LM98620VHB/NOPB [TI]

具有 LVDS 输出的 10 位 70 MSPS 6 通道图像信号处理器 | PFC | 80 | 0 to 70;
LM98620VHB/NOPB
型号: LM98620VHB/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 LVDS 输出的 10 位 70 MSPS 6 通道图像信号处理器 | PFC | 80 | 0 to 70

功率因数校正 商用集成电路
文件: 总71页 (文件大小:1144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
LM98620 10-Bit 70 MSPS 6 Channel Imaging Signal Processor with LVDS Output  
1 Features  
2 Applications  
1
3.3 V Single Supply Operation  
CDS or S/H Processing  
35 MHz Channel Rate  
High Performance Digital Color Copiers  
Scanners  
Other Image Processing Applications  
Enhanced ESD Protection on Timing, Control and  
LVDS Pins  
3 Description  
The LM98620 is a fully integrated, 10-Bit, 70 MSPS  
signal processing solution for high performance digital  
color copiers, scanners, and other image processing  
applications. High-speed signal throughput is  
achieved with an innovative six channel architecture  
utilizing Correlated Double Sampling (CDS), or  
Sample and Hold (SH) type sampling. Gain settings  
of 1x or 2x are available in the CDS/SH input stage.  
Each channel has a dedicated 1x to 10x (8 bit) PGA  
that allows accurate gain adjustment. The Digital  
White Level auto calibration loop can automatically  
set the PGA value to achieve a selected white target  
level. Each channel also has a ±4 bit coarse and ±10-  
bit fine analog offset correction DAC that allows offset  
correction before the sample-and-hold amplifier.  
These correction values can be controlled by an  
automated Digital Black Level correction loop. The  
PGA and offset DACs for each channel are  
programmed independently allowing unique values of  
gain and offset for each of the six channels. A 2-to-1  
multiplexing scheme routes the signals to three 70  
MHz high performance ADCs. The fully differential  
processing channels achieve exceptional noise  
immunity, having a very low noise floor of –68.5dB.  
The 10-bit analog-to-digital converters have excellent  
dynamic performance, making the LM98620  
transparent in the image reproduction chain.  
Low Power CMOS Design  
12 Terminal to 16 Terminal (Selectable) LVDS  
Serialized Data Output  
4-Wire Serial Interface  
2 Channel Symmetrical Architecture  
Independent Gain and Offset Correction for Each  
Channel  
Digital Black Level Calibration for Each Channel  
Digital White Level Calibration for Each Channel  
Programmable Input Clamp  
Key Specifications  
Maximum Input Level:  
1.2 Vp-p (CDS Gain = 1.0)  
0.58 Vp-p (CDS Gain = 2.1)  
Input Sample Rate:  
5 to 35 MSPS - 6ch mode  
10 to 35 MSPS - 3ch mode  
PGA Gain Range: 1x to 10x (0 to 20 dB)  
CDS/SH Gain Settings: 1x or 2.1x  
Total Channel Gain: 1x to 21x (0 to 26 dB)  
PGA Gain Resolution: 8 bits - Analog  
ADC Resolution: 10 bits  
Device Information(1)  
ADC Sampling Rate: 10 to 70 MSPS  
SNR: 68.5 dB (Gain = 1x)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
LM98620  
TQFP (80)  
12.00 mm × 12.00 mm  
Offset DAC Range:  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
±111 mV or ±59.5 mV - FDAC  
±281 mV - CDAC  
Simplified Schematic  
Offset DAC Resolution:  
Red  
±10 bits - FDAC  
±4 bits - CDAC  
CDAC  
+/- 4  
FDAC  
+/- 10  
1x or 2.1 x gain  
Black Level Loop  
White Level Loop  
Supply Voltage: 3.0 V to 3.6 V  
8
8
CDS/  
SH  
OSR1  
OSR2  
™
™
PGA  
PGA  
Power Dissipation: 1.02 W (typical)  
M
U
X
10  
10  
ADC  
CDS/  
SH  
Black Level Loop  
White Level Loop  
+/- 10  
+/- 4  
FDAC  
CDAC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table of Contents  
7.2 Functional Block Diagram ....................................... 19  
7.3 Feature Description................................................. 21  
7.4 Device Functional Modes........................................ 31  
7.5 Programming........................................................... 35  
7.6 Register Maps ........................................................ 46  
Applications and Implementation ...................... 58  
8.1 Application Information............................................ 58  
8.2 Typical Applications ................................................ 59  
Power Supply Recommendations...................... 62  
9.1 Over Voltage Protection on OS Inputs.................... 62  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 Handling Ratings....................................................... 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 7  
6.6 Timing Requirements, AFE/ADC Timing .................. 9  
6.7 Timing Requirements, Serial Interface Timing........ 10  
6.8 Timing Requirements, LVDS Output Timing........... 11  
6.9 LVDS TIming........................................................... 15  
6.10 User Input Based Timing ...................................... 17  
Detailed Description ............................................ 19  
7.1 Overview ................................................................. 19  
8
9
10 Layout................................................................... 63  
10.1 Layout Guidelines ................................................. 63  
10.2 Layout Examples................................................... 64  
11 Device and Documentation Support ................. 65  
11.1 Trademarks........................................................... 65  
11.2 Electrostatic Discharge Caution............................ 65  
11.3 Glossary................................................................ 65  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 65  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (January 2014) to Revision C  
Page  
Added data sheet flow and layout to conform with new TI standards. Added the following sections: Applications and  
Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical,  
Packaging, and Ordering Information .................................................................................................................................... 1  
Added footnote "When the input voltage..." to Absolute Maximum Ratings table.................................................................. 5  
Changes from Revision A (December 2013) to Revision B  
Page  
Changed format of data sheet to conform with TI standards. ............................................................................................... 1  
Changes from Original (February 2008) to Revision A  
Page  
Added sections to make full data sheet from template. ........................................................................................................ 1  
2
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
 
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
5 Pin Configuration and Functions  
80 Pin  
PFC Package  
(Top View)  
SHD/HOLD  
VDDD  
VSSD  
CLPIN  
BLKCLP  
AGCONB  
OVPB  
MCLK  
GPI1  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VREFBOUT  
VREFTOUT  
VDDA  
2
3
4
VREF  
5
VSSA  
6
VSSD  
7
VDDD  
8
SDO  
9
SENB  
LM98620  
80-PIN TQFP  
(Top View)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SDI  
GPI2  
SCLK  
GPI3  
RESETB  
TESTO_0  
TESTO_1  
VREG1  
VDDLVDS  
VDDLVDS  
VREG2  
VSSLVDS  
VSSLVDS  
GPI4  
GPI5  
VSSD  
VDDD  
IBIAS  
VREG1  
VSSD  
VDDD  
VREG2  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Pin Functions  
PIN  
PULLUP  
PULLDOWN  
TYPE(1)  
DESCRIPTION  
NAME  
SHD/HOLD  
VDDD  
NUMBER  
1
DI  
PI  
PI  
DI  
DI  
DI  
Data Clamp Pulse/Hold Input  
2, 15, 19, 54  
Digital Power Supply  
VSSD  
3, 14, 18, 55  
Digital Power Supply Ground  
CLPIN  
4
5
Input Pulse that Invokes the Input Clamp Switch  
Input Pulse that Invokes the Black Calibration Loop  
BLKCLP  
PD 108 kΩ  
PU 108 kΩ  
Input Pulse that Invokes the White Calibration Loop. Tie high to disable  
White Clamp. Pulse Low to initiate White Clamp. (Active Low)  
AGC_ONB  
6
DI  
Over Voltage Protection Enable (Active Low). Enables OS input  
protections switches to ground during system power up. Should be tied  
high after AFE and CCD voltages have stabilized.  
OVPB  
7
MCLK  
8
DI  
DI  
Master Clock Input  
GPI1-5  
9 to 13  
General Purpose Inputs 1 – 5, mapped into LVDS output data  
AO  
Optional IBIAS resistor connection. To minimize device to device power  
consumption variation, connect an 11k Ω 1% resistor to VSSA. If no  
resistor is used, the internal bias and power supply currents will be  
subject to normal device to device variation.  
IBIAS  
16  
VREG1  
17, 46  
PO  
Decoupling connection for VREG1 – Approx. 1.8 V output(2)  
Decoupling connection for VREG2 – Approx. 1.8 V output(2)  
VREG2  
20, 27, 33, 43  
21, 22  
23, 24  
25, 26  
28, 34, 41, 42  
29, 30  
31, 32  
35, 36  
37, 38  
39, 40  
44, 45  
47  
PO  
DO  
DO  
DO  
PI  
TXCLK1  
TXOUTC1  
TXOUTB1  
VSSLVDS  
TXOUTA1  
TXCLK2  
TXOUTC2  
TXOUTB2  
TXOUTA2  
VDDLVDS  
TESTO_1  
TESTO_0  
RESETB  
SCLK  
Differential LVDS Output Clock 1  
Differential LVDS Output Data C1  
Differential LVDS Output Data B1  
LVDS Power Supply Ground  
DO  
DO  
DO  
DO  
DO  
PI  
Differential LVDS Output Data A1  
Differential LVDS Output Clock 2  
Differential LVDS Output Data C2  
Differential LVDS Output Data B2  
Differential LVDS Output Data A2  
LVDS Power Supply  
DO  
DO  
DI  
Digital Test Output  
48  
Digital Test Output  
49  
PU 108 kΩ  
PU 108 kΩ  
Master Reset Input(Active Low)  
Serial Clock for the 4-wire Serial Interface  
Serial Data for the 4-wire Serial Interface  
Serial Enable (Active Low) for the 4-wire Serial Interface  
Serial Output Data for the 4-wire Serial Interface  
50  
DI  
SDI  
51  
DI  
SENB  
52  
DI  
SDO  
53  
DO  
PI  
56, 65, 69, 73,  
77  
VSSA  
Analog Power Supply Ground  
VREF  
VDDA  
57  
AO  
PI  
Reference Voltage Bypass – Approx. 1.2 V output(2)  
Analog Power Supply  
58, 67, 71, 75  
AO  
Top Reference Bypass. Connect to bypass capacitors (see Applications  
and Implementation) and VREFTINx. – Approx. 2.23 V output.(2)  
VREFTOUT  
59  
(1) KEY: A – Analog, D – Digital, P – Power, I – Input, O – Output, PD – Pull-down resistor to VSSD. PU – Pull-up resistor to VDDD.  
(2) Voltages provided for debugging only. Not a guaranteed specification.  
4
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Pin Functions (continued)  
PIN  
PULLUP  
PULLDOWN  
TYPE(1)  
DESCRIPTION  
NAME  
NUMBER  
AO  
Bottom Reference Bypass. Connect to bypass capacitors (see  
Applications and Implementation) and VREFBINx. – Approx. 0.98 V  
output.(3)  
VREFBOUT  
60  
VREFBIN2  
VREFTIN2  
VREFBIN1  
VREFTIN1  
OSR1  
61  
62  
63  
64  
66  
68  
70  
72  
74  
76  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
Bottom Reference Input Voltage for the ADC. Connect to VREFBOUT.  
Top Reference Input Voltage for the ADC. Connect to VREFTOUT.  
Bottom Reference Input Voltage for the AFE. Connect to VREFBOUT.  
Top Reference Input Voltage for the AFE. Connect to VREFTOUT.  
Input Voltage 1 for the Red Channel  
OSR2  
Input Voltage 2 for the Red Channel  
OSG1  
Input Voltage 1 for the Green Channel  
OSG2  
Input Voltage 2 for the Green Channel  
OSB1  
Input Voltage 1 for the Blue Channel  
OSB2  
Input Voltage 2 for the Blue Channel  
External Clamp Voltage (Connect to VCLP_INT or customer supplied  
reference voltage  
VCLP_EXT  
78  
AO  
DI  
Internally Generated V-Clamp Voltage. Connect to bypass capacitors  
and VCLK_EXT. – Approx. 1.65 V output(3)  
VCLP_INT  
79  
80  
SHP/SAMPLE  
Pedestal Clamp Pulse/Sample Input.  
(3) Voltages provided for debugging only. Not a guaranteed specification.  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4.2  
UNIT  
V
Supply Voltage  
Voltage at any Pin (except VREG1, VREG2)  
Voltage at VREG1, VREG2  
VDDA + 0.3  
2.1  
V
V
Continuous Input Current at any Pin(2)  
Continuous Input Package Current(2)  
Maximum Junction Temperature (Powered)  
Specified Ambient Temperature Range  
Maximum Junction Temperature  
±25  
mA  
mA  
°C  
°C  
°C  
±50  
TJ_ABS_MAX = +135  
0 T A +70  
TJ_OP_MAX = +110  
(1) Absolute maximum ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that  
the device should be operated at these limits.  
(2) When the input voltage (VIN) at any pin exceeds the power supplies (VIN < (GND - 0.3 V) or V IN > (VDDA + 0.3 V)), the DC current at  
that pin should be limited to ±25 mA. The 50 mA DC maximum package input current means that a maximum of two pins can  
simultaneously have input currents that equal 25 mA.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM98620  
 
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
6.2 Handling Ratings  
MIN  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
–65  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins(3)  
2500  
(1)(2)  
V(ESD)  
Electrostatic discharge  
Machine Model (MM)  
250  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(4)  
1000  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Human body model, 100 pF discharged through a 1.5 kΩ resistor. Machine model, 200 pF discharged directly into each pin. Charged  
device model (CDM) simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated  
assembler) then rapidly being discharged.  
(a) Higher 7500V human body model rating and 750V machine model rating for the following pins: SHP, SHD, CLPIN, BLKCLP,  
AGC_ONB, OVPB, MCLK, RESETB, SENB, SCLK, SDI, SDO, TXCLK1, TXCLK2, TXOUTA1, TXOUTB1, TXOUTC1, TXOUTA2,  
TXOUTB2, TXOUTC2.  
(3) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process.  
(4) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
+3.0  
+3.0  
+3.0  
NOM  
MAX  
+3.6  
+3.6  
+3.6  
UNIT  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
LVDS Supply Voltage Range  
V
V
V
V
VDDD VDDA,  
VDDD VDDLVDS  
DC Power Supply Voltage Relationships(1)  
Voltage at any Digital I/O pin  
Voltage at any Analog Input pin  
Voltage at any LVDS I/O pin  
0
0
VDDD  
V
V
V
VDDA  
VDDLV  
DS  
0
(1) Static voltage levels on VDDD must be at the same voltage or slightly higher than VDDLVDS or VDDA. Therefore, driving all three  
power supplies from a common linear voltage regulator is recommended. Please see Figure 1.  
V
IN  
V
DDD  
Vreg  
+
+
V
DDA  
+
+
V
DDLVDS  
+
Figure 1. Recommended Setup  
6
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
 
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
6.4 Thermal Information  
LM98620VHB  
THERMAL METRIC(1)  
TQFP  
80 PINS  
32  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted).  
The following specifications apply for VDDA = VDDD = VDDLVDS = 3.3 V; FMCLK = FADCCLK= 70 Ms/s; 6 Channel Mode  
unless otherwise noted.  
TA = TMIN to TMAX  
TA = +25°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
ADC/AFE  
Resolution  
No missing codes  
10  
bits  
-0.6%  
to  
0.8%  
Gain = 1x  
Gain = 6x  
-1.5%  
1.8%  
INL  
Integral Non-Linearity  
-1.4%  
to  
1.4%  
-0.4 to  
0.4  
Gain = 1x  
Gain = 6x  
-0.99  
1.6  
DNL  
SNR  
Differential Non-Linearity  
Signal-to-Noise Ratio(1)  
lsb  
dB  
-0.6 to  
0.7  
Gain = 1x  
68.5  
58.5  
Gain = 6x  
Negative Polarity:  
• Peak-to-peak, CDS gain = 1x  
• Peak-to-peak, CDS gain = 2.1x  
Positive Polarity:  
1.12  
0.54  
1.28  
0.62  
1.2  
V
Analog Input Range (OSx  
Inputs)  
0.58  
• Peak-to-peak, CDS gain = 1x  
1.2  
V
GND < Vin < VDDA  
Source Follower Enabled – OVP  
off  
Analog Input Leakage  
(Osx inputs)  
–250  
0.79  
200  
±25  
nA  
(2)  
RCLAMP  
Input Clamp Impedance  
Conversion Ratio  
(See  
)
43  
CDS/SH Gain Setting = 1x  
PGA gain setting = Min  
0.91  
0.85  
lsb/mV  
Conversion Ratio Color to  
Color(3) Error  
0.24%  
0.13%  
Conversion Ratio Ch1 to  
Ch2 Error  
R1,B1 to G1; R1,G1 to B1, and  
so forth. R2, B2, to G2; R2, G2,  
to B2, and so forth.  
Crosstalk – Color to Color  
Crosstalk – Ch1 to Ch1  
0.07%  
0.2%  
Gain = 20x setting  
R1 to R2, R2 to R1, G1 to G2, G2  
to G1, B1 to B2, B2 to B1  
Gain = 20x setting  
(1) SNR = 20log(1024/Output Noise(lsb rms)) with input = DC.  
(2) This parameter specified by simulation and/or bench evaluation and not production tested.  
(3) For conversion ratio min/max, variation and error, Conversion ratio is: (Digital Max – Digital Min)/(Vin Max – Vin Min). Measured at gain  
setting of 1x  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
The following specifications apply for VDDA = VDDD = VDDLVDS = 3.3 V; FMCLK = FADCCLK= 70 Ms/s; 6 Channel Mode  
unless otherwise noted.  
TA = TMIN to TMAX  
TA = +25°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
Active Mode:  
• Total Power  
• IDDA  
1119  
240  
58  
1020  
mW  
mA  
mA  
mA  
Power Consumption  
• IDDD  
• IDDLVDS  
41  
Power-Down Mode:  
• MCLK Active  
• MCLK Stopped  
Power Consumption  
191  
47  
159  
23  
mW  
mW  
PGA (8 bits) Gain = 283/(283-M)  
PGA Gain Range(4)  
PGA Stepsize  
Gain at max setting/  
Gain at min setting  
19.5  
20.9  
20  
dB  
dB  
0.3  
Mono-  
tonic  
PGA Monotonicity  
PGA Error (Difference from  
ideal curve)  
<0.6%  
CDS/SH  
6.4  
2.1  
dB  
CDS/SH Gain  
Gain at 2.1x / Gain at 1x  
2
2.13  
V/V  
Offset FDAC (±10 bits)  
DAC Full Scale (input  
referred)  
Large FDAC range  
Small FDAC range  
103  
54  
120  
66  
111  
±mV  
59.5  
Mono-  
tonic  
DAC Monotonicity  
Offset CDAC (± 4 bits)  
DAC Full Scale (input  
referred)  
259  
302  
281  
±mV  
Mono-  
tonic  
DAC Monotonicity  
BLACK CALIBRATION LOOP  
Target Output Level  
127  
0
lsb  
lsb  
WHITE CALIBRATION LOOP  
Target Output Level  
512  
2.0  
1023  
2,4,8,  
16,32  
#
Window Size  
Pixels  
LOGIC I/O DC PARAMETERS  
SHP, SHD, CLPIN, BLKCLP,  
VIH  
VIL  
Logic Input High Threshold AGC_ONB, OVPB, MCLK, GPIn,  
SCLK, SDI, SENB  
V
V
SHP, SHD, CLPIN, BLKCLP,  
AGC_ONB, OVPB, MCLK, GPIn,  
SCLK, SDI, SENB  
Logic Input Low Threshold  
0.8  
IIN  
Logic Input Leakage  
–100  
3.3  
100  
±25  
3.5  
2.9  
nA  
V
VDDD = 3.6 V, Iout = –0.5 mA  
VDDD = 3.0 V, Iout = –0.5 mA  
VOH  
Logic Output Voltage High  
2.7  
(4) PGA gain range is: [(ADC_OUT(PGA @ 1111111111)) / (ADC_OUT(PGA @ 0000000000))]  
8
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted).  
The following specifications apply for VDDA = VDDD = VDDLVDS = 3.3 V; FMCLK = FADCCLK= 70 Ms/s; 6 Channel Mode  
unless otherwise noted.  
TA = TMIN to TMAX  
TA = +25°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
0.3  
MIN  
TYP  
0.15  
0.15  
1.4  
MAX  
VDDD = 3.6 V, Iout = 1.6 mA  
VDDD = 3.0 V, Iout = 1.6 mA  
VOL  
Logic Output Voltage Low  
Power On Reset Threshold  
V
V
0.3  
VREB  
LVDS DC PARAMETERS  
VOD  
Differential Output Voltage  
210  
420  
17  
300  
2.5  
mV  
mV  
Change in Diff. Output  
Voltage  
Δ VOD  
VOS  
Offset Voltage  
1.17  
1.28  
13  
1.2  
2.5  
5
V
ΔVOS  
Change in Offset Voltage  
mV  
TXCLKx  
6.7  
8.9  
I OS  
Output Short Circuit Current  
mA  
TXOUTxx  
7
6.6 Timing Requirements, AFE/ADC Timing  
TA = TMIN to TMAX  
MIN TYP MAX  
TA = +25°C  
TEST CONDITIONS  
UNIT  
MIN TYP MAX  
fMCLK  
MCLK frequency  
MCLK Duty Cycle  
6 channel mode  
3 channel mode  
10  
10  
70  
35  
MHz  
DC  
40%  
60%  
SMAX  
Input Sampling Rate –  
maximum  
35  
MS/s  
MS/s  
SMIN  
Input Sampling Rate –  
minimum  
5
10  
2
tRESET  
RESETB Pulse Width  
RESETB Clear Time(1)  
tMCLK  
tMCLK  
t
3
5
RESET_CLR  
tMNS  
Min Sample Falling Edge  
Setting  
SH2b (tSHD = 8.2 ns), MCLK= ADCCLK/2):  
• ADCCLK = 20 MHz  
4
Decimal  
Setting  
14  
• ADCCLK = 70 MHz  
12  
tMXS  
Max Sample Falling Edge  
Setting  
SH2b (tSHD = 8.2 ns), MCLK = ADCCLK/2:  
• ADCCLK = 20 MHz  
• ADCCLK = 70 MHz  
27  
23  
29  
25  
Decimal  
Setting  
tMXE  
Sample Falling Edge Max  
Error  
SH2b, Register 0x36 = Min to Max (MCLK = ADCCLK/2):  
• ADCCLK = 20 MHz  
+0.2/  
–0.3  
ns  
ns  
• ADCCLK = 70 MHz  
+0.2/  
–0.4  
tSFED  
Sample Falling Edge Delay  
(MCLK rising edge to OSx  
voltage step)  
SH2b, Register 0x36 = 16d (MCLK = ADCCLK/2):  
ADCCLK = 70 MHz  
13  
ns  
ns  
(1)  
tSHD  
SHP/SHD high period  
(See  
)
8.2  
(1) This parameter specified by simulation and/or bench evaluation and not production tested.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
UNIT  
Timing Requirements, AFE/ADC Timing (continued)  
TA = TMIN to TMAX  
MIN TYP MAX  
TA = +25°C  
TEST CONDITIONS  
MIN TYP MAX  
tMCS_MIN  
MCLK high to SAMPLE high  
SH3 Mode – ADC Rate MCLK  
SH2a Mode  
15  
15.5  
6
11  
11.7  
3.5  
(minimum)  
(2)  
(See  
)
ns  
SH1b Mode  
CDSb Mode  
6
3.3  
tHMC_MIN  
HOLD high to MCLK high  
SH3 Mode – ADC Rate MCLK  
SH2a Mode  
2.5  
1.5  
1
–1  
(minimum)  
–2.4  
–4.5  
–5.5  
2
(2)  
(See  
)
ns  
ns  
SH1b Mode  
CDSb Mode  
1
tMCH_MIN  
tAD  
MCLK high to HOLD high  
(Minimum)  
SH3 Mode – ADC Rate MCLK  
6
Aperture delay  
5
ns  
ns  
Aperture delay variation  
CLPIN/BLKCLP Pulse Width  
0.6  
tCLPIN  
,
(high or low)  
2
tMCLK  
tBLKCLP  
tIS  
CLPIN/BLKCLP/GPIn Setup  
CLPIN/BLKCLP/GPIn Hold  
CLPIN neg. edge to BLKCLP  
3
3
ns  
ns  
tIH  
tC_B  
6 Channel mode  
3 Channel mode  
16  
10  
start  
(See  
Pixels  
(3)  
)
(3)  
tGPI_LAT  
GPIn Latency (See  
)
6 Channel – ADC Rate MCLK  
6 Channel – Pixel Rate MCLK  
3
1.5  
3
tMCLK  
3 Channel – ADC = Pixel Rate  
MCLK  
tLAT(1)  
tLAT(2)  
tLAT  
6 Channel Mode  
Channel 1 Latency  
6 Channel Mode  
Channel 2 Latency  
ADC Rate MCLK  
Pixel Rate MCLK  
ADC Rate MCLK  
Pixel Rate MCLK  
ADC=Pixel Rate MCLK  
11  
5.5  
12  
6
tMCLK  
tMCLK  
tMCLK  
3 Channel Mode Latency  
11  
(2) Measured with AFEPHASE = 11. For other AFEPHASE settings,these sample input timings will shift earlier with respect to MCLK as  
follows. (tHMC will increase by these amounts, tMCH will decrease by these amounts):  
(a) AFEPHASE = 10 – Earlier by ¼ pixel period  
(b) AFEPHASE = 01 – Earlier by ½ pixel period  
(c) AFEPHASE = 00 – Earlier by ¾ pixel period  
(3) This parameter specified by simulation and/or bench evaluation and not production tested.  
6.7 Timing Requirements, Serial Interface Timing  
TEST CONDITIONS  
TA = TMIN to TMAX  
UNIT  
MIN  
50  
20  
20  
5
TYP  
MAX  
tCP  
SCLK period  
ns  
ns  
tWH  
SCLK High width  
tWL  
SCLK Low width  
ns  
tIS  
SDI Setup time  
ns  
tIH  
SDI Hold time  
5
ns  
tSENSC  
tSCSEN  
tSENW  
tOD  
SENB low before SCLK rising  
SENB high after SCLK rising  
SENB high width  
5
ns  
5
ns  
5
tMCLK  
ns  
SDO Output delay  
2
10  
10  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
6.8 Timing Requirements, LVDS Output Timing  
TEST CONDITIONS  
TA = TMIN to TMAX  
TA = +25°C  
UNIT  
MIN  
10  
TYP  
MAX  
70  
MIN  
TYP  
MAX  
fTXCLK  
tTXCLK  
LLHT  
LVDS TXCLK Frequency  
LVDS TXCLK Period  
MHz  
ns  
14.3  
100  
(1)  
(1)  
LVDS Low to High Transition (See  
Time  
)
0.75  
0.75  
250  
ns  
ns  
ps  
LHLT  
LVDS High to Low Transition (See  
Time  
)
(2)  
TCCS  
TPPos0  
TxOUT Channel to Channel  
Skew  
70 MHz TXCLK (See  
)
Transmitter Output Pulse  
Pos. Bit 0  
70 MHz TXCLK(2)  
10 MHz TXCLK(3)  
70 MHz TXCLK(2)  
10 MHz TXCLK(3)  
70 MHz TXCLK(2)  
10 MHz TXCLK(3)  
70 MHz TXCLK(2)  
10 MHz TXCLK(3)  
-0.26  
-0.44  
1.47  
8.56  
3.64  
24.1  
5.42  
37.9  
7.56  
52.5  
9.56  
67.7  
11.82  
81.8  
0.1  
0.48  
2.46  
20  
-0.06  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPPos1  
TPPos2  
TPPos3  
TPPos4  
TPPos5  
TPPos6  
Transmitter Output Pulse  
Pos. Bit 1  
2
14.2  
4.1  
Transmitter Output Pulse  
Pos. Bit 2  
4.49  
35.2  
6.33  
49.3  
8.38  
63.1  
10.33  
76.9  
12.53  
90.2  
29.7  
5.9  
Transmitter Output Pulse  
Pos. Bit 3  
43.7  
8
(2)  
Transmitter Output Pulse  
Pos. Bit 4  
70 MHz TXCLK  
10 MHz TXCLK(3)  
70 MHz TXCLK(2)  
10 MHz TXCLK(3)  
70 MHz TXCLK(2)  
10 MHz TXCLK(3)  
57.9  
10  
Transmitter Output Pulse  
Pos. Bit 5  
72.4  
12.2  
85.9  
Transmitter Output Pulse  
Pos. Bit 6  
(1) This parameter specified by simulation and/or bench evaluation and not production tested.  
(2) TPPos0 to TPPos6 values are given for 70 MHz TXCLK frequency. These values are ensured by characterization and are not  
production tested.  
(3) TPPos0 to TPPos6 values are given for 10 MHz TXCLK frequency. These values are ensured by characterization and are not  
production tested.  
t
RESET_CLR  
MCLK  
Reset  
Internal  
VDDA  
V
RES  
Figure 2. Power on Reset (POR)  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
t
t
RESET_CLR  
RESET  
MCLK  
RESETB  
Figure 3. RESETB Input Timing  
90%  
90%  
10%  
MCLK  
10%  
t
R
t
IH  
t
IS  
t
F
CLPIN/  
BLKCLP/  
GPIx  
90%  
10%  
90%  
10%  
Note: CLPIN, BLKCLP and GPIx are all sampled or latched on the rising edge of MCLK  
Figure 4. Input Setup and Hold Timing  
Figure 5. Sample Falling Edge Delay  
12  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Pixel(n)  
Pixel(n+1)  
OSR1/2  
OSG1/2  
OSB1/2  
tAD  
tAD  
SAMPLE  
HOLD  
tSHD  
tMCH  
tCL tCH  
tMCLK  
tHMC  
MCLK  
tIH  
tIS  
tLAT(2)  
tLAT(1)  
GPI[5:1]  
tGPI_LAT  
Ch.1(n) Ch.2(n) Ch1.(n+1)Ch2.(n+1)  
TXCLK+  
Above timing relationships between SAMPLE, HOLD and MCLK are for AFEPHASE = 11.  
For other AFEPHASE settings, the sampling timing can move earlier by ¼, ½ or ¾ pixel period with respect to  
MCLK, but the latency as shown above will remain constant.  
Figure 6. Output Latency and Timing – 6 Channel Mode – ADC Rate MCLK  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Pixel(n)  
Pixel(n+1)  
OSR1/2  
OSG1/2  
OSB1/2  
tAD  
tAD  
SAMPLE  
tSHD  
HOLD  
MCLK  
tMCH  
tHMC  
tCL  
tCH  
tMCLK  
mclk_int  
GPI[5:1]  
tIH  
tIS  
tLAT(2)  
tLAT(1)  
tGPI_LAT  
Ch.1(n) Ch.2(n) Ch1.(n+1)Ch2.(n+1)  
TXCLK+  
Above timing relationships between SAMPLE, HOLD and MCLK are for AFEPHASE = 11.  
For other AFEPHASE settings, the sampling timing can move earlier by ¼, ½ or ¾ pixel period with respect to  
MCLK, but the latency as shown above will remain constant.  
Figure 7. Output Latency and Timing – 6 Channel Mode – Pixel Rate MCLK  
Pixel(n)  
Pixel(n+1)  
OSR1  
OSG1  
OSB1  
tAD  
SAMPLE  
HOLD  
tSHD  
tMCH  
tCH  
tCL  
tHMC  
MCLK  
tMCLK  
tIH  
tIS  
tLAT  
GPI[5:1]  
tGPI_LAT  
Data(n)  
Data(n+1)  
TXCLK+  
Figure 8. Output Latency and Timing – 3 Channel Mode  
14  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
6.9 LVDS TIming  
80%  
20%  
80%  
20%  
LLHT  
LHLT  
Figure 9. LVDS Transition Times  
TCCS  
TXOUTA1  
TXOUTB1  
TXOUTC1  
TXOUTA2  
TXOUTB2  
TXOUTC2  
TXCLK+  
Vdiff=0  
Measurements at Vdiff = 0V  
TCCS measured between earliest and latest LVDS  
edges and TxCLK Differential Low to High Edge  
Figure 10. LVDS Channel to Channel Skew  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
LVDS TIming (continued)  
Pixel N-1  
Pixel N  
Pixel N+1  
TX6  
TX6  
TX6  
TX6  
TX6  
TX6  
TX5  
TX5  
TX5  
TX5  
TX5  
TX5  
TX4  
TX4  
TX4  
TX4  
TX4  
TX4  
TX3  
TX2  
TX2  
TX2  
TX2  
TX2  
TX2  
TX1  
TX1  
TX1  
TX1  
TX1  
TX1  
TX0  
TX0  
TX0  
TX0  
TX0  
TX0  
TXOUTA1  
TXOUTB1  
TXOUTC1  
TXOUTA2  
TXOUTB2  
TXOUTC2  
TXCLK+  
TX3  
TX3  
TX3  
TX3  
TX3  
TPPos0  
TPPos1  
TPPos2  
TPPos3  
TPPos4  
TPPos5  
TPPos6  
Figure 11. LVDS Output Pulse Positions  
TXOUT  
TXCLK  
VOD  
VOS  
0V  
Note: LVDS Output Ref erenced to 0V or V SSLV DS  
Figure 12. LVDS DC Parameters  
16  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
6.10 User Input Based Timing  
NOTE  
Note: 4 (6 Channel Mode) or 2 (3 Channel Mode) AFEPHASE settings are available to  
provide flexibility of sample timing.  
For ease of use, AFEPHASE = 11 is the default setting in 6 channel mode, and AFEPHASE = X1 is the default  
setting for 3 channel mode, as shown in select diagrams.  
Specified values for these timings are measured at AFEPHASE = 11. For other AFEPHASE settings,these  
sample input timings will shift earlier with respect to MCLK as follows:  
AFEPHASE = 10 – Earlier by ¼ pixel period  
AFEPHASE = 01 – Earlier by ½ pixel period  
AFEPHASE = 00 – Earlier by ¾ pixel period  
tMCS  
tMCH  
tHMC  
CCD Output  
MCLK  
SAMPLE  
HOLD  
tSHD  
(Assumes rising edges of external pulses are active)  
Figure 13. SH3 Timing Mode – ADC Rate Clock Input  
tMCS  
tHMC  
CCD Output  
AFEPASE01  
MCLK  
SAMPLE  
HOLD  
tSHD  
(Assumes rising edges of external pulses are active)  
Figure 14. SH2 Timing Mode – ADC Rate Clock Input  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
User Input Based Timing (continued)  
tMCS  
tHMC  
CCD Output  
AFEPASE01  
MCLK  
SAMPLE  
HOLD  
tSHD  
(Assumes rising edges of external pulses are active)  
Figure 15. SH2 Timing Mode – Pixel Rate Clock Input  
tMCS  
tMCS  
tHMC  
tHMC  
CCD Output  
AFEPASE01  
MCLK  
SHP  
SHD  
tSHD  
tSHD  
(Assumes external pulses are active high)  
Figure 16. SH1b/CDSb Timing Mode – ADC Rate Clock Input  
tMCS  
tMCS  
tHMC  
tHMC  
CCD Output  
AFEPASE01  
MCLK  
SHP  
SHD  
tSHD  
tSHD  
(Assumes external pulses are active high)  
Figure 17. SH1b/CDSb Timing Mode – Pixel Rate Clock Input  
18  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7 Detailed Description  
7.1 Overview  
The PGA and offset DACs for each channel are programmed independently allowing unique values of gain and  
offset for each of the six channels. A 2-to-1 multiplexing scheme routes the signals to three 70 MHz high  
performance ADCs. The fully differential processing channels achieve exceptional noise immunity, having a very  
low noise floor of –68.5dB. The 10-bit analog-to-digital converters have excellent dynamic performance, making  
the LM98620 transparent in the image reproduction chain.  
7.2 Functional Block Diagram  
Red  
CDAC  
+/- 4  
FDAC  
+/- 10  
1x or 2.1 x gain  
Black Level Loop  
White Level Loop  
8
8
CDS/  
SH  
OSR1  
OSR2  
™
™
PGA  
PGA  
M
U
X
10  
10  
ADC  
CDS/  
SH  
Black Level Loop  
White Level Loop  
+/- 10  
+/- 4  
FDAC  
CDAC  
Figure 18. Channel Block Diagram  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Functional Block Diagram (continued)  
Red  
Green  
Blue  
OSR1  
TXOUTA1+  
TXOUTA1-  
10  
10  
10  
See Channel Block Diagram for details  
OSR2  
TXOUTB1+  
TXOUTB1-  
TXOUTC1+  
TXOUTC1-  
TXCLK1+  
TXCLK1-  
OSG1  
OSG2  
LVDS  
Serializer  
See Channel Block Diagram for details  
TXOUTA2+  
TXOUTA2-  
TXOUTB2+  
TXOUTB2-  
TXOUTC2+  
TXOUTC2-  
OSB1  
OSB2  
TXCLK2+  
TXCLK2-  
See Channel Block Diagram for details  
GPI5  
GPI4  
GPI3  
GPI2  
GPI1  
GP  
Inputs  
VCLP  
1.8V  
Regulator  
Vreg  
VCLP_EXT  
VCLP_INT  
RESETB  
SHP/SAMPLE  
SHD/HOLD  
CLPIN  
Vreftout  
Vrefbout  
Vref  
Reference  
Generator  
Clamp Voltage  
Buffer  
Timing  
and  
Control  
Inputs  
BLKCLP  
AGC_ONB  
MCLK  
SENB  
SCLK  
SDI  
OVPB  
Serial  
Interface  
SDO  
Figure 19. Chip Block Diagram  
20  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7.3 Feature Description  
7.3.1 Input Clamping and Biasing Circuitry  
Many sensor input signals will be at a different common mode voltage than that of the LM98620 input circuitry. In  
these applications, AC coupling is used to block the DC voltage difference between the source and the AFE  
inputs. Input clamp circuits are used to set the AFE input at the proper common mode voltage.  
Initial coarse clamping should be done using the PIB (Passive Input Bias) and/or AIB (Active Input Bias) circuitry.  
Setting the PIB enable bit connects 1 kΩ pull-up and pull-down resistors to the inputs to rapidly charge them to  
VDDA/2. Setting the AIB bit connects the VCLPEXT reference voltage to the inputs via low impedance switches.  
Either method will bring the input voltage very close to the desired level of VDDA/2.  
The AIB and PIB must be disabled during normal operations.  
During image capture, black level clamping is done by connecting the input pins to an internal reference voltage  
through a low impedance switch. The clamp is turned on periodically to correct any droop in the DC input voltage  
and minimize conversion errors.  
The clamp switch will be turned on during the “Black” portion of the input signal when the input is at a known  
voltage level. The clamp will connect the inputs to a reference level of approximately 1.65 V. Optionally, a  
customer supplied reference voltage can be applied at the VCLPEXT pin. If an external reference is used, it must  
be capable of driving the 6 OS coupling capacitors through 6 internal resistors of 20 Ω. The alternative is to use  
a weaker buffer, with a large external capacitance (> the sum of the OS coupling capacitors). Clamp timing is  
controlled by the CLPIN input signal in combination with the register bit ANDen and the internal SAMPLE timing  
signal.  
CLPIN can directly control the internal Clamp, or the combination of CLPIN and SAMPLE can be used. Clamping  
only during SAMPLE ensures that the input is clamped to the “Black” level rather than the average of “Black”,  
“Reset” and reset noise feed through signals.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Feature Description (continued)  
1 per OS input  
Note: Switches are closed when control input = 1.  
750Ω  
1kΩ  
4.7 uF  
OS  
OVP_ext  
OVPB  
To SH/CDS  
CCD  
1kΩ  
OVP_int  
0x01, b4  
PIB  
0x00, b6  
RDIV  
0x04, b7  
VCLPEXT  
10 uF  
AIB  
0x00, b7  
ClpMode  
0x02, b0  
MUX  
0
1
Configurationregister  
control bits  
SAMP CLK  
CLPIN  
R1  
Vclamp  
buffer  
VCLPINT  
R1  
VCLPBuff  
0x00, b2  
Figure 20. Input Protection and Clamping and Biasing Circuitry  
22  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Feature Description (continued)  
Valid Pixels  
CCD Power Up  
Optical Black Pixels  
Dummy Pixel(s)  
Sensor  
Outputs  
V
/2  
DDA  
OSR1/2  
OSG1/2  
OSB1/2  
0 V  
(B)  
(C)  
0.7 V  
(A)  
CLPIN  
(C)  
BLKCLP  
t
t
BLKCLP  
CLPIN  
MCLK  
Internal  
Sample  
Timing  
Clamp  
switch  
control  
Clamp Control = 1  
Clamp Control = 0  
Clamp  
switch  
control  
PIB and/or  
AIB  
(B)  
OVPB  
(A)  
Note: Waveforms not to scale.  
A. During initial system power up, the OVP clamp circuit will be enabled. This provides a path for current to flow as the  
sensor is powered up, and the large common mode voltage output of the sensor reaches a steady state value. Once  
the sensor voltages have stabilized, the OVP circuit can be disabled. At this point the OS inputs will still be  
approximately 0.7 V above ground. Settling to 99% of final voltage will take approximately 18 ms for a 4.7 uF  
capacitance, assuming a 750 Ω diode/switch impedance.  
B. Then, the PIB and/or AIB circuits should be enabled to bring the OS inputs up to approximately VDDA/2 volts. After  
the OS voltages have charged to this level, the PIB and AIB biasing should be turned off. Settling to within 1mV of  
VDDA/2 will take approximately 18 ms for a 4.7 uF capacitance, assuming a 500 Ω charging resistance.  
C. During image acquisition, accurate DC clamping is provided by the CLPIN switch. This switch is enabled when the  
CLPIN input is asserted. In most applications, the Clamp Control bit (Register 0x03, b3) should be set to gate the  
CLPIN signal with the internal sampling pulse. This will ensure that clamping is only done during the image portion of  
the optical black pixels. Settling to 1mV for a 10mV ΔV between the pedestal and black will take: (1/(%dwell) x 1/(%  
samp time) x Rsw x Cin x 5).  
Settling Time = (1/(32/7600 pixels)) x 1/(50%) x 40 Ω x 4.7 uF x 5 = 447 ms.  
Smaller input capacitors will result in proportionally smaller settling times for all clamping modes.  
Figure 21. Input Protection Clamping and Biasing – Operation Example  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Feature Description (continued)  
7.3.2 Input Signal Polarity Select  
The LM98620 can accept input signals with negative polarity (default) as output by CCD type sensors, and (when  
operated in the Sample and Hold modes) can also be configured to accept signals with positive polarity as output  
by some CIS type sensors.  
The input signal polarity selection is found at Page 0, Register 0x03, Bit 7 of the configuration registers.  
Changing this bit from 0 (default) to 1 selects the positive polarity mode.  
*Negative Polarity mode works in both CDS and Sample and Hold modes.  
*Positive Polarity mode is only functional in the Sample and Hold modes.  
7.3.3 Input Connections for 3 Channel Operation  
For three channel only applications, the unused inputs should be connected with 10k Ω resistors to VCLP_EXT  
to minimize noise coupling into the active inputs.  
OSR1  
OSR2  
OSG1  
OSG2  
OSB1  
OSB2  
10 k  
Figure 22. Unused Input Connection  
24  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Feature Description (continued)  
7.3.4 AFE References  
A low noise reference structure is incorporated in the LM98620.  
Outputs (VREFTOUT approx. 2.23 V, VREFBOUT approx. 0.98 V) and inputs (VREFTIN1, VREFTIN2,  
VREFBIN1, VREFBIN2) are provided to allow decoupling capacitors to be connected. VREFTOUT should be  
connected to VREFTIN1 and VREFTIN2. VREFBOUT should be connected to VREFBIN1 and VREFBIN2.  
Recommended capacitance is 1.0 uF between the top and bottom reference source, with 0.1 uF to AGND from  
both the top and bottom reference source. Connection and decoupling capacitor traces should all be as short as  
possible, and digital signals should be kept away from this area. Internal connections from VREFTOUT to  
VREFTIN1,2 and VREFBOUT to VREFBIN1,2 are present to reduce the impedance between outputs and inputs,  
but external connections should still be used for the best performance.  
VREFTOUT  
0.1 µF  
VREFTIN1  
VREFTIN2  
+
1 µF  
0.1 µF  
VREFBIN1  
VREFBIN2  
VREFBOUT  
0.1 µF  
Figure 23. Reference Decoupling Example  
7.3.5 Offset Control  
Analog offset is provided before the ADC.  
Two offset DACs are used to provide a coarse (CDAC) and fine (FDAC) offset that is applied prior to the  
CDS/SH stage.  
The offset CDAC (Coarse DAC) provides ± 280 mV with ± 4 bits of resolution in offset binary format.  
The offset FDAC (Fine DAC) provides ± 110 mV (Large FDAC range) or ± 59.5 mV (Small FDAC range) with  
± 10 bits of resolution in offset binary format. The FDAC range is controlled by the FDAC range bit for each  
color channel, in Register 0x03h, bits 3, 4, 5.  
Table 1. The Offset CDAC and Offset FDAC  
CDAC (5bit) OFFSET BINARY FORMAT  
FDAC (11 bit) OFFSET BINARY FORMAT  
Offset Voltage  
Offset Voltage  
Offset Voltage  
(mV)  
Hex.  
Dec.  
Hex.  
Dec.  
(mV)  
(mV)  
+280  
+18.67  
0
1F  
11  
10  
0F  
1
+15  
+1  
7FF  
401  
400  
3FF  
0
+1023  
+1  
110  
0.108  
0
59.5  
0.058  
0
0
0
–1  
–18.67  
–280  
–280  
–1  
–0.108  
–110  
–110  
–0.058  
–59.5  
–59.5  
–15  
–16  
–1023  
–1024  
0
0
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table 2. CDAC Step Sizes  
CDS/SH+PGA Gain  
CDAC LSB  
ADC LSB  
16  
1x  
1
1
1
10x  
20x  
159  
317  
Table 3. FDAC Step Sizes  
FDAC Range  
CDS/SH+PGA Gain  
FDAC LSB  
ADC LSB  
1x  
1x  
1x  
2x  
2x  
2x  
1x  
1
1
1
1
1
1
1 / 20  
1 / 2  
1
10x  
20x  
1x  
1 / 11  
0.91  
1.8  
10x  
20x  
7.3.6 Black Level Calibration (Offset)  
Black level correction may be performed through one of two available methods: automatic or manual.  
7.3.6.1 Manual Offset Adjustment  
The manual method is intended for use with processing systems where the desired black level correction loop is  
external to the LM98620. In this mode the external processor controls the Black Level Offset registers.  
Offset adjustment should be done using the average data from multiple Black pixels. The offset will be adjusted  
to set the Black pixel data as close as possible to the desired target value.  
First the CDAC is adjusted until the error is reduced as much as possible given the CDAC step size for the  
current channel gain. (1 CDAC lsb = (16 to 320) ADC lsb depending on gain). Once the error is minimized with  
the CDAC, the FDAC is used to further converge the Black pixel data towards the target value.  
After changing the channel gain, it may be desirable to repeat the offset adjustment.  
7.3.6.2 Automatic Offset Adjustment  
Note: During Automatic Offset Adjustment, the CDAC and FDAC register settings are Read Only.  
During automatic black level calibration, the CDAC (coarse analog offset DAC) is used to bring the black level as  
close to the target as possible given the CDAC resolution.  
Then the FDAC (Fine analog offset DAC) is applied to further converge the output to the desired black level  
target.  
Two basic modes are available.  
CDAC and FDAC enabled – Used to converge to accurate Black target level as quickly as possible.  
FDAC Only mode – Used to maintain Black target level while avoiding large changes to offset. In FDAC only  
mode, the CDAC value is fixed, and the automatic adjustments only affect the FDAC.  
CDAC and FDAC mode should be used to set the gain after power up and between scanning operations. FDAC  
Only mode should be used during scanning, to prevent large changes in offset from occurring in the image data.  
Use of the automatic mode involves enabling the black level offset auto-calibration bit in the black level clamp  
control register through the serial interface.  
26  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
The ADC output value is averaged over the programmed number of pixels and subtracted from the desired black  
level code stored in the target black level register. The result of the subtraction may then be integrated by a  
preset scaling factor, effectively smoothing any sharp transitions present in the black level signal, before the  
resulting calculated offset is finally applied. The offset integration scaling factor is stored in the black level loop  
control register. The integration scaling values range from offset/2 to offset/128.  
High Speed mode can be enabled to provide rapid initial convergence, with slower, more accurate convergence  
to the target value. High Speed mode is enabled by setting Register 0x23, Bit 1 = 1. The High Speed Mode  
offset integration value is set at Register 0x23, Bit 4. Two other parameters control the regions of operation  
around the target black value. The High Speed Mode Threshold and Hysteresis registers control the points  
where the transition from High Speed Mode to normal mode is made. When operating in High Speed Mode, the  
chip will transition to normal mode when Black Error < High Speed Threshold. When operating in Normal Mode,  
the chip will transition to High Speed Mode when Black Error > (High Speed Threshold + Hysteresis).  
In automatic mode, the black level is determined from the ADC output during the Optical Black Pixels. The  
BLKCLP input pin is used to identify when the black pixels are being input to the IC. The rising edge of the  
BLKCLP input signal signals the beginning of the Optical Black Pixels. Alternatively, the Auto BLKCLP Pulse  
Generation (Register 0x23h, Bit 3) can be set to 1 to generate this signal internally. In that case, the BLKCLP  
pulse will begin 16 (6 channel mode) or 10 (3 channel mode) pixels after the falling edge of the CLPIN signal.  
Regardless of the source providing the BLKCLP start signal, the BLKCLP pulse duration is controlled by the Pixel  
Averaging setting in the BLKCLP_CTRL Register (0x24h, Bits 5:3).  
NOTE: tBLKCLP is controlled by BLKCLP_CTRL Register (0x24h, Bits 7:3)  
Figure 24. Manual BLKCLP Example  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Valid Pixels  
Valid Pixels  
Optical Black Pixels  
Dummy Pixels  
OSR1/2  
OSG1/2  
OSB1/2  
t
C_B  
CLPIN  
input  
CLPIN  
internal  
BLKCLP  
internal  
t
t
BLKCLP  
CLPIN  
MCLK  
Note: tBLKCLP is controlled by BLKCLP_CTRL Register (0x24h, Bits 7:3)  
Figure 25. Automatic BLKCLP Example  
7.3.7 Gain Control  
The PGA provides a range from 1x to 10x gain with 8 bits of resolution. The gain curve is nominally:  
Gain = 283/(283-M)  
where  
M is the 8 bit gain setting value from 0 to 255.  
(1)  
In addition, the CDS/SH stage provides a 1x or 2x gain, giving an overall channel gain or 1x to 20x (0 dB to 26  
dB).  
28  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7.3.8 White Level Calibration (AGC - Automatic Gain Control)  
10  
10  
OSx  
SH Gain  
PGA  
ADC  
ADC Output  
8
x1 or x2  
Gain Control Logic  
Note: CDS/SH Gain Bit Shared  
between Even/Odd Channels  
Target White Level  
Figure 26. White Level Calibration (AGC - Automatic Gain Control)  
During Automatic Gain Adjustment, the PGA and CDS/SH gain settings are Read Only.  
The white calibration loop allows the LM98620 to automatically set the gain for the desired maximum ADC  
output. A digital input pin or configuration register bit is used to start the loop. This would normally be done once  
per page, or as needed for the particular system design. When triggered, the loop processes the output data  
during the defined white pixel range. The pixel range can be selected from a minimum of 1 pixel to a maximum of  
65535 pixels. The starting pixel can be selected via the PK_DET_ST register at 0x2Ah, 0x2Bh and is referred to  
the rising edge of either the CLPIN or BLKCLP signal. The number of pixels is selected by the PK_DET_WID  
register at 0x2Ch, 0x2Dh.  
During processing, a moving window average is performed. The size of the window is set by the PK_AVE  
register at 0x29, Bits 2:0. The window size is adjustable from 1 (no averaging) to 32 pixels. As each window  
average is calculated, the value is compared to the previous Peak White value (at the start of the line, the initial  
Peak White value is set to 0). If the new average is larger than the previous Peak White value, the Peak White  
value is replaced with the new average value. The window position is then incremented by 1 pixel and the  
process is repeated until the window average has processed all PK_DET_WID pixels.  
If the AGC_ONB input is pulsed, the white calibration loop will operate for a fixed number of lines at the  
beginning of the scan. This duration is selected via the AGCDuration register at 0x2Eh Valid settings are from 1  
to 255 decimal. A duration setting of 0 will cause the loop to not run.  
Figure 27. White Calibration Using AGC_ONB  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
When the AGC_ONB input is pulsed, the register bit AGC_ON is set. The AGC_ON bit is cleared when the loop  
is terminated, which is when the number of lines allocated for the loop are exhausted. The AGC_ONB pin should  
be asserted for minimum of two pixels and should be deasserted before the loop is complete and the AGC_ON  
register bit is cleared.  
Register 0x01, Bit 5 selects the polarity of the AGC_ONB input. The default is 0 for active low.  
When the AGC loop begins operation, the AGC STATUS at Register 0x33, will be automatically cleared (as long  
as the serial interface mode bit at Register 0x01, Bit 3 is set to 1, MCLK present). At the end of the AGC loop  
operation, the AGC STATUS register can be read to check that the loop successfully converged for all channels.  
The status value should be 0x00 to indicate no Convergence Errors.  
While the AGC loop is operating, a timing source is needed to provide a consistent reference point at the  
beginning of each line of pixels. Register 0x28, Bit 5 is used to select either the CLPIN or BLKCLP as the timing  
source. If Bit 5 = 0, the timing reference is the rising edge of CLPIN. If Bit 5 = 1, the timing reference is the rising  
edge of BLKCLP. The register setting PK_DET_ST selects the number of pixel after this timing reference that  
pixel averaging begins. The register setting PK_DET_WID selects the number of pixels after PK_DET_ST that  
are processed.  
The purpose of the white loop is to find the correct gain setting so the brightest white pixels are at a specific ADC  
code target. The target value is set in the AGCTargetMSB and AGCTargetLSB registers. The target value is  
calculated from the register value as shown:  
AGC_TARG = 512d + (AGCTargetMSB[7:0]+AGCTargetLSB[7])  
Table 4. White Loop Register Initialization  
AGCTargetMSB  
(REGISTER 0x2F)  
AGCTargetLSB  
(REGISTER 0x30)  
AGC_TARG  
BINARY  
AGC_TARG  
DECIMAL  
11111111  
11111111  
10000000  
10000000  
00000000  
00000000  
1
0
1
0
1
0
1111111111  
1111111110  
1100000001  
1100000000  
1000000001  
1000000000  
1023  
1022  
769  
768  
513  
512  
30  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7.4 Device Functional Modes  
7.4.1 AFEPHASEn Details for SHP/SHD Input Mode  
The SHP (sample reference) and SHD (sample signal) inputs are combined with the selected AFEPHASEn  
signal to generate the internal CLAMP and SAMPLE signals respectively. The SHP signal is ANDed with  
AFEPHASEn. The SHD signal is ANDed with the inverted AFEPHASEn signal.  
The best performance will be achieved by selecting the AFEPHASEn timing that has the high period completely  
overlapping the SHP input timing, and the low period completely overlapping the SHD timing.  
7.4.2 AFEPHASEn Details for SAMPLE and HOLD Input Mode  
In Sample/Hold mode, the SAMPLE and HOLD inputs are used. The rising edge of SAMPLE defines the start of  
the sample control pulse, and the rising edge of HOLD defines the end of the sample control pulse. This sample  
control pulse is then gated by the low period of the AFEPHASEn signal to generate the resulting SAMPLE signal  
used internally.  
The AFEPHASEn signal which has the low period completely overlapping the sample control pulse will give the  
best performance.  
7.4.3 AFEPHASEn: 6 Channel and 3 Channel Modes  
In 6 Channel Mode, there are two full cycles of ADCCLK for each sensor pixel period. This allows the two AFE  
channels to be multiplexed into the single ADC. In this mode, there are 4 possible AFEPHASEn timings  
available.  
In 3 Channel Mode, there is only one cycle of MCLK and ADCCLK per pixel period. Because of this, there are  
only 2 choices for AFEPHASEn, as shown in the following diagrams.  
7.4.4 LM98620 AFEPHASE Synchronization  
There are three main modes of operation for the LM98620  
1. 6 channel mode using ADC Rate MCLK – Clock Doubler is bypassed  
2. 6 channel mode using Pixel Rate MCLK – Clock Doubler is used  
3. 3 channel mode using Pixel Rate MCLK – Clock Doubler is bypassed  
In case #1, where an ADC rate (2x of pixel rate) clock is input, the LM98620 needs one additional signal to  
ensure synchronization between the internal sampling phases and the pixel rate input signal.  
This synchronization is done using the CLPIN input signal in combination with MCLK. The CLPIN input generates  
an internal reset signal that sets the internal AFEPHASE state machine into a known relationship with MCLK and  
CLPIN. This ensures the AFEPHASE sampling is synchronized to the host sensor timing.  
The following diagrams indicate the phase relationship between MCLK and AFEPHASE when CLPIN is used for  
synchronization:  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Device Functional Modes (continued)  
T
(Note 1)  
Typical  
CCD Out  
MCLK  
mclk_int  
(Notes 6,7)  
CLPIN  
4.5 MCLK  
AFEPHASE  
= 0,0  
AFEPHASE  
= 0,1  
AFEPHASE  
= 1,0  
AFEPHASE  
= 1,1  
6.0 MCLK  
(Note 2)  
SAMPLE  
Sample timing for  
AFEPHASE = 1,1  
HOLD  
(Notes 3,4,5)  
1) T = MCLK Period = 1/2 Pixel Period  
2) Rising edge of SAMPLE must be at least 8 ns before rising edge of HOLD  
3) Rising edge of HOLD can be up to tMCH after rising edge of MCLK (AFEPHASE = 1,1)  
4) In SH1a,SH1b modes, the rising edge of HOLD can be up to tHMC before the rising edge of MCLK (AFEPHASE = 1,1)  
5) In SH2 mode, HOLD can be up to tHMC ns before the rising edge of MCLK (AFEPHASE=1,1)  
6) CLPIN must be high or low for at least 2 input MCLK cycles  
7) CLPIN is latched by the rising or falling edge of MCLK selectable by Register 0x04h, Bit 5.  
Figure 28. 6 Channel Mode – ADC Rate MCLK  
32  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Device Functional Modes (continued)  
T
Note 1  
Typical  
CCD Out  
MCLK  
mclk_int  
CLPIN  
(Notes 6,7)  
2.75 MCLK  
AFEPHASE  
= 0,0  
AFEPHASE  
= 0,1  
AFEPHASE  
= 1,0  
AFEPHASE  
= 1,1  
3.5 MCLK  
SAMPLE  
Note 2  
Sample timing for  
AFEPHASE = 1,1  
HOLD  
Notes 3,4,5  
1) T = MCLK Period = Pixel Period  
2) Rising edge of SAMPLE must be at least 8 ns before rising edge of HOLD  
3) Rising edge of HOLD can be up to tMCH after falling edge of MCLK (AFEPHASE = 1,1)  
4) In SH1a,SH1b modes, the rising edge of HOLD can be up to tHMC before the falling edge of MCLK (AFEPHASE = 1,1)  
5) In SH2 mode, HOLD can be up to tHMC before the rising edge of MCLK (AFEPHASE=1,1)  
6) CLPIN must be high or low for at least 2 input MCLK cycles  
7) CLPIN is latched by the rising or falling edge of MCLK selectable by Register 0x04h, Bit 5.  
Figure 29. 6 Channel Mode – Pixel Rate MCLK  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Device Functional Modes (continued)  
T
Note 1  
Typical  
CCD Out  
MCLK  
CLPIN  
(Notes 6,7)  
3.5 MCLK  
AFEPHASE  
= X,0  
AFEPHASE  
= X,1  
4.0 MCLK  
SAMPLE  
Sample timing for  
Note 2  
AFEPHASE =  
X,1  
HOLD  
Notes 3,4,5  
1) T = MCLK Period = Pixel Period  
2) Rising edge of SAMPLE must be at least 8 ns before rising edge of HOLD  
3) Rising edge of HOLD can be up to tMCH after falling edge of MCLK (AFEPHASE = 1,1)  
4) In SH1a,SH1b modes, the rising edge of HOLD can be up to tHMC before the falling edge of MCLK (AFEPHASE = 1,1)  
5) In SH2 mode, HOLD can be up to tHMC before the rising edge of MCLK (AFEPHASE=1,1)  
6) CLPIN must be high or low for at least 2 input MCLK cycles  
7) CLPIN is latched by the rising or falling edge of MCLK selectable by Register 0x04h, Bit 5.  
Figure 30. 3 Channel Mode – Pixel = ADC Rate MCLK  
34  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7.5 Programming  
7.5.1 Using Black Pixel Average  
In most applications, the Black Pixel Average bit should be set.  
During loop operation, the ADC_MAX or average maximum ADC value is found during the white pixels. The  
Black Pixel Average value is then subtracted from this ADC_MAX value to find the present white value. This  
ADC_WHT value is then used for comparison to the target white pixel value TARG_WHT. This is done to  
eliminate the effects that changes in the system gain will have on the Black Pixel Average value. As gain is  
increased or decreased, the previously calibrated Black Pixel Average value will change also. When the white  
loop operation is complete, the gain is set to provide the proper white level referenced to the Black Pixel Average  
value. Then the Black Loop will be run once more to set the Black Pixel Average at the desired level, and the  
White level will still be calibrated to the proper level.  
In addition, the following registers should be initialized before starting the loop:  
Table 5. White Loop Register Initialization  
REGISTER  
PK_DET_ST (0x2Ah, 0x2Bh)  
PK_DET_WID (0x2Ch, 0x2Dh)  
FUNCTION  
Start of the white pixel averaging in pixels from rising edge of CLPIN or BLKCLP  
Number of pixels in each line over which white pixels are averaged  
Duration in number of lines the loop should run. If set to 0, the loop will not run. Valid  
settings are 1 to 255.  
AGCDuration (0x2Eh)  
AGCTarget (0x2Fh, 0x30h)  
AGCTolerance (0x31h)  
AGC_BLKINT (0x32h)  
AGC target, between 512 to 1023  
Allowed error margin from the target value  
Black Offset Integration, if used  
Select reference edge CLPIN or BLKCLP rising edge, Enable/Disable  
AGC_ONB Pin, Incremental Search Enable, Black Offset Enable  
AGC_CONFIG (0x28h)  
After all registers are initialized, the AGC_ON bit (0x28h, b0) can be set, or the AGC_ONB pin can be pulsed to  
start the white loop.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
7.5.2 Sample Timing Control  
Sample timing is controlled through the combination of the selected internal AFEPHASEn signal, and  
programmed internal sample timing signals. Optionally, external sampling timing signals can be applied on the  
SAMPLE/SHP and HOLD/SHD input pins.  
The different input timing modes are selected by bits in Registers 0x00, 0x02, 0x04 and 0x05 as shown in  
Table 6. Settings other than those shown are not valid:  
Table 6. Input Timing Modes  
REG  
0x05[7]  
REG  
0x04[1]  
REG  
0x02[7]  
REG  
0x02[3:2]  
REG  
0x02[1]  
REG  
0x00[0]  
MODE  
DESCRIPTION  
SH3  
0
0
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
0
1
0
0
0
1
1
1
1
0
0
0
0
0
1
1
Sample and Hold mode, clocked  
by SAMPLE and HOLD clocks(2)  
SH2a  
Sample and Hold mode, clocked  
(3)  
by SAMPLE and HOLD clocks  
SH2b  
(Default)  
Sample and Hold mode,  
clocked by DLL(3)  
SH1a  
SH1b  
CDSa  
CDSb  
Sample and Hold mode, clocked  
by AFEPHASE(3)  
(1)  
(See  
)
Sample and Hold mode, clocked  
by SHD(3)  
CDS mode, sampled by  
AFEPHASE(3)  
CDS mode, sampled by SHP and  
SHD clocks(3)  
(1) AFEPHASE bits should be set to “11” in SH3 mode  
(2) AFEPHASE is automatically set by the HOLD input timing  
(3) AFEPHASE synchronizes with CLPIN input  
7.5.3 DLL Based Sample Timing Settings  
The internal DLL settings determine the position of internally generated sampling pulses. These pulses can only  
be used for the SH2b timing mode. The register bits to select sampling modes are shown in Table 6.  
Once SH2b mode is selected, the sample timing settings can be set. The timing settings consist of the following:  
AFEPHASE – Register 0x02, Bits 3:2 – This sets the coarse sample timing framework with respect to the input  
MCLK. In 6 channel modes, there are 4 possible AFEPHASE settings. Each setting is offset from the adjacent  
ones by ¼ pixel period.  
MCLK  
AFEPHASE-00  
AFEPHASE-01  
AFEPHASE-10  
AFEPHASE-11  
Figure 31. 4 AFEPHASE Selections – Coarse Sample Timing Adjust – (Pixel Rate MCLK Shown)  
36  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
 
 
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Sample Trailing Edge Position – Register 0x36, Bits 4:0  
This sets the end of the sampling pulse. There are 32 DLL settings within one AFEPHASE cycle or pixel period.  
The five bit values that correspond to these 32 settings as shown below:  
*(Please note that the 5 bit digital code sequence has changed from that of sample silicon versions.  
Initial version had the MSbit inverted from a normal sequence. A0 silicon has a normal sequence from  
00000 to 11111)  
00000: delay 0/32 of Tpixel from Pixel Clock  
00001: delay 1/32 of Tpixel from Pixel Clock  
01111: delay 15/32 of Tpixel from Pixel Clock  
10000: delay 16/32 of Tpixel from Pixel Clock  
11111: delay 31/32 of Tpixel from Pixel Clock  
AFEPHASE  
0
1516  
31  
Sample Trailing Edge Setting  
Register 0x36, Bits 4:0  
Internal Sample  
Pulse  
Sample Width Setting  
Register 0x37, Bits 7:5  
• t  
SHD MIN  
TESTO_0  
SH Sample  
(Active High)  
Delayed from internal  
SH Sample Pulse  
• t  
SHD MIN  
Figure 32. 32 Possible Settings Within AFEPHASE Period  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
7.5.4 Allowed Range of Sample Trailing Edge Settings (Typical)  
NOTE: The 5 bit digital code sequence has changed from that of sample silicon versions  
Table 7. Sample Trailing Edge Settings  
REGISTER 0x36, Bits 4:0  
FADCCLK  
70 MHz  
20 MHz  
*MIN  
12  
*MAX  
25  
4
29  
Sample Width – Register 0x37, Bits 7:5  
This selects the width of the Sampling pulse. To achieve rated performance, this parameter must be set to give a  
minimum of 8 ns width. The proper value can be calculated based on the operating frequency as follows:  
Tbit = 1/32 x Tpixel  
Min Width Setting = 8ns / Tbit  
Min Width Setting = 8ns / (Tpixel/32) = 256 ns / Tpixel ns (rounded up to next even value)  
Table 8. Minimum Width Settings  
Fpixel (MHz)  
Tpixel (ns)  
100  
MIN WIDTH SETTING  
REGISTER 0x37, BITS 7:5  
10  
15  
20  
25  
30  
35  
40  
4
4
1
1
66.7  
50  
6
10  
11  
11  
100  
101  
40  
8
33.3  
28.6  
25  
8
10  
12  
7.5.5 External Sample Timing Inputs  
In modes SH1a and CDSa, the internal Sample or Clamp and Sample timing signals are generated from the  
selected AFEPHASEn signal.  
In modes SH1b and CDSb, the input SHD or SHD and SHP signals are ‘gated’ by the internal AFEPHASEn  
signal to create the internal Sample and Clamp signals.  
In mode SH2, the SAMPLE and HOLD timing signals are directly input to the sampling stage of the AFE.  
Subsequent stages are still clocked by the selected AFEPHASEn and MCLK.  
In mode SH3, the SAMPLE and HOLD timing signals are directly input to the sampling stage of the AFE, and are  
also used to set the internal AFEPHASE timing for subsequent stages. In this mode, CLPIN is not required  
to set the AFEPHASE timing.  
Please refer to the following timing diagrams to see the recommended relationship between the sample timing  
inputs and the internal AFEPHASEn signal.  
38  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7.5.6 Test Mode Outputs  
In test mode, the internal CLAMP and SAMPLE (CDS Mode) or SAMPLE (S/H Mode) timing signals are output  
on the TESTO_0 and TESTO_1 pins. This enables easy confirmation of the actual internal timing configuration.  
The TESTO pins are enabled by setting Register 0x00h, Bit 1, = 1. Otherwise these outputs are Tristate.  
Table 9 describes the signals present on the TESTO_0 and TESTO_1 outputs in the different timing modes:  
Table 9. Test Mode Outputs  
SAMPLE MODE  
SH2a, SH2b, SH3  
SH1a, SH1b  
TESTO_0  
TESTO_1  
SH Sample Signal  
SH Sample Signal  
Sample Signal Level  
PGA SampleB (active low)  
SH Sample Signal  
CDSa, CDSb  
Sample Reference Level  
7.5.7 LVDS Data Output  
AFE data is output on a serialized LVDS interface. Several different serializing modes are available, with 5 or 6  
pairs used for data transfer.  
6 pair modes allow the use of the standard, DS90CR218A, or DS90CR364 deserializer ICs.  
5 pair modes permit usage with a single 5 channel deserializer. In this mode, the unused data pair can be left  
open circuit to minimize power consumption and component cost. Also, to maximize layout flexibility, both  
TXCLK pairs are active. The unused TXCLK pair can be left open circuit to again minimize power consumption.  
7.5.8 LVDS Serialization  
Pixel N-1  
Pixel N  
Pixel N+1  
TX6  
TX6  
TX6  
TX6  
TX6  
TX6  
TX5  
TX5  
TX5  
TX5  
TX5  
TX5  
TX3  
TX2  
TX2  
TX2  
TX2  
TX2  
TX2  
TX1  
TX1  
TX1  
TX1  
TX1  
TX1  
TX0  
TX0  
TX0  
TX0  
TX0  
TX0  
TX4  
TX4  
TX4  
TX4  
TX4  
TX4  
TXOUTA1  
TXOUTB1  
TXOUTC1  
TXOUTA2  
TXOUTB2  
TXOUTC2  
TXCLK+  
TX3  
TX3  
TX3  
TX3  
TX3  
Figure 33. LVDS Serialization  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM98620  
 
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Tx0  
Table 10. Bit Formats  
BIT  
Tx6  
Tx5  
Tx4  
Tx3  
Tx2  
Tx1  
FORMAT 1 R-G-B  
TXOUTA1+/-  
TXOUTB1+/-  
TXOUTC1+/-  
TXOUTA2+/-  
TXOUTB2+/-  
TXOUTC2+/-  
0
0
0
0
0
0
0
R[4]  
R[5]  
GPI[2]  
B[4]  
R[6]  
GPI[3]  
B[5]  
R[7]  
R[0]  
B[6]  
G[9]  
G[2]  
R[8]  
R[1]  
B[7]  
B[0]  
G[3]  
R[9]  
r[2]  
GPI[5]  
R[3]  
B[9]  
GPI[1]  
B[3]  
B[8]  
B[1]  
G[4]  
G[6]  
G[7]  
G[0]  
G[8]  
G[1]  
B[2]  
GPI[4]  
G[5]  
TXCLK1+/-  
TXCLK2+/-  
1
1
0
0
0
1
1
FORMAT 1 B-G-R  
TXOUTA1+/-  
TXOUTB1+/-  
TXOUTC1+/-  
TXOUTA2+/-  
TXOUTB2+/-  
TXOUTC2+/-  
TXCLK1+/- TXCLK2+/-  
FORMAT 2a R-G-B  
TXOUTA1+/-  
TXOUTB1+/-  
TXOUTC1+/-  
TXOUTA2+/-  
TXOUTB2+/-  
TXOUTC2+/-  
TXCLK1+/-  
This mode swaps the Red Color and Blue Color data bits.  
0
0
B[5]  
GPI[2]  
R[4]  
G[7]  
G[0]  
1
0
B[6]  
GPI[3]  
R[5]  
G[8]  
G[1]  
0
0
0
0
0
GPI[5]  
B[3]  
R[9]  
R[2]  
G[5]  
1
B[4]  
GPI[1]  
R[3]  
G[6]  
GPI[4]  
1
B[7]  
B[0]  
R[6]  
G[9]  
G[2]  
0
B[8]  
B[1]  
R[7]  
R[0]  
G[3]  
0
B[9]  
B[2]  
R[8]  
R[1]  
G[4]  
1
0
0
0
0
0
0
0
R[3]  
GPI[5]  
G[5]  
B[2]  
R[2]  
R[9]  
G[4]  
B[1]  
B[8]  
R[1]  
R[8]  
G[3]  
B[0]  
B[7]  
R[0]  
R[7]  
G[2]  
G[9]  
B[6]  
GPI[1]  
R[6]  
G[1]  
G[8]  
B[5]  
GPI[2]  
R[5]  
G[0]  
G[7]  
B[4]  
GPI[3]  
R[4]  
GPI[4]  
G[6]  
B[9]  
B[3]  
1
1
0
0
0
1
1
TXCLK2+/-  
FORMAT 2a B-G-R  
TXOUTA1+/-  
TXOUTB1+/-  
TXOUTC1+/-  
TXOUTA2+/-  
TXOUTB2+/-  
TXOUTC2+/-  
This mode swaps the Red Color and Blue Color data bits.  
0
0
0
0
0
0
0
B[3]  
B[2]  
B[9]  
G[4]  
R[1]  
R[8]  
B[1]  
B[8]  
G[3]  
R[0]  
R[7]  
B[0]  
B[7]  
G[2]  
R[9]  
R[6]  
GPI[1]  
B[6]  
GPI[2]  
B[5]  
GPI[3]  
B[4]  
GPI[5]  
G[5]  
R[2]  
R[9]  
G[1]  
G[8]  
R[5]  
G[0]  
G[7]  
R[4]  
GPI[4]  
G[6]  
R[3]  
TXCLK1+/-  
TXCLK2+/-  
1
1
0
0
0
1
1
FORMAT 2b R-G-B  
TXOUTA1+/-  
TXOUTB1+/-  
TXOUTC1+/-  
TXOUTA2+/-  
TXOUTB2+/-  
TXOUTC2+/-  
R[3]  
1
R[4]  
1
R[5]  
1
R[6]  
GPI[1]  
GPI[5]  
B[6]  
R[7]  
R[0]  
R[8]  
R[1]  
R[9]  
R[2]  
1
1
1
GPI[4]  
B[7]  
GPI[3]  
B[8]  
GPI[2]  
B[9]  
B[3]  
G[6]  
GPI[1]  
B[4]  
G[7]  
G[0]  
B[5]  
G[8]  
G[1]  
G[9]  
B[0]  
B[1]  
B[2]  
G[2]  
G[3]  
G[4]  
G[5]  
TXCLK1+/-  
TXCLK2+/-  
1
1
0
0
0
1
1
40  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Table 10. Bit Formats (continued)  
BIT  
Tx6  
Tx5  
Tx4  
Tx3  
Tx2  
Tx1  
Tx0  
FORMAT 2b B-G-R  
TXOUTA1+/-  
TXOUTB1+/-  
TXOUTC1+/-  
TXOUTA2+/-  
TXOUTB2+/-  
TXOUTC2+/-  
TXCLK1+/- TXCLK2+/-  
This mode swaps the Red Color and Blue Color data bits.  
B[3]  
1
B[4]  
1
B[5]  
1
B[6]  
GPI[1]  
GPI[5]  
R[6]  
B[7]  
B[0]  
GPI[4]  
R[7]  
R[0]  
G[3]  
0
B[8]  
B[1]  
GPI[3]  
R[8]  
R[1]  
G[4]  
1
B[9]  
B[2]  
GPI[2]  
R[9]  
R[2]  
G[5]  
1
1
1
1
R[3]  
G[6]  
GPI[1]  
1
R[4]  
G[7]  
G[0]  
1
R[5]  
G[8]  
G[1]  
0
G[9]  
G[2]  
0
7.5.9 Output Data Test Pattern Generation  
Special test patterns will be generated to help in testing data processing. Four basic types of waveform can be  
generated and they are:  
Fixed Pattern  
Horizontal Gradiation Pattern  
Vertical Gradiation Pattern (sub-scan)  
Lattice Pattern  
By varying the parameters, waveforms of different timing and amplitude can be created. Parameters for the test  
patterns are programmable and the following registers are defined:  
PK_DET_ST:  
This register defines the start of the Valid Pixel region from the rising edge of CLPIN or  
BLKCLP, in Pixels.  
*PK_DET_ST = REG_PK_DET_ST + 6, or the register setting value plus 6.  
PK_DET_WID:  
PATSW:  
This register defines the duration (pixels) of the Valid Pixel region.  
Enable/Disable test pattern output.  
Sets which test pattern mode is used  
00 = Fixed code  
PATMODE:  
01 = Horizontal Gradiation  
10 = Vertical Gradiation  
11 = Lattice  
PATREGSEL:  
Test pattern can be initiated on a single color or all three colors at the same time. When  
only one color is selected, the other colors are set to maximum 1023 code.  
00 = All colors  
01 = Red  
10 = Green  
11 = Blue  
TESTPLVL:  
Output code 0 to 1023. In Fixed Pattern it is code output during the Valid Pixel range.  
During Horizontal Gradation and Vertical Gradation it is used as the initial code. In  
Lattice Pattern it is the level during the Valid Pixel range except for the first pixel every  
PATW pixels in the horizontal range and for first line every PATW lines.  
PATW:  
PATS:  
Gradation pitch, this is interval at which the pattern Code Step provided in PATS register  
is applied.  
Pattern Code Step, this contains the code step increment applied every PATW interval.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
LINE_INT:  
Test pattern output delay. This defines the delays in number of lines between Red to  
Green and Green to Blue. This sequence is fixed, R->G->B, and when this register is 0,  
all colors switch simultaneously. This delay is used only on the initial start and the  
sequence of colors is fixed.  
7.5.9.1 Fixed Pattern  
Outputs fixed code in the TESTPLVL register during Valid Pixel range.  
7.5.9.2 Horizontal Gradation  
Code in the TESTPLVL is outputted initially in the PATW pixels of the Valid Pixel region, and then code is  
incremented by PATS value every PATW pixels for the rest of the active region. If the code reaches the  
maximum (less than or equal to 1023), it is reset to the initial value in TESTPLVL and pattern repeated. Same  
sequence is repeated for the all the lines.  
7.5.9.3 Vertical Gradation  
Code in the TESTPLVL is outputted initially in the first PATW lines of the scan and fixed for all of the Valid Pixel  
region, and then the code is incremented by PATS value every PATW lines and the new code is applied during  
active region till the next increment. This is repeated till code reaches the maximum (less than or equal to 1023)  
then the code is reset to the initial value and the sequence repeated.  
7.5.9.4 Lattice Pattern  
This is combination of Horizontal and Vertical Gradation pattern. Here the register PATW defines interval in  
pixels for horizontal scan and in lines for the vertical scan. At start of the test the output is set to PATS level for  
the whole first line and every line at PATW interval. In rest of the lines of the output goes to PATS for the first  
pixel then goes TESTPLVL for PATW-1 pixels, then goes back to PATS for one pixel and then to TESTPLVL for  
PATW-1 pixels, the cycle repeats till the end of line.  
All test pattern generation continues once initiated by setting of PATSW till it is reset.  
CLPIN/BLKLP  
MCLK  
TESTPLVL  
ADC_OUT  
0x000  
PK_DET_ST  
PK_DET_WID  
PK__DET_ST  
PK_DET_WID  
TESTPLVL = Start Code  
PK_DET_ST = Start of Pixel Area in # of Pixels  
PK_DET_WID = Pixel Area Width in # of Pixels  
FIXED TEST PATTERN  
Figure 34. Fixed Test Pattern  
42  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
CLPIN/BLKLP  
PATW  
PATS  
TESTPLVL  
ADC_OUT  
0x000  
PK_DET_ST  
PK_DET_WID  
PK_DET_ST  
PK_DET_WID  
TESTPLVL = Start Code  
PK_DET_ST = Start of Pixel Area in # of Pixels  
PK_DET_WID = Pixel Area Width in # of Pixels  
PATS = Pattern Step in Codes  
PATW = Pattern Pitch in # of pixels  
GRADATION (main scan) PATTERN  
Figure 35. Gradiation (Main Scan) Pattern  
CLPIN/BLKLP  
PATW  
PATW  
PATS  
PATS  
TESTPLVL  
0x000  
ADC_OUT  
PK_DET_ST  
PK_DET_WID  
TESTPLVL = Start Code  
PK_DET_ST = Start of Pixel Area in # of Pixels  
PK_DET_WID = Pixel Area Width in # of Pixels  
PATW = Pattern Pitch in # of Lines  
PATS = Pattern Step in # of Codes  
GRADATION (sub scan) TEST PATTERN  
Figure 36. Gradiation (Sub Scan) Pattern  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
CLPIN/BLKLP  
TESTPLVL  
PATS  
ADC_OUT  
0x000  
Valid Pixel Area  
PATW  
PK_DET_ST  
PK_DET_WID  
1 pixel  
CLPIN/BLKLP  
PK_DET_ST  
Valid Pixel Area  
Valid Pixel Area  
Valid Pixel Area  
PK_DET_WID  
PATS  
ADC_OUT  
0x000  
PATW in Lines  
TESTPLVL = All of Valid Pixel area except where PATS is defined  
PK_DET_ST = Start of Valid Pixel Area in # of Pixels  
PK_DET_WID = Valid Pixel Area Duration in # of Pixels  
LATTICE PATTERN  
PATW = Pattern Pitch in # of pixels for the ma in scan, and in # of lines for the sub-scan  
PATS = Pattern Step in # of Codes. Asserted for 1 pixel every PATW pixels in main scan  
For 1 line every PATW lines during sub-scan  
Figure 37. Lattice Pattern  
44  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
7.5.9.5 Serial Interface  
The serial control interface is based on the common Microwire interface with a few specific timing details, as  
shown below. Bits A5, A4, A3, A2, A1, A0 select the configuration register currently being written to or read  
within the flat register space.  
NOTE  
After the device is powered up and a stable MCLK in the range of FMCLK Min to Max is  
applied, the Serial Interface Mode (Register 0x01, Bit 3) must be set to 1 for Normal  
Operation.  
7.5.9.6 Serial Write  
t
SENW  
t
SCSEN  
t
SENSC  
tW  
t
t
CP  
W
SENB  
SCLK  
X
X
X
t
IH  
t
IS  
SDI  
X
0
A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
X
0 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
HiZ  
Figure 38. Serial Write  
The positive edge of SCLK is used to receive data on SDI.  
Last 15 bits of data before SEN toggled high will be loaded into AFE.  
A command whose length is less than 15 bits will be discarded.  
SDO will be Hi-Z during write operation.  
At the second cycle shown above, either read or write command is possible.  
The MODE bit must be “0” when writing to registers.  
A Write command consists of one MODE bit, 6 address bits and 8 data bits.  
While SEN is high, the AFE will accept either high or low with respect to SCLK and SDI.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
7.5.9.7 Serial Read  
t
SENW  
t
SENSC  
t
SCSEN  
t
t
W
CP  
t
W
SENB  
SCLK  
X
X
t
IH  
t
IS  
SDI  
X
1
A5 A4 A3 A2 A1 A0  
X
1
A5 A4 A3 A2 A1 A0  
X
SDO  
D7 D6 D5 D4 D3 D2 D1 D0  
t
OD  
Figure 39. Serial Read  
The positive edge of SCLK is used to receive data on SDI.  
Last 15 bits of data before SEN goes high will be loaded.  
Command whose length is less than 15 bits will be discarded.  
Readout data will appear on SDO at the second cycle above.  
The readout data is clocked at the positive edge of SCLK.  
SDO is Hi-Z except when read out data appears on SDO.  
At the second cycle shown above, either read or write command is possible.  
The MODE bit must be “1” when reading from registers.  
A Read command will contain one MODE bit, 6 address bits and 8 dummy data bits which are ignored.  
While SEN is high, the AFE will accept either high or low with respect to SCLK and SDI.  
7.6 Register Maps  
Table 11. Configuration Registers Summary Table  
HEX ADDRESS  
(A5-A0)  
REGISTER  
NAME  
COMMENTS  
0x00 to 0x06  
0x07  
Configuration 0 – 6  
Configuration settings  
Device Revision  
GA_R1  
0x08  
0x09  
C_OFFS_R1  
OS_R1 (Red Even) Channel Gain & Offset Registers (CDS / SH Gain is  
NOT located here)  
0x0A  
F_OFFS_R1_MSB  
F_OFFS_R1_LSB  
GA_R2  
0x0B  
0x0C  
0x0D  
C_OFFS_R2  
OS_R2 (Red Odd) Channel Gain & Offset Registers  
0x0E  
F_OFFS_R2_MSB  
F_OFFS_R2_LSB  
0x0F  
0x10 to 0x13  
0x14 to 0x17  
0x18 to 0x1B  
0x1C to 0x1F  
0x20  
OS_G1 (Green Even) Channel Gain & Offset Registers  
OS_G2 (Green Odd) Channel Gain & Offset Registers  
OS_B1 (Blue Even) Channel Gain & Offset Registers  
OS_B2 (Blue Odd) Channel Gain & Offset Registers  
TARG_BLK_R  
TARG_BLK_G  
TARG_BLK_B  
0x21  
0x22  
0x23  
Black Level Loop Control  
0x24  
Black Level Loop Settings  
CDAC Threshold for BLK LP MSB  
CDAC Threshold for BLK LP LSB  
Black Loop Fast Mode  
0x25  
0x25  
0x27  
46  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Register Maps (continued)  
Table 11. Configuration Registers Summary Table (continued)  
HEX ADDRESS  
(A5-A0)  
REGISTER  
NAME  
COMMENTS  
0x28  
White Level Loop Control  
0x29  
PK_AVG  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
REG_PK_DET_ST_MSB  
REG_PK_DET_ST_LSB  
PK_DET_WID_MSB  
PK_DET_WID_LSB  
AGCDuration  
AGCTargetMSB  
AGCTargetLSB  
AGCTolerance  
AGC_BLKINT  
AGC STATUS  
TBD  
0x31  
0x32  
0x33  
0x34 to 0x37  
0x38  
Test Pattern Mode  
Test Pattern Settings 1  
Test Pattern Settings 2  
PATW  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
PATS  
LINE_INTVL  
Reserved  
Reserved  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table 12. Configuration Registers Details  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x00 - 0x07 CONFIGURATION REGISTERS  
0x00  
ANLG_CONFG  
0x2C  
Main Configuration  
[7] = Active Input Bias (AIB) - Used for initial DC biasing of OS inputs. Disabled  
during image capture.  
• (0:Disabled, 1:OSx connected to VREF_EXT during input clamping)  
[6] = Passive Input Bias (PIB) - Used for initial DC biasing of OS inputs. Disabled  
during image capture.  
• (0:Disabled, 1:Osx connected to Vdd/2 resistor ladder during input clamping)  
[5] = Source Follower Enable - Used to provide higher impedance at OS inputs.  
Should be enabled for most applications.  
• (0:Disabled, 1:Enabled)  
[4] = Analog Power Down  
• (0:Normal, 1:Powered Down)  
[3] = Input Mode Select  
• (0:3-channel; 1:6-channel)  
• In 3-ch mode, OSR1, OSG1, OSB1 inputs are used.  
[2] = VCLP Internal Buffer Disable  
• (0:Enable VCLP Buffer, 1:Disable VCLP Buffer)  
[1] = Sample Timing Pulses routed to TESTO outputs  
• (0:Tristate, 1:Enable)  
• CDSa & CDSb modes:  
• SH SAMPLE Timing routed to TESTO_0  
• SH CLAMP Timing routed to TESTO_1  
• SH1a & SH1b modes:  
• SH SAMPLE Timing routed to TESTO_0 & TESTO_1  
• SH2 & SH3 modes:  
• SH SAMPLE Timing routed to TESTO_0  
• PGA SAMPLE Timing routed to TESTO_1  
[0] = Sampling Mode Control  
• See Table 6 in Sample Timing Control.  
Interface Configuration  
0x01  
INTF_CONFG  
0x04  
[7:6] – Reserved  
[5] = AGC_ON pin polarity  
• 0 = Active LOW, 1= Active HIGH  
[4] = OVP Input Protection Enable (clamp signal inputs to 1 diode drop)  
• (0:*Disabled, 1:Enabled)  
• *Only disabled if OVPB input pin is at logic 1.  
[3] = Serial Interface Mode – Note: After the device is powered up and a stable  
MCLK in the range of FMCLK Min to Max is applied, this value must be set to  
1 for Normal Operation.  
• (0:Startup-Default, 1:Normal Operation)  
[2:1] = LVDS output format  
• 00:Mode 1, 5 pair output  
• 01:Mode 2a, 5 pair output  
• 10:Mode 2b, 6 pair output  
[0] = Red/Blue data swap  
(0:normal, 1:R/B swapped)  
48  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x02  
CLP_CONFG Sample  
Timing Control  
0x9D  
Clamp Control  
[7] = Sampling Mode Control  
• See Table 6 in Sample Timing Control.  
[6] = SAMPLE edge selection  
• (0: Rising, 1:Falling)  
[5] = HOLD edge selection  
• (0: Rising, 1:Falling)  
[4] = SHP/SHD input polarity select  
• (0:Active Low, 1:Active High)  
[3:2] = AFEPHASEn setting (00 to 11)  
• (Default is 11 in 6 channel mode)  
• (Default is X1 in 3 channel mode) Value is 11, but upper bit is ignored in 3  
channel mode.  
[1] = Sampling Mode Control  
• See Table 6 in Sample Timing Control.  
[0] = Clamp Control  
• (0:CLPIN input, 1:Clamp gated by internal sampling pulse)  
FDAC Range, CDS Gain Selection  
0x03  
CDSG_CONFIG  
0x00  
CDS / SH Gain Enable  
FDAC Range Select  
[7] = Input Signal Polarity  
• 0: Negative polarity  
• 1: Positive polarity (Sample and Hold mode only)  
[6] = Reserved (must be kept at the Power-on-Default value)  
[5] = Blue Channel FDAC Range Select  
[4] = Green Channel FDAC Range Select  
[3] = Red Channel FDAC Range Select  
• 0: 1 CDAC LSB = 321 FDAC LSBs (Range = ± 64 mV)  
• 1: 1 CDAC LSB = 176 FDAC LSBs (Range = ±117 mV)  
[2] = Blue Channels 1 & 2 Gain Enable (0:1x; 1:2.1x-typ)  
[1] = Green Channels 1 & 2 Gain Enable (0:1x; 1:2.1x-typ)  
[0] = Red Channels 1 & 2 Gain Enable (0:1x; 1:2.1x-typ)  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x04  
Main Configuration 4  
0x83  
[7] = pbufen (passive buffer enable)  
• 0: disable resistor divider at VCLP_ext  
• 1: enable resistor divider at VCLP_ext  
[6] = pd_ref  
• Power down VREFT/VREFB buffer only  
• 0: buffer = power up  
• 1: buffer = power down  
[5] = CLPIN Sampling Edge Select  
• 0: sampled by the rising edge of MCLK  
• 1: sampled by the falling edge of MCLK  
[4] = Digital Inputs Sampling Edge Select  
• 0: sampled by the rising edge of MCLK  
• 1: sampled by the falling edge of MCLK  
[3:2] = Clock Range Select (TXCLK and ADCCLK are the same frequency. In 6  
channel mode, TXCLK and ADCCLK are 2x the pixel rate.)  
• 11,10: TXCLK/ADCCLK running at 10MHz – 20MHz  
• 01: TXCLK/ADCCLK running at 20MHz – 40MHz  
• 00: TXCLK/ADCCLK running at 40MHz – 65MHz  
[1] = Sampling Mode Control  
• See Table 6 in Sample Timing Control. for details.  
• 1: SH3 mode is disabled.  
• 0: SH3 mode is enabled  
[0] = clock doubler select  
• 1: TXCLK and ADCCLK are 2x MCLK  
• 0: TXCLK and ADCCLK are same freq. as MCLK  
[7] = Sampling Mode  
0x05  
0x06  
0x07  
Main Configuration 5  
SRESET  
0xF7  
0x00  
0xA0  
• 0: Sampling Clocks from SHP/SHD pins  
• 1: Sampling Clocks from internal DLL [6:0] = Reserved (load with default  
values)  
Soft Reset  
[1] – FSM Reset, programmable registers are not disturbed.  
[0] – REG Reset, reset all FSM, except micro-wire interface, and programmable  
registers  
Device Revision  
Read Only.  
This number reflects the device revision and updated every time any major or  
minor change is made to the silicon.  
0x08 – 0x0F RED CHANNEL PGA GAIN, CDAC and FDAC OFFSETS  
0x08  
GA_R1  
0x00  
[7:0] = Red Channel 1 PGA Gain  
• Gain = 283/(283 - [7:0])  
• Gain range is from 1x to 10x  
0x09  
0x0A  
C_OFFS_R1  
F_OFFS_R1  
0x10  
0x80  
[4:0] = Red Channel 1 Offset DAC Code  
• Offset binary format  
[7:0] = Red Channel 1 Fine Offset DAC code [10:3]  
• Offset binary format  
0x0B  
0x0C  
F_OFFS_R1 LSB  
GA_R2  
0x00  
0x00  
[7:5] = Red Channel 1 Fine Offset DAC code [2:0] [4:0] = Reserved  
[7:0] = Red Channel 2 PGA Gain  
• Gain = 283/(283 - [7:0])  
• Gain range is from 1x to 10x  
50  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x0D  
0x0E  
0x0F  
C_OFFS_R2  
0x10  
0x80  
0x00  
[4:0] = Red Channel 2 Offset DAC Code  
• Offset binary format  
F_OFFS_R2  
[7:0] = Red Channel 2 Fine Offset DAC code [10:3]  
• Offset binary format  
F_OFFS_R2 LSB  
[7:5] = Red Channel 2 Fine Offset DAC code [2:0] [4:0] = Reserved  
0x10 – 0x17 GREEN CHANNEL PGA GAIN, CDAC and FDAC OFFSETS  
0x10  
GA_G1  
0x00  
[7:0] = Green Channel 1 PGA Gain  
• Gain = 283/(283 - [7:0])  
• Gain range is from 1x to 10x  
0x11  
0x12  
0x13  
0x14  
C_OFFS_G1  
F_OFFS_G1  
F_OFFS_G1 LSB  
GA_G2  
0x10  
0x80  
0x00  
0x00  
[4:0] = Green Channel 1 Offset DAC Code  
• Offset binary format  
[7:0] = Green Channel 1 Fine Offset DAC code [10:3]  
• Offset binary format  
[7:5] = Green Channel 1 Fine Offset DAC code [2:0]  
[4:0] = Reserved  
[7:0] = Green Channel 2 PGA Gain  
• Gain = 283/(283 - [7:0])  
• Gain range is from 1x to 10x  
0x15  
0x16  
0x17  
C_OFFS_G2  
0x10  
0x80  
0x00  
[4:0] = Green Channel 2 Offset DAC Code  
• Offset binary format  
F_OFFS_G2  
[7:0] = Green Channel 2 Fine Offset DAC code [10:3]  
• Offset binary format  
F_OFFS_G2 LSB  
[7:5] = Green Channel 2 Fine Offset DAC code [2:0] [4:0] = Reserved  
0x18 – 0x1F BLUE CHANNEL PGA GAIN, CDAC and FDAC OFFSETS  
0x18  
GA_B1  
0x00  
[7:0] = Blue Channel 1 PGA Gain  
• Gain = 283/(283 - [7:0])  
• Gain range is from 1x to 10x  
0x19  
0x1A  
C_OFFS_B1  
F_OFFS_B1  
0x10  
0x80  
[4:0] = Blue Channel 1 Offset DAC Code  
• Offset binary format  
[7:0] = Blue Channel 1 Fine Offset DAC code [10:3]  
• Offset binary format  
0x1B  
0x1C  
F_OFFS_B1 LSB  
GA_B2  
0x00  
0x00  
[7:5] = Blue Channel 1 Fine Offset DAC code [2:0] [4:0] = Reserved  
[7:0] = Blue Channel 2 PGA Gain  
• Gain = 283/(283 - [7:0])  
• Gain range is from 1x to 10x  
0x1D  
C_OFFS_B2  
0x10  
[4:0] = Blue Channel 2 Offset DAC Code  
• Offset binary format  
0x1E  
0x1F  
F_OFFS_B2  
0x80  
0x00  
[7:0] = Blue Channel 2 Fine Offset DAC code [10:3] • Offset binary format  
[7:5] = Blue Channel 2 Fine Offset DAC code [2:0] [4:0] = Reserved  
F_OFFS_B2 LSB  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x20 - 0x27 BLACK LEVEL OFFSET CALIBRATION REGISTERS  
0x20  
0x21  
0x22  
0x23  
TARG_BLK_R  
TARG_BLK_G  
TARG_BLK_B  
BLKCLP_CTL0  
0x20  
0x20  
0x20  
0x0C  
[7] = Reserved  
[6:0] = Target black level – Red Channel  
[7] = Reserved  
[6:0] = Target black level – Green Channel  
[7] = Reserved  
[6:0] = Target black level – Blue Channel  
Black Level Loop Control  
[7:6] = # of lines black clamp compensation applied.  
• 00 – infinite # of lines (default)  
• 01 – 16 lines  
• 10 – 32 lines  
• 11 – 64 lines  
[5] = Reserved  
[4] = High Speed Mode Offset Integration Select  
• 1: Divide-by-2  
• 0: Divide-by-4/3  
[3] = Auto BLKCLP Pulse Generation (0:Disable, 1:Enable)  
[2] = Auto black loop Enable (0:Disable. 1:Enable)  
[1] = High Speed Mode Enable  
[0] = Auto black loop mode  
• 1: Update FDAC offset correction only  
• 0: Update CDAC and FDAC Offset Corrections  
52  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x24  
BLKCLP_CTRL1  
0x84  
Digital Black Level Clamp Control  
• [7:3] = Pixel Averaging  
• 00000 4 pixels  
• 00001 8 pixels  
• 00010 12 pixels  
• 00011 16 pixels  
• 00100 20 pixels  
• 00101 24 pixels  
• 00110 28 pixels  
• 10000 32 pixels  
• 10001 64 pixels  
• 10010 96 pixels  
• 10011 128 pixels  
• 10100 160 pixels  
• 10101 192 pixels  
• 10110 224 pixels  
• 10111 256 pixels  
• 11000 288 pixels  
• 11001 320 pixels  
• 11010 352 pixels  
• 11011 384 pixels  
• 11100 416 pixels  
• 11101 448 pixels  
• 11110 480 pixels  
• 11111 512 pixels  
• other combinations are Reserved  
• [2:0] = Offset Integration  
• 000:Divide-by-2  
• 001:Divide-by-4  
• 010:Divide-by-8  
• 011:Divide-by-16  
• 100:Divide-by-32  
• 101:Divide-by-64  
• 110:Divide-by-128  
• Reserved  
0x25  
CDAC_THLD_MSB  
0x50  
CDAC Threshold for BLK LP MSB  
Default value is 320d, so loop will change FDAC by 320 to compensate for change  
of 1 in CDAC.  
[7:0] = Threshold[9:2]  
0x26  
0x27  
CDAC_THLD_LSB  
High Speed Mode  
0x40  
0x88  
CDAC Threshold for BLK LP LSB  
[7:6] = Threshold[1:0]  
[5:0] = Reserved. Set to 0.  
[7:5] = High Speed Mode Hysteresis  
[4:0] = High Speed Mode Threshold  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x28 – 0x37 WHITE LEVEL GAIN CALIBRATION REGISTERS  
0x28  
AGC_CONFG  
0x40  
[7] = Incremental Search Enable  
• 0: Binary Search  
• 1: Incremental Search  
[6] = Black Offset Enable  
• 0: Do not Use BLK_AVG during White Level Gain Calibration Loop  
• 1: Use BLK_AVG as offset during White Level Gain Calibration Loop  
(Recommended)  
[5] = CLPIN or BLKCLP White Loop Trigger Select  
• 0: CLPIN initiates White Loop each line  
• 1: BLKCLP initiates White Loop each line  
[4] = AGC_ON pin disable  
• = 0 Enable use of AGC_ON pin  
• = 1 Disable use of AGC_ON pin to start white calb. loop  
[3:1] = Reserved  
[0] = AGC_ON. Write to 1 to enable White Level Loop. (0:Ready, 1:Enabled)  
White Loop can also be enabled by asserting AGC_ON pin if pin is enabled via.  
Register 0x28, b4.  
0x29  
PK_AVE  
0x04  
Number of pixels in running average during white calibration loop  
[2:0] =  
• 000:No average (1 pixel)  
• 001:2 pixels  
• 010:4 pixels  
• 011:8 pixels  
• 100:16 pixels  
• 101:32 pixels  
0x2A  
REG_PK_DET  
_ST_M SB  
0x00  
Starting pixel for peak detection. 16 bit value. Number of pixels after rising edge  
trigger event. (CLPIN or BLKCLP)  
(0 to 65535)  
Actual delay PK_DET_ST = REG_PK_DET_ST + 6  
0x2B  
0x2C  
REG_PK_DET  
_ST_L SB  
0x00  
0x00  
PK_DET_WID_MSB  
Duration of peak detection after PK_DET_ST. 16 bit value  
(0 to 65535)  
0x2D  
0x2E  
PK_DET_WID_LSB  
AGCDuration  
0x00  
0x10  
[7:0] = Number of lines for AGC to operate.  
Loop will run continuously if AGC_ON pin is held high.  
(0 to 255)  
0x2F  
AGCTargetMSB  
0xE0  
[7:0] = MSB of Target Value for AGC loop  
(Default AGCTarget=960d)  
AGC_TARG = 512d +  
(AGCTargetMSB[7:0],AGCTargetLSB[7])  
[7] = LSb of Target Value for AGC loop  
[6:0] = Reserved  
0x30  
0x31  
AGCTargetLSB  
AGCTolerance  
0x00  
0x28  
[7:6] = Reserved  
[5:0] = Allowable error for AGC loop  
54  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x32  
AGC_BLKINT  
0x00  
AGC Offset Integration  
[2:0] = Offset Integration setting for the Black Level Loop while the AGC is on (that  
is, white level loop)  
• 000:Divide-by-2  
• 001:Divide-by-4  
• 010:Divide-by-8  
• 011:Divide-by-16  
• 100:Divide-by-32  
• 101:Divide-by-64  
• 110:Divide-by-128  
• Reserved  
0x33  
AGC STATUS  
0x00  
AGC Status – Read Only  
[7:6] = 0  
[5] = Convergence Error Blue Ch2  
[4] = Convergence Error Blue Ch1  
[3] = Convergence Error Green Ch2  
[2] = Convergence Error Green Ch1  
[1] = Convergence Error Red Ch2  
[0] = Convergence Error Red Ch1  
Must be kept with Power-on-default values.  
Must be kept with Power-on-default values.  
Must be kept with Power-on-default values.  
[7:5] Reserved. Set to 000  
[4:0] = Sample Pulse Falling Edge Position  
• [4:0]: delay [4:0]/32 of Tpixel from Pixel Clock  
• 00000: delay 0/32 of Tpixel from Pixel Clock  
• 00001: delay 1/32 of Tpixel from Pixel Clock  
• …  
0x34  
0x35  
0x36  
Reserved  
0x32  
0x54  
0x1F  
Reserved  
DLL Sample Position  
• 11111: delay 31/32 of Tpixel from Pixel Clock  
[7:5] = Sample Pulse Width  
• 000: 2/32 of Tpixel  
0x37  
DLL Sample Width  
0x60  
• 001: 4/32 of Tpixel  
• 010: 6/32 of Tpixel  
• 011: 8/32 of Tpixel  
• 100: 10/32 of Tpixel  
• 101: 12/32 of Tpixel  
• 110: 14/32 of Tpixel  
• 111: 16/32 of Tpixel  
• [4:0] = Reserved  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
Table 12. Configuration Registers Details (continued)  
ADDRESS  
(HEX)  
DEFAULT  
(HEX)  
REGISTER NAME  
DESCRIPTION  
0x38 to 0x3F USER TEST PATTERNS REGISTERS  
0x38  
TEST_PAT_CTL  
0x00  
Test Pattern Mode  
[7] = Test Pattern Enable (PATSW)  
• (0:Normal Data Output, 1:Test Pattern Output Enabled) [6:5] = Test Pattern  
Mode Select (PTRMODE)  
• 00:Fixed Code  
• 01:Gradation Pattern (Main Scanning).  
• 10:Gradation Pattern (Sub Scanning)  
• 11:Grid Pattern  
[4:3] = Test Pattern Output Channel (PTRGBSEL)  
• 00:All colors  
• 01:Red (Other color data at 1023d)  
• 10:Green (Other color data at 1023d)  
• 11:Blue (Other color data at 1023d)  
[2:0] = Reserved  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
TESTPLVL_MSB  
TESTPLVL_LSB  
PATW  
0x00  
0x00  
0x00  
0x00  
0x00  
[7:0] = 8 MSb of fixed output code (TESTPLVL)  
[7:6] = 2 LSb of fixed output code (TESTPLVL)  
[7:0] = Gradation Pattern Pitch (0 to 255 lines)  
[7:0] = Gradation Pattern Increment Step (0 to 255)  
PATS  
LINE_INTVL  
[3:0] = Test Pattern Output Color Delay, Red to Green, Green to Blue  
(0 to 15 line delay)  
0x3E  
0x3F  
Reserved  
PAGE_SEL for Page  
Control  
0x00  
Select Register Pages  
• 0x00: Page 0  
• 0x80: Page 128 (DLL features)  
Table 13. DLL Configuration Registers Summary Table  
HEX ADDRESS  
(A5-A0)  
REGISTER NAME  
COMMENTS  
0x00  
OS_R1 Sample Falling Edge Position  
0x01  
OS_R2 Sample Falling Edge Position  
0x02  
OS_G1 Sample Falling Edge Position  
0x03  
OS_G2 Sample Falling Edge Position  
0x04  
OS_B1 Sample Falling Edge Position  
0x05  
OS_B2 Sample Falling Edge Position  
Reserved  
0x06  
0x07  
Reserved  
0x08  
Reserved  
0x09  
Reserved  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10 - 0x3E  
0x3F  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Page Select  
56  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
Table 14. DLL Configuration Registers Details (Page 128)  
ADDRESS  
(HEX)  
REGISTER  
NAME  
DEFAULT  
(HEX)  
DESCRIPTION  
0x00 - 0x07 SAMPLE FALLING EDGE POSITION REGISTERS  
0x00  
OS_R1  
Sample  
Falling  
Edge  
0x1F  
[7:5] = Reserved  
[4:0] = OS_R1 Sample Falling Edge Position  
• [4:0]: delay [4:0]/32 of Tpixel from Pixel Clock  
• 00000: delay 0/32 of Tpixel from Pixel Clock  
• 00001: delay 1/32 of Tpixel from Pixel Clock  
• …  
Position  
• 11111: delay 31/32 of Tpixel from Pixel Clock  
Same as OS_R1  
0x01  
OS_R2  
Sample  
Falling  
Edge  
0x1F  
Position  
0x02  
0x03  
0x04  
OS_G1  
Sample  
Falling Edge  
Position  
0x1F  
0x1F  
0x1F  
Same as OS_R1  
Same as OS_R1  
Same as OS_R1  
OS_G2  
Sample  
Falling Edge  
Position  
OS_B1  
Sample  
Falling  
Edge  
Position  
0x05  
OS_B2  
Sample  
Falling  
Edge  
0x1F  
Same as OS_R1  
Position  
0x06  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10 – 0x3E  
0x3F  
PAGE_SEL  
for Page  
Control  
0x00  
Select Register Pages  
• 0x00: Page 0  
• 0x80: Page 128 (DLL features)  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
8 Applications and Implementation  
8.1 Application Information  
The white loop provides two different techniques for converging to the target value, Binary Search, and  
Incremental Search.  
The Binary Search algorithm is intended to provide a rapid convergence to the target value. During initial  
operation, large changes in the channel gain are allowed. After each line, the allowed change is reduced  
significantly. For final convergence, the algorithm switches to the Incremental Search mode, to achieve low error.  
The Incremental or Linear Search algorithm is intended to provide a low error, but will converge more slowly than  
the Binary method. The changes (if any) in channel gain are always done in 1 lsb increments to provide low  
overshoot and high accuracy of convergence.  
58  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
8.2 Typical Applications  
VCCD  
All power supply voltages should be provided from clean linear  
regulator outputs, NOT switching power supplies.  
VDDD  
C1  
C2  
C3  
VDDLVDS  
All power supply voltages should be provided from clean linear  
regulator outputs, NOT switching power supplies.  
C4  
0.1u  
0.1u 0.1u  
0.1u  
R1 R2 R3  
C5  
VDDA  
0.1u  
VDDA  
Pinout mapping for output format 2a.  
Q1  
NPN BCE  
SDO  
SENB  
SDI  
SCLK  
RESETB  
C7  
C6  
0.1u  
VDDLVDS_RX_PLL  
VDDLVDS_OUT  
R4  
VDDA  
10u  
U1  
1
B6  
B7  
48  
TESTO_0  
TESTO_1  
RxOUT17  
2
Vcc  
RxOUT16  
RxOUT15  
RxOUT14  
GND  
RxOUT13  
Vcc  
RxOUT12  
RxOUT11  
RxOUT10  
GND  
RxOUT9  
Vcc  
RxOUT8  
RxOUT7  
RxOUT6  
GND  
RxOUT5  
RxOUT4  
RxOUT3  
Vcc  
RxOUT2  
RxOUT1  
GND  
B5  
B4  
B3  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RxOUT18  
3
GND  
4
B8  
B9  
Q2  
NPN BCE  
C8 0.1u  
RxOUT19  
5
RxOUT20  
6
Place 100 Ohm termination resistors as  
close to RxIN+/- pins as possible.  
B2  
N/C  
7
R5  
LVDS GND  
8
B1  
B0  
G9  
RxIN0-  
9
C9 1u  
U2  
LM98620  
100 R6  
RxIN0+  
10  
C10  
0.1u  
RxIN1-  
11  
C11  
0.1u  
100 R7  
RxIN1+  
12  
G8  
LVDS Vcc  
13  
Q3  
NPN BCE  
LVDS GND  
14  
G7  
G6  
G5  
RxIN2-  
15  
100 R8  
RxIN2+  
16  
R9  
RxCLK IN-  
17  
61  
40  
100 R10  
VREFBIN2  
VREFTIN2  
VREFBIN1  
VREFTIN1  
VSSA  
OSR1  
VDDA  
OSR2  
VSSA  
OSG1  
VDDA  
OSG2  
VSSA  
OSB1  
VDDA  
OSB2  
VSSA  
TXOUTA2-  
RxCLK IN+  
18  
G4  
G3  
G2  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
TXOUTA2+  
TXOUTB2-  
TXOUTB2+  
TXOUTC2-  
TXOUTC2+  
VSSLVDS  
VREG2  
LVDS GND  
19  
PLL GND  
20  
PLL Vcc  
21  
C12 1u  
PLL GND  
22  
G1  
G0  
/PWR DWN  
23  
C14 1u  
C17 1u  
C13 0.1u  
C16 0.1u  
C19 0.1u  
VCCD  
RxCLK OUT  
24  
RxOUT0  
C15 1u  
C18 1u  
TXCLK2-  
DS90CR218A_tssop  
TXCLK2+  
TXOUTA1-  
TXOUTA1+  
VSSLVDS  
VREG2  
TXOUTB1-  
TXOUTB1+  
TXOUTC1-  
TXOUTC1+  
TXCLK1-  
GPI4  
RXCLKOUT2  
C20 1u  
U3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
OS3  
OS4  
ODB  
OS2  
OS1  
ASS  
CP  
VCLPEXT  
VCLPINT  
SHP/SAMPLE  
ODG  
OS5  
OS6  
ODR  
DSS  
Phi2B  
U4  
TXCLK1+  
R7  
R8  
C21  
0.1u  
C22  
10u  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RxOUT17  
RxOUT18  
GND  
RxOUT19  
RxOUT20  
N/C  
LVDS GND  
RxIN0-  
RxIN0+  
RxIN1-  
RxIN1+  
Vcc  
RxOUT16  
RxOUT15  
RxOUT14  
GND  
RxOUT13  
Vcc  
RxOUT12  
RxOUT11  
RxOUT10  
GND  
RxOUT9  
Vcc  
RxOUT8  
RxOUT7  
RxOUT6  
GND  
RxOUT5  
RxOUT4  
RxOUT3  
Vcc  
RxOUT2  
RxOUT1  
GND  
R6  
R5  
R4  
R9  
GPI5  
R14 R15  
R16  
RS  
Phi2A Phi2A  
Phi1A Phi1A  
R3  
VDDD  
C25  
VDD  
NC  
NC  
NC  
NC  
VDD  
NC  
NC  
NC  
NC  
R2  
R1  
R0  
100 R17  
100 R19  
C23  
0.1u  
C24  
0.1u  
GPI1  
R20  
R23  
Q4  
NPN BCE  
LVDS Vcc  
LVDS GND  
RxIN2-  
C26 C27 VDDD  
0.1u 0.1u  
C28  
0.1u  
C29  
0.1u  
GPI2  
GPI3  
0
0.1u  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100 R21  
100 R22  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
RxIN2+  
RxCLK IN-  
RxCLK IN+  
LVDS GND  
PLL GND  
PLL Vcc  
PLL GND  
/PWR DWN  
RxCLK OUT  
RxOUT0  
0
0
0
Q5  
NPN BCE  
R18  
11k 1%  
R24  
0
0
R25  
Q6  
NPN BCE  
R26  
DS90CR218A_tssop  
0
RXCLKOUT1  
MCLK  
OVPB  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
R27  
AGC_ONB  
BLKCLP  
CLPIN  
GPI5  
NC NC  
Phi1A DSS  
Phi2A Phi1A  
SH3  
NC  
SH2  
GPI4  
GPI3  
GPI2  
GPI1  
Phi2A  
NC  
SH1  
CCD installed on opposite side of  
board to other electronics.  
HOLD  
TCD2703D  
SAMPLE  
Figure 40. Example Circuit  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: LM98620  
 
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
8.2.1 Design Requirements  
See Figure 40 for an example circuit and the required minimum circuitry around the LM98620.  
All power supply voltages should be provided from clean linear regulator outputs, NOT switching power  
supplies.  
Place 100 Ω termination resistors as close to RxIN+/- pins as possible.  
8.2.2 Detailed Design Procedure  
1. 3.3 V Power for Analog, Digital, and LVDS supplies. It is recommended to use a common LDO regulator for  
all 3.3V supplies, using EMI filter devices and dedicated decoupling to isolate any noise between buses.  
2. Input Timing Signals (Ground referenced logic signal with: 2.0 V < VHigh < 3.3 V)  
(a) MCLK: Continuous clock signal at pixel rate or ADC rate of LM98620  
(b) CLPIN: Once per scan line signal used to control initial of input clamp for DC restoration of AC coupled  
CCD input signals  
(c) BLKCLP: Once per scan line signal used to indicate beginning of black pixels for Black (Offset) Level  
Calibration  
(d) AGC_ONB – Input signal used to initiate start of White (Gain) Calibration  
(e) SHP/SAMPLE: Once per pixel signal used to control pixel sample timing  
(f) SHD/HOLD: Once per pixel signal used to control pixel sample timing  
3. Optional General Purpose logic inputs. Can be used to transfer low speed digital status information from the  
imaging board to the data processing module  
(a) GPI1-5  
4. CCD signals at OS Inputs – These are connected to the outputs from the CCD sensor emitter follower buffer  
circuits. The signals are AC coupled to the AFE inputs using 0.1 uF capacitors.  
5. Serial control interface from data processing module to LM98620 (Ground referenced logic signal with: 2.0 V  
< Vhigh < 3.3 V):  
(a) SENB – Serial enable to LM98620  
(b) SCLK – Serial clock input to LM98620  
(c) SDI – Data input to LM98620  
(d) SDO – Data output from LM98620  
6. Serialized LVDS data pairs connected to FPGA or LVDS deserializer chip on data processing module  
7. Adjust and reconfigure the configuration register settings as needed  
60  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
8.2.3 Application Performance Plots  
20  
15  
10  
5
0
Gain Setting  
8-Bit PGA Gain  
Min Gain = 1.0  
Max Gain = 10  
Remaining Gain of 2x in CDS  
Black = Gain in dB  
PGA Gain = 283/(283-M)  
M = 0 to 255  
Max Step = 0.300 dB  
Red = Gain by Ratio  
Figure 41. PGA Gain Curve  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: LM98620  
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
9 Power Supply Recommendations  
9.1 Over Voltage Protection on OS Inputs  
The OS inputs are protected from damage caused by transients from the sensor circuitry during power up/down.  
When the chip is not powered, or has just been powered up, the OS inputs are clamped to VBSSAB with PMOS  
devices. The protective clamp circuits are disabled by applying a high level to the OVPB input pin and setting the  
OVP enable bit to its default state of 0.  
The maximum voltage and input current specifications for the OS inputs when OVP is enabled are the same as  
those listed in Absolute Maximum Ratings(1)  
.
Positive input signals will be clamped by the internal switch through a diode to VSSA. Negative input signals will  
be clamped by the internal ESD protection diode to one diode drop below VSSD. Typically this will be about 0.7V  
below ground.  
Table 15. Over Voltage Protection Input Clamping  
OVP ENABLE BIT  
(REGISTER 0x01, BIT 4)  
OVER VOLTAGE PROTECTION  
INPUT CLAMPING  
OVPB INPUT PIN  
0
1
0
1
0
0
1
1
Enabled  
Disabled  
Enabled  
Enabled  
(1) Absolute maximum ratings are those values beyond which the safety of the device cannot be ensured. They are not meant to imply that  
the device should be operated at these limits.  
62  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
10 Layout  
10.1 Layout Guidelines  
1. Use Figure 42 configuration for powering the device.  
V
IN  
V
DDD  
Vreg  
+
+
V
DDA  
+
+
V
DDLVDS  
+
Figure 42. Recommended Setup for Powering Device  
2. Place decoupling cap(s) next to every supply pin to the ground plane close by.  
3. Use a multi-layer boards as shown in Figure 43 to ease routing, and to provide a low inductance ground  
plane.  
4. Beware of via inductance and when necessary increase the number and / or diameter of vias to reduce  
inductance  
5. Use ground plane “keep out” areas under sensitive nodes to minimize parasitic capacitance  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: LM98620  
 
LM98620  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
www.ti.com  
10.2 Layout Examples  
Figure 43. LM98620 Layout Example  
64  
Submit Documentation Feedback  
Copyright © 2008–2014, Texas Instruments Incorporated  
Product Folder Links: LM98620  
LM98620  
www.ti.com  
SNAS426C FEBRUARY 2008REVISED MAY 2014  
11 Device and Documentation Support  
11.1 Trademarks  
All trademarks are the property of their respective owners.  
11.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2008–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: LM98620  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM98620VHB/NOPB  
ACTIVE  
TQFP  
PFC  
80  
119  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
0 to 70  
LM98620VHB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Jun-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
LM98620VHB/NOPB  
PFC  
TQFP  
80  
119  
7X17  
150  
322.6 135.9 7620 17.9  
14.3 13.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
PFC0080A  
TQFP - 1.2 mm max height  
SCALE 1.250  
PLASTIC QUAD FLATPACK  
12.2  
11.8  
B
PIN 1 ID  
80  
61  
A
1
60  
12.2  
11.8  
14.2  
TYP  
13.8  
20  
41  
40  
21  
76X 0.5  
0.27  
80X  
0.17  
4X 9.5  
0.08  
C A B  
1.2 MAX  
C
(0.13) TYP  
SEATING PLANE  
0.08  
SEE DETAIL A  
0.25  
GAGE PLANE  
(1)  
0.05 MIN  
0.75  
0.45  
0 -7  
DETAIL  
SCALE: 14  
A
DETAIL A  
TYPICAL  
4215165/B 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PFC0080A  
TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
EXPOSED METAL  
METAL  
0.05 MIN  
ALL AROUND  
EXPOSED METAL  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4215165/B 06/2017  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. For more information, see Texas Instruments literature number SLMA004 (www.ti.com/lit/slma004).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PFC0080A  
TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
SYMM  
80  
61  
80X (1.5)  
1
60  
80X (0.3)  
SYMM  
(13.4)  
76X (0.5)  
(R0.05) TYP  
20  
41  
21  
40  
(13.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:6X  
4215165/B 06/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY