驶辅助 ECU  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
远程信息处理控制单元  
蜂窝式模块资产跟踪  
24V 条件下的 ISO16750-2 负载突降脉冲 5b 性能  
简化原理图  
VOUT  
COUT  
OUT  
IN  
150 mΩ  
CIN  
RFLTb  
R1  
UVLO  
OVP  
FLT  
Health Monitor  
ON/OFF Control  
Load Monitor  
+
LM76202-Q1  
VIN  
SHDN  
œ
dVdT  
R2  
TVS  
IMON  
ILIM  
MODE  
RTN  
GND  
RIMON  
RILIM  
CdVdT  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEM1  
 
 
 
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 24  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Application ................................................. 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 29  
10.1 Transient Protection.............................................. 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 32  
12.1 文档支持................................................................ 32  
12.2 接收文档更新通知 ................................................. 32  
12.3 社区资源................................................................ 32  
12.4 ....................................................................... 32  
12.5 静电放电警告......................................................... 32  
12.6 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 32  
7
8
4 修订历史记录  
Changes from Original (March 2019) to Revision A  
Page  
预告信息更改为生产数据” ............................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
5 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP With Exposed Thermal Pad  
Top View  
OUT  
OUT  
FLT  
16  
IN  
IN  
1
2
3
4
15  
14  
13  
UVLO  
NC  
NC  
PowerPAD™  
Integrated Circuit  
Package  
12  
11  
dVdT  
ILIM  
OVP  
5
6
MODE  
7
8
10  
9
IMON  
GND  
SHDN  
RTN  
Pin Functions  
PIN  
NAME  
IN  
TYPE  
DESCRIPTION  
NO.  
1, 2  
P
Input supply voltage. See IN, OUT, RTN and GND Pins section.  
Input for setting the programmable Undervoltage Lockout threshold. An undervoltage event  
turns off the internal FET and asserts FLT to indicate power failure. If the Undervoltage  
Lockout function is not needed, the UVLO terminal must be connected to the IN terminal.  
See Undervoltage Lockout (UVLO) section.  
3
UVLO  
I
I
No internal connection. These pins can be connected to RTN for enhanced thermal  
performance.  
4, 13 NC  
Input for setting the programmable Overvoltage Protection threshold. An overvoltage event  
turns off the internal FET and asserts FLT to indicate the overvoltage fault. For fixed  
overvoltage clamp response connect OVP to RTN externally. See Overvoltage Protection  
(OVP) section.  
5
OVP  
6
7
MODE  
SHDN  
I
I
Mode selection pin for overload fault response. See the Device Functional Modes section.  
Shutdown pin. Pulling SHDN low enters the device into low-power shutdown mode. Cycling  
SHDN pin voltage resets the device that has latched off due to a fault condition. See Low  
Current Shutdown Control (SHDN) section.  
Reference for device internal control circuits. If reverse input polarity protection is not  
required, this pin can be connected to GND. See IN, OUT, RTN and GND Pins section.  
8
9
RTN  
GND  
Connect GND to system ground. See IN, OUT, RTN and GND Pins section.  
Analog current monitor output. This pin sources a scaled down ratio of current through the  
internal FET. A resistor from this pin to RTN converts current to proportional voltage. If pin is  
unused, leave pin floating. See Current Monitoring section.  
10  
IMON  
O
A resistor from this pin to RTN sets the overload and short-circuit current limit. See the  
Overload and Short Circuit Protection section.  
11  
12  
14  
ILIM  
dVdT  
FLT  
I/O  
I/O  
A capacitor from this pin to RTN sets output voltage slew rate. See the Hot Plug-In and In-  
Rush Current Control section.  
Fault event indicator. Indicator is an open drain output. If indicator is unused, leave indicator  
floating. See FAULT Response section.  
O
P
15,16 OUT  
PowerPAD  
Power output of the device. See IN, OUT, RTN and GND Pins section.  
PowerPAD integrated circuit package must be connected to RTN plane on PCB using  
multiple vias for enhanced thermal performance. PowerPAD is not internally connected to  
RTN. Do not use the PowerPAD as the only electrical connection to RTN.  
Copyright © 2019, Texas Instruments Incorporated  
3
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, all voltages referred to GND (unless otherwise noted)(1)  
MIN  
MAX  
62  
UNIT  
V
IN, IN-OUT  
-62  
-65  
-0.3  
-0.3  
-62  
10  
IN, IN-OUT (350ms transient), TA = 25°C  
[IN, OUT, FLT, UVLO, SHDN] to RTN  
[OVP, dVdT, ILIM, IMON, MODE] to RTN  
RTN  
65  
62  
5
0.3  
IFLT, IdVdT, ISHDN  
Sink current  
mA  
Internally  
limited  
Internally  
limited  
IdVdT, IILIM, IIMON  
Source Current  
Operating junction temperature  
Transient junction temperature  
Storage Temperature  
-40  
-65  
-65  
150  
T(TSD)  
150  
°C  
°C  
°C  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model  
All pins  
±1000  
(CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
-60  
0
NOM  
MAX  
60  
UNIT  
IN  
UVLO, OUT, FLT  
Input voltage range  
Resistance  
60  
V
OVP, dVdT, ILIM, IMON, SHDN  
0
4
ILIM  
5.36  
1
120  
kΩ  
IMON  
IN, OUT  
dVdT  
TJ  
0.1  
10  
-40  
1
µF  
nF  
°C  
External capacitance  
Operating junction temperature range  
25  
125  
6.4 Thermal Information  
LM76202-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
38.6  
22.7  
18.2  
0.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
YJB  
18  
RθJC(bot)  
1.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
6.5 Electrical Characteristics  
–40°C TA = TJ +125°C, V(IN) = 12 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF,  
C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY VOLTAGE  
V(IN)  
Operating input voltage  
4.2  
3.89  
55  
60  
4.14  
305  
V
V
VPORR  
Internal POR Threshold, Rising  
Internal POR Hysteresis  
4
VPORHys  
275  
mV  
VIN = 24V,  
Enabled: V(SHDN) = 2 V  
IQON  
IQON  
Supply Current with device enabled  
Supply Current with device enabled  
300  
285  
398  
390  
µA  
µA  
VIN = 12V  
Enabled: V(SHDN) = 2 V,  
IQOFF  
IQOFF  
IVINR  
Supply Current with device disabled  
Supply Current with device disabled  
Reverse Input supply current  
VIN = 24V, V(SHDN) = 0 V  
VIN = 12V, V(SHDN) = 0 V  
V(IN) = -60 V, V(OUT) = 0 V  
18  
16  
35  
32  
66  
µA  
µA  
µA  
UNDERVOLTAGE LOCKOUT (UVLO) INPUT  
V(UVLOR)  
V(UVLOR)  
I(UVLO)  
UVLO Threshold Voltage, Rising  
UVLO Threshold Voltage, Falling  
UVLO Input leakage current  
1.175  
1.08  
1.19  
1.1  
1.25  
1.126  
100  
V
V
0 V V(UVLO) 60 V  
–100  
nA  
LOW IQ SHUTDOWN (SHDNb) INPUT  
V(SHDN)  
Output voltage  
I(SHDN) = 0.1µA  
2
2.7  
3.4  
V
V
SHDN Threshold Voltage for Low  
IQ Shutdown, Falling  
V(SHUTF)  
0.45  
V(SHUTFR)  
I(SHDN)  
SHDN Threshold, Rising  
Input current  
0.96  
V
V(SHDN) = 0.4 V  
-10  
µA  
OVER VOLTAGE PROTECTION (OVP) INPUT  
Factory Set OV Clamp Select  
V(SEL_OVP)  
Threshold  
180  
36  
200  
37.5  
1.19  
240  
40  
mV  
V
VOVC  
Internal Over voltage clamp  
V(IN) > 42 V, I(OUT)=10mA V(OVP) = 0 V  
Over-Voltage Threshold Voltage,  
Rising  
V(OVPR)  
1.175  
1.225  
V
Over-Voltage Threshold Voltage,  
Falling  
V(OVPF)  
I(OVP)  
1.085  
–100  
1.125  
100  
OVP Input Leakage Current  
0V V(OVP) 4V  
0
nA  
OUTPUT RAMP CONTROL (dVdT)  
I(dVdT)  
dVdT Charging Current  
V(dVdT) = 0 V  
4
4.7  
28  
5.82  
25.5  
µA  
Ω
SHDN = 0 V, with I(dVdT) = 10mA  
sinking  
R(dVdT)  
dVdT Discharging Resistance  
dVdT to OUT Gain  
GAIN(dVdT)  
V(OUT) /V(dVdT)  
23.75  
24.63  
V/V  
CURRENT LIMIT PROGRAMMING (ILIM)  
V(ILIM)  
ILIM Bias Voltage  
1
0.1  
1
V
A
R(ILIM) = 120 kΩ, V(IN)-V(OUT)=1V  
R(ILIM) = 12 kΩ, V(IN)-V(OUT)=1V  
R(ILIM) = 8 kΩ, V(IN)-V(OUT)=1V  
R(ILIM) = 5.36 kΩ, V(IN)-V(OUT)=1V  
0.085  
0.95  
0.115  
1.05  
I(OL)  
1.425  
2.11  
1.5  
2.23  
1.575  
2.35  
Overload Current Limit  
R(ILIM)= OPEN, Open Resistor Current  
Limit  
I(OL_R-OPEN)  
I(OL_R-SHORT)  
0.055  
0.095  
R(ILIM)= SHORT, Shorted Resistor  
Current Limit  
I(CB)  
I(CB)  
Circuit breaker detection threshold  
Circuit breaker detection threshold  
R(ILIM) = 120 kΩ, MODE = open  
R(ILIM) = 5.36 kΩ, MODE = open  
0.045  
2
0.073  
2.21  
0.11  
2.4  
A
A
Copyright © 2019, Texas Instruments Incorporated  
5
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TA = TJ +125°C, V(IN) = 12 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF,  
C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
R(ILIM) = 120 kΩ, V(IN)-V(OUT)=5V  
R(ILIM) = 8 kΩ, V(IN)-V(OUT)=5V  
R(ILIM) = 5.36 kΩ, V(IN)-V(OUT)=5V  
MIN  
0.08  
TYP  
0.1  
MAX UNIT  
0.12  
1.575  
2.35  
A
A
A
I(SCL)  
Short-Circuit Current Limit  
1.425  
2.11  
1.5  
2.23  
1.87 x  
I(FASTRIP)  
Fast-trip comparator threshold  
I(OL)  
+
A
0.015  
CURRENT MONITOR OUTPUT (IMON)  
GAIN(IMON) Gain Factor I(IMON):I(OUT)  
PASS FET OUTPUT (OUT)  
0.1A I(OUT) 2A  
72  
130  
78  
78.28  
85 µA/A  
0.1A I(OUT) 2A,TJ = 25°C  
150  
150  
150  
168  
RON  
IN to OUT Total ON Resistance  
0.1A I(OUT) 2A, -40°C TJ 85°C  
0.1A I(OUT) 2A, -40°C TJ 125°C  
220  
265  
mΩ  
V(IN) = 60 V, V(SHDN)= 0 V, V(OUT) = 0  
V, Sourcing  
Ilkg(OUT)  
OUT Leakage Current in Off State  
OUT Leakage Current in Off State  
12  
11  
µA  
V(IN) = 0 V, V(SHDN)= 0 V, V(OUT) = 24  
V, Sinking  
-11  
-40  
Ilkg(OUT)  
µA  
V(IN) = -60 V, V(SHDN)= 0 V, V(OUT) = 0  
V, Sinking  
-18  
-10  
96  
50  
V(IN)-V(OUT) Threshold for Reverse  
Protection Comparator, Falling  
V(REVTH)  
V(FWDTH)  
-16.2  
85  
-5  
mV  
mV  
V(IN)-V(OUT) Threshold for Reverse  
Protection Comparator, Rising  
110  
FAULT FLAG (FLTb): ACTIVE LOW  
R(FLT) FLT Pull-Down Resistance  
I(FLT) FLT Input Leakage Current  
THERMAL SHUT DOWN (TSD)  
V(OVP) = 2 V, I(FLT) = 5mA sinking  
350  
Ω
0 V V(FLT) 60 V  
–200  
200  
nA  
TSD Threshold, rising  
157  
°C  
°C  
T(TSD)  
TSD hysteresis  
10.1  
MODE  
MODE = 402 kΩ to RTN  
Current limiting with latch  
Circuit breaker mode with  
auto-retry  
MODE = Open  
MODE_SEL  
Thermal fault mode selection  
Current limiting with auto-  
retry  
MODE = Short to RTN  
6.6 Timing Requirements  
–40°C TA = TJ +125°C, V(IN) = 12 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF,  
C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
UVLO INPUT  
UVLO(100mV above V(UVLOR)) to V(OUT) = 100mV,  
C(dvdt) = Open  
UVLO_tON(dly)  
80  
UVLO Turn On Delay  
µs  
µs  
80+14.  
5 x  
C(dvdt)  
UVLO(100mV above V(UVLOR)) to V(OUT) = 100mV,  
UVLO_tON(dly)  
UVLO_toff(dly)  
C(dvdt) 10 nF, [C(dvdt) in nF]  
UVLO Turn-Off delay  
UVLO(100mV below V(UVLOF)) to FLT ↓  
9
SHUTDOWN INPUT  
6
Copyright © 2019, Texas Instruments Incorporated  
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
Timing Requirements (continued)  
–40°C TA = TJ +125°C, V(IN) = 12 V, V(SHDN) = 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF,  
C(dVdT) = OPEN.  
(All voltages referenced to GND, (unless otherwise noted))  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
350+14  
.5 x  
C(dvdt)  
SHDN (above V(SHUTR) to V(OUT) = 100mV,  
SHDN_ton(dly)  
C(dvdt) 10 nF, [C(dvdt) in nF]  
SHUTDOWN Exit delay  
µs  
µs  
SHDN (above V(SHUTR) to V(OUT) = 100mV, C(dvdt)  
Open  
=
SHDN_ton(dly)  
355  
10  
SHUTDOWN Entry delay SHDN_toff(dly)  
SHDN (below V(SHUTF) to FLT ↓  
OVP INPUT  
OVP Exit delay  
tOVP(dly)  
tOVP(dly)  
OVP (20mV below V(OVPF)) to V(OUT) = 100mV  
OVP(20mV above V(OVPR)) to FLT ↓  
205  
2
µs  
µs  
OVP Disable delay  
V(IN) step from 24V to 60V in 50µs, Iload: 10mA, CL:  
0.1uF. OVP connected to RTN  
OVP clamp delay  
tOVC(dly)  
3
µs  
CURRENT LIMIT  
Fast-Trip Comparator  
Delay  
tFASTTRIP(dly)  
I(OUT) = 1.5x I(FASTRIP)  
170  
ns  
REVERSE CURRENT BLOCKING COMPARATOR  
(V(IN)-V(OUT)) (100mV overdrive below V(REVTH)) to  
internal FET OFF  
1.29  
40  
µs  
µs  
µs  
tREV(dly)  
(V(IN)-V(OUT)) (10mV overdrive below V(REVTH)) to  
FLT ↓  
RCB comparator delay  
(V(IN)-V(OUT)) (10mV overdrive above V(FWDTH)) to  
FLT ↑  
tFWD(dly)  
60  
THERMAL SHUTDOWN  
Retry Delay in TSD  
tretry  
540  
ms  
OUTPUT RAMP TIME  
SHDNto V(OUT) = V(IN)  
1.6  
10  
ms  
ms  
Output Ramp Time  
tdVdT  
SHDNto V(OUT) = V(IN), with C(dVdT) = 47nF  
FAULT FLAG  
FLT assertion delay in  
circuit breaker mode  
MODE = OPEN,Delay from I(out)>I(lim) to FLT (and  
internal FET turned off)  
tCB(dly)  
4
ms  
ms  
Retry Delay in circuit  
breaker mode  
MODE= OPEN, C(dVdT) = Open. I(out)>I(lim). Delay  
from FLT to V(dVdT) = 50mV (Rising)  
tCBretry(dly)  
540  
tPGOODR  
tPGOODF  
Delay for rising FLT edge  
Delay for falling FLT edge  
1.8  
ms  
µs  
PGOOD delay time  
900  
版权 © 2019, Texas Instruments Incorporated  
7
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
TA = 25 °C, V(IN) = 12 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless otherwise noted)  
4.2  
4.05  
3.9  
306  
303  
300  
297  
294  
291  
288  
285  
282  
279  
276  
273  
270  
267  
264  
POR Threshold Rising (V)  
POR Threshold Falling (V)  
3.75  
3.6  
3.45  
-60  
-30  
0
30 60  
Temperature (°C)  
90  
120  
150  
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
D001  
D002  
1. POR Threshold (VPOR) vs Temperature  
2. Supply Current ON (IQON) vs Supply Voltage (VIN)  
1.3  
24  
22  
20  
18  
16  
14  
12  
10  
8
UVLO Threshold Rising (V)  
UVLO Threshold Falling (V)  
1.25  
1.2  
1.15  
1.1  
1.05  
1
0
5
10 15 20 25 30 35 40 45 50 55 60  
Supply Voltage (V)  
-40  
0
40 80  
Temperature (°C)  
120  
160  
D003  
D004  
3. Supply Current OFF (IQOFF) vs Supply Voltage (VIN  
)
4. UVLO Thresholds (VUVLOR, VUVLOF) vs Temperature  
1.28  
24.52  
OVP Threshold Rising (V)  
OVP Threshold Falling (V)  
1.24  
24.54  
24.56  
24.58  
24.6  
1.2  
1.16  
1.12  
1.08  
1.04  
24.62  
-40  
0
40 80  
Temperature (°C)  
120  
160  
-50  
-25  
0
25 50  
Temperature (°C)  
75  
100  
125  
D005  
D006  
5. OVP Thresholds (VOVPR, VOVPF) vs Temperature  
6. GAIN(dVdT) vs Temperature  
8
版权 © 2019, Texas Instruments Incorporated  
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
TA = 25 °C, V(IN) = 12 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless otherwise noted)  
2.5  
16  
14  
12  
10  
8
RILIM = 120k  
RILIM = 12k  
RILIM = 5.37k  
2
1.5  
1
6
4
0.5  
0
2
0
0
25  
50 75  
RILIM (kOhm)  
100  
125  
0
5
10 15 20 25 30 35 40 45 50 55 60  
VIN (V)  
D007  
Dg0ra0p8  
TA = -40 to 125 °C  
7. ILIM vs RILIM  
8. ILIM Accuracy vs Supply Voltage  
4.5  
4
79.25  
79  
RILIM = 120k  
RILIM = 12k  
RILIM = 5.37k  
78.75  
78.5  
78.25  
78  
3.5  
3
2.5  
2
77.75  
77.5  
77.25  
77  
1.5  
1
0.5  
0
76.75  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D009  
D010  
9. ILIM Accuracy vs Temperature with VIN = 12 V  
10. GAIN(IMON) vs Temperature  
180  
240  
220  
200  
180  
160  
140  
120  
100  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
0.25 0.5 0.75  
1 1.25 1.5 1.75  
IOUT (A)  
2
2.25  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D011  
D012  
11. IMON vs IOUT  
12. RON vs Temperature  
版权 © 2019, Texas Instruments Incorporated  
9
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
TA = 25 °C, V(IN) = 12 V, V(SHDN)= 2 V, R(ILIM) = 120 kΩ, IMON = FLT = OPEN, C(IN) = 0.1 μF, C(OUT) = 1 μF, C(dVdT) = OPEN.  
(Unless otherwise noted)  
-4  
-4.5  
-5  
-5  
-5.5  
-6  
-6.5  
-7  
-5.5  
-6  
-7.5  
-8  
-6.5  
-7  
-8.5  
-9  
-7.5  
-8  
-9.5  
-10  
-10.5  
-8.5  
-9  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D013  
D014  
V(OUT) = 24 V  
V(IN) = 0 V  
VSHDN = 0 V  
V(OUT) = 0 V  
V(IN) = –24 V  
VSHDN = 0 V  
13. Ilkg(OUT) vs Temperature with VIN = 0 V  
14. Ilkg(OUT) vs Temperature with VIN = –24 V  
11.6  
11.4  
11.2  
11  
95.4  
95.2  
95  
94.8  
94.6  
94.4  
94.2  
94  
10.8  
10.6  
10.4  
10.2  
10  
93.8  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D015  
D016  
15. VREVTH vs Temperature  
16. VFWDTH vs Temperature  
4.5  
4
100000  
10000  
1000  
100  
RILIM = 120k  
RILIM = 12k  
RILIM = 5.37k  
TA = -40 èC  
TA = 25 èC  
TA = 85 èC  
TA = 105 èC  
TA = 125 èC  
3.5  
3
2.5  
2
1.5  
1
10  
1
0.5  
0
0.2  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
1
2
3
4
5 6 7 8 10  
Power Dissipation (W)  
20 30 40 50 70 100  
D017  
D018  
Taken on 2-layer PCB with 0.07-mm thick copper and copper area of  
10.5 cm2 connected to PowerPAD.  
17. ILIM Accuracy vs Temperature with VIN = 24 V  
18. Thermal Shutdown Time vs Power Dissipation  
10  
版权 © 2019, Texas Instruments Incorporated  
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
7 Parameter Measurement Information  
V(OUT)  
VUVLO  
V(UVLOF)-0.1 V  
0.1 V  
VUVLO  
FLT  
V(UVLOR)+0.1V  
10%  
time  
0
time  
0
UVLO_tON(dly)  
UVLO_toff(dly)  
-20 mV  
110 mV  
V(IN) -V(OUT)  
V(IN) -V(OUT)  
90%  
FLT  
FLT  
10%  
0
time  
tREV(dly)  
0
time  
tFWD(dly)  
I(FASTRIP)  
V(OVPR)+0.1V  
V(OVP)  
I(SCL)  
I(OUT)  
FLT  
10%  
0
time  
0
time  
tOVP(dly)  
tFASTRIP(dly)  
19. Timing Waveforms  
版权 © 2019, Texas Instruments Incorporated  
11  
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
LM76202-Q1 is an ideal diode with integrated back-to-back FETs and enhanced built-in protection circuitry. It  
provides robust protection for all systems and applications powered from 4.2 V to 60 V. The device integrates  
reverse battery input, reverse current, overvoltage, undervoltage, overcurrent and short circuit protection. The  
precision overcurrent limit (±5% at 1A) helps to minimize over design of the input power supply, while the fast  
response short circuit protection immediately isolates the load from input when a short circuit is detected. The  
device allows the user to program the overcurrent limit threshold between 0.1 A and 2.23 A with an external  
resistor. The device monitors the bus voltage for brown-out and overvoltage protection, asserting the FLTb pin to  
notify downstream systems.  
The device is designed to protect systems such as ADAS camera supplies against sudden output short to battery  
events. The device monitors V(IN) and V(OUT) to provide true reverse blocking from output when output short to  
battery fault condition or input power fail condition is detected. The internal robust protection control blocks of the  
LM76202-Q1 device along with its ±60 V rating helps to simplify the system designs for the various ISO and  
LV124 compliance ensuring complete protection of the load and the device.  
The device monitors V(IN) and V(OUT) to provide true reverse current blocking when a reverse condition or input  
power failure condition is detected. The LM76202-Q1 device is also designed to control redundant power supply  
systems.  
Additional features of the LM76202-Q1 device include:  
Reverse input battery protection  
Reverse current blocking  
Current monitor output for health monitoring of the system  
Electronic circuit breaker operation with overload timeout using MODE pin  
A choice of latch off or automatic restart mode response during current limit fault using MODE pin  
Over temperature protection to safely shutdown in the event of an overcurrent event  
De-glitched fault reporting for brown-out and overvoltage faults  
Look ahead overload current fault indication (see the Look Ahead Overload Current Fault Indicator section)  
12  
版权 © 2019, Texas Instruments Incorporated  
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
8.2 Functional Block Diagram  
OUT  
IN  
150 mΩ  
-10 mV  
+
+
PORb  
Charge  
Pump  
+100 mV  
4 V  
3.72 V  
X78.2 µ  
Current  
Sense  
CP  
UVLOb  
UVLO  
1.19 V  
1.1 V  
REVERSE  
SWEN  
Gate Control Logic  
IMON  
Current Limit Amp  
TSD  
Thermal  
Shutdown  
+
Fast-Trip Comp  
(Threshold=1.8 x IOL)  
1.19 V  
1.1 V  
OVP  
1 V  
OLR  
VSEL_OVP  
SHDNb  
+
Over Voltage clamp detect  
24.6 x  
ILIM  
OVP  
Short detect  
Ramp Control  
SWEN  
Avdd  
FLT  
I(LOAD) ≥ I(CB)  
* Only for Latch Mode  
OLR  
SET  
Timeout  
5 µA  
4 msec  
timer  
S
Q
dVdT  
RTN  
85 Ω  
UVLOb  
PORb  
TSD  
CLR  
R
Q
1.8 msec  
900 µs  
RdVdT  
PORb  
Fault Latch  
Avdd  
SHDNb  
Gate Enhanced (tPGOOD  
)
OLR  
400 kΩ  
Avdd  
Overload fault response  
select detection  
Reverse Input Polarity  
Protection circuit  
VSHUTx  
GND  
SHDNb  
RTN  
+
LM76202-Q1  
MODE  
SHDN  
版权 © 2019, Texas Instruments Incorporated  
13  
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Undervoltage Lockout (UVLO)  
This section describes the undervoltage comparator input. When the voltage at UVLO pin falls below V(UVLOF)  
during input power fail or input undervoltage fault, the internal FET quickly turns off and FLT is asserted. The  
UVLO comparator has a hysteresis of 90 mV. To set the input UVLO threshold, connect a resistor divider  
network from IN supply to UVLO terminal to RTN as shown in 20.  
V(IN)  
IN  
LM76202-Q1  
R1  
UVLO  
+
+
UVLOb  
1.19 V  
1.1 V  
R2  
OVP  
RTN  
OVP  
1.19 V  
1.1 V  
R3  
GND  
20. UVLO and OVP Thresholds Set by R1, R2 and R3  
If the undervoltage lockout (UVLO) function is not needed, the UVLO terminal must be connected to the IN  
terminal. UVLO terminal must not be left floating.  
The device also implements an internal power ON reset (POR) function on the IN terminal. The device disables  
the internal circuitry when the IN terminal voltage falls below internal POR threshold V(PORF). The internal POR  
threshold has a hysteresis of 275 mV.  
8.3.2 Overvoltage Protection (OVP)  
The device incorporates circuitry to protect the system during overvoltage conditions. This device features an  
overvoltage cut off functionality. A voltage more than V(OVPR) on OVP pin turns off the internal FET and protects  
the downstream load. To program the OVP threshold, connect a resistor divider from IN supply to OVP terminal  
to RTN as shown in 21. OVP Overvoltage Cut-off response is shown in 22. OVP pin must not be left  
floating. If OVP pin could be floating due to dry soldering, an additional zener diode at the output will be required  
for protection from over voltage.  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
Feature Description (接下页)  
V(IN)  
IN  
LM76202-Q1  
UVLOb  
R1  
UVLO  
+
+
1.19 V  
R2  
1.1 V  
OVP  
OVP  
1.19 V  
R3  
1.1 V  
RTN  
GND  
21. OVP Threshold Setting  
22. OVP Overvoltage Cut-Off  
Programmable overvoltage clamp can also be achieved using LM76202-Q1 by connecting the resistor ladder  
from Vout to OVP to RTN as shown in 23 . This results in clamping of output voltage close to OVP set-point  
by resistors R1 and R2. as shown in 24. This scheme will also help in achieving minimal system Iq during off  
state. For this OVP configurataion, use R1 > 90 kΩ.  
V(IN)  
V(OUT)  
IN  
LM76202-Q1  
UVLOb  
UVLO  
R1  
(>90 k)  
+
+
1.19 V  
1.1 V  
OVP  
OVP  
R2  
OVP  
1.19 V  
1.1 V  
RTN  
GND  
24. Programmable Overvoltage Clamp Response  
23. Programmable OV Clamp  
The LM76202-Q1 device also features an internally fixed 38 V overvoltage clamp (VOVC) functionality. The OVP  
terminal of theLM76202-Q1 device must be connected to the RTN terminal directly as shown in 25. The  
LM76202-Q1 clamps the output voltage to VOVC, when the input voltage exceeds 38 V. During the output voltage  
clamp operation, the power dissipation in the internal MOSFET is PD = (VIN – VOVC) × IOUT. Excess power  
dissipation for prolonged period can make the device to enter into thermal shutdown. 26 illustrates the  
overvoltage clamp functionality.  
版权 © 2019, Texas Instruments Incorporated  
15  
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
V_IN  
V(IN)  
V(OUT)  
IN  
LM76202-Q1  
UVLOb  
V_OUT  
UVLO  
+
+
1.19 V  
1.1 V  
FLTb  
I_IN  
OVP  
RTN  
OVP  
1.19 V  
1.1 V  
GND  
26. Internal OV Clamp Response  
25. Internal Fixed OV Clamp Setting  
8.3.3 Reverse Battery Protection  
To protect the electronic systems from reverse battery voltage due to miswiring, often a power component like a  
schottky diode is added in series with the supply line as shown in 27. These additional discretes result in a  
lossy and bulky protection solution. The LM76202-Q1 devices feature fully integrated reverse input supply  
protection and does not need an additional diode. These devices can withstand a reverse voltage of –60 V  
without damage. 28 illustrates the reverse input polarity protection functionality.  
OUTPUT  
INPUT  
INPUT  
OUTPUT  
LM76202-Q1  
Hot-Swap Controller  
GND  
GND  
27. Reverse Battery Protection Circuits - Discrete vs LM76202-Q1  
28. Reverse Input Supply Protection at –60 V  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
Feature Description (接下页)  
8.3.4 Hot Plug-In and In-Rush Current Control  
The device is designed to control the in-rush current upon insertion of a card into a live backplane or other "hot"  
power source. This limits the voltage sag on the supply voltage and prevents unintended resets of the system  
power. The controlled start-up also helps to eliminate conductive and radiative interferences. An external  
capacitor connected from the dVdT pin to RTN defines the slew rate of the output voltage at power-on as shown  
in 29 and 30.  
LM76202-Q1  
4 V  
IdVdT  
dVdT  
RdVdT  
SWENb  
C(dVdT)  
RTN  
GND  
29. Output Ramp Up Time tdVdT is Set by C(dVdT)  
The dVdT pin can be left floating to obtain a predetermined slew rate (tdVdT) on the output. When the terminal is  
left floating, the devices set an internal output voltage ramp rate of 23.9 V / 1.6 ms. A capacitor can be  
connected from dVdT pin to RTN to program the output voltage slew rate slower than 23.9 V / 1.6 ms. Use 公式  
1 and 公式 2 to calculate the external C(dVdT) capacitance.  
公式 1 governs slew rate at start-up.  
æ
ç
ö
÷
C dVdT  
dV  
OUT  
æ
ö
÷
÷
ø
(
)
(
)
I(dVdT)  
=
´ ç  
ç
ç
è
÷
ø
Gain dVdT  
dt  
(
)
è
where  
I(dVdT) = 4.7 µA (typical)  
dV  
(
dt  
OUT  
)
Gain(dVdT) = dVdT to VOUT gain = 24.6  
(1)  
(2)  
(3)  
The total ramp time (tdVdT) of V(OUT) for 0 to V(IN) can be calculated using 公式 2.  
tdVdT = 8.7 × 103 × V(IN) × C(dVdT)  
The inrush current can be calculated by 公式 3  
IINRUSH = COUT/[8.7 x 103 x CdVdT  
]
版权 © 2019, Texas Instruments Incorporated  
17  
 
 
 
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
VIN  
CdVdT = 22 nF  
COUT = 47 µF  
RILIM = 5.36 kΩ  
30. Hot Plug-In and In-Rush Current Control at 24-V Input  
8.3.5 Overload and Short Circuit Protection  
The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current  
is monitored during start-up and normal operation.  
8.3.5.1 Overload Protection  
The device offers following choices for the overload protection fault response:  
Active current limiting (Auto-retry and Latch-off modes)  
Electronic Circuit Breaker with overload timeout (Auto-retry mode)  
See the configurations in 1 to select a specific overload fault response.  
1. Overload Fault Response Configuration  
MODE Pin Configuration  
Open  
Overload Protection Type  
Electronic circuit breaker with auto-retry  
Active current limiting with auto-retry  
Shorted to RTN  
A 402-kΩ resistor across MODE pin to RTN  
Active current limiting with latch-off  
pin  
8.3.5.1.1 Active Current Limiting  
When the active current limiting mode is selected, during overload events, the device continuously regulates the  
load current to the overcurrent limit I(OL) programmed by the R(ILIM) resistor as shown in 公式 4.  
12  
IOL  
=
R(ILIM  
)
where  
I(OL) is the overload current limit in Ampere  
R(ILIM) is the current limit resistor in kΩ  
(4)  
During an overload condition, the internal current-limit amplifier regulates the output current to I(LIM). The FLT  
signal assert after a delay of tPGOODF. The output voltage droops during the current regulation, resulting in  
increased power dissipation in the device. If the device junction temperature reaches the thermal shutdown  
threshold (T(TSD)), the internal FET is turn off. The device configured in latch-off mode stays latched off until it is  
reset by either of the following conditions:  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
Cycling V(IN) below V(PORF)  
Toggling SHDN  
When the device is configured in auto-retry mode, it commences an auto-retry cycle tCBretry(dly) ms after TJ <  
[T(TSD) – 10°C]. The FLT signal remains asserted until the fault condition is removed and the device resumes  
normal operation. 31 and 32 illustrates the behavior of the system during current limiting with auto-retry  
functionality.  
IMON  
V_OUT  
FLTb  
I_IN  
Load transition from 22 to  
12 Ω  
MODE pin connected to RTN  
RILIM = 5.36 kΩ  
RILIM = 8 kΩ  
31. Auto-Retry MODE Fault Behavior  
32. Response During Coming Out of Overload Fault  
8.3.5.1.2 Electronic Circuit Breaker with Overload Timeout, MODE = OPEN  
In this mode, during overload events, the device allows the overload current to flow through the device until  
I(LOAD) < I(FASTRIP). The circuit breaker threshold I(CB) can be programmed using the R(ILIM) resistor, as shown in 公  
5.  
12  
I(CB) =  
+ 0.03A  
R(ILIM  
)
where  
I(CB) is circuit breaker current threshold in A  
R(ILIM) is the current limit resistor in kΩ  
(5)  
The device commences an auto-retry cycle after a delay of tCBretry(dly). The FLT signal remains asserted until the  
fault condition is removed and the device resumes normal operation. 33 and 34 illustrate behavior of the  
system during electronic circuit breaker with auto-retry functionality.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
IMON  
V_OUT  
FLTb  
I_IN  
MODE left floating  
Load Transition from 22 to 12 Ω  
Load Transition from 22 to 12 , RILIM = 8 kΩ  
RILIM = 8 kΩ  
33. Circuit Breaker Functionality  
34. Zoomed at the Instance of Load Step  
8.3.5.2 Short Circuit Protection  
During a transient output short circuit event, the current through the device increases very rapidly. As the current-  
limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip  
comparator, with a threshold I(FASTRIP). The fast-trip comparator turns off the internal FET after a duration of  
tFASTTRIP(dly), when the current through the FET exceeds I(FASTRIP) (I(OUT) > I(FASTRIP)), and terminates the rapid  
short-circuit peak current. The fast-trip threshold is internally set to 87% higher than the programmed overload  
current limit (I(FASTRIP) = 1.87 × I(OL) + 0.015). The fast-trip circuit holds the internal FET off for only a few  
microseconds, after which the device turns back on slowly, allowing the current-limit loop to regulate the output  
current to I(OL). Then the device behaves similar to overload condition. 35 and 36 illustrate the behavior of  
the system when the current exceeds the fast-trip threshold.  
VIN = 24 V, RILIM = 5.36 kΩ  
35. Output Hot Short Functionality at 24-V Input  
36. Zoomed at the Instance of Output Short  
20  
版权 © 2019, Texas Instruments Incorporated  
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
8.3.5.2.1 Start-Up With Short-Circuit On Output  
When the device is started with a short-circuit on the output end, it limits the load current to the current limit I(OL)  
,
and behaves similarly to the overload condition. 37 illustrates the behavior of the device in this condition. This  
feature helps in quick isolation of the fault and hence ensures stability of the DC bus.  
V_IN  
V_OUT  
FLTb  
I_IN  
MODE pin connected to RTN  
VIN = 24 V RILIM = 5.36 kΩ  
37. Start-Up With Short on Output  
版权 © 2019, Texas Instruments Incorporated  
21  
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.3.5.3 FAULT Response  
The FLT open-drain output asserts (active low) under following conditions:  
Fault events such as undervoltage, overvoltage, overload, reverse current and thermal shutdown conditions  
When the device enters low current shutdown mode when SHDN is pulled low  
During start-up when the internal FET GATE is not fully enhanced (for example: VOUT has not reached VIN).  
The FLT output does not assert in the event of reverse voltage on Input.  
The device is designed to eliminate false reporting by using an internal "de-glitch" circuit for fault conditions  
without the need for an external circuitry.  
The FLT signal can also be used as Power Good indicator to the downstream loads like DC-DC converters. An  
internal Power Good (PGOOD) signal is OR'd with the fault logic. During start-up, when the device is operating in  
dVdT mode, PGOOD and FLT remains low and is de-asserted after the dVdT mode is completed and the  
internal FET is fully enhanced and VOUT has reached VIN. The PGOOD signal has deglitch time incorporated to  
ensure that internal FET is fully enhanced before heavy load is applied by the downstream converters. Rising  
deglitch delay is determined by tPGOOD(degl) = Maximum {(900 + 20 × C(dVdT)), tPGOODR}, where C(dVdT) is in nF and  
tPGOOD(degl) is in µs. FLT can be left open or connected to RTN when not used. V(IN) falling below V(PORF) resets  
FLT.  
8.3.5.3.1 Look Ahead Overload Current Fault Indicator  
With the device configured in current limit operation and when the overload condition exists for more than  
tPGOODF, the FLT asserts to warn of impending turnoff of the internal FETs due to the subsequent thermal  
shutdown event. 38 and 39 depict this behavior. The FLT signal remains asserted until the fault condition is  
removed and the device resumes normal operation.  
RILIM = 12 kΩ  
MODE pin connected  
to RTN  
Load transient event  
from 37 to 15 Ω  
RILIM = 12 kΩ  
MODE pin connected  
to RTN  
Load transient event  
from 37 to 15 Ω  
38. Look Ahead Overload Current Fault Indication  
39. Output Turnoff Due to Thermal Shutdown With FLT  
Asserted in Advance  
8.3.5.4 Current Monitoring  
The current source at IMON terminal is internally configured to be proportional to the current flowing from IN to  
OUT. This current can be converted into a voltage using a resistor R(IMON) from IMON terminal to RTN terminal.  
The IMON voltage can be used as a means of monitoring current flow through the system. The maximum voltage  
range (V(IMONmax) for monitoring the current is limited to minimum of ([V(IN) – 1.5 V, 4 V]) to ensure linear output.  
This puts a limitation on maximum value of R(IMON) resistor and is determined by 公式 6.  
Min [(V(IN) - 1.5), 4 V]  
R
(
IMONmax  
)
=
1.8 ì I  
(
LIM  
)
ì GAIN  
(
IMON  
)
(6)  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
The output voltage at IMON terminal is calculated using 公式 7 and 公式 8.  
For IOUT > 50 mA,  
V
(
IMON  
)
= I  
[
(
OUT  
)
ìGAIN  
(
IMON  
)
ìR  
(
IMON  
)
]
Where,  
GAIN(IMON) is the gain factor I(IMON):I(OUT)  
I(OUT) is the load current  
I(MON_OS) = 2 µA (Typical)  
(7)  
For IOUT < 50 mA (typical), IMON output current is close to I(MON_OS) and 公式 8 provides the voltage output with  
RIMON  
.
V
(
IMON  
)
= (I(IMON _ OS))ìR(IMON)  
(8)  
This pin must not have a bypass capacitor to avoid delay in the current monitoring information.  
In case of reverse input polarity fault, an external 100-kΩ resistor is recommended between IMON pin and ADC  
input to limit the current through the ESD protection structures of the ADC.  
8.3.5.5 IN, OUT, RTN and GND Pins  
The device has two pins for input (IN) and output (OUT). All IN pins must be connected together and to the  
power source. A ceramic bypass capacitor close to the device from IN to GND is recommended to alleviate bus  
transients. The recommended input operating voltage range is 4.2 V to 60 V. Similarly all OUT pins must be  
connected together and to the load. V(OUT), in the ON condition, is calculated using 公式 9.  
V
(
OUT  
)
= V  
(
IN  
)
- RON ì I  
(
(
OUT  
)
)
Where,  
RON is the total ON resistance of the internal FETs.  
(9)  
The GND pin must be connected to the system ground. RTN is the device ground reference for all the internal  
control blocks. Connect the device support components: R(ILIM), C(dVdT), R(IMON), R(MODE) and resistors for UVLO  
and OVP with respect to the RTN pin. Internally, the device has reverse input polarity protection block between  
RTN and the GND terminal. Connecting RTN pin to GND pin disables the reverse input polarity protection  
feature. if negative input voltage is applied on IN pins with RTN pin connected to GND, the device can get  
damaged.  
8.3.5.6 Thermal Shutdown  
The device has a built-in overtemperature shutdown circuitry designed to protect the internal FETs, if the junction  
temperature exceeds T(TSD). After the thermal shutdown event, depending upon the mode of fault response, the  
device either latches off or commences an auto-retry cycle 540 ms after TJ < [T(TSD) – 10°C]. During the thermal  
shutdown, the fault pin FLT pulls low to indicate a fault condition.  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
8.3.5.7 Low Current Shutdown Control (SHDN)  
The internal FETs and hence the load current can be switched off by pulling the SHDN pin below V(SHUTF)  
threshold with a micro-controller GPIO pin as shown in 40. The device quiescent current reduces to 16 μA  
(typical) in shutdown state. To assert SHDN low, the pull down must sink at least 10 µA at 400 mV. To enable  
the device, SHDN must be pulled up to V(SHUTR) threshold. Once the device is enabled, the internal FETs turns  
on with dVdT mode.  
LM76202-Q1  
AVdd  
Rpu  
from µC  
GPIO  
SHDN  
GND  
+
SHDNb  
VSHUTR  
VSHUTF  
OFF ON  
40. Shutdown Control  
8.4 Device Functional Modes  
The device responds differently to overload and short circuit conditions. The operational differences are  
explained in 2.  
2. Device Operational Differences Under Different MODE Configurations  
A 402-KResistor Connected  
Between Mode And RTN Pins  
(Current Limit With Latchoff)  
Mode Connected To RTN  
(Current Limit With Auto-Retry)  
Mode Pin Configuration  
Start-up  
Mode Pin = Open  
Inrush current controlled by dVdT  
Inrush limited to I(OL) level as set Inrush limited to I(OL) level as set Inrush limited to I(OL) level as set  
by R(ILIM)  
by R(ILIM)  
by R(ILIM)  
Fault timer runs when current is  
limited to I(OL)  
Fault timer expires after tCB(dly)  
causing the FETs to turnoff  
If TJ > T(TSD), device turns off  
If TJ > T(TSD), device turns off  
Device turns off if TJ > T(TSD)  
before timer expires  
Overcurrent response  
Current is limited to I(OL) level as Current is limited to I(OL) level as Current is allowed through the  
set by R(ILIM)  
set by R(ILIM)  
device if I(LOAD) < I(FASTTRIP)  
Power dissipation increases as  
V(IN) – V(OUT) increases  
Power dissipation increases as  
V(IN) – V(OUT) increases  
Fault timer runs when the current  
increases above I(OL)  
Fault timer expires after tCB(dly)  
causing the FETs to turnoff  
Device turns off when TJ > T(TSD) Device turns off when TJ > T(TSD) Device turns off if TJ > T(TSD)  
before timer expires  
Device attempts restart 540 ms  
after TJ < [T(TSD) – 10°C]  
Device remains off  
Device attempts restart 540 ms  
after TJ < [T(TSD) – 10°C].  
Short-circuit response  
Fast turnoff when I(LOAD) > I(FASTRIP)  
Quick restart and current limited to I(OL), follows standard start-up  
24  
版权 © 2019, Texas Instruments Incorporated  
 
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The device is an automotive ideal diode, typically used for load protection in automotive applications. It can  
operate from 24-V battery with programmable current limit, overvoltage, undervoltage and reverse polarity  
protections. The device provides robust protection against reverse current and transients (such as ISO 7637-2  
Pulse 1 and ISO 16750-2 Pulse 5b) due to cables and switches in different automotive systems such as an ECU.  
The device also provides robust protection for output short to battery, output short to GND, reverse battery and  
input overvoltage.  
The Detailed Design Procedure section can be used to select component values for the device.  
9.2 Typical Application  
IN  
OUT  
D2  
VIN: 4.2 V - 60 V  
OUT  
FLT  
CIN  
1 µF  
COUT  
47 µF  
150 mΩ  
RFLTb  
100 k  
R1  
121 k  
UVLO  
OVP  
SMBJ54A  
SMBJ26A  
Health Monitor  
R3  
LM76202-Q1  
ON/OFF Control  
SHDN  
IMON  
dVdT  
Load  
Monitor  
(1)OVP  
R2  
4.42 k  
MODE  
RTN  
ILIM  
RIMON  
20 k  
CdVdT  
12 nF  
GND  
RILIM  
5.36 k  
R4  
(1) OVP connection for Programmable over voltage clamp. See Overvoltage Protection (OVP).  
41. 24-V, 2-A Ideal Diode Load Protection Circuit for Automotive ECU  
9.2.1 Design Requirements  
3 shows the Design Requirements for LM76202-Q1. In addition to below requirements, the circuit is designed  
to provide protection for transients as per ISO 7637-2 Pulse 1 and ISO 16750-2 Pulse 5b.  
3. Design Requirements  
DESIGN PARAMETER  
Typical input voltage  
EXAMPLE VALUE  
4.2 to 60 V  
4 V  
V(IN)  
V(UV)  
V(OV)  
I(LIM)  
Undervoltage lockout set point  
Overvoltage cutoff set point  
Current limit  
33.8 V  
2.23 A  
C(OUT)  
I(LOAD)  
Load capacitance  
47 µF  
Load current  
2 A  
9.2.2 Detailed Design Procedure  
9.2.2.1 Step by Step Design Procedure  
To begin the design process, the designer must know the following parameters:  
Operating voltage range  
版权 © 2019, Texas Instruments Incorporated  
25  
 
 
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
Maximum output capacitance  
Start-up time  
Maximum current limit  
Transient voltage levels  
9.2.2.2 Setting Undervoltage Lockout and Overvoltage Set Point for Operating Voltage Range  
To provide operation in cold crank conditions for automotive batteries, the UVLO is set to POR value (4 V) by  
connecting UVLO to IN pin and OVP threshold is set from resistors connected from IN pins to provide protection  
from transient during ISO 16750 Pulse 5b. During the ISO 16750 5b transient, output voltage is cut-off at 33.8 V  
and provides protection to load from high input voltage during the transient. The overvoltage threshold is  
calculated by 公式 10.  
VOVPR = R2/(R1 + R2) × VOV  
where  
Overvoltage threshold rising, VOVPR = 1.19 V  
VOV is overvoltage protection voltage (= 33.8 V)  
(10)  
However, the leakage current due to external active components connected at resistor string can add error to  
these calculations. So, the resistor string current, I(R23) must be chosen to be 20x greater than the leakage  
current of OVP pin.  
9.2.2.3 Programming the Current-Limit Threshold—R(ILIM) Selection  
The R(ILIM) resistor at the ILIM pin sets the over load current limit, this can be set using 公式 4.  
R(ILIM) = 5.36 kΩ was selected to set ILIM to 2.23 A.  
9.2.2.4 Programming Current Monitoring Resistor—RIMON  
The voltage at IMON pin V(IMON) represents the voltage proportional to the load current. This can be connected to  
an ADC of the downstream system for health monitoring of the system. The R(IMON) must be configured based on  
the maximum input voltage range of the ADC used. R(IMON) is set using 公式 11.  
V(IMONmax)  
I(LIM) ì75 ì10-6  
R(IMON) =  
(11)  
For current monitoring up-to a current of 2.2 A, and considering the operating input voltage range of ADC from 0  
V to 4 V, V(IMONmax) is 4 V and R(IMON) is selected as 20 kΩ.  
9.2.2.5 Limiting the Inrush Current  
To limit the inrush current and power dissipation during start-up, an appropriate value of CdVdT must be selected.  
The inrush current during start-up is estimated by 公式 12. A 12nF capacitance is selected for CdVdT to keep  
inrush current less than 0.5 A.  
IINRUSH = COUT / [8.7 × 103 × CdVdt  
]
(12)  
9.2.2.5.1 Selection of Input TVS for Transient Protection  
To protect the device and the load from input transients exceeding the absolute maximum ratings of the device, a  
TVS diode is required at input of the device. To meet the requirements of protection for ISO 16750 pulse 5b and  
ISO 7637 pulse 1 as per 4, SMBJ54A and SMBJ26A are selected for protection from transients.  
4. Input TVS Selection for Transients  
ISO 7637 Pulse 1  
and Reverse Battery  
Parameter  
ISO 16750 Pulse 5b  
Maximum Transient Voltage of Pulse  
(VT)  
A bidirectional TVS is required to protect  
from positive and negative transients  
65 V  
-600V  
Ri = Source impedance.  
For ISO 16750 Pulse 5b; Ri = 1Ω  
For ISO 7637 Pulse 1;Ri = 50 Ω  
Pulse Current through TVS (IPulse  
)
(VT - VC)/(Ri)  
(VT - VC)/(Ri)  
26  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
4. Input TVS Selection for Transients (接下页)  
ISO 7637 Pulse 1  
and Reverse Battery  
Parameter  
ISO 16750 Pulse 5b  
To keep input voltage below absolute  
maximum rating of the device. See 公式 13  
for VC  
Clamping voltage of TVS (VC) at Pulse  
current IPulse  
< 65 V  
> –(65 - VOUT-Max) V  
To operate with maximum operating input  
voltage and to protect from maximum  
reverse battery voltage  
Breakdown voltage of TVS (VBR  
)
> 60V  
> 28V  
VC = VBR + IPulse × [VClamp-max - VBR]/[IPP - IT]  
where  
VC is the clamping voltage of TVS at IPulse current through it.  
VBR is break down voltage of TVS with IT test current through it.  
VClamp-max is maximum clamping voltage of TVS at peak pulse current IPP  
VBR, IT, VClamp-max and IPP are the specifications of the TVS diode.  
(13)  
版权 © 2019, Texas Instruments Incorporated  
27  
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
9.2.3 Application Curves  
42. Protection from Output Short to GND [VIN = 24 V,  
43. Protection from Output short to Battery [VIN  
=
ILIM = 2.23 A, MODE = RTN]  
Floating, VOUT = 24 V, ILIM = 2.23 A, MODE = RTN ]  
44. Protection from ISO 7637-2 Pulse 1 [24 V Battery,  
Transient Voltage = –600 V , RLOAD = 28 Ω]  
45. Protection from ISO 16750-2 Pulse 5b [24 V Battery,  
Transient Voltage = 65 V , RLOAD = 28 Ω]  
46. Protection from Reverse Battery [VIN = -24 V, VOUT  
=
47. Protection from OverVoltage at Input [VIN = 36 V,  
RLOAD = 28 Ω, ILIM = 2.23 A ]  
0 V, ILIM = 2.23 A ]  
28  
版权 © 2019, Texas Instruments Incorporated  
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
10 Power Supply Recommendations  
The device is designed for the supply voltage range of 4.2 V VIN 60 V. Power supply must be rated higher  
than the current limit set to avoid voltage droops during overcurrent and short circuit conditions.  
10.1 Transient Protection  
In case of short circuit and over load current limit, when the device interrupts current flow, input inductance  
generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the  
output. The peak amplitude of voltage spikes (transients) is dependent on value of inductance in series to the  
input or output of the device. Such transients can exceed the Absolute Maximum Ratings of the device if steps  
are not taken to address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Schottky diode across the output to absorb negative spikes  
A ceramic capacitor at input (C(IN)) with value more than 1µF to absorb the energy and dampen the  
transients.  
The approximate value of input capacitance can be estimated with 公式 14.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
´
(
)
( )  
(
)
C IN  
( )  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
(14)  
Automotive applications could require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients include ISO 7637 Pulse 1, Output  
short to battery, Output short to GND and reverse battery at input.  
The circuit implementation with optional protection components (TVS Diode at Input and schottky diode at  
output) is shown in 48. For protection from automotive transients similar to ISO 7637 Pulse 1, Output short to  
battery , output short to GND and reverse battery, use CIN 1 µF and COUT 3.3 µF. For selection of TVS diode  
and other components, see Application Information.  
INPUT  
IN  
OUT  
OUTPUT  
CIN  
COUT  
R4  
R1  
R2  
(1 µF)  
150 m  
(3.3 µF)  
UVLO  
FLT  
*
*
LM76202-Q1  
OVP  
MODE  
dVdT  
SHDN  
IMON  
ILIM  
GND  
RTN  
R3  
RILIM  
RIMON  
CdVdT  
* Optional components needed for suppression of transients  
48. Circuit Implementation for Automotive Transient Protection  
版权 © 2019, Texas Instruments Incorporated  
29  
 
 
 
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For all the applications, a 0.1 µF or higher value ceramic decoupling capacitor is recommended between IN  
terminal and GND. Use CIN 1 µF for automotive transient protection. See Transient Protection.  
The optimum placement of decoupling capacitor is closest to the IN and GND terminals of the device. Care  
must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN terminal, and the  
GND terminal of the device. See 49 for PCB layout example with HTSSOP package.  
High current carrying power path connections must be as short as possible and must be sized to carry atleast  
twice the full-load current.  
RTN, which is the reference ground for the device must be a copper plane or island.  
Locate all the device support components R(ILIM), C(dVdT), R(IMON), and MODE, UVLO, OVP resistors close to  
their connection pin. Connect the other end of the component to the RTN with shortest trace length.  
The trace routing for the RILIM and R(IMON) components to the device must be as short as possible to reduce  
parasitic effects on the current limit and current monitoring accuracy. These traces must not have any  
coupling to switching signals on the board.  
Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the  
device they are intended to protect, and routed with short traces to reduce inductance. For example, a  
protection Schottky diode is recommended to address negative transients due to switching of inductive loads,  
and it must be physically close to the OUT and GND pins.  
Thermal Considerations: When properly mounted, the PowerPAD package provides significantly greater  
cooling ability. To operate at rated power, the PowerPAD must be soldered directly to the board RTN plane  
directly under the device. Other planes, such as the bottom side of the circuit board can be used to increase  
heat sinking in higher current applications. Designs that do not need reverse input polarity protection can  
have RTN, GND and PowerPAD connected together. PowerPAD in these designs can be connected to the  
PCB ground plane.  
30  
版权 © 2019, Texas Instruments Incorporated  
LM76202-Q1  
www.ti.com.cn  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
11.2 Layout Example  
Top Layer  
Bottom layer GND plane  
Via to Bottom Layer  
Track in bottom layer  
Top Layer RTN Plane  
Bottom Layer RTN Plane  
BOTTOM Layer GND Plane  
Top Layer  
Power GND Plane  
High  
Frequency  
Bypass cap  
OUT  
IN  
IN  
OUT  
VOUT PLANE  
VIN PLANE  
FLT  
UVLO  
N.C  
N.C  
PWP  
OVP  
dVdT  
MODE  
SHDN  
RTN  
ILIM  
IMON  
TOP Layer  
RTN Plane  
BOTTOM Layer RTN Plane  
49. Typical PCB Layout Example With HTSSOP Package With a 2-Layer PCB  
版权 © 2019, Texas Instruments Incorporated  
31  
LM76202-Q1  
ZHCSJE7A MARCH 2019REVISED SEPTEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
LM76202-Q1 EVM 用户指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2019, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM76202QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
M76202Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Sep-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM76202QPWPRQ1  
HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Sep-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
LM76202QPWPRQ1  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY