LM98725CCMT/NOPB [TI]

具有 LVDS/CMOS 输出和集成 CCD/CIS 传感器定时发送器的 3 通道 16 位 81MSPS AFE | DGG | 56 | 0 to 70;
LM98725CCMT/NOPB
型号: LM98725CCMT/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 LVDS/CMOS 输出和集成 CCD/CIS 传感器定时发送器的 3 通道 16 位 81MSPS AFE | DGG | 56 | 0 to 70

CD 光电二极管 传感器
文件: 总146页 (文件大小:5508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
LM98725 3 Channel, 16-Bit, 81 MSPS Analog Front End with LVDS/CMOS Output,  
Integrated CCD/CIS Sensor Timing Generator and Spread Spectrum Clock Generation  
1 Features  
3 Description  
The LM98725 is a fully integrated, high performance  
16-Bit, 81 MSPS signal processing solution for digital  
color copiers, scanners, and other image processing  
applications. The LM98725 achieves high-speed  
signal throughput with an innovative architecture  
utilizing Correlated Double Sampling (CDS), typically  
employed with CCD arrays, or Sample and Hold  
(S/H) inputs (for higher speed CCD or CMOS image  
sensors). The signal paths utilize 8 bit Programmable  
Gain Amplifiers (PGA), a ±9-Bit offset correction  
DAC, and independently controlled Digital Black  
Level correction loops for each input. The  
independently programmed PGA and offset DAC  
allow unique values of gain and offset for each of the  
three analog inputs. The signals are then routed to a  
81 MHz high performance analog-to-digital converter  
(ADC). The fully differential processing channel  
shows exceptional noise immunity with a very low  
noise floor of –74 dB. The 16-bit ADC has excellent  
dynamic performance making the LM98725  
transparent in the image reproduction chain.  
1
LVDS/CMOS Outputs  
LVDS/CMOS/Crystal Clock Source with PLL  
Multiplication  
Integrated Flexible Spread Spectrum Clock  
Generation  
CDS or S/H Processing for CCD or CIS Sensors  
Independent Gain/Offset Correction for Each  
Channel  
Automatic per-Channel Gain and Offset  
Calibration  
Programmable Input Clamp Voltage  
Flexible CCD/CIS Sensor Timing Generator  
2 Applications  
Multi-Function Peripherals  
High-speed Currency/Check Scanners  
Flatbed or Handheld Color Scanners  
High-speed Document Scanners  
Key Specifications:  
A very flexible integrated Spread Spectrum Clock  
Generation (SSCG) modulator is included to assist  
with EM compliance and reduce system costs.  
Maximum Input Level  
1.2 or 2.4 Volt Modes  
Device Information(1)  
(Both with + or - Polarity Option)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
ADC Resolution: 16-Bit  
LM98725  
TSSOP (56)  
14.0 mm × 6.10 mm  
ADC Sampling Rate: 81 MSPS  
INL: +17/- 28 LSB (typ)  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Channel Sampling Rate: 30/30/27 MSPS  
PGA Gain Steps: 256 Steps  
System Block Diagram  
CCD/CIS Sensor  
PGA Gain Range: 0.62 to 8.3x  
Analog DAC Resolution: ±9 Bits  
Analog DAC Range: ±307 mV or ±614 mV  
Digital DAC Resolution: ±6 Bits  
Digital DAC Range: -2048 LSB to + 2016 LSB  
SNR: –74dB (@0 dB PGA Gain)  
Power Dissipation: 755 mW (LVDS)  
Operating Temp: 0 to 70°C  
Analog Front End  
SPI  
Image Processor/  
LM98725  
ASIC  
Data Output  
CCD Timing  
Sensor Drivers  
Generator  
Motor  
Controllers  
CLK  
SSCG  
Supply Voltage: 3.3 V Nominal (3.0-V to 3.6-V  
Range)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table of Contents  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagrams ..................................... 15  
7.3 Feature Description................................................. 16  
7.4 Device Functional Modes........................................ 24  
7.5 Register Maps......................................................... 88  
Layout ................................................................. 136  
8.1 Layout Example .................................................... 136  
Device and Documentation Support................ 137  
9.1 Trademarks........................................................... 137  
9.2 Device Support...................................................... 137  
9.3 Electrostatic Discharge Caution............................ 137  
9.4 Glossary................................................................ 137  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 Handling Ratings....................................................... 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Electrical Characteristics........................................... 7  
6.5 AC Timing Specifications ........................................ 11  
6.6 Serial Interface Timing Details................................ 13  
Detailed Description ............................................ 14  
8
9
10 Mechanical, Packaging, and Orderable  
7
Information ......................................................... 137  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (October 2014) to Revision H  
Page  
Changed "29" to "33" for Pin number 32 in Pin Functions ..................................................................................................... 4  
Deleted "Boldface limits apply..." statement in Electrical Characteristics and AC Timing Specifications ............................. 7  
Changed "internal" to "external" and "external" to "internal" for "SH_R Capture Clock Select (Page 0, Register 0x00,  
Bit 5)" heading in Clock Sources - Additional Settings and Flexibility ................................................................................. 18  
Changed 25 MHz to 27 MHz and 75 MHz to 81 MHz for Table 3 ...................................................................................... 24  
Changed "Page 2" to "Page 0" in CCD Timing Generator Master/Slave Modes ................................................................ 63  
Changed "Page 2" to "Page 0" in Master Timing Generator Mode ..................................................................................... 63  
Changed "1100 0000" to " 1100 0010" in Table 18............................................................................................................ 101  
Changes from Revision F (January 2014) to Revision G  
Page  
Added, updated, or renamed the following sections: Device Information Table, Pin Configuration and Functions;  
Layout; Device and Documentation Support; Mechanical, Packaging, and Ordering Information ....................................... 1  
Added "Note" in Serial Interface........................................................................................................................................... 84  
Changes from Revision E (April 2013) to Revision F  
Page  
Added content from System Overview section to end of document. .................................................................................. 16  
Changes from Revision D (April 2009) to Revision E  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 13  
2
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
5 Pin Configuration and Functions  
56-Pin TSSOP  
Package DGG  
Top View  
PHIC2  
PHIC1  
SH1  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
SH5  
2
SH4  
3
PHIB2  
PHIB1  
CE  
4
CAL  
5
V
C
6
DGND  
PHIA2  
PHIA1  
CP  
RESET  
SH_R  
7
SDI  
SDO  
SCLK  
SEN  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RS  
SH3  
CLKOUT/SH2  
V
A
AGND  
V
V
C
56 Pin TSSOP  
(not to scale)  
V
A
D
VREFB  
VREFT  
DGND  
DOUT0/TXOUT0-  
DOUT1/TXOUT0+  
DOUT2/TXOUT1-  
DOUT3/TXOUT1+  
DOUT4/TXOUT2-  
DOUT5/TXOUT2+  
DOUT6/TXCLK-  
DOUT7/TXCLK+  
INCLK-  
V
A
AGND  
VCLP  
V
A
IBIAS  
AGND  
OS  
R
AGND  
OS  
INCLK+  
G
AGND  
OS  
DVB  
CPOFILT1  
B
CPOFILT2  
DGND  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Pin Functions  
PIN  
I/O  
TYP RES  
DESCRIPTION  
NO.  
1
NAME  
PHIC2  
O
O
O
I
D
D
D
D
Configurable high speed sensor timing output.  
Configurable high speed sensor timing output.  
Configurable low speed sensor timing output.  
Chip Serial Interface Address Setting Input  
2
PHIC1  
SH1  
CE  
3
4
CE Level  
VD  
Address  
01  
10  
00  
Float  
DGND  
5
CAL  
I
I
D
D
D
D
D
D
D
P
P
P
A
A
P
P
A
PD  
PU  
PD  
PD  
Initiate calibration sequence. Leave unconnected or tie to DGND if unused.  
Active-low master reset. NC when function not being used.  
External request for an SH pulse.  
6
RESET  
SH_R  
SDI  
7
I
8
I
Serial Interface Data Input. Can be tied to SDO for compatibility with LM98714 designs.  
Serial Interface Data Output. Can be tied to SDI for compatibility with LM98714 designs.  
Serial Interface shift register clock.  
9
SDO  
SCLK  
SEN  
O
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PD  
PU  
I
Active-low chip enable for the Serial Interface.  
VA  
Analog power supply. Bypass voltage source with 4.7μF and pin with 0.1μF to AGND.  
Analog ground return.  
AGND  
VA  
Analog power supply. Bypass voltage source with 4.7μF and pin with 0.1μF to AGND.  
Bottom of ADC reference. Bypass with a 0.1μF capacitor to ground.  
Top of ADC reference. Bypass with a 0.1μF capacitor to ground.  
Analog power supply. Bypass voltage source with 4.7μF and pin with 0.1μF to AGND.  
Analog ground return.  
VREFB  
VREFT  
VA  
O
O
AGND  
VCLP  
IO  
Input Clamp Voltage. Normally bypassed with a 0.1μF , and a 4.7μF capacitor to AGND.  
An external reference voltage may be applied to this pin.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
VA  
P
A
P
A
P
A
P
A
A
Analog power supply. Bypass voltage source with 4.7μF and pin with 0.1μF to AGND.  
Bias setting pin. Connect a 9.0 kΩ 1% resistor to AGND.  
Analog ground return.  
IBIAS  
AGND  
OSR  
O
I
Analog input signal. Typically sensor Red output AC-coupled thru a capacitor.  
Analog ground return.  
AGND  
OSG  
I
Analog input signal. Typically sensor Green output AC-coupled thru a capacitor.  
Analog ground return.  
AGND  
OSB  
I
Analog input signal. Typically sensor Blue output AC-coupled thru a capacitor.  
CPOFILT2  
Charge Pump Filter Capacitor. Bypass this supply pin with a 0.1μF capacitor to  
CPOFILT1.  
29  
30  
DGND  
P
A
Digital ground return.  
CPOFILT1  
Charge Pump Filter Capacitor.  
Bypass this supply pin with a 0.1μF capacitor to CPOFILT2.  
31  
32  
DVB  
O
I
D
D
Digital Core Voltage bypass. Not an input. Bypass with 0.1μF capacitor to DGND.  
INCLK+  
Clock Input.  
When XTALEN=0  
Non-Inverting input for LVDS clocks or CMOS clock input. CMOS clock is selected when  
pin 33 is held at DGND. Otherwise clock is configured for LVDS operation.  
When XTALEN=1  
Connection to terminal 2 of crystal.  
An 18 pF capacitor should be connected from terminal 1 of the crystal to ground.  
33  
INCLK-  
I
D
Clock Input.  
When XTALEN=0  
Inverting input for LVDS clocks, connect to DGND for CMOS clock.  
When XTALEN=1  
Connection to terminal 1 of crystal. A 18 pF capacitor should be connected from terminal 1  
of the crystal to ground.  
4
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Pin Functions (continued)  
PIN  
NAME  
DOUT7/  
I/O  
TYP RES  
DESCRIPTION  
NO.  
34  
O
D
Bit 7 of the digital video output bus in CMOS Mode, LVDS Frame Clock+ in LVDS Mode.  
Bit 6 of the digital video output bus in CMOS Mode, LVDS Frame Clock- in LVDS Mode.  
Bit 5 of the digital video output bus in CMOS Mode, LVDS Data Out2+ in LVDS Mode.  
Bit 4 of the digital video output bus in CMOS Mode, LVDS Data Out2- in LVDS Mode.  
Bit 3 of the digital video output bus in CMOS Mode, LVDS Data Out1+ in LVDS Mode.  
Bit 2 of the digital video output bus in CMOS Mode, LVDS Data Out1- in LVDS Mode.  
Bit 1 of the digital video output bus in CMOS Mode, LVDS Data Out0+ in LVDS Mode.  
Bit 0 of the digital video output bus in CMOS Mode, LVDS Data Out0- in LVDS Mode.  
Digital ground return.  
TXCLK+  
DOUT6/  
TXCLK-  
DOUT5/  
TXOUT2+  
DOUT4/  
TXOUT2-  
DOUT3/  
TXOUT1+  
DOUT2/  
TXOUT1-  
DOUT1/  
TXOUT0+  
DOUT0/  
TXOUT0-  
DGND  
35  
36  
37  
38  
39  
40  
41  
O
O
O
O
O
O
O
O
D
D
D
D
D
D
D
42  
43  
p
VD  
P
Power supply for the digital circuits. Bypass this supply pin with 0.1μF capacitor. A single  
4.7μF capacitor should be used between the supply and the VD, VR and VC pins.  
44  
45  
VC  
P
D
Power supply for the sensor control outputs. Bypass this supply pin with 0.1μF capacitor.  
CLKOUT/SH2  
O
Output clock for registering output data when using CMOS outputs, or a configurable low  
speed sensor timing output.  
46  
47  
48  
49  
50  
51  
52  
SH3  
RS  
O
O
O
O
O
D
D
D
D
D
P
P
Configurable low speed sensor timing output.  
Configurable high speed sensor timing output.  
Configurable high speed sensor timing output.  
Configurable high speed sensor timing output.  
Configurable high speed sensor timing output.  
Digital ground return.  
CP  
PHIA1  
PHIA2  
DGND  
VC  
Power supply for the sensor control outputs.  
Bypass this supply pin with 0.1μF capacitor.  
53  
54  
55  
56  
PHIB1  
PHIB2  
SH4  
O
O
O
O
D
D
D
D
Configurable high speed sensor timing output.  
Configurable high speed sensor timing output.  
Configurable low speed sensor timing output.  
Configurable low speed sensor timing output.  
SH5  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings(1)(2)(3)  
MIN  
MAX  
4.2  
UNIT  
V
Any Positive Supply Voltage (VA, VR, VD, VC)  
Voltage on Any Input or Output Pin (except DVB) (Not to exceed 4.2V)  
DVB Output Voltage  
0.3  
4.2  
V
2.0  
V
Input Current at any pin(4)  
Package Input Current(4)  
Package Dissipation at TA = 25°C(5)  
Soldering Temperature, Infrared, 10 seconds(6)  
±25  
±50  
1.9  
mA  
mA  
W
235  
°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not  
recommended.  
(2) All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(4) When the input voltage (VIN) at any pin exceeds the power supplies (VIN < GND or VIN > VA or VD), the current at that pin should be  
limited to 25 mA. The 50 mA maximum package input current rating limits the number of pins that can simultaneously safely exceed the  
power supplies with an input current of 25 mA to two.  
(5) The absolute maximum junction temperature (TJMAX) for this device is 150°C. The maximum allowable power dissipation is dictated by  
TJMAX, the junction to ambient thermal resistance (RθJA), and the ambient temperature (TA), and can be calculated using the formula  
PDMAX = (TJMAX - TA)/RθJA. The values for maximum power dissipation listed will be reached only when the LM98725 is operated in a  
severe faulty condition.  
(6) See AN450, “Surface Mounting Methods and Their Effect on Product Reliability”, or the section entitled “Surface Mount” found in any  
post 1986 Texas Instruments Semiconductor Linear Data Book, for other methods of soldering surface mount devices.  
6.2 Handling Ratings  
MIN  
MAX  
+150  
2500  
UNIT  
Tstg  
Storage temperature range  
65  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(2)  
V(ESD)  
Electrostatic discharge(1)  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(3)  
250  
(1) Human body model is 100 pF capacitor discharged through a 1.5-kresistor. Machine model is 220-pF discharged through 0.  
(2) JEDEC document JEP155 states that 2500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions(1)(2)  
MIN  
MAX  
0 TA +70  
+3.6  
UNIT  
°C  
Operating Temperature Range  
All Supply Voltage  
+3.0  
V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Operating Ratings is not  
recommended.  
(2) All voltages are measured with respect to AGND = DGND = 0V, unless otherwise specified.  
6
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
6.4 Electrical Characteristics  
The following specifications apply for VA = VD = VR = VC = 3.3 V, CL = 10 pF, and fINCLK = 27 MHz unless otherwise  
specified. all other limits TA = 25°C.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2) TYP(3) MAX(2) UNIT  
CMOS DIGITAL INPUT DC SPECIFICATIONS (RESETb, SH_R, SCLK, SENb)  
VIH  
Logical “1” Input Voltage  
Logical “0” Input Voltage  
Logic Input Hysteresis  
2.0  
V
V
V
VIL  
0.8  
VIHYST  
0.6  
VIH = VD:  
RESET, SEN  
100  
65  
nA  
IIH  
Logical “1” Input Current  
Logical “0” Input Current  
SH_R, SCLK, SDI, CAL  
CE  
μA  
30  
VIL = DGND:  
RESET, SEN  
SH_R, SCLK, SDI, CAL  
CE  
–65  
–100  
–30  
μA  
nA  
μA  
IIL  
CMOS DIGITAL OUTPUT DC SPECIFICATIONS (SH1 to SH5, RS, CP, PHIA, PHIB, PHIC)  
VOH  
VOL  
IOS  
Logical “1” Output Voltage  
Logical “0” Output Voltage  
Output Short Circuit Current  
IOUT = -0.5 mA  
IOUT = 1.6 mA  
VOUT = DGND  
VOUT= VD  
3.0  
V
V
0.21  
18  
–25  
20  
mA  
nA  
IOZ  
CMOS Output TRI-STATE  
Current  
VOUT = DGND  
VOUT = VD  
–25  
CMOS DIGITAL OUTPUT DC SPECIFICATIONS (CMOS DATA OUTPUTS)  
VOH  
VOL  
IOS  
Logical “1” Output Voltage  
Logical “0” Output Voltage  
Output Short Circuit Current  
IOUT = -0.5 mA  
IOUT = 1.6 mA  
VOUT = DGND  
VOUT= VD  
2.3  
0.12  
12  
V
V
mA  
nA  
–14  
20  
IOZ  
CMOS Output TRI-STATE  
Current  
VOUT = DGND  
VOUT = VD  
–25  
LVDS/CMOS CLOCK RECEIVER DC SPECIFICATIONS (INCLK+ and INCLK-PINS)  
VIHL  
VILL  
VIHC  
VILC  
IIHL  
Differential LVDS Clock  
High Threshold Voltage  
Differential LVDS Clock  
Low Threshold Voltage  
CMOS Clock  
200 mV  
RL = 100 Ω  
VCM (LVDS Input Common Mode Voltage)= 1.25 V  
–200  
2.0  
mV  
V
High Threshold Voltage  
CMOS Clock  
INCLK- = DGND  
0.8  
V
Low Threshold Voltage  
CMOS Clock  
230  
260  
μA  
μA  
Input High Current  
CMOS Clock  
IILC  
–135  
–120  
Input Low Current  
(1) The analog inputs are protected as shown in Figure 2. Input voltage magnitudes beyond the supply rails will not damage the device,  
provided the current is limited per Note 4 under the Absolute Maximum Ratings Table. However, input errors will be generated If the  
input goes above VA and below AGND.  
(2) Test limits are specified to Texas Instruments' AOQL (Average Outgoing Quality Level).  
(3) Typical figures are at TA = 25°C, and represent most likely parametric norms at the time of product characterization. The typical  
specifications are not ensured.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Electrical Characteristics (continued)  
The following specifications apply for VA = VD = VR = VC = 3.3 V, CL = 10 pF, and fINCLK = 27 MHz unless otherwise  
specified. all other limits TA = 25°C.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2) TYP(3) MAX(2) UNIT  
LVDS OUTPUT DC SPECIFICATIONS  
VOD  
VOS  
IOS  
Differential Output Voltage  
LVDS Output Offset Voltage  
Output Short Circuit Current  
RL = 100 Ω  
280  
390  
1.20  
8.5  
490 mV  
1.08  
1.33  
V
VOUT = 0 V, RL = 100 Ω  
mA  
POWER SUPPLY SPECIFICATIONS  
LVDS Output Data Format  
152  
3.6  
180 mA  
mA  
LVDS Output Data Format  
(Powerdown)  
6
IA  
VA Analog Supply Current  
CMOS Output Data Format  
(40 MHz)  
136  
76  
168 mA  
94 mA  
17 mA  
LVDS Output Data Format  
LVDS Output Data Format  
(Powerdown)  
VD Digital Output Driver  
Supply Current  
8.5  
ID  
CMOS Output Data Format  
46  
68 mA  
(ATE Loading of CMOS Outputs > 50 pF) (40 MHz)  
VC CCD Timing Generator  
Output Driver Supply Current RS, CP (ATE Loading of CMOS Outputs > 50 pF)  
Typical sensor outputs: SH1-SH5, PHIA, PHIB, PHIC,  
IC  
1
755  
40  
4
mA  
LVDS Output Data Format  
885 mW  
70 mW  
LVDS Output Data Format  
(Powerdown)  
PWR  
Average Power Dissipation  
CMOS Output Data Format  
(ATE Loading of CMOS Outputs > 50 pF) (40 MHz)  
600  
740 mW  
INPUT SAMPLING CIRCUIT SPECIFICATIONS  
CDS Gain=1x, PGA Gain=1x  
CDS Gain=2x, PGA Gain= 1x  
2.3  
VIN  
Input Voltage Level  
Vp-p  
1.22  
Source Followers Off  
CDS/SH Gain = 1x  
OSX = VA (OSX = AGND)  
32  
(-165)  
(–200)  
(–290)  
(–250)  
50  
70  
μA  
μA  
nA  
Sample and Hold Mode  
Input Leakage Current  
(Vclamp = Default = 2.6 V)  
Source Followers Off  
CDS/SH Gain = 2x  
OSX = VA (OSX = AGND)  
55  
(–240)  
IIN_SH  
Source Followers On  
CDS/SH Gain = 2x  
OSX = VA (OSX = AGND)  
20  
(–50)  
250  
Sample/Hold Mode  
Equivalent Input Capacitance  
(see Figure 12)  
CDS Gain = 1x  
CDS Gain = 2x  
2.5  
4
pF  
pF  
CSH  
CDS Mode  
Input Leakage Current  
Source Followers Off  
OSX = VA (OSX = AGND)  
10  
(–50)  
IIN_CDS  
(–250)  
250  
55  
nA  
CLPIN Switch Resistance  
(OSX to VCLP Node in  
Figure 9)  
RCLPIN  
16  
8
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Electrical Characteristics (continued)  
The following specifications apply for VA = VD = VR = VC = 3.3 V, CL = 10 pF, and fINCLK = 27 MHz unless otherwise  
specified. all other limits TA = 25°C.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2) TYP(3) MAX(2) UNIT  
VCLP REFERENCE CIRCUIT SPECIFICATIONS  
VCLP Voltage 000  
VCLP Voltage 001  
VCLP Voltage 010  
VCLP Voltage 011  
VCLP Voltage 100  
VCLP Voltage 101  
VCLP Voltage 110  
VCLP Voltage 111  
VCLP Voltage Setting = 000  
VCLP Voltage Setting = 001  
0.85VA  
0.9VA  
V
V
VCLP Voltage Setting = 010  
VCLP Voltage Setting = 011  
VCLP Voltage Setting = 100  
VCLP Voltage Setting = 101  
VCLP Voltage Setting = 110  
VCLP Voltage Setting = 111  
0.95VA  
0.6VA  
V
V
VVCLP  
0.55VA  
0.4VA  
V
V
0.35VA  
0.15VA  
V
V
ISC  
VCLP DAC Short Circuit  
Output Current  
mA  
30  
BLACK LEVEL OFFSET DAC SPECIFICATIONS  
Resolution  
10  
Bits  
mV  
Monotonicity  
Ensured by  
characterization  
CDS Gain = 1x  
Minimum DAC Code = 0x000  
Maximum DAC Code = 0x3FF  
CDS Gain = 2x  
–614  
614  
Offset Adjustment Range  
Referred to AFE Input  
Minimum DAC Code = 0x000  
Maximum DAC Code = 0x3FF  
Minimum DAC Code = 0x000  
Maximum DAC Code = 0x3FF  
–307  
307  
mV  
–17500  
–16130  
+17500  
Offset Adjustment Range  
Referred to AFE Output  
LSB  
+16130  
CDS Gain = 1x  
Referred to AFE Output  
1.2  
mV  
(LSB)  
LSB  
DAC LSB Step Size  
(32)  
DNL  
INL  
+0.74/  
–0.37  
Differential Non-Linearity  
Integral Non-Linearity  
–0.84  
–2.5  
+2.4  
+2.5  
+0.72/  
–0.56  
LSB  
Bits  
PGA SPECIFICATIONS  
Gain Resolution  
8
Ensured by  
characterization  
Monotonicity  
CDS Gain = 1x  
CDS Gain = 1x  
CDS Gain = 1x  
CDS Gain = 1x  
7.7  
8.3  
18.4  
0.62  
–4.2  
8.8 V/V  
Maximum Gain  
17.7  
0.58  
–4.7  
18.9  
dB  
0.67 V/V  
Minimum Gain  
PGA Function  
–3.5  
dB  
Gain (V/V) = (180/(277-PGA Code))  
Gain (dB) = 20LOG10(180/(277-PGA Code))  
Minimum PGA Gain  
Maximum PGA Gain  
3%  
Channel Matching  
12.7%  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Electrical Characteristics (continued)  
The following specifications apply for VA = VD = VR = VC = 3.3 V, CL = 10 pF, and fINCLK = 27 MHz unless otherwise  
specified. all other limits TA = 25°C.(1)  
PARAMETER  
ADC SPECIFICATIONS  
TEST CONDITIONS  
MIN(2) TYP(3) MAX(2) UNIT  
VREFT  
VREFB  
Top of Reference  
2.07  
0.89  
V
V
V
Bottom of Reference  
VREFT  
VREFB  
-
Differential Reference Voltage  
1.06  
1.18  
1.30  
Over range Output Code  
Under range Output Code  
65535  
0
DIGITAL OFFSET “DAC” SPECIFICATIONS  
Resolution  
7
Bits  
Digital Offset DAC LSB Step  
Size  
Referred to AFE Output  
LSB  
32  
Min DAC Code =7'b0000000  
Mid DAC Code =7'b1000000  
Max DAC Code = 7'b1111111  
–2048  
0
Offset Adjustment Range  
Referred to AFE Output  
LSB  
+2016  
FULL CHANNEL PERFORMANCE SPECIFICATIONS  
(4)  
DNL  
See  
+0.8/  
–0.7  
LSB  
LSB  
dB  
Differential Non-Linearity  
Integral Non-Linearity  
-0.999  
–75  
2.5  
75  
(4)  
INL  
See  
+18/  
–25  
–76  
Minimum PGA Gain(4)  
Maximum PGA Gain(4)  
LSB  
RMS  
10  
26  
SNR  
Total Output Noise  
–56  
96  
dB  
LSB  
RMS  
Mode 3  
Mode 2  
26  
17  
Channel to Channel Crosstalk  
LSB  
(4) This parameter ensured by design and characterization.  
10  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
6.5 AC Timing Specifications  
The following specifications apply for VA = VD = VR = VC = 3.3 V, CL = 10 pF, and fINCLK = 27 MHz unless otherwise  
specified. All other limits TA = 25°C.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
MAX(2)  
UNIT  
INPUT CLOCK TIMING SPECIFICATIONS  
27  
(Mode 3)  
0.66  
30  
(Mode 2)  
INCLK = PIXCLK (Pixel Rate Clock)  
1
1
2
2
MHz  
30  
(Mode 1)  
fINCLK  
Input Clock Frequency  
Input Clock Duty Cycle  
81  
(Mode 3)  
60  
(Mode 2)  
INCLK = ADCCLK (ADC Rate Clock)  
MHz  
30  
(Mode 1)  
2
Tdc  
40/60%  
50/50%  
60/40%  
FULL CHANNEL LATENCY SPECIFICATIONS  
3 Channel Mode Pipeline Delay  
PIXPHASE0  
PIXPHASE1  
PIXPHASE2  
PIXPHASE3  
PIXPHASE0  
PIXPHASE1  
PIXPHASE2  
PIXPHASE3  
PIXPHASE0  
PIXPHASE1  
PIXPHASE2  
PIXPHASE3  
24  
23.5  
23  
Figure 54 (LVDS)  
tLAT3  
TADC  
TADC  
TADC  
Figure 59 (CMOS)  
22.5  
21  
2 Channel Mode Pipeline Delay  
Figure 55 (LVDS)  
tLAT2  
20.5  
20  
Figure 60 (CMOS)  
19.5  
19  
1 Channel Mode Pipeline Delay  
Figure 56 (LVDS)  
tLAT1  
18.5  
18  
Figure 61 (CMOS)  
17.5  
(1) The analog inputs are protected as shown in Figure 2. Input voltage magnitudes beyond the supply rails will not damage the device,  
provided the current is limited per Note 4 under the Absolute Maximum Ratings Table. However, input errors will be generated If the  
input goes above VA and below AGND.  
(2) Test limits are specified to AOQL (Average Outgoing Quality Level).  
(3) Typical figures are at TA = 25°C, and represent most likely parametric norms at the time of product characterization. The typical  
specifications are not ensured.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
AC Timing Specifications (continued)  
The following specifications apply for VA = VD = VR = VC = 3.3 V, CL = 10 pF, and fINCLK = 27 MHz unless otherwise  
specified. All other limits TA = 25°C.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(2)  
TYP(3)  
MAX(2)  
UNIT  
SH_R TIMING SPECIFICATIONS (Figure 44)  
tSHR_S  
tSHR_H  
SH_R Setup Time  
SH_R Hold Time  
2
2
ns  
ns  
LVDS OUTPUT TIMING SPECIFICATIONS (Figure 53)  
TXpp0  
TXpp1  
TXpp2  
TXpp3  
TXpp4  
TXpp5  
TXpp6  
TXCLK to Pulse Position 0  
TXCLK to Pulse Position 1  
TXCLK to Pulse Position 2  
TXCLK to Pulse Position 3  
TXCLK to Pulse Position 4  
TXCLK to Pulse Position 5  
TXCLK to Pulse Position 6  
-0.26  
1.50  
3.26  
5.03  
6.80  
8.56  
10.32  
0
1.76  
3.53  
5.29  
7.06  
8.82  
10.58  
0.26  
2.02  
3.79  
5.55  
7.32  
9.08  
10.84  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMOS OUTPUT TIMING SPECIFICATIONS  
CLKOUT Rising Edge to CMOS Output  
Data Transition  
fINCLK = 40 MHz, INCLK = ADCCLK  
(ADC Rate Clock)  
tCRDO  
2
4.5  
9
ns  
SERIAL INTERFACE TIMING SPECIFICATIONS  
fSCLK <= fINCLK,  
INCLK = PIXCLK  
(Pixel Rate Clock)  
Mode 3/2/1  
27/30/30  
81/60/30  
MHz  
MHz  
fSCLK  
Input Clock Frequency  
fSCLK <= fINCLK,  
INCLK = ADCCLK  
(ADC Rate Clock)  
Mode 3/2/1  
SCLK Duty Cycle  
50/50  
ns  
ns  
tIH  
Input Hold Time  
1.5  
2.5  
1.5  
2.5  
6
tIS  
Input Setup Time  
ns  
tSENSC  
tSCSEN  
SCLK Start Time after SEN Low  
SEN High after last SCLK Rising Edge  
ns  
ns  
INCLK present(4)(5)  
INCLK stopped(4)(5)  
TINCLK  
ns  
tSENW  
SEN Pulse Width  
50  
tOD  
tHZ  
Output Delay Time  
11  
14  
ns  
Data Output to High Z  
0.5  
TSCLK  
(4) If the input INCLK is divided down to a lower internal clock rate via the PLL, the parameter tSENW will be increased by the same factor.  
(5) When the Spread Spectrum Clock Generation feature is enabled, tSENW should be increased by 1.  
12  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
6.6 Serial Interface Timing Details  
tSENSC  
tSCSEN  
tIS  
SCLK  
tHZ  
tOD  
tIH  
SEN  
SDIO  
(R)  
1
DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2]  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
CE CE  
[1] [0]  
A4 A3 A2 A1 A0  
x
x
x
x
x
x
x
x
tSENW  
INCLK  
Figure 1. Serial Interface Specification Diagram  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LM98725 is a 16-bit, three-input, complete Analog Front End (AFE) for digital color copier and Multi-Function  
Peripheral (MFP) applications. The system block diagram of the LM98725, shown in LM98725 Overall Chip  
Block Diagram highlights the main features of the device. Each input has its own Input Bias and Clamping  
Network which are routed through a selectable Sample/Hold (S/H) or Correlated Double Sampler (CDS)  
amplifier. A ±9-Bit Offset DAC applies independent offset correction for each channel. A -3 to 17.9dB  
Programmable Gain Amplifier (PGA) applies independent gain correction for each channel. The LM98725 also  
provides independent Digital Black Level Correction Feedback Loops for each channel. The Black Level  
Correction Loop can be configured to run in Manual Mode (where the user inputs their own values of DAC offset)  
or in Automatic Mode where the LM98725 calculates each channel’s Offset DAC value during optical black pixels  
and then adjusts the Offset register accordingly. The signals are routed to a single high performance 16-bit,  
81MHz analog-to-digital converter.  
The analog inputs are protected as shown in Figure 2. Input voltage magnitude up to 500 mV beyond the supply  
rails will not damage this device. However, input errors will be generated if the input goes above VA and below  
AGND.  
VA  
I/O  
To Internal Circuitry  
AGND  
Figure 2. Analog Input Protection  
14  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.2 Functional Block Diagrams  
7.2.1 LM98725 Overall Chip Block Diagram  
SH5  
SH4  
SH3  
SH1  
RS  
CP  
PHIC2  
PHIC1  
PHIB2  
PHIB1  
PHIA2  
PHIA1  
SH_R  
VREFT  
VREFB  
VCLP  
Figure 3. Chip Block Diagram  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Functional Block Diagrams (continued)  
CCD/CIS Sensor  
Analog Front End  
SPI  
Image Processor/  
ASIC  
LM98725  
Data Output  
CLK  
CCD Timing  
Generator  
Sensor Drivers  
Motor  
Controllers  
SSCG  
Figure 4. System Block Diagram  
7.3 Feature Description  
7.3.1 Modes of Operation Introduction  
The LM98725 can be configured to operate in several different operating modes. The following sections are a  
brief introduction to these modes of operation. A more rigorous explanation of the operating modes is contained  
in the Device Functional Modes section, including input sampling diagrams for each mode as well as a  
description of the operating conditions.  
7.3.2 Mode 3 - Three Channel Input/Synchronous Pixel Sampling  
OSB, OSG, and OSR inputs are sampled synchronously at a pixel rate. The sampled signals are processed with  
each channel’s offset and gain adjusted independently via the control registers. The order in which pixels are  
processed from the input to the ADC is fully programmable and is synchronized by the SH pulse. In this mode,  
the maximum channel speed is 27MSPS per channel with the ADC running at 81MSPS yielding a three color  
throughput of 81MSPS.  
7.3.3 Mode 2 - Two Channel Input/Synchronous Pixel Sampling  
Mode 2 is useful for CCD sensors with a Black and White mode with Even and Odd outputs. In its default  
configuration, Mode 2 samples the Even output via the OSB channel input, and the Odd output via the OSG  
channel input. Sampling of the Even and Odd pixels is performed synchronously at a maximum sample rate of  
30MSPS per input with the ADC running at 60MSPS.  
7.3.4 Mode 1 - One Channel Input  
In Mode 1, all pixels are processed through a single input (OSR, OSG, or OSB) chosen through the control  
register setup. This mode is useful in applications where only one input channel is used. The selected input is  
programmable through the control register.  
7.3.5 CIS Lamp and Coefficient Modes  
In additional to Modes 3, 2, and 1 above, two different CIS sensor modes (CISa and CISb) can be enabled.  
These allow color sequential lamp control, as well as synchronized color sequential gain/offset coefficient usage  
for multi-output color sequential sensors.  
7.3.6 Clock Sources  
7.3.6.1 User Provided Clock Signal  
When XTALEN = 0 (Page 0, Register 0, Bit 2) the clock input to the LM98725 can be a differential LVDS clock  
on the INCLK+ and INCLK- pins or a CMOS level clock applied to the INCLK+ pin with the INCLK- pin connected  
to DGND. The external clock signal format is auto sensed internally.  
16  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Feature Description (continued)  
7.3.6.2 Crystal Oscillator Driver On-Chip  
When XTALEN = 1 (Page 0, Register 0, Bit 2), an on-chip crystal oscillator driver circuit can be paired with an  
external crystal. Terminal 2 of the crystal should connect to INCLK+ and terminal 1 of the crystal should connect  
to INCLK-. 18 pF capacitors should connect from each terminal of the crystal to ground.  
7.3.6.3 Clock Multiplication - Basic  
For any of the available clock sources, the input clock can be applied at the Pixel frequency (PIXCLK) or at the  
ADC frequency (ADCCLK). The LM98725 can perform internal clock multiplication when a Pixel frequency clock  
is applied, or no multiplication when an ADC frequency clock is applied. The internal configuration registers need  
to be written to perform the proper setup of the input clock. The available input clock configurations for each  
operating mode are outlined in Table 1.  
Table 1. Input Clock Configurations for Operating Modes  
INCLK  
MAX  
FREQ.  
CONFIGURATION  
REGISTER  
AFE  
MODE  
INTERNAL  
MULTIPLIER  
INPUT CLOCK TYPE  
SETTINGS  
INCLK = Pixel Freq. (PIXCLK)  
INCLK = ADC Freq. (ADCCLK)  
3x  
1x  
27MHz  
81MHz  
TBD  
TBD  
Mode 3  
Mode 2  
Mode 1  
INCLK = Pixel Freq. (PIXCLK)  
INCLK = ADC Freq. (ADCCLK)  
2x  
1x  
30MHz  
60MHz  
TBD  
TBD  
INCLK = Pixel Freq. = ADC Freq  
(ADCCLK = PIXCLK in Mode 1)  
1x  
30MHz  
TBD  
7.3.6.4 Clock Multiplication - Flexible  
There are a variety of situations where it is desirable to multiply the base frequency by a selected amount to  
achieve the proper pixel frequency for a given application and set of system conditions.  
Applications using the onchip Crystal Oscillator driver will have much more flexibility of pixel frequencies.  
Reducing the input MCLK frequency can significantly reduce the EMI generated by the MCLK signals being  
sent up the cable from the host board to the imaging board.  
To ease this task a flexible multiplying PLL architecture is incorporated. When the 2 PLL architecture is enabled  
(Page 2, Register 0x1Bh, Bit 1=0) the source clock frequency is multiplied by the ratio M/N. Two registers are  
used to set these values:  
M = Value(Page 2, Register 0x1Ch) + 1  
N = Value(Page 2, Register 0x1Dh) + 1  
N(max) = 64  
M/N(max) = 64  
M/N(min) = 1/64  
Note: Since the 8 bit register values can be from 0 to 255, the resulting Numerator and Denominator values  
could be from 1 to 256. However, the maximum recommended multiply or divide ratios are 64x or x/64. In  
addition, the maximum recommended value for N is 64.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Clock  
Receiver  
INCLK+  
Fin  
Fout  
SSCG LVDS Only, 2  
PLL Mode  
PLL1  
Fout = Fin x (M/N)  
Crystal or  
INCLK from Host  
Crystal  
Oscillator  
Driver  
Clock to CCDTG  
and AFE  
M
U
X
INCLK-  
Spread All, 1 PLL Mode  
Data from AFE  
SSCG  
Enable  
2 PLLs – Use M/N, Use M/N  
and SSCG All, SSCG LVDS  
Only  
M
U
X
PLL2  
SSCG modulation  
21  
1 PLL – No M/N and SSCG  
All, No M/N and no SSCG  
FIFO  
21  
M
U
X
Use FIFO  
LVDS  
Serializer  
Clock/Data to Host  
Bypass FIFO  
Clock System Configuration Options  
Source  
INCLK  
INCLK  
INCLK  
INCLK  
INCLK  
PLL (Dual/Single)  
Single  
Single  
Spreading (On/Off)  
ON  
SpreadMode (LVDS/All)  
ALL  
N/A  
OFF  
ON  
Dual (Use M/N)  
Dual (Use M/N)  
Dual (Use M/N)  
LVDS*  
ALL  
N/A  
ON  
OFF  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
Single  
Single  
ON  
ALL  
N/A  
OFF  
ON  
Dual (Use M/N)  
Dual (Use M/N)  
Dual (Use M/N)  
LVDS*  
ALL  
N/A  
ON  
OFF  
*If SpreadMode is LVDS, then FIFO is used to move data from CCDTG/AFE clock domain to LVDS clock domain.  
Figure 5. Clock System Block Diagram  
7.3.7 Clock Sources - Additional Settings and Flexibility  
To support the new crystal oscillator feature, some additional flexibility was added. In Crystal Oscillator mode, the  
master clock source is now on the AFE (rather than in the system ASIC or main processor). If Slave Timing  
Mode (see CCD Timing Generator Master/Slave Modes) is still needed (to synchronize the AFE to the line timing  
of the system), the external SH_R signal must now be captured with the internal clock source. The SH_R  
Capture Clock Select bit has been added to support this case.  
In addition, in these systems, it may be difficult to adjust the host SH_R timing to get the best Setup and Hold  
times with respect to the internal CLK. The SH_R, INCLK Monitor Override and SH_R Capture Edge Select  
controls have been added to support these needs. The INCLK Monitor Override allows the internal SH_R and  
CLK signals to be monitored, to aid in selected the best edge (rising or falling) of CLK to latch the SH_R signal.  
SH_R Capture Clock Select (Page 0, Register 0x00, Bit 5)  
0 - Use internal INCLK source to latch SH_R  
1 - Use external CLK source to latch SH_R  
SH_R Capture Edge Select (Page 0, Register 0x00, Bit 4)  
18  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
0 - Use rising edge of selected clock source  
1 - Use falling edge of selected clock source  
SH_R and INCLK Monitor Override (Page 0, Register 0x14, Bit 6)  
0 - Timing monitor selections unaltered  
1 - Timing monitors for CLAMPB and SAMPB are replaced with monitor of SH_R_Internal and SH_R  
Capture_Clock_Internal.  
7.3.8 Spread Spectrum Clock Generation (SSCG)  
NOTE  
When using SSCG, ensure that INCLK = ADCCLK is selected at Page 0, Register 0x02,  
Bit 2 = 0. Then set the flexible clock multiplication PLL settings to achieve the desired  
internal clock frequency from the applied clock.  
EMI is a problem faced by any system designer. In a typical imaging system, data must be sent over a relatively  
long cable to the main system board. To minimize the amount of measured EMI caused by system clocking and  
data transmission, a flexible Spread Spectrum Clock Generation system is included in the LM98725.  
The spread spectrum feature is configured by the registers at Page 2, Registers 0x1Ah, 0x1Bh and 0x1Eh.  
The following key SSCG modes of operation and features are provided:  
Spread output data/clock only (Internal FIFO used to transfer data between clock domains) or spread internal  
system clock as well as output data/clock  
Spread synchronized to CCD line length (SH period or frequency) or unsychronized.  
Spread widths of 0.625, 1.25, 2.5 and 5 % selectable  
Spread gain of 1x to 2x can double the selected spread widths  
3 selectable modulation frequency multipliers to increase the spreading modulation frequency  
Spread “boost” provides a cleaner spread for 1 channel and 2 channel modes of AFE operation.  
Spread MaxRate allows the most effective spreading modulation for Output Only spreading. When this bit is  
set, the spreading waveform is NOT synchronized to the CCD line timing.  
Spreading modulation waveform and FIFO reset by SH_R event. (Page 8, Register 0x1Eh, Bit 7) This  
ensures that the spreading waveform is synchronized to the CCD line timing, even if SH_R to SH_R period is  
varied by system ASIC.  
Spreading SH_R Reset can be delayed from SH_R event by a “Holldoff” amount. (Page 8, Register 0x1Eh,  
Bits6:0)  
7.3.9 Typical EMI Cases and Recommended SSCG Settings  
Case 1: Majority of EMI coming from LVDS outputs  
Usage: Spread output data/clock only. FIFO used to move data between non-spread and spread clock  
domains. If Slave Mode is also used, ensure that the Line Length and Line Length Multiplier settings  
correspond to the SH_R period. If the SH_R period may vary, then set FIFO Reset (Page 2, Register  
0x1Bh, Bit 6 =1) to ensure the FIFO counters are reset every SH Interval.  
Case 2: EMI from LVDS outputs and CCD timing signals - Master Mode Application  
Usage: Spread internal system clock as well as output data/clock. Synchronize spread waveform to SH  
Interval. Best to use Master mode timing to ensure spread waveform is always smoothly synchronized to  
the SH Interval timing.  
Case 3: EMI from LVDS outputs and CCD timing signals - Slave Mode Application  
Usage: Spread internal system clock as well as output data/clock. Use minimal amount of spreading to  
reduce CCD timing emissions, in combination with data scrambling to further reduce data cable emissions.  
The small amount of spreading minimizes effects on image data, therefore, spreading is not required to be  
synchronized with SH Intervals.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.3.10 Recommended Master/Slave, Clock Source and SSCG Combinations and Settings  
7.3.10.1 Master Mode Operation (LM98725 Controls Line Timing)  
(These are easiest cases to implement SSCG)  
Clock from host board  
1. Use SSCG - Spread All  
2. Use SSCG - Spread LVDS Only  
3. No SSCG  
Clock from local crystal  
1. Use SSCG - Spread All  
2. Use SSCG - Spread LVDS Only  
3. No SSCG  
7.3.10.2 Slave Mode Operation (Host FPGA or ASIC Controls Line Timing)  
NOTE: These SSCG cases are more challenging as received LVDS data timing will not be synchronous with the  
clock of the FPGA/ASIC. Clock from host board. If a local clock is present on the FPGA/ASIC, an internal FIFO  
must be implemented to transfer the received data from the spread LVDS clock domain, to the internal  
FPGA/ASIC clock domain. If the AFE LVDS clock is used as the system clock, care must be taken to ensure that  
settings are not loaded which disable this clock, and therefore lock up the system.)  
1. Use SSCG - Spread All - Need spreading start to be SH gated, and SH period to be consistent to ensure  
consistent capture of SH_R by the spread INCLK.  
2. Use SSCG - Spread LVDS Only - In this case ensure that Line Length Register is set to same number of  
pixels as that or SH_R period. In addition, if SH_R period will vary, set FIFO Reset (Page 2, Register 0x1Bh,  
Bit 6 = 1) to reset FIFO at SH Interval.  
3. No SSCG  
Clock from local crystal (Not recommended, difficult to meet CLK to SH_R setup and hold times. Use Master  
Mode instead)  
1. Use SSCG - Spread All  
2. Use SSCG - Spread LVDS Only  
3. No SSCG  
7.3.10.3 SSCG Configuration/Usage Flow  
Unlock Registers (Page 0, Register 0, Bit 0 = 0)  
Ensure PIXCLK/ADCCLK Configuration is set to ADCCLK. Page 0, Register 0x02, Bit 2 = 0.  
Set Override PLL2 Lock Detector (Page 2, Register 0x1B, Bit 4) = 1  
Set PLL2 Charge Pump Current Control (Page 2, Register 0x19, Bits 4:3) = 00  
Set PLL2 Filter Bandwidth Control (Page 2, Register 0x19, Bits 2:0) = 111  
Set SSCG Spread Boost (Page 2, Register 0x1A, Bit 5) = 0 or 1 (0 = default, recommended for most  
applications)  
Set SSCG Spread Gain (Page 2, Register 0x1A, Bit 4) = 0 or 1 (0 = default, recommended for most  
applications)  
Set SSCG Spread Width (Page 2, Register 0x1A, Bits 3:2) = 0.625% to 2.5% (Beyond 2.5% most LVDS  
deserializers will not track the clock properly)  
Set SSCG SH Sync Enable (Page 2, Register 0x1A, Bit 1) = 0 or 1 (Set to 1 for Spread All)  
Set PLL Mode Select (Page 2, Register 0x1B, Bits 1:0) = 00, 01 or 11. Spread Output Only or Spread All  
Clocks  
If PLL Clock Multiplication Enabled, Set Clock Mult M (Page 2, Register 0x1C) and N (Page 2, Register 0x1D)  
to desired values. If a pixel rate clock is applied, set the PLL multiplication to the same factor as the AFE  
Mode selected at Page 0, Register 0x03, Bits 7:6. ie. The multiplication factor should be 3x for Mode 3, 2x for  
Mode 2 and 1x for Mode 1.  
20  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Set SSCG Enable (Page 2, Register 0x1A, Bit 0) = 1 (enable spreading, load spreading state machines)  
Lock Registers (Page 0, Register 0, Bit 0 = 1)  
If spreading is synchronized to SH interval, the spreading function will wait until the next SH Interval before  
beginning.  
Set SSCG Enable (Page 2, Register 0x1A, Bit 0) = 1 (enable spreading, load spreading state machines)  
Lock Registers (Page 0, Register 0, Bit 0 = 1)  
If spreading is synchronized to SH interval, the spreading function will wait until the next SH Interval before  
beginning.  
7.3.10.4 Changing SSCG Settings  
To Change SSCG Settings:  
Un-Lock Registers ((Page 0, Register 0, Bit 0 = 0)  
Set SSCG Enable = 0 (disable spreading)  
Change desired SSCG settings.  
Set SSCG Enable = 1 (enable spreading, reload spreading state machines)  
Lock Registers (Page 0, Register 0, Bit 0 = 1)  
Table 2. SSCG and Clock Multiplication Register Settings  
PAGE  
2
REGISTER  
DEFAULT  
BITS  
NAME  
DESCRIPTION  
Master PLL Range Setting for PLL1 and PLL2 when  
Autorange is off. Set to 111.  
24  
18  
1111 1000  
[7:5]  
[4:3]  
PLL1 Charge Pump Current Control  
Default = 11  
PLL Control 1  
[2:0]  
[7:5]  
PLL1 Filter Bandwidth Control  
Default = 000  
2
25  
19  
0001 1000  
Reserved  
Default = 000  
[4:3]  
[2:0]  
PLL2 Charge Pump Current Control  
Default = 11  
PLL Control 2  
Set to 00 when using SSCG.  
PLL2 Filter Bandwidth Control  
Default = 000  
Set to 111 when using SSCG.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 2. SSCG and Clock Multiplication Register Settings (continued)  
PAGE  
REGISTER  
DEFAULT  
BITS  
NAME  
DESCRIPTION  
Spread Rate Multiplier  
2
26  
1A  
0000 0000  
[7:6]  
(Increases modulation frequency in low pixel frequency  
applications)  
00 1x - Default  
01 2x  
10 4x  
11 Reserved  
[5]  
SSCG Spread Boost  
0 Normal, PLL divide step is 1/28  
1 Boost, PLL divide step is 1/56. Narrower and cleaner  
spread for 1ch and 2ch modes, but limits max pixel freq  
to 25 MHz.  
[4]  
SSCG Spread Gain  
0 Spread widths as specified in [3:2]  
1 Spread widths are 2x [3:2] settings  
SSCG Control 1  
[3:2]  
SSCG Spread Width (Fmod = Fcenter+/- Width/2)  
00 5%  
01 2.5%  
10 1.25%  
11 0.625%  
[1]  
[0]  
SSCG SH Sync Enable  
0 Spread unsynched, once SSCG Enable and Register  
Lock Control are set, SSCG wil begin immediately.  
1 Spread synched to SH interval, once SSCG Enable is  
set, the SSCG will begin at the first SH Interval.  
SSCG Enable  
0 Spread off  
1 Spread on  
22  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
PAGE  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 2. SSCG and Clock Multiplication Register Settings (continued)  
REGISTER  
DEFAULT  
BITS  
NAME  
DESCRIPTION  
Load SSCG state machine  
2
27  
1B  
0000 0010  
[7]  
(SSCG Enable 0->1 also performs this function)  
0 Normal  
1 Load state machine (self clearing)  
[6]  
FIFO Reset at SH_R  
0 FIFO is only reset when SSCG started  
1 FIFO is reset at SH_R. Only useful in Slave Mode  
with Spread LVDS Only set. Ensures that FIFO  
counters are centered if SH_R period is consistenly  
shorter or longer than Line Length settings.  
[5]  
[4]  
Spread Waveform Reset at SH_R  
0 Spread waveform not reset by SH_R  
1 Spread waveform reset by SH_R  
Override PLL2 Lock Detector  
0 PLL2 Lock Detector Normal  
SSCG Control 2 1 Force PLL2 Lock Detect = 1. Set to 1 when using  
SSCG.  
[3]  
Override PLL1 Lock Detector  
0 PLL1 Lock Detector Normal  
1 Force PLL1 Lock Detect = 1. Useful only if using a  
large multiplication factor and a lot of jitter is present in  
the source clock.  
[2]  
Spread MaxRate  
0 Spread Normal  
1 Force Spreading to highest modulation frequency  
instead of tied to Line Length Setting.  
[1:0]  
PLL Mode Select  
11 Spread All System Clocks, No Multiplication  
10 PLLs and SSCG Disabled - Default  
01 Spread All System Clocks, Multiplication Enabled  
00 Spread Output Clocks Only, Multiplication Enabled  
2
2
2
28  
29  
30  
1C  
1D  
1E  
0000 0000  
0000 0000  
0000 0000  
Multiplying PLL. Fout = Fin x M/N  
Clock Mult M  
M = mmmmmmmm + 1 (1 to 256)  
Multiplying PLL. Fout = Fin x M/N  
Clock Mult N  
N = nnnnnnnn + 1 (1 to 256)  
[7]  
FIFO Reset  
0 FIFO normal operating  
1 Force reset of FIFO (self clearing)  
[6:0]  
FIFO and Spread Waveform SH_R Reset Holdoff  
SSCG Control 3  
Delay reset of FIFO and Spread Waveform from 0 to  
127 ADC clock cycles after the internal synchronized  
SH_R. To allow this event to occur during SH Interval  
after all valid pixels in the pipeline have been pro-  
cessed.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Mode 3 - Three Channel Input/Synchronous Pixel Sampling  
In Mode 3, the OSR, OSG, and OSB input channels are sampled synchronously. The sampled input signals are  
then processed in parallel through their respective channels with each channel offset and gain adjusted by their  
respective control registers. The signals are then routed through a 3-1 MUX to the ADC. The order in which  
pixels are processed through the MUX to the ADC is programmable (OSR-OSG-OSB, or OSB-OSG-OSR) and is  
synchronized by the SH pulse.  
Black  
Level  
COLOR1DAC[9:0]  
COLOR1PGA[7:0]  
Offset  
DAC  
CDS  
or  
Input Bias/  
Clamping  
OSR  
OSG  
OSB  
PGA  
PGA  
PGA  
Sample/Hold  
Amplifier  
Black  
COLOR2PGA[7:0]  
Level  
Offset  
DAC  
COLOR2DAC[9:0]  
CDS  
or  
Input Bias/  
Clamping  
3:1  
MUX  
Sample/Hold  
Amplifier  
Black  
COLOR3PGA[7:0]  
Level  
Offset  
DAC  
COLOR3DAC[9:0]  
CDS  
or  
Input Bias/  
Clamping  
Sample/Hold  
Amplifier  
Figure 6. Synchronous Three Channel Pixel Mode Signal Routing  
Table 3. Mode 3 Operating Details  
DETAIL  
Channels Active  
Channel Sample Rate  
ADC Sample Rate  
fADC: fINCLK  
OSB & OSG & OSR  
27  
3 channel synchronous pixel sampling  
MSPS per Channel (max)  
MSPS (max)  
81  
3:1  
1:1  
Internal 3x Clock Selected  
Internal 1x Clock Selected  
fINCLK = 27 MHz (max)  
fINCLK = 81 MHz (max)  
Output Sequencing  
SH Signal --> R-G-B-R-G-B-R-G-B→  
or  
SH Signal --> B-G-R-B-G-R-B-G-R→  
24  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.2 Mode 2 - Two Channel Input/Synchronous Pixel Sampling  
Mode 2 is useful for CCD sensors with a Black and White line with Even and Odd pixels. In its default  
configuration, Mode 2 samples Even sensor pixels via the Blue Channel Input, and Odd sensor pixels via the  
Green Channel Input. The selection of Even/Odd inputs can be changed through the serial interface registers.  
Sampling of the Even and Odd inputs is performed synchronously.  
Black  
Level  
COLOR1DAC[9:0]  
COLOR1PGA[7:0]  
Offset  
DAC  
CDS  
or  
Input Bias/  
Clamping  
OSR  
OSG  
OSB  
PGA  
PGA  
PGA  
Sample/Hold  
Amplifier  
Black  
COLOR2PGA[7:0]  
Level  
Offset  
DAC  
COLOR2DAC[9:0]  
CDS  
or  
Input Bias/  
Clamping  
3:1  
MUX  
Sample/Hold  
Amplifier  
Black  
COLOR3PGA[7:0]  
Level  
Offset  
DAC  
COLOR3DAC[9:0]  
CDS  
or  
Input Bias/  
Clamping  
Sample/Hold  
Amplifier  
Figure 7. Mode 2 Signal Routing  
Table 4. Mode 2 Operating Details  
DETAIL  
Channels Active  
OSG and OSB (Default)  
Two inputs synchronously  
processed as Even and Odd  
Pixels. Channel inputs are  
configurable.  
or  
OSR and OSG  
or  
OSB and OSR  
Channel Sample Rate  
ADC Sample Rate  
fADC: fINCLK  
30  
MSPS per Channel (max)  
MSPS (max)  
60  
2:1  
1:1  
fINCLK = 30 MHz (max)  
fINCLK = 60 MHz (max)  
Internal 2x Clock Selected  
Internal 1x Clock Selected  
Output Sequencing  
SH Signal --> Even-Odd-Even-Odd-Even-Odd-Even→  
or  
SH Signal --> Odd-Even-Odd-Even-Odd-Even-Odd→  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.3 Mode 1 - One Channel Input  
In Mode 1a, all pixels are processed through a single input (OSR, OSG, or OSB) chosen through the control  
register setup. This mode is useful in applications where only one input channel is used. The selected input is  
programmable through the control register. In this mode, the maximum channel speed is 30MSPS per channel  
with the ADC running at 30MSPS.  
Black  
Level  
COLOR1DAC[9:0]  
COLOR1PGA[7:0]  
Offset  
DAC  
CDS  
or  
Input Bias/  
Clamping  
OSR  
OSG  
OSB  
PGA  
PGA  
PGA  
Sample/Hold  
Amplifier  
Black  
COLOR2PGA[7:0]  
Level  
Offset  
DAC  
COLOR2DAC[9:0]  
CDS  
or  
Input Bias/  
Clamping  
3:1  
MUX  
Sample/Hold  
Amplifier  
Black  
COLOR3PGA[7:0]  
Level  
Offset  
DAC  
COLOR3DAC[9:0]  
CDS  
or  
Input Bias/  
Clamping  
Sample/Hold  
Amplifier  
Figure 8. Mode 1a Signal Routing  
Table 5. Mode 1 Operating Details  
DETAIL  
Channels Active  
Channel Sample Rate  
ADC Sample Rate  
fADC: fINCLK  
OSR or OSG or OSB  
One color active for all lines.  
MSPS per Channel (max)  
MSPS (max)  
30  
30  
1:1  
Internal 1x Clock Selected  
fINCLK = 25MHz (max)  
Output Sequencing  
SH Signal Color 1 Color 1 Color 1 Color 1 Color 1 →  
26  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 6. Modes of Operation Register Settings Table  
SAMPLING  
INPUT(S)  
SIGNAL  
PATH(S)  
OUTPUT SEQUENCING  
MODE 3 AND 2 = PIXEL SEQ  
OPERATING MODE  
Mode3-RGB Forward  
Mode3-RGB Reverse  
OSR||OSG||OSB  
OSR||OSG||OSB  
RGB  
RGB  
PixelRPixelGPixelB→  
PixelB PixelG PixelB  
Mode2-RG Forw.  
Mode2-RG Rev.  
OSR||OSG  
OSR||OSG  
RG  
RG  
PixelR PixelG  
PixelGPixelR  
Mode2-GB Forw.  
Mode2-GB Rev.  
OSG||OSB  
OSG||OSB  
GB  
GB  
PixelGPixelB→  
PixelBPixelG→  
Mode2-RB Forw.  
Mode2-RB Rev.  
OSR||OSB  
OSR||OSB  
RB  
RB  
PixelR PixelB →  
PixelB PixelR →  
Mode1-R Mono  
Mode1-G Mono  
Mode1-B Mono  
CISa  
OSR  
OSG  
R
G
Color Line Seq: RRRR→  
Color Line Seq: GGGG→  
Color Line Seq: BBBB→  
2, 3, or 4 lines in sequence  
OSB  
B
Mode 1 or 2 or 3  
Any  
Gain and Offset are channel specific.  
LM98714 style CB bits indicate channel used to process  
data. Additional CB bits can be used to identify current line in  
sequence.  
CISb  
Mode 1 or 2 or 3  
Any  
2 or 3 lines in sequence  
Gain and Offset for all channels are common, and change  
from line to line based on current color in sequence.  
LM98714 style CB bits indicate channel used to process  
data. Additional CB bits can be used to identify current line in  
sequence.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.4 Input Bias and Clamping  
VA  
Input Bias Enable  
Configuration 3, Bit[6]  
VBIAS  
SAMPLE  
20kΩ  
OSR or  
OSG or  
OSB  
Source Follower Enable  
Configuration 3, Bit[7]  
CS  
20kΩ  
Auto CLPIN Enable  
Configuration 4, Bit[5]  
SAMPLE  
CLPIN  
AGND  
HOLD  
VA  
CLPIN Gating Enable  
Configuration 4, Bit[4]  
VBIAS  
CLAMP  
VCLP  
CS  
VCLP Reference Select  
Configuration 4, Bits[3:0]  
VCLP  
Sampling Mode Select  
(CDS or Sample/Hold Mode)  
Configuration 2, Bit[1]  
Pixel rate switches to sample OS signal and reference voltages.  
Optional line rate switch to clamp OS input to VCLP node.  
Static switches controlled by Configuration Registers  
SAMPLE, CLAMP, HOLD, CLPIN are internally generated timing signals.  
Figure 9. Input Bias and Clamping Diagram  
28  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.4.1 Input Bias and Clamping - AC Coupled Applications  
The inputs to the LM98725 are typically AC coupled through a film capacitor and can be sampled in either  
Sample and Hold Mode (S/ H Mode) or Correlated Double Sampling Mode (CDS Mode). In either mode, the DC  
bias point for the LM98725 side of the AC coupling capacitor is set using the circuit of Figure 8 which can be  
configured to operate in a variety of different modes. A typical CCD waveform is shown in Figure 9. Also shown  
in Figure 9 is an internal signal “SAMPLE” which can be used to “gate” the CLPIN signal so that it only occurs  
during the “signal” portion of the CCD pixel waveform.  
SH  
Invalid  
Pixels  
Dummy Pixels  
Optical Black Pixels  
Valid Pixels  
OSX  
Auto CLPIN Start Register  
Page 2, Reg. 6, Bits[7:0]  
Auto CLPIN End Register  
Page 2, Reg. 7, Bits[7:0]  
CLPIN  
SAMPLE  
CLPINGATED  
Figure 10. Typical CCD Waveform and LM98725 Input Clamp Signal (CLPIN)  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.5 Sample/Hold Mode  
SAMPLE  
OSR or  
OSG or  
OSB  
CS  
CPAR  
HOLD  
CLAMP  
VCLP  
CS  
CPAR  
Figure 11. Sample and Hold Mode Simplified Input Diagram  
Proper DC biasing of the CCD waveform in Sample and Hold mode is critical for realizing optimal operating  
conditions. In Sample/ Hold mode, the Signal Level of the CCD waveform is compared to the DC voltage on the  
VCLP pin. In order to fully utilize the range of the input circuitry, it is desirable to cause the Black Level signal  
voltage to be as close to the VCLP voltage as possible, resulting in a near zero scale output for Black Level  
pixels.  
In Sample/Hold Mode, the DC bias point of the input pin is typically set by actuating the input clamp switch (see  
Figure 9) during optical black pixels which connects the input pins to the VCLP pin DC voltage. The signal  
controlling this switch is an auto-generated pulse, CLPIN. CLPIN is generated with a programmable pixel delay  
with respect to the SH Interval and a programmable # of pixels Duration. These parameters are available through  
the serial interface control registers.  
Actuating the input clamp will force the average value of the CCD waveform to be centered around the VCLP DC  
voltage. During Optical Black Pixels, the CCD output has roughly three components. The first component of the  
pixel is a “Reset Noise” peak followed by the Reset (or Pedestal) Level voltage, then finally the Black Level  
voltage signal. Taking the average of these signal components will result in a final “clamped” DC bias point that  
is close to the Black Level signal voltage.  
To provide a more precise DC bias point (that is, a voltage closer to the Black Level voltage), the CLPIN pulse  
can be “gated” by the internally generated SAMPLE clock. This resulting CLPINGATED signal is the logical “AND”  
of the SAMPLE and CLPIN signals as shown in Figure 10. By using the CLPINGATED signal, the higher Reset  
Noise peak will not be included in the clamping period and only the average of the Reset Level and Black Level  
components of the CCD waveform will be centered around VCLP.  
30  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.6 DC Coupled Applications  
In some applications, particularly with CIS sensors, the output voltage is within a voltage range that will allow DC  
coupling of the signal. When using Sample/Hold mode, DC coupling eliminates any problems with signal droop  
across the line caused by voltage changes across the coupling capacitor. When DC coupling, the Auto CLPIN  
should be disabled.  
There are two ways of setting the proper DC levels in this type of application. If the sensor has a Vref output pin,  
this can be connected to the VCLP pin of the LM98725. The internal VCLP generation should be disabled to  
allow this external reference to set the Black Level for the chip close to the black pixel level of the sensor.  
Many CIS sensors will not have a Vref output. In these applications, the internal VCLP voltage of the LM98725  
can be set to the level that is closest to the black pixel level of the sensor.  
OSR or  
OSG or  
OSB  
fPIXEL  
CSH  
VCLP  
Figure 12. Equivalent Input Switched Capacitance S/H Mode  
In Sample and Hold Mode, the impedance of the analog input pins is dominated by the switched capacitance of  
the CDS/Sample and Hold amplifier. The amplifier switched capacitance, shown as CS in Figure 11, and internal  
parasitic capacitances can be estimated by a single capacitor switched between the analog input and the VCLP  
reference pin for Sample and Hold mode. During each pixel cycle, the modeled capacitor, CSH, is charged to the  
OSX-VCLP voltage then discharged. The average input current at the OSX pin can be calculated knowing the  
input signal amplitude and the frequency of the pixel. If the application requires AC coupling of the CCD output to  
the LM98725 analog inputs, the Sample and Hold Mode input bias current may degrade the DC bias point of the  
coupling capacitor. To overcome this, Input Source Follower Buffers are available to isolate the larger Sample  
and Hold Mode input bias currents from the analog input pin (as discussed in the following section). As shown in  
CDS Mode, the input bias current is much lower for CDS mode, eliminating the need for the source follower  
buffers.  
7.4.7 Input Source Follower Buffers  
The OSR, OSG, OSB inputs each have an optional Source Follower Buffer which can be selected with Main  
Configuration Register 3 at Page 0, Register 3, Bit[7]. These source followers provide a much higher impedance  
seen at the inputs. In some configurations, such as Sample and Hold Mode with AC coupled inputs, the DC bias  
point of the input nodes must remain as constant as possible over the entire length of the line to ensure a  
uniform comparison to reference level (VCLP in this case). The Source Followers effectively isolate the AC input  
coupling capacitor from the switched capacitor network internal to the LM98725’s Sample and Hold/ CDS  
Amplifier. This results in a greatly reduced charge loss or gain on the AC Input coupling capacitor over the length  
of a line, thereby preserving its DC bias point.  
The Source Followers should only be used in the 1.2V input range (that is, Gain Mode Register at Page 1,  
Register 0, Bit[0] = 1, CDS Gain = 2x). Using the Source Followers in the 2.4V (that is, Gain Mode Register at  
Page 1, Register 0, Bit[0] = 0, CDS Gain = 1x). input range will result in a loss of performance (mainly linearity  
performance at the high and low ends of the input range).  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.8 CDS Mode  
SAMPLE  
OSR or  
OSG or  
OSB  
CS  
CPAR  
HOLD  
CLAMP  
CS  
CPAR  
Figure 13. CDS Mode Simplified Input Diagram  
Correlated Double Sampling mode does not require as precise a DC bias point as does Sample and Hold mode.  
This is due mainly to the nature of CDS itself, that is, the Video Signal voltage is referenced to the Reset Level  
voltage instead of the static DC VCLP voltage. The common mode voltage of these two points on the CCD  
waveform have little bearing on the resulting differential result. However, the DC bias point does need to be  
established to ensure the CCD waveform’s common mode voltage is within rated operating ranges.  
The CDS mode biasing can be performed in the same way as described in the Sample/Hold Mode , or, an  
alternative method is available which precludes the need for a CLPIN pulse. Internal resistor dividers can be  
switched in across the OSR, OSG, and/or OSB inputs to provide the DC bias voltage.  
SAMPLE  
IBIAS  
OSR or  
OSG or  
OSB  
CS  
CPAR  
HOLD  
CLAMP  
CS  
CPAR  
Figure 14. CDS Mode Input Bias Current  
Unlike in Sample and Hold Mode, the input bias current in CDS Mode is relatively small. Due to the architecture  
of CDS switching, the average charge loss or gain on the input node is ideally zero over the duration of a pixel.  
This results in a much lower input bias current, whose main source is parasitic impedances and leakage  
currents.  
As a result of the lower input bias current in CDS Mode, maintaining the DC Bias point the input node over the  
length of a line will require a much smaller AC input coupling capacitor.  
32  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.9 VCLP DAC  
The VCLP pin provides the reference level for incoming signals in Sample and Hold Mode. The pin’s voltage can  
be set by writing to the VCLP Configuration Register on register page 0. By default, the VCLP pin voltage is  
established by an internal resistor divider which sets the voltage to 0.85 VA.  
The VCLP buffer can also be disconnected and the pin driven externally by the another voltage in the  
application, such as Vref from some CIS sensors.  
Table 7. VCLP Voltage Setting  
VCLP CONFIGURATION  
TYPICAL VCLP OUTPUT  
PAGE 0, REGISTER 0x04, BITS[2:0  
(FINAL SILICON TARGETS)  
000  
001  
010  
011  
100  
101  
110  
111  
0.85VA (Default)  
0.9 VA  
0.95 VA  
0.6 VA  
0.55 VA  
0.4 VA  
0.35 VA  
0.15 VA  
7.4.10 Gain and Offset Correction  
Each input channel has individual settings for offset (DAC) and gain (PGA and CDS/SH gain).  
7.4.10.1 Analog Offset  
Analog offset (DAC) settings are individually adjustable for each color. In addition, there are (optionally) separate  
settings for Even and Odd pixels being processed through each color channel. This feature is designed to  
support specific CCD sensors that have two CCD transfer arrays per color, which may introduce different offset  
for the Even versus Odd pixels.  
COLOR1PGA[7:0]  
COLOR1EVENDAC[9:0]  
COLOR1ODDDAC[9:0]  
Black  
Level  
Offset  
DAC  
M
U
X
CDS  
or  
Input Bias/  
Clamping  
PGA  
OS  
R
Sample/Hold  
Amplifier  
Figure 15. Analog Offset Applied Prior to POA  
The Black Level Offset DACs are set with a 9 bit plus sign value. This gives an approximate adjustment range of  
±300 mV or ±600mV when the CDS/SH Gain is set to 1x or 2x.  
The analog offset registers are found at Page 1, Registers 0x04h to 0x0Fh.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.10.2 Digital Offset  
In addition, digital offset can be added to color data at the output of the ADC in the Digital Offset block. The  
digital offsets are a ±6 bit value. This value is summed with the upper 11 bits of the ADC output. Therefore, the  
effective offset range is from +2016 to -2048 lsbs of the ADC output.  
The digital offset registers are found at Page 1, Registers 0x10h to 0x15h.  
16 Bit ADC  
16  
Digital  
Offset  
Figure 16. Digital Offset Applied to ADC Output  
7.4.10.3 Even/Odd Offset Coefficients  
Certain CCD sensors may have different offset voltages for the Even versus the Odd pixels. To optimize the  
image processing of these pixels, separate coefficients can be stored, and applied for the Even and Odd pixels.  
The Even/Odd offset feature is enabled by setting Page 0, Register 0x02h, Bit 0 = 1. Bimodal correction,  
discussed below, is automatically disabled when Even/Odd offset coefficients are enabled.  
Color 1 Even Offset  
Color 2 Even Offset  
Color 3 Even Offset  
Color 1 Odd Offset  
Color 1 Odd Offset  
Color 1 Odd Offset  
Figure 17. Digital Offset - Details of Color and Even/Odd Coefficients  
Analog Gain  
The gain of each input channel can be adjusted at two points in the signal chain.  
CDS/SH Gain - Page 1, Register 0x00h  
A 1x or 2x gain setting is available in the CDS/SH amplifier.  
By default, one common CDS/SH gain setting is used for all input channels. If desired, individual CDS/SH  
gain settings can be used for each input. To enable this feature, set Page 1, Register 0x00h, Bit 2 = 1.  
PGA Gain - Page 1, Registers 0x01h, 0x02h, 0x03h  
An 8 bit PGA (Programmable Gain Amplifier) is also available. The PGA gain curve is non-linear for  
optimal performance in imaging applications, and is shown on the following plot. The approximate gain  
equation is: Gain (V/V) = 180/(277-PGA_Code), Gain (dB) = 20log10(180/(277-PGA_Code)).  
The gain setting registers are found at Page 1, Registers 0x00h, 0x01h, 0x02h and 0x03h.  
34  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Gain (V/V) =  
(180/(277-PGA Code))  
Gain (dB) =  
20LOG10(180/(277-PGA Code))  
8
7
6
5
4
3
2
1
0
0
32  
64  
96  
128  
160  
192  
224  
-1  
-2  
-3  
-4  
PGA Register Value  
Overall Gain (dB) Overall Gain (V/V)  
Figure 18. PGA Gain vs. PGA Gain Code  
Dual Gain Mode - Page 1, Register 0x00h, Bit 1, and Registers 0x16h, 0x17h, 0x18h  
In many scanning systems, the system illumination and optics characteristics will result in a much higher  
optical efficiency in the pixels near the middle of the sensor, compared with the pixels at the beginning  
and end of the sensor. If a single gain setting is used for all pixels, the middle pixels will be near clipping,  
while the ones at the edges can be at 1/2 scale or lower. This results in lower signal to noise for the edge  
pixels. To combat this problem, the LM98725 incorporates an optional Dual Gain system. When enabled,  
the system provides a second set of PGA gain registers to set the “high” gain for each input channel. The  
“normal” gain settings will be applied during the “active/white” pixels, while the “high” gain settings will be  
applied for all pixels before and after the “active/white” pixels (see LM98725 Typical Line Timing and Pixel  
Gain Regions ).  
The Dual Gain enable bit is found at Page 1, Register 0x00h, Bit 1. The High Gain PGA settings are found  
at Page 1, Registers 0x16h to 0x18h.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.11 LM98725 Typical Line Timing and Pixel Gain Regions  
Figure 19. Typical Line Timing and Pixel Gain Regions  
7.4.12 Automatic Black and White Level Calibration Loops  
7.4.12.1 Calibration Overview  
The offset and gain settings in the AFE will normally be set to optimize the range of the sensor output signal  
within the ADC input range. These settings can be calculated in a host ASIC and loaded into the AFE during the  
calibration procedure. To reduce the processing required to do these calculations, the LM98725 has built in  
feedback or calibration loops that will automatically adjust the offset and gain settings. A number of register  
values must be initially set to optimize the calibration for the particular application.  
7.4.12.2 Different Modes for Different Needs  
The calibration features of the LM98725 are not intended to be used during active scanning, but rather before  
scanning begins, or in the page gap between images. Generally, more time is available to perform the initial  
calibration before scanning begins. Page gap calibration must be necessariliy short to ensure the process  
finishes in the limited number of scan lines available.  
The Black and White Fine Tuning, and Black Calibration Only modes can be used during the page gap to adjust  
for small differences in offset/gain that occur over time.  
Black and White Full Calibration should be run before the initial scanning process, or periodically between major  
jobs to take care of larger shifts in offset/gain of the input signal.  
36  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.12.3 Calibration Initiation  
Once these settings have been made, the Register Lock Control bit (Page 0, Register 0, Bit 0) should be set to  
begin converting pixels. Once the sensor data from the test image is stable the calibration process can be started  
by either setting the CAL register bit at Page 0, Register 0x01h, Bit 5, or by applying a logic high to the CAL input  
pin. (Both of these inputs are active when the Register Lock Control is set.) The CAL input pin is particularly  
useful for implementing page gap calibration.  
7.4.12.4 Key Calibration Settings  
Table 8. Key Calibration Settings  
General Settings  
Calibration Mode  
Black Calibration Only  
Page 2, Register 0, Bits[1:0]  
00  
Black and White Full Calibration  
Black and White Fine Tuning  
01  
10  
Number of Lines  
Page 2, Register 1  
Black Loop Specific Settings  
# Black Pixels Averaged  
B lack Target  
Page 2, Register 2, Bits[1:0]  
Page 2, Register 3  
Black Pixels Start  
ADAC Scaling  
Page 2, Register 8  
Page 2, Register 2, Bits[3:2]  
Page 2, Register 2, Bits[5:4]  
Page 2, Register 0, Bit 2  
DDAC Scaling  
DDAC enable/disable  
White Loop Specific Settings  
White Target  
Page 2, Register 5  
White Loop Tolerance  
Page 2, Register 4, Bits[6:3]  
Page 2, Register 4, Bits[2:0]  
Page 2, Register 0x09h, 0x0Ah  
Page 2, Registers 0x0Bh, 0x0Ch  
White Pixel Averaging Window Size  
Active/White Pixels Start  
Active/White Pixels End  
The calibration loops are intended to be used prior to scanning the page or between pages being scanned. The  
black loop calibrates the channel offset such that the ADC outputs the desired code for Optical Black Pixels. The  
white loop calibrates the channel gain such that the ADC outputs the desired maximum white value when  
scanning a white target image.  
The Black Loop and White loop will both update until the # Lines setting is met. Settings of 1 to 254 lines will  
cause the loops to run for that many lines, and then stop. A setting of 255 will cause the calibration loops to run  
indefinitely.  
While using the Auto Black Level Correction Loop, the DAC registers are re-written as required every line the  
loop is running.  
While using the Auto White Level Correction Loop, the PGA registers are re-written as required every line the  
loop is running.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.12.5 General Black Loop Operation  
During calibration, the following general process is performed:  
Beginning at Black Pixels Start, the selected number of black pixels are averaged.  
This Black Average value is compared with the Black Target to give the Black Error value.  
In general, if the Black Average > Black Target, the new DAC values will be lower than the previous ones. If  
the Black Average < Black Target the new DAC values will be higher than the previous ones.  
The ADAC Scaling and DDAC Scaling values are used to balance the speed of convergence against the  
tolerance for noise in the data. The smallest (1/8) scaling values will give slower convergence, but will make  
the system respond more slowly to noisy data. The highest (1/2) will result in the fastest convergence, but will  
respond more quickly to noisy data. The DDAC scaling factor of Linear - 1LSB adjust will result in a maximum  
change of one lsb of the DDAC value, regardless of how great the difference between Black Average and  
Black Target  
The number of Black Pixels to be processed by the algorithm is set at Page 2, Register 2, Bits[1:0]. 4, 8, 16  
or 32 pixels can be averaged together to determine the current Black Value. Averaging the highest number of  
pixels possible for the sensor in use will improve the accuracy and repeatability of the Black Average value.  
The delay from the end of the SH Interval to the first Black Pixel to be processed is set at Page 2, Register 8. A  
delay of up to 255 pixels can be set.  
7.4.12.6 ADAC/DDAC Convergence  
At the beginning of the calibration process, the ADAC will be used to reduce the Black Error as much as  
possible. Once further adjustments of the ADAC can no longer reduce the Black Error, the ADAC adjustments  
will stop and the DDAC will be used. *If users would rather apply digital offset corrections in their ASIC, the  
DDAC corrections can be omitted by setting the DDAC disable bit at Page 2, Register 0x00h, Bit 2.  
Figure 20. Black Loop Timing  
38  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.12.7 General White Loop Operation  
The White Peak value is determined by a moving window average done throughout the Active/White pixels  
region of the line (Refer to LM98725 Typical Line Timing and Pixel Gain Regions). The size of the moving  
window is set at Page 2, Register 4, Bits[2:0]. 4, 8, 16 or 32 (default) pixels are averaged together at a time and  
compared with the previous Peak White value. If the new White Average is greater than the previous Peak White  
value, then the Peak White value is set equal to the White Average. The window is then shifted over to the next  
group of pixels (one window width) and a new average is calculated. This process is repeated until the  
Active/White Pixels End value is reached. The final Peak White value is then compared with the White Target  
value (Page 2, Register 5). The gain settings are then adjusted to make the Peak White value closer to the White  
Target value.  
7.4.12.8 White Loop Modes  
White Full Calibration (Cold start or Pre-Job) - In this mode, the gain settings are completely reset to  
default at the beginning of the loop. The first change or gain decision is whether the CDS/SH gain setting will  
be 1x or 2x. Subsequent decisions are made to adjust the PGA setting to the provide the Peak White value  
that is closest to the White Target value.  
White Fine Tuning (Page Gap Calibration) - In this mode, the previous gain settings are used as the  
starting point. The CDS/ SH gain setting will not be changed. The PGA gain will be increased or decreased  
by one step at a time, to fine tune the gain. This mode is normally used where only minor changes in the  
white level are expected.  
7.4.12.9 Bimodal (Automatic) Correction  
Due to the architecture of the ADC used in the LM98725, it is possible that a small offset in the resulting data will  
be present between the Even and Odd pixels processed by the device. This offset is referred to as a Bimodal  
distribution in the data. It can occur because the signals being procesed go through two different paths to  
achieve the required throughput. Each of these paths can give a slightly different signal offset, resulting in the  
bimodal distribution in output data, for a given fixed input voltage.  
When the automatic Black Level (offset) correction circuit is engaged, a portion of that circuitry automatically  
corrects the bimodal distribution. The bimodal correction applied is stored at Page 1, Registers 0x1Ch, 0x1Dh,  
and 0x1Eh. The stored value is divided by two. Half is added to the Even pixels, and half is subtracted from the  
Odd pixels.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.13 Coarse Pixel Phase Alignment  
Precise placement of the CCD video signal sampling point is a critical aspect in any typical imaging application.  
Many factors such as logic gate propagation delays and signal skew increase the difficulty in properly aligning  
the CCD pixel output signals with the AFE input sampling points. The LM98725 provides two powerful features to  
aid the system level designer in properly sampling the CCD video signal under a large range of conditions. The  
first feature, discussed in this section, is the Coarse Pixel Phase Alignment block. As the name implies, this block  
provides a very coarse range of timing adjustment to align the phase of the CCD Pixel output with the phase of  
the LM98725 sample circuit. The second feature, discussed in Internal Sample Timing, is the block which is  
designed for fine tuning of the sampling points within the selected Coarse Pixel Alignment Phase. A small portion  
of a typical imaging application is shown in Figure 21.  
SH  
φ1Α  
LM98724 CCD  
Timing Generator  
Outputs  
φ2Α  
OS3  
CCD/CIS  
Sensor  
OS2  
LM98724  
Output Data Bus  
OS1  
Input Clock  
(INCLK)  
Figure 21. Typical AFE/CCD Interface  
As shown in Figure 21, the LM98725 provides the timing signals to drive the CCD using external logic gates to  
drive the high capacitance CCD clock pins. The pixels are shifted out of the CCD, through the emitter follower  
buffers and received by the LM98725 inputs for processing.  
40  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
In an ideal application, depicted in Figure 22, the Pixel output signal would be in phase with the timing signals  
that drove the CCD. The LM98725 input sampling clocks (CLAMP and SAMPLE) are adjustable within a pixel  
period. By default, the pixel period (or pixel “phase”) is defined to be in line with the input clock. As shown in the  
ideal case in Figure 22, CLAMP and SAMPLE can be properly adjusted to their ideal positions within the pixel  
phase, shown below at the stable region near the end of the pedestal and data phases.  
Figure 22. Clock Alignment in an Ideal Application  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
However, in a real system , propagation delays exist in all stages of the signal chain. These propagation delays  
will lead to a shift in the CCD Pixel outputs with respect to the LM98725 input clock. The phase shift of the CCD  
Pixel output, demonstrated in Figure 23, can lead to significant sample timing issues if not properly corrected.  
Figure 23. CCD Output Phase Shift in a Real Application  
In the default mode, the LM98725 sampling is performed during a clock period whose phase is aligned with the  
input clock (ignoring any clock tree skew for the moment). The actual sampling clocks are adjustable within the  
clock period, as shown in Figure 23 (shown for CDS mode in the diagram) and further described in the Internal  
Sample Timing section. As shown in the diagram, the delay of the CCD Pixel output is shifted far enough that the  
fine CLAMP and SAMPLE clocks cannot be placed in a stable portion of the waveform. To remedy this situation,  
the LM98725’s Coarse Pixel Phase Alignment feature allows the designer to shift the entire phase of the analog  
front end with respect to the input clock. This allows the designer to choose one of four sampling phases which  
best matches the delay in the external circuitry. Once the “Coarse Pixel Phase” has been chosen, the designer  
can then fine tune the sampling clocks using the fine adjustment (see Internal Sample Timing.)  
The four available Coarse Pixel Phases (PIXPHASE0 - PIXPHASE3) are depicted in Figure 24 (Mode 3),  
Figure 25 (Mode 2) and Figure 26 (Mode 1). Also shown in the diagrams are the external input clock (INCLK)  
and a typical CCD output delayed from the input clock.  
42  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 24. Mode 3 Coarse Pixel Adjustment  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 25. Mode 2 Coarse Pixel Phase Adjustment  
44  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 26. Mode 1 Coarse Pixel Phase Adjustment  
7.4.14 Internal Sample Timing  
A typical CCD input signal is depicted in Figure 27 and Figure 28. Also shown are the internally generated  
SAMPLE and CLAMP pulses. These signals provide the sampling points of the input signal (OSX). The timing of  
SAMPLE and CLAMP is derived from an internal system clock (SYSCLK).  
The pixel’s reference level input (depicted as VREF) is captured by the falling edge of the CLAMP pulse. In  
Sample/Hold Mode the VREF input is a sample of the VCLP DC voltage. In CDS Mode the CLAMP pulse samples  
the pedestal Level of the CCD output waveform.  
The pixel’s signal level input (depicted as VSIG) is captured by the SAMPLE pulse. In either Sample/Hold or CDS  
Mode, the VSIG input is the signal level of the CCD output waveform.  
The LM98725 provides fine adjustment of the CLAMP and SAMPLE pulse placement within the pixel period. This  
allows the user to program the optimum location of the CLAMP and SAMPLE falling edges. The available fine  
tuning locations for CLAMP and SAMPLE are shown in Figure 29 and Figure 30 for each sampling mode (CDS  
or S/H) and channel mode (3, 2, or 1 Channel).  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 27. Pixel Sampling in CDS Mode  
46  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 28. Pixel Sampling in S/H Mode  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 29. 3 Channel (Mode 3) CLAMP and SAMPLE Timing  
48  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 30. 1 or 2 Channel (Mode 1, Mode 2) CLAMP and SAMPLE Timing  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.14.1 CCD Timing Generation  
A flexible internal timing generator is included to provide clocking signals to CCD and CIS sensors. A block  
diagram of the CCD Timing Generator is shown in Figure 32.  
Figure 31. CCD Timing Generation  
l o r t n o C t r e v n I  
e c n e u q e S l a v r e t n I l e x i P  
Figure 32. CCD Timing Generator Block Diagram  
50  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
 
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Examples of the various operating modes and settings are shown in Figure 33 through Figure 36. The detailed  
pixel timing is somewhat dependent on the operating modes of the AFE circuitry regarding the number of  
adjustment points for the on and off points of the different timing outputs.  
NOTE: In addition to the timing adjustments shown, the polarity of all sensor clock signals can be adjusted by  
register control.  
Figure 33. Pixel Timing - 42 Timing Points Per Pixel in Mode 3  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 34. Pixel Timing - 28 Timing Points Per Pixel in Mode 2 and Mode 1  
52  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 35. Pixel Timing - Normal or 1/2 Rate Timing for High Resolution Sensors  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 36. Pixel Timing - Independent Inversion of Each Output  
54  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.14.2 SH Interval Details - Multiple States Defined within SH Interval  
In the LM98725, each SH Interval (the period when the high speed pixel timing is stopped) can have a selected  
number of “States”, with each “State” having a specified duration. In the most common usage, each SH Interval  
is the same, and there can be as many as 31 defined States within the SH Interval. During each State, the logic  
level of each output signal can be defined as 1 or 0. The duration of the State, and the logic levels of the signals  
are defined in configuration registers on register pages 3, 4 and 5.  
Each State basic duration can be from 1 to 255 pixel periods. There is also a multiplier of 2x, 4x, 8x or 16x (Page  
2, Register 0x17) that will increase SH State durations for sensors that require long SH pulse widths.  
If less than the maximum number of states are required, the first 0 duration State in the SH Interval will terminate  
processing. At the end of the SH Interval, a glitchless transition to pixel timing will occur. Similarly, at the end of  
the pixel timing, a glitchless transition to the first state in the SH Interval will occur.  
Some more complex sensors require different SH Interval timing in some sequence. The LM98725 can support  
up to 4 different SH Interval Timings. The available 31 states are divided as follows when higher numbers of SH  
Intervals are used:  
Table 9. States within SH Intervals  
AVAILABLE STATES  
# of SH Intervals  
SH Interval 1  
0 to 30  
0 to14  
SH Interval 2  
n/a  
SH Interval 3  
n/a  
SH Interval 4  
1
2
3
4
n/a  
n/a  
15 to 30  
10 to 19  
7 to 14  
n/a  
0 to 9  
20 to 30  
15 to 22  
n/a  
0 to 6  
23 to 30  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 37. Sensor Timing SH Interval Details - Single SH Interval  
56  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
An example showing a 4 SH Interval sequence is shown in Figure 38 through Figure 41.  
Figure 38. Sensor Timing SH Interval Details - Multiple SH Intervals - 1 of 4  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 39. Sensor Timing SH Interval Details - Multiple SH Intervals - 2 of 4  
58  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 40. Sensor Timing SH Interval Details - Multiple SH Intervals - 3 of 4  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 41. Sensor Timing SH Interval Details - Multiple SH Intervals - 4 of 4  
60  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.14.3 SH Outputs - Low Speed Line Timing Usage  
While the PHI, RS and CP outputs generate high speed timing during the pixel portion of the line, the SH outputs  
can be used to generate low frequency signals during this period. This can be useful to generate “mode” or  
“resolution” control signals for certain sensors.  
Each SH output has a programmed ON and OFF point within the line. These points are programmed with a 16  
bit value that sets the pixel number where the transition occurs.  
Programming ON and OFF in different orders will allow pulses that are normally low or normally high, always  
high, always low, and so on. A common 1x, 2x, or 4x multiplier (Page 2, Register 0x15) can be used to increase  
the range (and reduce the resolution) of these ON/ OFF points, as well as the White/Active and Line Length  
pixels settings.  
SH Interval  
Waveform set by SH  
Interval Sequence  
ON < OFF  
ON > OFF  
ON  
OFF  
ON  
OFF  
ON < OFF  
ON  
ON  
OFF  
ON < OFF, OFF = 0xFFFFFFFF  
ON > OFF, ON = 0xFFFFFFFF  
ON = 0, OFF = 0xFFFFFFFF  
OFF = 0, ON = 0xFFFFFFFF  
OFF  
ON  
OFF  
Figure 42. Sensor Timing SH ON/OFF Details - Example Settings and Waveforms  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.14.4 Controlled Inversion  
When using multiple SH Intervals, it is possible to invert the pixel portion of the line for any of the output signals  
in any of the 4 Lines in the sequence. There is one bit per signal (or pair of signals for PHIA, PHIB and PHIC),  
for each of the 1 to 4 lines in the sequence. Setting the bit for a particular output and line in the sequence will  
cause the pixel portion of that line to be inverted. The transition to the next line in the sequence occurs at the  
end of the SH Interval. Inversion can affect both the high speed timing signals (PHIx, RS, CP) and the low speed  
ON/OFF behavior of the SH signals.  
Below is an example of Polarity Override with a 2 Line sequence. Note that the PHIA1, SH1, SH2 and SH3  
signals are inverted in Line 2, while all other signals are at the default polarity for both lines.  
SH Interval 1  
Line 1  
SH Interval 2  
Line 2  
SH Interval 1  
RS  
PHIA1  
SH1  
SH2  
SH3  
SH4  
SH5  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
Polarity  
Override  
Settings  
Polarity  
Override  
Settings  
SH Interval signal levels are set by SH Interval Information  
Polarity for pixel portion of lines can be adjusted by Polarity Override Settings – Page 7, Registers 0x14 to 0x1D  
Figure 43. Sensor Timing Mode Pin Output Details - Active Programmed Transition  
62  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.15 CCD Timing Generator Master/Slave Modes  
The internal Sensor Timing generator is capable of operating in Master Mode or in Slave Mode. The  
Master/Slave operation is configured with the Master Mode Select bit (Page 0, Register 0x00, bit 1). In either  
Master or Slave Mode, control bit data can be included in the LM98725 output data to indicate when each new  
scan is starting as well as pixel information such as color, type (active, black, dummy, and so on), and the  
beginning of each line.  
7.4.15.1 Master Timing Generator Mode  
In Master Timing Mode (Page 0, Register 0x00, bit 1 = 1), the LM98725 controls the entire CCD Timing  
Generation based on INCLK and the Register Lock Bit (Page 0, Register 0, Bit 0) state. The Register Lock bit is  
set by the user to initiate a new scan. The LM98725 controls when each new line of the scan begins and ends  
based on the CCD Timing Generator register settings. Scanning is enabled as long as the Register Lock bit = 1.  
The period of the line (integration time) is controlled by the SH Interval State Length settings (Page 3 Registers)  
and the Line Length setting (Page 3, Registers 0x0D and 0x0E) as well as the Pixel Multiplier Factor (Page 2,  
Register 0x0F) and SH State Length Multiplier (Page 2, Register 0x11) .  
The line period from end of one SH Interval to the end of the next SH Interval is equal to:  
Line Period = (Sum of SH Interval States x SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier  
Factor) pixels  
7.4.15.2 Slave Timing Generator Mode  
In Slave Timing Mode (Page 2, Register 0x00, bit 1 = 0), the LM98725 CCD Timing Generator is controlled by  
the external SH_R pin. Each new line of a scan is initiated by an SH_R pulse. The period of the line (integration  
time) is mainly controlled by the period of the incoming SH_R signal. The minimum period between SH_R pulses  
should be at least the SH Interval duration as calculated above, plus the number of pixels to be clocked out of  
the CCD or CIS sensor.  
tSHR_H  
tSHR_S  
SH_R  
INCLK  
Figure 44. SH_R to INCLK (PIXCLK or ADCCLK) Timing  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.15.3 Multiple SH Intervals  
Multiple SH Intervals are supported for those CCD sensors that has different waveform and timing requirements  
during successive SH Intervals. Up to 4 different SH Intervals are supported.  
In the Multiple SH Interval mode, the Line Period can be different for each line, due to the possible different  
settings for SH Interval duration. In that case the Line Periods would be calculated as follows:  
Line Period1 = (Sum of SH Interval States1 x SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier  
Factor) pixels  
Line Period2 = (Sum of SH Interval States2 x SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier  
Factor) pixels  
Line Period3 = (Sum of SH Interval States3 x SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier  
Factor) pixels  
Line Period4 = (Sum of SH Interval States4 x SH State Length Multiplier) + (Line Length Setting x Pixel Multiplier  
Factor) pixels  
In multiple SH Interval mode, the SH Interval States are subdivided as follows:  
Table 10. SH Interval States Subdivision  
SH INTERVAL 1  
STATES  
SH INTERVAL 2  
STATES  
SH INTERVAL 3  
STATES  
SH INTERVAL 4  
STATES  
# SH INTERVALS  
1
2
3
4
0 to 30  
0 to 14  
0 to 9  
15 to 30  
10 to 19  
7 to 14  
20 to 30  
15 to 22  
0 to 6  
23 to 30  
64  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.15.4 Support for CIS Sensors  
In CIS Sensor modes, the SH (LampR), SH2 (LampG), SH3 (LampB) and SH4 (LampIR) outputs are configured  
as Lamp illumination control outputs. In CIS mode, the number of lines/colors in the lamp sequence is selected  
by the Multiple SH Interval setting at Page 2, Register 10h, Bits 1:0. Sequences of 2, 3 or 4 lines/colors are  
supported in CIS mode. By definition, the standard CCD timing mode is equivalent to a CIS mode with length =  
1.  
Two different CIS modes are supported (CISa and CISb, selected at Page 2, Register 0x10h, Bits 4:3):  
In CISa, there can be 2, 3 or 4 colors in the sequence, to support sensors with as many as 4 different lamp  
colors. In this mode, the PGA and DAC settings are controlled by the channel settings, regardless of what line in  
the sequence is being processed.  
Figure 45. Mode 3, 3 Color Sequence, CISa Default  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
In CISb, there are 2 or 3 colors in the sequence. In this mode, the PGA and DAC settings are controlled by the  
color in the sequence that is being processed. For example, when a Red line of data (exposed using the SH1 or  
LampR output) is being processed, the Red channel PGA and DAC settings are used for all input channels.  
When the SH2/LampG (Green) line of data is being processed, the Green PGA and DAC settings are used for all  
input channels. and so on.  
Figure 46. Mode 3, 3 Color Sequence, CISb  
66  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
In CISb, when a 2 line sequence is selected, it is necessary to choose which coefficients are used during the 2  
different lines in the sequence. this selection is made with the CISb Color Coefficient Select at Page 2, Register  
10h, Bits 6:5. Following is an example of a 2 color sequence, where Red and Green are the selected colors:  
Use Page 2, Register 10h, Bits 6:5 to choose which SHx Lampx outputs are used, and which coefficients are used in  
CISb 2 color sequence.  
Figure 47. Mode 3, 2 Color Sequence, CISb  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
To support monochrome scanning with an RGB CIS, select Mode 3, and a 1 line sequence. The LampR, LampG  
and LampB On/Off times will apply for every line. The On/Off times and relative channel gains can both be  
adjusted to achieve the desired white balance. Lamps can be on either simultaneously if the CIS and power  
budget allow, or sequentially.  
Figure 48. Mode 3, Mono – 1 Color, CCD Timing Lamps can be on simultaneously , or sequentially within  
each line  
7.4.15.5 LVDS Output Format - LM98714 Mode  
7 Bit Frame  
TXCLK  
TXOUT2  
TXOUT1  
TXOUT0  
CB[1]  
CB[0]  
DB[9]  
DB[15]  
DB[8]  
DB[14]  
DB[7]  
CB[4]  
CB[3]  
CB[2]  
CB[1]  
CB[0]  
DB[9]  
DB[15]  
DB[8]  
DB[14]  
DB[7]  
n-1  
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
n
n
n
DB[10]  
DB[3]  
DB[13]  
DB[6]  
DB[12]  
DB[5]  
DB[11]  
DB[4]  
DB[10]  
DB[3]  
n-1  
n-1  
n-1  
n
n
n
n
n
n
DB[2]  
DB[1]  
DB[0]  
DB[2]  
DB[1]  
DB[0]  
n
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
n
Pixel “n-1”  
Pixel “n”  
Figure 49. LVDS Output Bit Alignment and Data Format  
68  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.16 LVDS Control Bit Coding - LM98714 Mode  
The 5 control bits included in the LVDS data stream are coded as follows:  
The "active" and "black" pixel tags are programmable tags that the LM98725 provides in order to identify how  
many pixels have been processed since the falling edge of SH.  
Which pixels are given "Active" and "Black" CB tags is controlled by Page 2, Registers 0x02, 0x08-0x0C, and  
0x0F. (# Black Pixels Averaged, Black Pixels Start, Active/White Pixels Start, Active/White Pixels End, and Line  
Length Multiplier).  
The LM98725 counts the number of pixel periods after the SH Interval: If the number of pixel periods after the  
SH Interval is greater than (Black Pixels Start) and less than (Black Pixels Start + # Black Pixels Averaged) the  
CB bits will indicate that the pixel is a Black pixel. If the number of pixel periods after the falling edge of SH is  
between Active/White Pixels Start and Active/White Pixels End, the CB bits will indicate that the pixel is an Active  
pixel.  
7.4.16.1 Latency Compensation of CB Bits  
By default, the CB bits will be compensated for the latency through the AFE signal chain. This compensation can  
be turned off by setting Page 8, Register 0x08, Bit 2 = 1.  
Table 11. Latency Compensation of CB Bits, CB[4]  
CB[4]  
DESCRIPTION  
Not the beginning of line  
0
1
Beginning of Line (This bit is high during the SH Interval)  
Table 12. Latency Compensation of CB Bits, CB[3:0]  
CB[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
DESCRIPTION  
Dummy Pixels  
Red Active Pixels  
Green Active Pixels  
Blue Active Pixels  
IR1 Active Pixels  
IR2 Active Pixels  
Red Black Pixels  
Green Black Pixels  
Blue Black Pixels  
IR1 Black Pixels  
IR2 Black Pixels  
Beginning of Scan  
1111  
(This bit is high during the SH Interval of the first line after the Lock Bit transitions from low to high)  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.17 Flexible LVDS Formatting Mode: Mapping  
7 Bit Frame  
TXCLK  
TXOUT2  
TXOUT1  
TXOUT0  
DB[12]  
DB[4]  
DB[11]  
DB[7]  
DB[10]  
DB[3]  
DB[9]  
DB[2]  
DB[15]  
DB[8]  
DB[14]  
n
DB[13]  
DB[6]  
DB[12]  
DB[5]  
DB[11]  
DB[4]  
DB[10]  
DB[3]  
DB[9]  
DB[2]  
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
n
DB[7]  
n
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
n
CB[3]  
CB[2]  
CB[1]  
CB[0]  
DB[1]  
DB[0]  
n
CB[4]  
CB[3]  
CB[2]  
CB[1]  
CB[0]  
n
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
Pixel “n-1”  
Pixel “n”  
Figure 50. LVDS Output Bit Alignment and Data Format  
In Flexible LVDS Formatting Mode, the values highlighted in red can be substituted with other CB tag  
information. The table below shows the different CB information that can be selected:  
Table 13. Selectable CB Tag Information  
SETTING  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1100  
1111  
CB TAG INFORMATION  
Original CB or Data  
CBO0 from LM98714 definition  
CBO1 from LM98714 definition  
CBO2 from LM98714 definition  
CBO3 from LM98714 definition  
CBO4 from LM98714 definition  
R - High for a red channel pixel  
G - High for a green channel pixel  
B - High for a blue channel pixel  
Parity - 21 bit if TXOUT0 Enabled, 14 bit if TXOUT0 Disabled  
Ping - High for pixels processed by the Ping section of a channel, low for Pong  
Line# lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
Line# msb  
Black Loop Pixels - High for pixels processed by the Black Loop  
White Loop Pixels - High for pixels process by the White Loop  
CLP Pixels - High for pixels where the input CLP switch is closed  
70  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.17.1 TXOUT0 Disable  
The TXOUT0 data pair can be disabled. In combination with the new Flexible LVDS Formatting Mode, this can  
support applications where only the upper 14 MSB of data are required. This will save one pair of LVDS wires in  
the cable, and reduce the LM98725 slightly.  
In addition, if fewer than 14 bits are required, the D2 and D3 bits can be replaced with the desired CB  
information, selected from the above table.  
7.4.17.2 Parity  
A parity bit is available for use as one of the CB bits. Parity is calculated based on all bits being sent via the 21  
or 14 bit LVDS link except:  
If any bit is selected to transmit CB Parity, it will not be used in the calculation  
If any bit is transmitting a scrambler key bit when scrambler mode 2 is selected, it will not be used in the  
calculation.  
The total parity across the 21 or 14 output bits (excluding any scrambler key bit) will be even.  
7.4.17.3 Latency Compensation of CB Bits  
By default, the CB bits will be compensated for the latency through the AFE signal chain. This compensation can  
be turned off by setting Page 8, Register 0x08, Bit 2 = 1.  
7.4.18 LVDS Data Randomization for EMI Reduction  
While LVDS transmissions will inherently reduce the amount of electromagnetic energy, further reductions can be  
achieved by randomizing the data being sent over the link. A built in “scrambler” feature provides a number of  
different modes to suit different applications and host processing capabilities. One key part of the scrambler is a  
linear feedback shift register (LFSR) implementation to provide pseudo-random sequence “keys” to randomize  
the image data. The basic implementation of an LFSR is shown below:  
XOR  
...  
20 19 18  
2
1
0
Figure 51. LFSR Implementation  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
The LFSR algorithm used in the LM98725 is an n=21 maximal length right-shift implementation as shown above.  
As a reference for FPGA and ASIC developers, the sequence is the same as that created by the Synopsys DW  
component DW03_lfsr_load with inverted outputs. The preload or starting value for the sequence is 0x000001h.  
If the prs (serial-type) output is selected (MODE = 01, SUB_MODE = 0X), the 21 bits of the LFSR are shifted one  
position to the right on each TXCLK.  
For clarity, the first 11 values in the prs sequence are:  
0x000001h  
0x100000h  
0x080000h  
0x040000h  
0x020000h  
0x010000h  
0x008000h  
0x004000h  
0x002000h  
0x001000h  
0x000800h  
If the pprs (parallel-type) output is selected (MODE = 01, SUB_MODE = 1X), the next 21 coefficients of the shift-  
in term are calculated in parallel, and the LFSR is loaded with these coefficients: the effect is equivalent to  
clocking the LFSR 21 times in serial mode. For clarity, the first 11 values in the pprs sequence are:  
0x000001h  
0x080001h  
0x020001h  
0x0A8001h  
0x002001h  
0x082801h  
0x022201h  
0x0AAA81h  
0x000021h  
0x080029h  
0x120023h  
72  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
A summary and description of each of the modes and submodes is shown in Table 14.  
Table 14. Mode and Submode Summary  
MODE  
PAGE 0  
REGISTER 0x05  
BITS 4:3  
SUB_MODE  
PAGE 0  
REGISTER 0x05  
BITS 2:1  
DESCRIPTION  
00  
Scrambler Disabled  
full scrambler enabled. sub-mode settings select:  
send lvds_data[20:0] bitwise XOR with prs[20:0]  
send prs[20:0]  
00  
01  
10  
11  
01  
send lvds_data[20:0] bitwise XOR with pprs[20:0]  
send pprs[20:0]  
1 bit scrambler with key of prs[0]  
send lvds_data[20:0] bitwise XOR with prs[0], with lvds_data[k] = 0  
send prs[0] on lvds_out[k]  
k is selected with following settings:  
00  
01  
01  
10  
11  
k = 0 (DB0 in CMOS and 714 modes, CB0 in flexible, 16 bit mode)  
10  
k = 5 (DB0 (LSB) in flexible, 16 bit mode)  
k = 7 (DB2 (LSB) in flexible, 14 bit mode)  
k = 16 (CB0 in 714 mode)  
k = 20 (CB4 in 714 mode)  
1 bit scrambler with key of lvds_data[k].  
send lvds_data[20:0] bitwise XOR with lvds_data[k]  
with lvds_out[k] = lvds_data[k]  
00  
k = 0 (DB0 in CMOS and 714 modes, CB0 in flexible, 16 bit mode)  
11  
01 (TXOUT0 Disable = 0) k = 5 (DB0 (LSB) in flexible, 16 bit mode)  
01 (TXOUT0 Disable = 1) k = 7 (DB2 (LSB) in flexible, 14 bit mode)  
10  
11  
k = 16 (CB0 in 714 mode)  
k = 20 (CB4 in 714 mode)  
7.4.18.1 Mode 00: Scrambler Disabled  
Mode 00: Scrambler Disabled  
7.4.18.2 Mode 01: Full Scrambler Using the full 21-bit Pseudo Random Sequence  
There are 4 sub-modes: (a) the 21-bit output will be bit-wise XORed with the 21-bit serial pseudo-random  
sequence. that is, lvds_data[20:0] ^ prs[20:0]; (b) the 21-bit serial pseudo random sequence will be output  
directly; (c) the 21-bit output will be bit-wise XORed with the 21-bit parallel pseudo-random sequence. that is,  
lvds_data[20:0] ^ pprs[20:0]; (d) the 21-bit parallel pseudo random sequence will be output directly. In all sub-  
modes, the sequences start m clock cycles after the de-assertion of the bol where m is defined as the analog  
latencies in 1-ch, 2-ch and 3-ch modes. In other words, the output starts the same way as the up-count test  
pattern mode. Unlike the up-count test pattern mode, the 21-bit pseudo-random sequence runs at the ADC  
(same as TXCLK) rate, not pixel or line rate.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.18.3 Mode 10: One Bit Scrambler Using the PRS Shift Bit Only, Sending This Bit Out on a CB Bit  
Each bit of lvds_data[20:0] is XORed with prs[0]. One selected bit, lvds_data[k] is replaced with 0 before the  
XOR procedure. The resulting output lvds_out[20:0] has bit k replaced by prs[0]. The bit k selection is flexible to  
support different mappings of lvds_out depending on output settings as follows:  
LVDS Mapping - 714 Default Mode versus Flexible Mode (Since the location of CB bits changes depending  
on which is selected) Mapping select is at Page 8, Register 8, Bit 0.  
CMOS Mode versus LVDS Mode (since only lvds_out[15:0] are available in CMOS mode) CMOS/LVDS mode  
select at Page 0, Register 5, Bit 7.  
LVDS 3 Pair Mode versus LVDS 2 Pair Mode (Since TXOUT0 pair is disabled in 2 Pair Mode(txout0_dis=1))  
TXOUT0 Disable at Page 8, Register 8, Bit 1.  
(1) If an output bit is replaced with the scrambler key, that bit position/value is excluded from the calculation of the parity.  
Figure 52. lvds_out[20:0] Mapping in Different Modes  
74  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.18.4 Mode 11: “LSB” Scrambler  
The “LSB” selected from lvds_data[k] is used to scramble the output. The lvds_data[20:0] key bit k, as selected  
in Mode 10 above is used (as the “LSB”) to XOR the other bits. The key bit itself is not replaced.  
7.4.18.5 Scrambler Inhibit Bit Select  
This feature allows individual bits in the LVDS output stream to be non-scrambled. This can be used as a setup  
and debugging aid during initial system development, or as a permanent feature to simplify the data decoding  
task. The tradeoff will be somewhat compromised EMI reduction over a fully scrambled LVDS data stream.  
The controls for this feature are located as follows:  
Scrambler Inhibit 0 - Page 8, Register 0x12h, Bits 6:0 - LVDS[6:0]  
Scrambler Inhibit 1 - Page 8, Register 0x13h, Bits 6:0 - LVDS[13:7]  
Scrambler Inhibit 2 - Page 8, Register 0x14h, Bits 6:0 - LVDS[20:14]  
7.4.19 LVDS Drive Strength Adjust  
The LVDS outputs may be decreased in strength to reduce EMI generation, or increased in strength to improve  
noise immunity.  
Page 8, Register 8, Bits 5:4 can be adjusted as follows (in terms of VOD into 100 Ω termination):  
Table 15. LVDS Strength  
00  
01  
10  
11  
Decrease of approximately 100 mV  
Decrease of approximately 50 mV  
Default - approximately 350 mV  
Increase of approximately 50 mV  
7.4.20 LVDS Output Timing Details  
INCLK  
t
IDO  
7 Bit Frame Period  
TXCLK  
(single ended)  
Pixel “n-1”  
Pixel “n”  
TXOUT2  
(single ended)  
CB[1]  
CB[0]  
DB[9]  
DB[15]  
DB[14]  
CB[4]  
CB[3]  
CB[2]  
CB[1]  
n
CB[0]  
DB[9]  
DB[15]  
DB[8]  
DB[14]  
DB[7]  
n-1  
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
n
n
TXOUT1  
(single ended)  
DB[10]  
DB[3]  
DB[8]  
DB[7]  
DB[13]  
DB[12]  
DB[5]  
DB[11]  
DB[4]  
DB[10]  
n
n-1  
n-1  
n-1  
n
n
n
n
n
TXOUT0  
(single ended)  
DB[2]  
DB[1]  
TX  
DB[0]  
DB[6]  
DB[3]  
n
DB[2]  
DB[1]  
DB[0]  
n
n-1  
n-1  
n-1  
n-1  
n
n
n
n
n
TX  
pp0  
pp1  
TX  
pp2  
TX  
pp3  
TX  
pp4  
TX  
pp5  
TX  
pp6  
Figure 53. LVDS Data Output Mode Specification Diagram  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.20.1 Optional TXCLK Delay  
The LM98725 includes a selectable (off by default) delay of TXCLK. This delay can be enabled (Page 8, Register  
0x08, Bit 3) to improve timing margin between the TXCLK and TXOUTx signals when using certain LVDS  
deserializers. The default/off setting is intended to be compatible with the LM98714 LVDS timing.  
7.4.21 LVDS Data Latency Diagrams  
Figure 54. Mode 3 LVDS Data Latency  
76  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Figure 55. Mode 2 LVDS Data Latency  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Figure 56. Mode 1 LVDS Data Latency  
78  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.22 Data Test Patterns  
The data test patterns present different data to the input of the LVDS serializer block. There are two basic groups  
of test patterns:  
LVDS Output Pattern Modes - These patterns are applicable to all 21 bits of the LVDS interface.  
AFE Output Pattern Modes (Default) - These patterns are applicable to the 16 bit AFE data sent to the LVDS  
interface.  
All Test Pattern Modes are selected at Page 0, Register 6.  
7.4.22.1 LVDS Output Pattern Modes  
7.4.22.1.1 Worst Case Transitions (Alternating 0x2A/0x55 on Each LVDS Pair)  
This test mode provides an LVDS output with the maximum possible transitions. This mode is useful for system  
EMI evaluations, and for ATE timing tests.  
The effective data values are an alternating pattern between 21’b101010101010101010101 (0x155555) and  
21’b010101010101010101010 (0x0AAAAA). This test pattern resets to 0x155555 at the selected event (BOL or  
BOS).  
Figure 57. LVDS Output Pattern Modes  
7.4.22.1.2 Fixed Output Data  
This mode sends a fixed repeating data pattern to each of the indicated LVDS output pairs. This is useful for  
system debugging of the LVDS link and receiver circuitry. There are 4 different choices within this mode:  
0x2A (0101010b) (All 3 data pairs)  
0x55 (1010101b) (All 3 data pairs)  
(0000000b) (*All 3 data pairs + clock pair)  
0x7F (1111111b) (*All 3 data pairs + clock pair)  
*Since the 0x00 and 0x7F patterns also affect the clock pair, they cannot be used for deserializer and  
downstream testing. They are useful for DC measurements of the LVDS outputs.  
7.4.22.2 AFE Output Pattern Modes  
There are 3 different types of AFE Output Patterns:  
Normal ADC/AFE output (Default)  
Up-Counter Data  
Fixed AFE Patterns  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.22.2.1 Up-Counter Data  
The counter will be reset to 0xFFFF during the BOS (Beginning Of Scan) SH Interval. When the AFE up-counter  
is selected, the ramp begins at the BOS, and increments by 1 at either the pixel rate or at the line rate (every  
BOL). This data can be useful as it can provide a grayscale image that increases in intensity down the “page”.  
Alternately, it can provide data that increments at the pixel rate. Either of these forms can be very useful in  
debugging the downstream data processing system.  
7.4.22.2.2 Fixed AFE Pattern  
The fixed AFE patterns allow the CB coding information to be sent normally, while specific data is used to  
replace the AFE output. This can be useful in debugging portions of the downstream data processing system.  
0xFF00 (0x1111111100000000b) fixed data  
0xAA55 (0x1010101001010101b) fixed data  
0x0000 (0x0000000000000000b) fixed data  
0xFFFF (0x1111111111111111b) fixed data  
0x00FF (0x0000000011111111b) fixed data  
0x55AA (0x0101010110101010b) fixed data  
7.4.23 CMOS Output Format  
Figure 58. CMOS Data Output Format (Mode 3 Shown)  
80  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.24 CMOS Output Data Latency Diagrams  
INCLK =  
ADCCLK  
tLAT3  
tLAT3  
tLAT3  
tLAT3  
PIXPHASE0  
PIXPHASE1  
PIXPHASE2  
PIXPHASE3  
OSR  
OSG  
OSB  
CLKOUT  
DOUTx  
MSB  
LSB  
Data latency shown is for Mode 3 in relation to PIXPHASE0 with the processing order set to OSRDOSGDOSB. If the incoming pixels are not aligned with  
PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.  
Figure 59. Mode 3 CMOS Output Latency  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
INCLK =  
ADCCLK  
tLAT2  
tLAT2  
tLAT2  
tLAT2  
PIXPHASE0  
PIXPHASE1  
PIXPHASE2  
PIXPHASE3  
OSR  
OSG  
OSB  
CLKOUT  
DOUTx  
MSB  
LSB  
Data latency shown is for Mode 2 in relation to PIXPHASE0 with the processing order set to OSGDOSB. If the incoming pixels are not aligned with  
PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.  
Figure 60. Mode 2 CMOS Output Latency  
82  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
INCLK =  
ADCCLK  
tLAT1  
tLAT1  
tLAT1  
tLAT1  
PIXPHASE0  
PIXPHASE1  
PIXPHASE2  
PIXPHASE3  
OSR  
OSG  
OSB  
CLKOUT  
DOUTx  
MSB  
LSB  
Data latency shown is for Mode 1 in relation to PIXPHASE0 with the processing channel configured to OSR. If the incoming pixels are not aligned with  
PIXPHASE0, one of the remaining PIXPHASEs can be selected as the sampling phase without effecting the output data location.  
Figure 61. Mode 1 CMOS Output Latency  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.4.25 Serial Interface  
A serial interface is used to write and read the configuration registers. The interface is a four wire interface using  
SCLK, SEN, SDI and SDO connections. SDI and SDO can be connected together to support the same format  
and connectivity as previous LM98714 designs. The CE pin should be tied to GND to support LM98714  
compatible communications. This will set the device address bits to 00.  
Table 16. Serial Interface "CE" Pin Definition  
CE LEVEL  
VD  
ADDRESS  
01  
10  
00  
Float  
GND  
The main input clock (INCLK) to the LM98725 can be active or stopped when accessing the Serial Interface.  
Care should be taken to avoid stopping or starting the INCLK during Serial Interface communication.  
NOTE  
After either starting or stopping INCLK, or after Software Reset (Register Page 0, Address  
1, [4:3]), users should wait for 50 ms to allow the internal PLL and logic to stabilize before  
resuming Serial Interface communications.  
7.4.25.1 Serial Interface Operating Modes  
LM98714 Compatible Mode (Default) - By default the serial interface is compatible with the LM98714  
interface, allowing SDI and SDO to be connected and driving by a single pin on the host.  
LM98725 4 Wire 16+ Clock Mode (Default) - The 4 Wire 16+ Clock Mode is essentially the same as the  
LM98714 Compatible Mode, but using all 4 wires, with separate SDO and SDI signals between the Host and  
Slave. This requires additional wires, but removes the need for a bidirectional signal. A valid transaction is  
recognized after a minimum of 16 SCLK while SEN is low.  
LM98725 25+ Clock Mode (Selected when Page 0, Register 0x01h, Bit 7=1) - This mode forces the serial  
interface logic to only process a transaction with 25 or more SCLK while SEN is low. This mode can be used  
with either 3 or 4 wire connections.  
In all of the above cases, the final 16 bits on SDI (before the rising edge of SEN) are processed by the serial  
interface logic. Any earlier information on SDI is ignored.  
7.4.25.2 Serial Interface in Absence of MCLK  
Clockless (MCLK stopped) Mode (always enabled if MCLK stopped) - When the input MCLK is stopped,  
Data Read operation is exactly the same as MCLK present mode. The Data Write operation no longer  
provides a free readback of the previously written data. See Figure 64 and Figure 66.  
7.4.25.3 Writing to the Serial Registers  
To write to the serial registers, the timing diagram shown in Figure 62 must be met. First, SEN is toggled low.  
The *previously addressed device assumes control of the SDO pin during the first eight clocks of the command.  
During this period, data is clocked out of the device at the rising edge of SCLK. At the rising edge of ninth clock,  
the LM98725 releases control of the SDO pin. At the falling edge of the ninth clock period, the master should  
assume control of the SDI pin and begin issuing the new command. SDI is clocked into the LM98725 at the  
rising edge of SCLK. The remaining bits are composed of the “write” command bit (a zero), two device address  
bits (00, 01 or 10 for the LM98725), five bit register address to be written, and the eight bit register value to be  
written. When SEN toggles high, the register is written to, and the LM98725 now functions with this new data.  
*The previously addressed device could be another device on a shared serial interface or this device. If the  
previous command was to this device, and was a read, then the SDO pin will be driven during the first eight  
clocks. If the previous command was to this device and was a write, then the SDO pin will only be driven if the  
serial interface is in “MCLK active” mode.  
84  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
7.4.25.4 Reading the Serial Registers  
To read to the serial registers, the timing diagram shown in Figure 63 must be met. First, SEN is toggled low.  
The LM98725 assumes control of the SDO pin during the first eight clocks of the command. During this period,  
data is clocked out of the device at the rising edge of SCLK. The eight bit value clocked out is the contents of the  
previously addressed register, regardless if the previous command was a read or a write. At the rising edge of  
ninth clock, the LM98725 releases control of the SDO pin. At the falling edge of the ninth clock period, the  
master should assume control of the SDI pin and begin issuing the new command. SDI is clocked into the  
LM98725 at the rising edge of SCLK. The remaining bits are composed of the “read” command bit (a one), two  
device address bits (zeros for the LM98725), five bit register address to be read, and the eight bit “don’t care”  
bits. When SEN toggles high, the register is not written to, but its contents are staged to be outputted at the  
beginning of the next command.  
Examples of Serial Writes and Reads in the various modes are shown in Figure 62 through Figure 67.  
7.4.25.5 LM98714 Compatible 3 Wire Serial Signaling  
Figure 62. Serial Write - LM98714 Compatible Connection  
1
9
n-15  
n
SCLK  
SEN  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
CE CE  
0
DI DI DI DI DI DI DI DI  
[7] [6] [5] [4] [3] [2] [1] [0]  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
X
X
1
A4 A3 A2 A1 A0  
X
X
SDIO  
1
(R)  
Previously addressed slave  
outputting register contents from  
previous command.  
Master issues “read” bit (1), 2 “chip enable” bits (00, 01 or 10), five bit register  
address, and eight “don’t care” bits. Register contents are not altered.  
Only final 16 bits of SDI data before rising edge of /SEN are processed.  
Device outputting register contents  
addressed in read command.  
Figure 63. Serial Read - LM98714 Compatible Connection  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: LM98725  
 
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
1
9
n-15  
n
SCLK  
SEN  
SDO  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
Device outputting register contents from this  
write command if MCLK is present.  
If MCLK is not present, no data output will occur.  
Previously addressed slave  
outputting register contents from  
previous command.  
(W)  
0
CE CE  
0
DI DI DI DI DI DI DI DI  
[7] [6] [5] [4] [3] [2] [1] [0]  
X
X
X
X
X
X
X
X
X
X
X
X
A4 A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SDI  
1
Master issues “write” bit (0), 2 “chip enable” bits (00, 01 or 10), five bit  
register address, and eight bit register value to be written.  
Only final 16 bits of SDI data before rising edge of /SEN are processed.  
Figure 64. Serial Write - 4 Wire Connection - 25+ Clock Mode  
1
9
n-15  
n
SCLK  
SEN  
SDO  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
Device outputting register contents  
addressed in read command.  
Previously addressed slave  
outputting register contents from  
previous command.  
CE CE  
0
X
X
X
X
X
X
X
X
X
X
X
X
1
A4 A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SDI  
1
(R)  
Master issues “read” bit (1), 2 “chip enable” bits (00, 01 or 10), five bit register  
address, and eight “don’t care” bits. Register contents are not altered.  
Only final 16 bits of SDI data before rising edge of /SEN are processed.  
Figure 65. Serial Read - 4 Wire Connection - 25+ Clock Mode  
86  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
1
n-15  
9
n
SCLK  
SEN  
SDO  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
Previously addressed slave outputting  
register contents from last command.  
Device outputting register contents from this write  
command if MCLK is present.  
If MCLK is not present, no data output will occur.  
(W)  
CE CE  
0
DI DI DI DI DI DI DI DI  
[7] [6] [5] [4] [3] [2] [1] [0]  
0
A4 A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
SDI  
1
Master issues “write” bit (0), 2 “chip enable” bits (00, 01 or 10), five bit  
register address, and eight bit register value to be written.  
Only final 16 bits of SDI data before rising edge of /SEN are processed.  
Figure 66. Serial Write - 4 Wire Connection - 16+ Clock Mode  
1
n-15  
9
n
SCLK  
SEN  
SDO  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
DO DO DO DO DO DO DO DO  
[7] [6] [5] [4] [3] [2] [1] [0]  
Previously addressed slave outputting  
register contents from last command.  
Device outputting register contents  
addressed in read command.  
CE CE  
0
DI DI DI DI DI DI DI DI  
[7] [6] [5] [4] [3] [2] [1] [0]  
1
A4 A3 A2 A1 A0  
X
X
X
X
X
X
X
X
X
X
X
X
SDI  
1
(R)  
Master issues “read” bit (1), 2 “chip enable” bits (00, 01 or 10), five bit register  
address, and eight “don’t care” bits. Register contents are not altered.  
Only final 16 bits of SDI data before rising edge of /SEN are processed.  
Figure 67. Serial Read - 4 Wire Connection - 16+ Clock Mode  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
7.5 Register Maps  
7.5.1 Configuration Registers  
The LM98725 operation is very flexible to support a wide variety of sensors and system designs. This flexibility is  
controlled through configuration registers which are first summarized, then described in full in the following  
tables. Because the serial interface only allows 5 address bits, a register paging system is used to support the  
larger number of required registers.  
The page register is present at the highest address (1Fh or 11111b) of the currently selected page. The power  
on default setting of the page register is 00. Writing other values to this register allows the other pages to be  
accessed.  
Once all registers are written, the Register Lock Control bit (Page 0, Register 0, Bit 0) is set to 1 to start the state  
machines and initiate the converting of pixels. If Slave mode is selected, SH_R pulses must also be input to  
trigger this process.  
NOTE  
When Register Lock Control = 1, many registers are locked to prevent state machines  
from becoming corrupted, while others are accessible to allow control of necessary  
functions. The registers and bits that are still writable are indicated in Boldface print in the  
Bits and Register Description columns of the Register Definition Details table.  
Operational Setup Sequence:  
Ensure Lock Bit (Page 0, Register 0, Bit 0) = 0 for following setting writes  
Apply either no INCLK or a stable INCLK to ensure accurate serial communications  
Page 0  
Set AFE mode (# of input channels)  
Set output data format  
Enable data outputs  
Set AFE biasing  
Set AFE Clamp and Sample timing  
Setup Slave or Master Mode  
Page 1  
Set Gain Mode (Singe or Dual)  
Set CDS/SH Gain  
Set PGA  
Set DAC settings  
Page 2  
Set Input Clamping Settings  
Set Black Pixel Start and # Black Pixels Averaged  
Set Active White Pixels Start and End  
Set Line Length (Master Mode Only)  
Set # Pixel Multiplier, SH Line Sequence # and SH State Length Multiplier  
Set PHI, RS, CP On and Off delay settings  
Set Spread Spectrum control settings  
88  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Register Maps (continued)  
Page 3  
Set SH Slate Length Settings  
Page 4  
Set SH Interval State Settings for PHI, RS, CP  
Page 5  
Set SH Interval State Settings for SH1 to SH5  
Page 6  
Set PHI, RS. CP pattern bit fields and rate (normal or 1/2 rate)  
Page 7  
Set SHx On, Off settings if needed  
Set CLK invert settings for multi-line sequences if needed  
Page 8  
Set CLK output activity, polarity, enable  
Set LVDS output format  
Set CB coding  
Set PHI, RS, CP, SH unlock output state  
Begin Scanning:  
Ensure stable INCLK applied and PLL is locked (read back Page 0, Register 0, Bit 7)  
Set Register Lock Control bit = 1  
In Master Mode, conversions will begin after the Lock Bit is set. In Slave Mode, SH_R pulses can begin af ter  
the Lock Bit is set. SH Intervals will be generated in response to the SH_R input pulses.  
Registers and Bits marked in Boldface print may be adjusted while scanning is in progress. More major  
changes (that is, color mode, CCDTG details) should be done by writing a 0 to the Register Lock Control Bit  
to pause scanning.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Register Maps (continued)  
7.5.1.1 Register Summary Table  
Table 17. Register Summary Table  
Default  
Addr (hex)  
Page (dec)  
Addr (dec)  
Register Title  
(binary)  
PAGE 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0010 0000  
0100 0000  
1100 0000  
1000 0010  
0011 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0001 0000  
0000 0000  
0001 0000  
0000 0000  
0001 0000  
0001 0110  
0010 0110  
0001 0110  
0010 0110  
0001 0110  
0010 0110  
0000 0000  
0000 0000  
Main Configuration 0  
Main Configuration 1  
Main Configuration 2  
Main Configuration 3  
Main Configuration 4  
Main Configuration 5  
Configuration 6  
1
2
2
3
3
4
4
5
5
6
6
7
7
Configuration 7  
8
8
OSR CLAMP Start Edge  
OSR CLAMP Stop Edge  
OSG CLAMP Start Edge  
OSG CLAMP Stop Edge  
OSB CLAMP Start Edge  
OSB CLAMP Stop Edge  
OSR SAMPLE Start Edge  
OSR SAMPLE Stop Edge  
OSG SAMPLE Start Edge  
OSG SAMPLE Stop Edge  
OSB SAMPLE Start Edge  
OSB SAMPLE Stop Edge  
Sample & Clamp Monitor 0  
Sample & Clamp Monitor 1  
Reserved  
9
9
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22 to 29  
30  
31  
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16 to 1D  
1E  
1F  
XX00 0011  
0000 0000  
Revision  
Page Register  
90  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0000 0000  
0110 0001  
0110 0001  
0110 0001  
1000 0000  
0000 0000  
1000 0000  
0000 0000  
1000 0000  
0000 0000  
1000 0000  
0000 0000  
1000 0000  
0000 0000  
1000 0000  
0000 0000  
0100 0000  
0100 0000  
0100 0000  
0100 0000  
0100 0000  
0100 0000  
0110 0001  
0110 0001  
0110 0001  
0100 0000  
0100 0000  
0100 0000  
0000 0000  
Gain Mode  
1
Red PGA  
2
2
Green PGA  
3
3
Blue PGA  
4
4
Red Even DAC MSB  
Red Even DAC LSB  
Green Even DAC MSB  
Green Even DAC LSB  
Blue Even DAC MSB  
Blue Even DAC LSB  
Red Odd DAC MSB  
Red Odd DAC LSB  
Green Odd DAC MSB  
Green Odd DAC LSB  
Blue Odd DAC MSB  
Blue Odd DAC LSB  
Red Even Digital Offset  
Green Even Digital Offset  
Blue Even Digital Offset  
Red Odd Digital Offset  
Green Odd Digital Offset  
Blue Odd Digital Offset  
Red High Gain PGA  
Green High Gain PGA  
Blue High Gain PGA  
Red Channel Bimodal  
Green Channel Bimodal  
Blue Channel Bimodal  
Page Register  
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
28  
29  
30  
31  
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
1C  
1D  
1E  
1F  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
1
0
1
0000 0000  
0000 0000  
0001 0100  
0100 0000  
0100 0011  
1000 0000  
0000 0100  
0000 1100  
0001 0000  
0000 0000  
0001 0100  
0001 0000  
0000 0000  
0001 0000  
0100 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Calibration Mode  
Calibration # Lines  
Black Cal Config  
Black Target  
2
2
3
3
4
4
White Cal Config  
White Target  
5
5
6
6
AutoCLPIN Start  
AutoCLPIN End  
Black Loop Start  
7
7
8
8
9
9
Active/White Pixels Start - MSB  
Active/White Pixels Start - LSB  
Active/White Pixels End - MSB  
Active/White Pixels End - LSB  
Line Length MSB  
Line Length LSB  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20 to 23  
24  
25  
26  
27  
28  
29  
30  
31  
A
B
C
D
E
F
Line Length Multiplier  
Line Mode  
10  
11  
12  
13  
14 to 17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
SH State Length Multiplier  
PHIA/B/C Delays  
RS/CP Delays  
Reserved  
1111 1000  
0001 1000  
0000 0000  
0000 0010  
0000 0000  
0000 0000  
0000 0000  
PLL Control 1  
PLL Control 2  
SSCG Control 1  
SSCG Control 2  
Clock Mult M  
Clock Mult N  
SSCG Control 3  
Page Register  
92  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 3  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
SH State 0 Length  
SH State 1 Length  
SH State 2 Length  
SH State 3 Length  
SH State 4 Length  
SH State 5 Length  
SH State 6 Length  
SH State 7 Length  
SH State 8 Length  
SH State 9 Length  
SH State 10 Length  
SH State 11 Length  
SH State 12 Length  
SH State 13 Length  
SH State 14 Length  
SH State 15 Length  
SH State 16 Length  
SH State 17 Length  
SH State 18 Length  
SH State 19 Length  
SH State 20 Length  
SH State 21 Length  
SH State 22 Length  
SH State 23 Length  
SH State 24 Length  
SH State 25 Length  
SH State 26 Length  
SH State 27 Length  
SH State 28 Length  
SH State 29 Length  
SH State 30 Length  
Page Register  
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 4  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
0
0
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
SH State 0 PHI, RS, CP  
SH State 1 PHI, RS, CP  
SH State 2 PHI, RS, CP  
SH State 3 PHI, RS, CP  
SH State 4 PHI, RS, CP  
SH State 5 PHI, RS, CP  
SH State 6 PHI, RS, CP  
SH State 7 PHI, RS, CP  
SH State 8 PHI, RS, CP  
SH State 9 PHI, RS, CP  
SH State 10 PHI, RS, CP  
SH State 11 PHI, RS, CP  
SH State 12 PHI, RS, CP  
SH State 13 PHI, RS, CP  
SH State 14 PHI, RS, CP  
SH State 15 PHI, RS, CP  
SH State 16 PHI, RS, CP  
SH State 17 PHI, RS, CP  
SH State 18 PHI, RS, CP  
SH State 19 PHI, RS, CP  
SH State 20 PHI, RS, CP  
SH State 21 PHI, RS, CP  
SH State 22 PHI, RS, CP  
SH State 23 PHI, RS, CP  
SH State 24 PHI, RS, CP  
SH State 25 PHI, RS, CP  
SH State 26 PHI, RS, CP  
SH State 27 PHI, RS, CP  
SH State 28 PHI, RS, CP  
SH State 29 PHI, RS, CP  
SH State 30 PHI, RS, CP  
Page Register  
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
94  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 5  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
0
0
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
SH State 0 SH1-SH5  
SH State 1 SH1-SH5  
SH State 2 SH1-SH5  
SH State 3 SH1-SH5  
SH State 4 SH1-SH5  
SH State 5 SH1-SH5  
SH State 6 SH1-SH5  
SH State 7 SH1-SH5  
SH State 8 SH1-SH5  
SH State 9 SH1-SH5  
SH State 10 SH1-SH5  
SH State 11 SH1-SH5  
SH State 12 SH1-SH5  
SH State 13 SH1-SH5  
SH State 14 SH1-SH5  
SH State 15 SH1-SH5  
SH State 16 SH1-SH5  
SH State 17 SH1-SH5  
SH State 18 SH1-SH5  
SH State 19 SH1-SH5  
SH State 20 SH1-SH5  
SH State 21 SH1-SH5  
SH State 22 SH1-SH5  
SH State 23 SH1-SH5  
SH State 24 SH1-SH5  
SH State 25 SH1-SH5  
SH State 26 SH1-SH5  
SH State 27 SH1-SH5  
SH State 28 SH1-SH5  
SH State 29 SH1-SH5  
SH State 30 SH1-SH5  
Page Register  
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 6  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
0
0
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
PHIA0  
PHIA1  
PHIA2  
PHIA3  
PHIA4  
PHIA5  
PHIB0  
PHIB1  
PHIB2  
PHIB3  
PHIB4  
PHIB5  
PHIC0  
PHIC1  
PHIC2  
PHIC3  
PHIC4  
PHIC5  
RS0  
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
RS1  
RS2  
RS3  
RS4  
RS5  
CP0  
CP1  
CP2  
CP3  
CP4  
CP5  
HSPIX Rate Select  
Page Register  
96  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 7  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
0
0
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
SH1 PIXEL ON MSB  
SH1 PIXEL ON LSB  
SH1 PIXEL OFF MSB  
SH1 PIXEL OFF LSB  
SH2 PIXEL ON MSB  
SH2 PIXEL ON LSB  
SH2 PIXEL OFF MSB  
SH2 PIXEL OFF LSB  
SH3 PIXEL ON MSB  
SH3 PIXEL ON LSB  
SH3 PIXEL OFF MSB  
SH3 PIXEL OFF LSB  
SH4 PIXEL ON MSB  
SH4 PIXEL ON LSB  
SH4 PIXEL OFF MSB  
SH4 PIXEL OFF LSB  
SH5 PIXEL ON MSB  
SH5 PIXEL ON LSB  
SH5 PIXEL OFF MSB  
SH5 PIXEL OFF LSB  
PHIA Polarity Override  
PHIB Polarity Override  
PHIC Polarity Override  
RS Polarity Override  
CP Polarity Override  
SH1 Polarity Override  
SH2 Polarity Override  
SH3 Polarity Override  
SH4 Polarity Override  
SH5 Polarity Override  
Reserved  
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Register Maps (continued)  
Table 17. Register Summary Table (continued)  
Default  
(binary)  
Page (dec)  
Addr (dec)  
Addr (hex)  
Register Title  
PAGE 8  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
0
1
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0010 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
PHIA1, PHIA2 Polarity / State  
PHIB1, PHIB2 Polarity / State  
PHIC1, PHIC2 Polarity / State  
RS, CP Polarity / State  
SH1, SH2 Polarity / State  
SH3, SH4 Polarity / State  
SH5 Polarity / State  
2
3
4
5
6
7
Reserved  
8
LVDS Configuration  
CB1/CB0 CB Mapping  
CB3/CB2 CB Mapping  
D2/CB4 CB Mapping  
D4/D3 CB Mapping  
9
10  
11  
12  
13  
14  
D5 CB Mapping  
Unlock State Output Values  
PHIA, PHIB, PHIC, RS, CP  
8
15  
F
0000 0000  
Unlock State Output Values  
SH1, SH2, SH3, SH4, SH5  
8
8
8
8
8
8
16 to 17  
18  
10 to 11  
12  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Reserved  
Scrambler Inhibit 0 (LVDS[6:0])  
Scrambler Inhibit 1 (LVDS[13:7])  
Scrambler Inhibit 2 (LVDS[20:14])  
Reserved  
19  
13  
20  
14  
16 to 30  
31  
15 to 1E  
1F  
Page Register  
98  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18 describes all available registers in the LM98725 register bank, and their functions .  
NOTE: Registers and/or Bits Marked in Boldface are Writeable when Register 0, Bit 0 = 1. All others are  
“Locked".  
Table 18. Register Definitions  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 0  
0
0
0
0010 0000  
[7]  
PLL Locked (READ ONLY) Status Bit  
0 PLL is not locked  
1 PLL is locked  
[6]  
[5]  
Not Used  
SH_R Capture Clock Select  
0 Use internal CLK from XTAL source.  
1 Use external INCLK source.  
[4]  
SH_R Capture Edge Select  
0 Use rising edge of selected Clock source.  
1 Use falling edge of selected Clock source.  
[3]  
[2]  
Main  
Not Used  
Configuration 0  
XTALEN  
0 Use autodetecting CMOS/LVDS clock receiver  
1 Enable crystal driver. INCLK+ is output, INCLK- is input.  
[1]  
[0]  
Master Mode Select Bit  
0 Slave/SH_R  
1 Master/Line Length  
Register Lock Control  
0 Registers are unlocked (i.e. writeable) and  
CCDTG state machines are stopped  
1 Registers are locked (default) and CCDTG state machines are  
operating  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
99  
Product Folder Links: LM98725  
 
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
0
1
1
0100 0000  
[7]  
Serial Interface Mode Select  
0 16+ Clock Mode [Default]  
1 25+ Clock Mode  
[6]  
[5]  
Enable PLL Range Autocalibration  
0 PLL Range Autocal OFF  
1 PLL Range Autocalibrates (Default)  
Calibrate Gain/Offset (self clearing)  
0 Calibration is off  
1 Calibration is active  
[4]  
[3]  
Main  
Software Reset - FSM  
Configuration 1 Set to 1 to reset all state machines. Self clearing.  
Software Reset - FSM + Registers  
Set to 1 to reset all state machines and registers. Self clearing.  
Power Down CDS/SH Amplifier  
[2]  
[1]  
[0]  
Reference Buffer Power Down  
Master Power Down  
0 Master Power Down Disable  
1 Master Power Down Enable  
100  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
0
2
2
1100 0010  
[7:6]  
Mode Select Bits  
11 Mode 3 (Default) (3 Channel Mode)  
10 Mode 2 (2 Channel Mode)  
01 Mode 1 (1 Channel Mode)  
00 Not Used  
[5:4]  
Color Select Bits. Used to determine the inputs sampled during a scan.  
11 Reserved  
10 Mode 2 = OSR & OSB Mode 1 = OSB  
01 Mode 2 = OSG & OSB Mode 1 = OSG  
00 Mode 2 = OSR & OSG Mode 1 = OSR  
Color Order. Configures the sequence of the pixel processing  
0 Forward (default)  
[3]  
[2]  
Main  
Configuration 2 1 Reverse  
PIXCLK/ADCCLK Configuration.  
Selects appropriate multiplier for given input clock frequency  
Mode 3: ADC Frequency = 3x Pixel Frequency  
Mode 2: ADC Frequency = 2x Pixel Frequency  
Mode 1: ADC Frequency = 1x Pixel Frequency  
0 User supplies ADC rate clock, LM98725 performs no multiplication.  
1 User supplies Pixel rate clock, LM98725 performs clock multiplication.  
[1]  
[0]  
Sampling Mode Select  
0 Sample and Hold Mode  
1 Correlated Double Sampling Mode (Default)  
Even/Odd CCD Sensor Enable  
Dedicated Even and Odd DACs and Digital Offsets would be applied to  
every other pixels.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
101  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7]  
REGISTER DESCRIPTION  
0
3
3
1000 0010  
Source Follower Enable.  
0 Disable  
1 Enable (Default)  
[6]  
[5]  
Input Bias Enable. Enables the Input Bias Resistor ladder.  
0 Disable (Default)  
1 Enable  
Bit CLP mode enable (black clamping done in reference portion of  
every pixel of line)  
0 Disabled (Default)  
1 Enable  
Main  
[4:2] Configuration 3 Pixel Phase Clock Select. Coarse adjustment for Pixel phase  
relative to INCLK. Useful in systems where Pixel inputs arrive with  
significant delay relative to INCLK.  
[1]  
Sensor Polarity Select  
0 Voltage increases with increasing white level  
1 Voltage decreases with increasing white level  
[0]  
Reserved  
102  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7]  
REGISTER DESCRIPTION  
0
4
4
0011 0000  
Reserved  
[6]  
Enable VCLP Buffer  
0 Use resistor divider voltages directly  
1 Use buffered resistor divider voltage  
[5]  
[4]  
Auto CLPIN Enable  
0 Auto CLPIN Disabled  
1 Auto CLPIN Enabled - (Default) - CLPIN generated according to Start  
and End position settings at Page 2, Registers 0x06 and 0x07  
CLPIN Gating Enable  
0 Auto CLPIN not gated by the SAMPLE pulse timing  
1 Auto CLPIN gated by the SAMPLE pulse timing  
(Default)  
[3]  
Main  
VCLP Power Down  
Configuration 4 0 VCLP Normal Operation  
1 No circuit is tied to the VCLP output and no current is drawn  
[2:0]  
VCLP Voltage Setting/Source  
000 0.85VA (Default)  
001 0.9VA  
010 0.95VA  
011 0.6VA  
100 0.55VA  
101 0.4VA  
110 0.35VA  
111 0.15VA  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
103  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
0
5
5
0000 0000  
[7]  
Output Format  
0 LVDS (Default)  
1 CMOS  
[6]  
[5]  
Output Enable. Enables the Data Output pins.  
0 Disabled (Default)  
1 Enable  
CMOS Data CLK Override Enable  
0 - SH2 output as normal  
1 - CMOS Data CLK on SH2  
[4:3]  
[2:1]  
Data Scrambler Enable/Mode  
00 - Scrambler Disabled  
01, 10, 11 - Scrambler Enabled see 1:0 description below for details:  
Data Scrambler Submode  
Main  
Configuration 5  
If Scrambler Mode = 01, Full scrambler enabled as follows:  
00 Send lvds_data[20:0]^prs[20:0]  
01 Send prs[20:0]  
10 Send lvds_data[20:0]^pprs[20:0]  
11 Send pprs[20:0]  
If Scrambler Mode = 10, 1 bit scrambler with key of prs[0]  
Send lvds_data[20:0]^prs[0], with lvds_data[k] = 0  
00 k = 0 (DBO in CMOS and 714 modes, CB0 in flexible, 16 bit mode)  
01, txout0 disable = 0, k = 5 (DB0(lsb) in flexible, 16 bit mode)  
01, txout0 disable = 1, k = 7 (DB2(lsb) in flexible, 14 bit mode)  
10 k = 16 (CB0 in 714 mode)  
11 k = 20 (CB4 in 714 mode)  
If Scrambler Mode = 11, 1 bit scrambler with key of lvds_data[k].  
Send lvds_data[20:0]^lvds_data[k], with lvds_out[k] = lvds_data[k]  
00 k = 0 (DBO in CMOS and 714 modes, CB0 in flexible, 16 bit mode)  
01, txout0 disable = 0, k = 5 (DB0(lsb) in flexible, 16 bit mode)  
01, txout0 disable = 1, k = 7 (DB2(lsb) in flexible, 14 bit mode)  
10 k = 16 (CB0 in 714 mode)  
11 k = 20 (CB4 in 714 mode)  
[0]  
Reserved  
104  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
0
6
6
0000 0000  
[7]  
LVDS Test Pattern Synchronization Select  
0 Synchronizes at (held at initial state during) BOL & BOS  
1 Synchronizes at (held at initial state during) BOS only  
[6:4]  
LVDS Output Pattern Select  
000 Select AFE output (normal operation) (Must be 00 for AFE Test  
Patterns)  
001 Select 0x2A & 0x55 alternating patterns (all 3 pairs)  
010 Selects 0x2A (all 3 pairs)  
011 Selects 0x55 (all 3 pairs)  
100 Selects 0x00 (all 4 pairs) (Differential 0 on all outputs)  
101 Selects 0x7F (all 4 pairs) (Differential 1 on all outputs)  
[3]  
AFE Test Pattern - Up-count Rate Select  
0 Up-count at pixel rate  
Configuration 6 1 Up-count at BOL  
[2:0]  
Test Pattern - AFE Data Select - (Bits 6:4 must be 000 for AFE Test  
Patterns)  
000 Selects ADC output (normal operation)  
001 Selects up-counter output  
010 Selects 0xFF00 - fixed data  
011 Selects 0xAA55 - fixed data  
100 Selects 0x0000 - fixed data  
101 Selects 0xFFFF - fixed data  
110 Selects 0x00FF - fixed data  
111 Selects 0x55AA - fixed data  
Timing Generator Output Driver Strength  
0
7
7
0000 0000  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
PHIA1, PHIA2 - 0 = Normal, 1 = High  
PHIB1, PHIB2 - 0 = Normal, 1 = High  
Configuration 7 PHIC1, PHIC2 - 0 = Normal, 1 = High  
RS - 0 = Normal, 1 = High  
CP - 0 = Normal, 1 = High  
SH1, SH2, SH3, SH4, SH5 - 0 = Normal, 1 = High  
0
0
0
0
0
0
0
8
8
0000 0000  
0001 0000  
0000 0000  
0001 0000  
0000 0000  
0001 0000  
0001 0110  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
OSR CLAMP Not Used  
Start Edge  
CLAMP_R Start Edge - Default = 0d  
9
9
OSR CLAMP Not Used  
Stop Edge  
CLAMP_R Stop Edge - Default = 16d  
10  
11  
12  
13  
14  
A
B
C
D
E
OSG CLAMP Not Used  
Start Edge  
CLAMP_G Start Edge - Default = 0d  
OSG CLAMP Not Used  
Stop Edge  
CLAMP_G Stop Edge - Default = 16d  
OSB CLAMP Not Used  
Start Edge  
CLAMP_B Start Edge - Default = 0d  
OSB CLAMP Not Used  
Stop Edge  
CLAMP_B Stop Edge - Default = 16d  
OSR SAMPLE Not Used  
Start Edge  
SAMPLE_R Start Edge - Default = 22d  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
105  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
0
0
0
0
0
15  
16  
17  
18  
19  
F
0010 0110  
0001 0110  
0010 0110  
0001 0110  
0010 0110  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
[5:0]  
[7:6]  
OSR SAMPLE Not Used  
Stop Edge  
SAMPLE_R Stop Edge - Default = 38d  
10  
11  
12  
13  
OSG SAMPLE Not Used  
Start Edge  
SAMPLE_G Start Edge - Default = 22d  
OSG SAMPLE Not Used  
Stop Edge  
SAMPLE_G Stop Edge - Default = 38d  
OSB SAMPLE Not Used  
Start Edge  
SAMPLE_B Start Edge - Default = 22d  
OSB SAMPLE Not Used  
[5:0]  
Stop Edge  
SAMPLE_B Stop Edge - Default = 38d  
Not Used  
0
20  
14  
0000 0000  
[7]  
[6]  
SH_R Capture Monitor Override  
0 SAMPB=SAMPB, CLAMPB=CLAMPB - Default  
1 SAMPB = INCLK, CLAMPB = SH_R  
[5:3]  
Selection bits for RS (user test mode)  
000 Normal output  
001 SAMPR Output  
010 SAMPG Output  
Sample &  
Clamp  
011 SAMPB Output  
100 CLAMPR Output  
101 CLAMPG Output  
110 CLAMPB Output  
111 PIXPHASE Output  
Monitor 0  
[2:0]  
Selection bits for CP (user test mode)  
000 Normal output  
001 SAMPR Output  
010 SAMPG Output  
011 SAMPB Output  
100 CLAMPR Output  
101 CLAMPG Output  
110 CLAMPB Output  
111 PIXPHASE Output  
106  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7:6]  
[5:3]  
REGISTER DESCRIPTION  
0
21  
15  
0000 0000  
Not Used  
Selection bits for SH2 (user test mode)  
000 Normal output  
001 SAMPR Output  
010 SAMPG Output  
011 SAMPB Output  
100 CLAMPR Output  
101 CLAMPG Output  
110 CLAMPB Output  
111 PIXPHASE Output  
Sample &  
Clamp  
Monitor 1  
[2:0]  
Selection bits for SH3 (user test mode)  
000 Normal output  
001 SAMPR Output  
010 SAMPG Output  
011 SAMPB Output  
100 CLAMPR Output  
101 CLAMPG Output  
110 CLAMPB Output  
111 PIXPHASE Output  
0
22 to  
29  
16 to  
1D  
0000 0000  
Reserved  
Revision  
0
0
30  
31  
1E  
1F  
XX00 0011  
0000 0000  
[7:0]  
[3:0]  
Used to select desired page of registers being accessed  
0000 Page 0  
0001 Page 1  
0010 Page 2  
0011 Page 3  
0100 Page 4  
0101 Page 5  
0110 Page 6  
0111 Page 7  
1000 Page 8  
Page  
Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
107  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 1  
1
0
0
0000 0000  
[7]  
[6]  
[5]  
CDS/SH Gain Blue - 0 = 1x Gain, 1 = 2x Gain  
CDS/SH Gain Green - 0 = 1x Gain, 1 = 2x Gain  
CDS/SH Gain Blue - 0 = 1x Gain, 1 = 2x Gain  
[4:3]  
[2]  
Not used  
Individual CDS/SH Gain Enable  
0 Use Bit 0 for CDS/SH Gain  
1 Use Bits 7:5 for CDS/SH Gains  
Gain Mode  
[1]  
Dual Gain Mode Enable  
0 Single Gain Setting Within Each Line  
1 Two Gain Settings Within Each Line  
[0]  
Gain Select  
0 1x CDS/SH Gain - Default  
1 2x CDS/SH Gain  
1
1
1
1
1
2
3
4
1
2
3
4
0110 0001  
0110 0001  
0110 0001  
1000 0000  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Red PGA  
Green PGA  
Blue PGA  
Red Even  
DAC MSB  
Red Even  
DAC LSB  
Default = 97d for Gain = 1  
Default = 97d for Gain = 1  
Default = 97d for Gain = 1  
DAC[9:2]  
1
5
5
0000 0000  
[7:2]  
Not Used  
[1:0]  
[7:0]  
DAC[1:0]  
DAC[9:2]  
1
1
6
7
6
7
1000 0000  
0000 0000  
Green Even  
DAC MSB  
Green Even  
DAC LSB  
[7:2]  
Not Used  
[1:0]  
[7:0]  
DAC[1:0]  
DAC[9:2]  
1
1
8
9
8
9
1000 0000  
0000 0000  
Blue Even  
DAC MSB  
Blue Even  
DAC LSB  
[7:2]  
Not Used  
[1:0]  
[7:0]  
DAC[1:0]  
DAC[9:2]  
1
1
10  
11  
A
B
1000 0000  
0000 0000  
Red Odd  
DAC MSB  
Red Odd  
DAC LSB  
[7:2]  
Not Used  
[1:0]  
[7:0]  
DAC[1:0]  
DAC[9:2]  
1
1
12  
13  
C
D
1000 0000  
0000 0000  
Green Odd  
DAC MSB  
[7:2]  
Not Used  
Green Odd  
DAC LSB  
Blue Odd  
DAC MSB  
[1:0]  
[7:0]  
DAC[1:0]  
DAC[9:2]  
1
14  
E
1000 0000  
108  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7:2]  
REGISTER DESCRIPTION  
1
1
1
1
1
1
1
1
15  
16  
17  
18  
19  
20  
21  
22  
F
0000 0000  
0100 0000  
0100 0000  
0100 0000  
0100 0000  
0100 0000  
0100 0000  
0110 0001  
Blue Odd  
DAC LSB  
Not Used  
[1:0]  
[7]  
DAC[1:0]  
Not Used  
10  
11  
12  
13  
14  
15  
16  
Red Even  
Digital  
[6:0]  
[7]  
Offset  
Digital Offset  
Not Used  
Green Even  
Digital  
[6:0]  
[7]  
Offset  
Digital Offset  
Not Used  
Blue Even  
Digital  
[6:0]  
[7]  
Offset  
Digital Offset  
Not Used  
Red Odd  
Digital Offset  
[6:0]  
[7]  
Digital Offset  
Not Used  
Green Odd  
Digital  
Offset  
[6:0]  
[7]  
Digital Offset  
Not Used  
Blue Odd  
Digital  
Offset  
[6:0]  
[7:0]  
Digital Offset  
Red  
PGA setting during high gain portion of line  
when dual gain mode is enabled  
High  
Gain  
PGA  
Default = 97d for Gain = 1  
1
1
1
23  
24  
28  
17  
18  
1C  
0110 0001  
0110 0001  
0100 0000  
[7:0]  
[7:0]  
[7]  
Green High  
PGA setting during high gain portion of line when dual gain mode is  
enabled  
Gain PGA  
Blue High  
Default = 97d for Gain = 1  
PGA setting during high gain portion of line when dual gain mode is  
enabled  
Gain PGA  
Red  
Default = 97d for Gain = 1  
Not Used  
Channel  
Bimodal  
Green  
[6:0]  
[7]  
Offset Binary Digital Offset for Bimodal Correction  
Not Used  
1
1
1
29  
30  
31  
1D  
1E  
1F  
0100 0000  
0100 0000  
0000 0000  
Channel  
Bimodal  
Blue  
[6:0]  
[7]  
Offset Binary Digital Offset for Bimodal Correction  
Not Used  
Channel  
Bimodal  
Page  
[6:0]  
[3:0]  
Offset Binary Digital Offset for Bimodal Correction  
Used to select desired page of registers being accessed.  
Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
109  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 2  
2
0
0
0000 0000  
[7:3]  
[2]  
Not Used  
DDAC Disable  
0 AFE output includes DDAC (digital DAC offset)  
correction  
1 AFE output does not include DDAC correction  
Calibration  
Mode  
[1:0]  
Calibration Mode  
00 Black Calibration Only  
01 White and Black Calibration - Full/Binary White Cal  
10 White and Black Calibration - Fine Tuning  
11 Reserved  
2
2
1
2
1
2
0000 0000  
0001 0100  
[7:0]  
[5:4]  
Calibration is active for this number of lines  
Calibration # 0 Reserved  
Lines  
1d to 254d sets number of lines  
255d sets infinite calibration  
DDAC Scaling  
00 Linear - 1 LSB adjust  
01 Scaling = 1/2  
10 Scaling = 1/4  
11 Scaling = 1/8  
[3:2]  
[1:0]  
ADAC Scaling  
00 Reserved (No scaling)  
01 Scaling = 1/2  
10 Scaling = 1/4  
11 Scaling = 1/8  
Black Cal  
Config  
Number of Black Pixels  
Number of pixels averaged by Black Loop  
00 4 pixels  
01 8 pixels  
10 16 pixels  
11 32 pixels  
2
3
3
0100 0000  
[7:0]  
Black Target Target level for Black calibration.  
Range is 0 to 255 at 11 bit level or 0 to 8160 at 16 bit level  
(default = 64 or 2048 at 16 bit level)  
110  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
2
4
4
0100 0011  
[6:3]  
White Loop Tolerance  
White Cal success if |White Peak - White Target| < White Loop  
Tolerance  
0 to 15 at 10 bit level - Default = 8  
Number of White Pixels  
[2:0]  
Number of White Pixels processed in moving window average to find  
White Peak in line between White Pixels Start and White Pixels End  
White Cal  
Config  
000 4 pixels  
001 8 pixels  
010 16 pixels  
011 32 pixels - Default  
White Target  
2
5
5
1000 0000  
[7:0]  
White Target = 768d + [7:0] at 10 bit level  
White Target Range is 768d to 1023d at 10 bit level or 49152 to  
65472 at 16 bit level  
(Default = 896d or 57344 at 16 bit level)  
2
2
2
6
7
8
6
7
8
0000 0100  
0000 1100  
0001 0000  
[7:0]  
[7:0]  
[7:0]  
AutoCLPIN  
Start  
# of pixels from SH interval End to Start of Black Pixel  
Clamping (Default = 4d)  
AutoCLPIN  
End  
# of pixels from SH interval End to End of Black Pixel  
Clamping (Default = 12d)  
Black Loop  
Start  
# of pixels from SH interval End to Start of Black Loop  
Pixels (Default = 16d)  
2
2
2
2
9
9
0000 0000  
0001 0100  
0001 0000  
0000 0000  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Active/White # of Pixels between SH Interval End and first Valid  
Pixels Start -  
Data Pixel (Default = 64d)  
MSB  
10  
11  
12  
A
B
C
Active/White  
Pixels Start -  
LSB  
Active/White # of Pixels between SH Interval End and last Valid Data  
Pixels End -  
Pixel (Default = 4096)  
MSB  
Active/White  
Pixels End -  
LSB  
2
2
13  
14  
D
E
0001 0000  
0100 0000  
[7:0]  
[7:0]  
Line Length  
MSB  
# of Pixel Periods between beginning of consecutive SH Intervals  
(Default = 4160)  
Line Length  
LSB  
# of Pixel Periods between beginning of consecutive SH Intervals  
2
15  
F
0000 0000  
[7:2]  
[1:0]  
Not Used  
Multiplier factor for Active/White, LSPIX ON/OFF and  
Line Length  
Multiplier  
Line Length Pixels Register Settings  
00 1x  
01 2x  
10 4x  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
111  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7]  
REGISTER DESCRIPTION  
2
16  
10  
0000 0000  
Not Used  
CIS - 2 Color Coefficient Select  
6:5  
Select which color PGA/DAC coefficients are used in 2 color CIS  
sequences  
00 Red and Green Lamp/Coefficients Used  
01 Green and Blue Lamp/Coefficients Used  
10 Red and Blue Lamp/Coefficients Used  
11 Reserved  
4:3  
CCD/CIS Mode Select  
00 Normal CCD Timing  
01 CISa (2, 3, or 4 color sequences)  
10 CISb (2 or 3 color sequences)  
11 Reserved  
Line Mode  
[1:0]  
# SH Intervals. How many different SH intervals in a sequence of lines  
00 1 SH Interval - Same SH timing every line  
01 2 SH Intervals - 2 different SH interval timings  
10 3 SH Intervals - 3 different SH interval timings  
11 4 SH Intervals - 4 different SH interval timings  
SH States are allocated as follows:  
1 Interval 1 = 0 to 30  
2 Interval 1 = 0 to 14, Interval 2 = 15 to 30  
3 Int 1 = 0 to 9, Int 2 = 10 to 19, Int 3 = 20 to 30  
4 Int 1 = 0 to 6, Int 2 = 7 to 14, Int 3 = 15 to 22, Int 4 =23 to 30  
Not Used  
2
17  
11  
0000 0000  
[7:3]  
[2:0]  
SH State Length values are multiplied by this factor  
000 SH Timings x1  
SH State  
Length  
001 SH Timings x2  
Multiplier  
010 SH Timings x4  
011 SH Timings x8  
100 SH Timings x16  
101 to 111 Reserved  
112  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7:6]  
[5]  
REGISTER DESCRIPTION  
2
18  
12  
0000 0000  
Not Used  
PHIA On Delay  
0 Normal  
1 PHIA begins 1 pixel period late  
[4]  
[3]  
PHIA Off Delay  
0 Normal  
1 PHIA stops 1 pixel period late  
PHIB On Delay  
0 Normal  
1 PHIB begins 1 pixel period late  
PHIA/B/C  
Delays  
[2]  
[1]  
[0]  
PHIB Off Delay  
0 Normal  
1 PHIB stops 1 pixel period late  
PHIC On Delay  
0 Normal  
1 PHIC begins 1 pixel period late  
PHIC Off Delay  
0 Normal  
1 PHIC stops 1 pixel period late  
Not Used  
2
19  
13  
0000 0000  
[7:4]  
[3]  
RS On Delay  
0 Normal  
1 RS begins 1 pixel period late  
[2]  
[1]  
[0]  
RS Off Delay  
0 Normal  
RS/CP Delays 1 RS stops 1 pixel period late  
CP On Delay  
0 Normal  
1 CP begins 1 pixel period late  
CP Off Delay  
0 Normal  
1 CP stops 1 pixel period late  
Reserved  
2
20 to  
23  
14 to  
17  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
113  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
2
24  
18  
1111 1000  
[7:5]  
Master PLL Range Setting for PLL1 and PLL2 when  
Autorange is off. Set to 111.  
[4:3]  
[2:0]  
[7:5]  
[4:3]  
PLL1 Charge Pump Current Control  
PLL Control 1 Default = 11  
PLL1 Filter Bandwidth Control  
Default = 000  
2
25  
19  
0001 1000  
Reserved  
Default = 000  
PLL2 Charge Pump Current Control  
Default = 11  
PLL Control 2 Set to 00 when using SSCG.  
[2:0]  
[7:6]  
PLL2 Filter Bandwidth Control  
Default = 000  
Set to 111 when using SSCG.  
Spread Rate Multiplier  
2
26  
1A  
0000 0000  
(Increases modulation frequency in low pixel frequency applications)  
00 1x - Default  
01 2x  
10 4x (Page 2, Register D,E max = 32,768)  
11 Reserved  
[5]  
SSCG Spread Boost  
0 Normal, PLL divide step is 1/28  
1 Boost, PLL divide step is 1/56. Narrower and cleaner spread for 1ch  
and 2ch modes, but limits max pixel freq to 25 MHz.  
[4]  
SSCG Spread Gain  
0 Spread widths as specified in [3:2]  
1 Spread widths are 2x [3:2] settings  
[3:2]  
SSCG Spread Width (Fmod = Fcenter+/- Width/2)  
SSCG Control 00 5%  
1
01 2.5%  
10 1.25%  
11 0.625%  
[1]  
[0]  
SSCG SH Sync Enable  
0 Spread unsynched, once SSCG Enable is set, SSCG wil begin  
immediately.  
1 Spread synched to SH interval, once SSCG Enable  
is set, the SSCG will begin at the first SH Interval.  
SSCG Enable  
0 Spread Disabled  
1 Spread Enabled  
114  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
2
27  
1B  
0000 0010  
[7]  
Load SSCG state machine  
(SSCG Enable 0->1 also performs this function)  
0 Normal  
1 Load state machine (self clearing)  
[6]  
FIFO Reset at SH_R  
0 FIFO is only reset when SSCG started  
1 FIFO is reset at SH_R. Only useful in Slave Mode with Spread LVDS  
Only set. Ensures that FIFO counters are centered if SH_R period is  
consistenly shorter or longer than Line Length settings.  
[5]  
[4]  
Spread Waveform Reset at SH_R  
0 Spread waveform not reset by SH_R  
1 Spread waveform reset by SH_R  
Override PLL2 Lock Detector  
0 PLL2 Lock Detector Normal  
1 Force PLL2 Lock Detect = 1. Set to 1 when using  
SSCG.  
[3]  
SSCG Control Override PLL1 Lock Detector  
2
0 PLL1 Lock Detector Normal  
1 Force PLL1 Lock Detect = 1. Useful only if using a large multiplication  
factor and a lot of jitter is present in the source clock.  
[2]  
Spread MaxRate  
0 Spread Normal  
1 Force Spreading to highest modulation frequency instead of tied to  
Line Length Setting.  
[1:0]  
PLL Mode Select  
11 Spread All System Clocks, No Multiplication  
10 PLLs and SSCG Disabled - Default  
01 Spread All System Clocks, Multiplication Enabled  
00 Spread Output Clocks Only, Mutiplication Enabled  
Clock Mult M Multiplying PLL. Fout = Fin x M/N M = mmmmmmmm + 1 (1 to 256)  
2
2
2
28  
29  
30  
1C  
1D  
1E  
0000 0000  
0000 0000  
0000 0000  
Clock Mult N Multiplying PLL. Fout = Fin x M/N N = nnnnnnnn + 1 (1 to 256)  
[7]  
FIFO Reset  
0 FIFO normal operating  
1 Force reset of FIFO (self clearing)  
[6:0]  
SSCG Control FIFO and Spread Waveform SH_R Reset Holdoff  
3
Delay reset of FIFO and Spread Waveform from 0 to  
127 ADC clock cycles after the internal synchronized SH_R. To allow  
this event to occur during SH Interval after all valid pixels in the pipeline  
have been processed.  
2
31  
1F  
[3:0]  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
115  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 3  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
SH State 0  
Length  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
1
1
SH State 1  
Length  
2
2
SH State 2  
Length  
3
3
SH State 3  
Length  
4
4
SH State 4  
Length  
5
5
SH State 5  
Length  
6
6
SH State 6  
Length  
7
7
SH State 7  
Length  
8
8
SH State 8  
Length  
9
9
SH State 9  
Length  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
A
SH State 10  
Length  
B
SH State 11  
Length  
C
SH State 12  
Length  
D
SH State 13  
Length  
E
SH State 14  
Length  
F
SH State 15  
Length  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
SH State 16  
Length  
SH State 17  
Length  
SH State 18  
Length  
SH State 19  
Length  
SH State 20  
Length  
SH State 21  
Length  
SH State 22  
Length  
SH State 23  
Length  
SH State 24  
Length  
SH State 25  
Length  
SH State 26  
Length  
116  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
Sets length of this SH interval state  
3
3
3
3
3
27  
28  
29  
30  
31  
1B  
1C  
1D  
1E  
1F  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[7:0]  
SH State 27  
Length  
[7:0]  
[7:0]  
[7:0]  
[3:0]  
SH State 28  
Length  
Sets length of this SH interval state  
Sets length of this SH interval state  
Sets length of this SH interval state  
SH State 29  
Length  
SH State 30  
Length  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
117  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 4  
4
0
0
0000 0000  
Controls whether these outputs are 1 or 0 during this  
SH interval state  
[7]  
[6]  
RS 0 = Low, 1 = High 1 0 = Low, 1 = High  
CP 0 = Low, 1 = High  
[5]  
SH State 0  
PHIA2 0 = Low, 1 = High  
[4]  
PHI, RS, CP  
PHIA1 0 = Low, 1 = High  
[3]  
PHIB2 0 = Low, 1 = High  
[2]  
PHIB1 0 = Low, 1 = High  
[1]  
PHIC2 0 = Low, 1 = High  
[0]  
PHIC1 0 = Low, 1 = High  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[7:0]  
SH State 1  
PHI, RS, CP  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
2
2
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
SH State 2  
PHI, RS, CP  
3
3
SH State 3  
PHI, RS, CP  
4
4
SH State 4  
PHI, RS, CP  
5
5
SH State 5  
PHI, RS, CP  
6
6
SH State 6  
PHI, RS, CP  
7
7
SH State 7  
PHI, RS, CP  
8
8
SH State 8  
PHI, RS, CP  
9
9
SH State 9  
PHI, RS, CP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
A
SH State 10  
PHI, RS, CP  
B
SH State 11  
PHI, RS, CP  
C
D
E
SH State 12  
PHI, RS, CP  
SH State 13  
PHI, RS, CP  
SH State 14  
PHI, RS, CP  
F
SH State 15  
PHI, RS, CP  
10  
11  
12  
13  
14  
15  
SH State 16  
PHI, RS, CP  
SH State 17  
PHI, RS, CP  
SH State 18  
PHI, RS, CP  
SH State 19  
PHI, RS, CP  
SH State 20  
PHI, RS, CP  
SH State 21  
PHI, RS, CP  
118  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
4
4
4
4
4
4
4
4
4
4
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[7:0]  
SH State 22  
PHI, RS, CP  
Controls whether these outputs are 1 or 0 during this SH interval state  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[3:0]  
SH State 23  
PHI, RS, CP  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
SH State 24  
PHI, RS, CP  
SH State 25  
PHI, RS, CP  
SH State 26  
PHI, RS, CP  
SH State 27  
PHI, RS, CP  
SH State 28  
PHI, RS, CP  
SH State 29  
PHI, RS, CP  
SH State 30  
PHI, RS, CP  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
119  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 5  
5
0
0
0000 0000  
[7:5]  
Not Used  
Controls whether these outputs are 1 or 0 during this  
SH interval state  
[4]  
[3]  
SH State 0  
SH1-SH5  
SH5 0 = Low, 1 = High  
SH4 0 = Low, 1 = High  
[2]  
SH3 0 = Low, 1 = High  
[1]  
SH2 0 = Low, 1 = High  
[0]  
SH1 0 = Low, 1 = High  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1
1
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[4:0]  
SH State 1  
SH1-SH5  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
2
2
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
SH State 2  
SH1-SH5  
3
3
SH State 3  
SH1-SH5  
4
4
SH State 4  
SH1-SH5  
5
5
SH State 5  
SH1-SH5  
6
6
SH State 6  
SH1-SH5  
7
7
SH State 7  
SH1-SH5  
8
8
SH State 8  
SH1-SH5  
9
9
SH State 9  
SH1-SH5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
A
SH State 10  
SH1-SH5  
B
SH State 11  
SH1-SH5  
C
D
E
SH State 12  
SH1-SH5  
SH State 13  
SH1-SH5  
SH State 14  
SH1-SH5  
F
SH State 15  
SH1-SH5  
10  
11  
12  
13  
14  
15  
16  
SH State 16  
SH1-SH5  
SH State 17  
SH1-SH5  
SH State 18  
SH1-SH5  
SH State 19  
SH1-SH5  
SH State 20  
SH1-SH5  
SH State 21  
SH1-SH5  
SH State 22  
SH1-SH5  
120  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
5
5
5
5
5
5
5
5
5
23  
24  
25  
26  
27  
28  
29  
30  
31  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[4:0]  
SH State 23  
SH1-SH5  
Controls whether these outputs are 1 or 0 during this SH interval state  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[4:0]  
[3:0]  
SH State 24  
SH1-SH5  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
Controls whether these outputs are 1 or 0 during this SH interval state  
SH State 25  
SH1-SH5  
SH State 26  
SH1-SH5  
SH State 27  
SH1-SH5  
SH State 28  
SH1-SH5  
SH State 29  
SH1-SH5  
SH State 30  
SH1-SH5  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
121  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 6  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
0
0
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[1:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[1:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[1:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[1:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[1:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:5]  
PHIA0  
PHIA1  
PHIA2  
PHIA3  
PHIA4  
PHIA5  
PHIB0  
PHIB1  
PHIB2  
PHIB3  
PHIB4  
PHIB5  
PHIC0  
PHIC1  
PHIC2  
PHIC3  
PHIC4  
PHIC5  
RS0  
Upper 2 MSb (first shifted out of HSTG)  
1
1
Next 8  
2
2
Next 8  
3
3
Next 8  
4
4
Next 8  
5
5
Lower 8 LSb (last shifted out of HSTG)  
6
6
Upper 2 MSb (first shifted out of HSTG)  
7
7
Next 8  
8
8
Next 8  
9
9
Next 8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
A
Next 8  
B
Lower 8 LSb (last shifted out of HSTG)  
C
Upper 2 MSb (first shifted out of HSTG)  
D
Next 8  
E
Next 8  
F
Next 8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
Next 8  
Lower 8 LSb (last shifted out of HSTG)  
Upper 2 MSb (first shifted out of HSTG)  
RS1  
Next 8  
RS2  
Next 8  
RS3  
Next 8  
RS4  
Next 8  
RS5  
Lower 8 LSb (last shifted out of HSTG)  
CP0  
Upper 2 MSb (first shifted out of HSTG)  
CP1  
Next 8  
CP2  
Next 8  
CP3  
Next 8  
CP4  
Next 8  
CP5  
Lower 8 LSb (last shifted out of HSTG)  
Not Used  
Allows high speed generators to operate at 1/2 normal rate. So the full  
sequence will be clocked out over 2 pixels instead of 1 pixel  
[4]  
[3]  
PHIA 0 = Normal Rate, 1 = 1/2  
HSPIX Rate  
Select  
Rate PHIB 0 = Normal Rate, 1 = 1/2  
Rate PHIC 0 = Normal Rate, 1 = 1/2  
Rate RS 0 = Normal Rate, 1 = 1/2  
Rate CP 0 = Normal Rate, 1 = 1/2 Rate  
[2]  
[1]  
[0]  
6
31  
1F  
[3:0]  
Page Register  
122  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 7  
SH1  
PIXEL ON  
MSB  
MSB of Pixel count where this signal goes low to high  
Range is 0 to 65535  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
0
0
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
SH1  
PIXEL ON  
LSB  
LSB of Pixel count where this signal goes low to high  
1
1
SH1  
PIXEL OFF  
MSB  
MSB of Pixel count where this signal goes high to low  
Range is 0 to 65535  
2
2
SH1  
PIXEL OFF  
LSB  
LSB of Pixel count where this signal goes high to low  
3
3
SH2  
PIXEL ON  
MSB  
MSB of Pixel count where this signal goes low to high  
Range is 0 to 65535  
4
4
SH2  
PIXEL ON  
LSB  
LSB of Pixel count where this signal goes low to high  
5
5
SH2  
PIXEL OFF  
MSB  
MSB of Pixel count where this signal goes high to low  
Range is 0 to 65535  
6
6
SH2  
PIXEL OFF  
LSB  
LSB of Pixel count where this signal goes high to low  
7
7
SH3  
PIXEL ON  
MSB  
MSB of Pixel count where this signal goes low to high  
Range is 0 to 65535  
8
8
SH3  
PIXEL ON  
LSB  
LSB of Pixel count where this signal goes low to high  
9
9
SH3  
PIXEL OFF  
MSB  
MSB of Pixel count where this signal goes high to low  
Range is 0 to 65535  
10  
11  
12  
13  
14  
15  
16  
17  
18  
A
B
C
D
E
F
SH3  
PIXEL OFF  
LSB  
LSB of Pixel count where this signal goes high to low  
SH4  
PIXEL ON  
MSB  
MSB of Pixel count where this signal goes low to high  
Range is 0 to 65535  
SH4  
PIXEL ON  
LSB  
LSB of Pixel count where this signal goes low to high  
SH4  
PIXEL OFF  
MSB  
MSB of Pixel count where this signal goes high to low  
Range is 0 to 65535  
SH4  
PIXEL OFF  
LSB  
LSB of Pixel count where this signal goes high to low  
SH5  
PIXEL ON  
MSB  
MSB of Pixel count where this signal goes low to high  
Range is 0 to 65535  
10  
11  
12  
SH5  
PIXEL ON  
LSB  
LSB of Pixel count where this signal goes low to high  
SH5  
PIXEL OFF  
MSB  
MSB of Pixel count where this signal goes high to low  
Range is 0 to 65535  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
123  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
SH5  
PIXEL OFF  
LSB  
LSB of Pixel count where this signal goes high to low  
7
7
19  
20  
13  
14  
0000 0000  
0000 0000  
[7:0]  
[7:4]  
[3]  
Not Used  
Polarity Override Line 3  
0 Signal Not Inverted  
PHIA Polarity 1 Signal Inverted  
Override Polarity Override Line 2  
[2]  
[1]  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
7
7
7
7
21  
22  
23  
24  
15  
16  
17  
18  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
PHIB Polarity 1 Signal Inverted  
Override Polarity Override Line 2  
[2]  
[1]  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
PHIC Polarity 1 Signal Inverted  
[2]  
[1]  
Override  
Polarity Override Line 2  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
RS Polarity  
Override  
[2]  
[1]  
Polarity Override Line 2  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
CP Polarity  
Override  
[2]  
[1]  
[0]  
Polarity Override Line 2  
Polarity Override Line 1  
Polarity Override Line 0  
124  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7:4]  
[3]  
REGISTER DESCRIPTION  
7
7
7
7
7
25  
26  
27  
28  
29  
19  
1A  
1B  
1C  
1D  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Not Used  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
SH1 Polarity  
Override  
[2]  
[1]  
Polarity Override Line 2  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
SH2 Polarity  
Override  
[2]  
[1]  
Polarity Override Line 2  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
SH3 Polarity  
Override  
[2]  
[1]  
Polarity Override Line 2  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
SH4 Polarity  
Override  
[2]  
[1]  
Polarity Override Line 2  
Polarity Override Line 1  
[0]  
Polarity Override Line 0  
Not Used  
[7:4]  
[3]  
Polarity Override Line 3  
0 Signal Not Inverted  
1 Signal Inverted  
SH5 Polarity  
Override  
[2]  
[1]  
[0]  
Polarity Override Line 2  
Polarity Override Line 1  
Polarity Override Line 0  
7
7
30  
31  
1E  
1F  
Reserved  
[3:0]  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
125  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
PAGE 8  
8
8
8
0
1
2
0
1
2
0000 0000  
0000 0000  
0000 0000  
[7]  
[6]  
[5]  
[4]  
Not Used  
PHIA1 Active (0 = Tristate, 1* = Active)  
PHIA1 Source (0* = Timing, 1 = DC logic 1)  
PHIA1 Polarity (0* = Not Inverted, 1 = Inverted)  
PHIA1,  
PHIA2,  
Polarity /  
State  
[3]  
Not Used  
[2]  
[1]  
PHIA2 Active (0 = Tristate, 1* = Active)  
PHIA2 Source (0* = Timing, 1 = DC logic 1)  
[0]  
[7]  
PHIA2 Polarity (0* = Not Inverted, 1 = Inverted)  
Not Used  
[6]  
[5]  
[4]  
PHIB1 Active (0 = Tristate, 1* = Active) PHIB1  
Source (0* = Timing, 1 = DC logic 1) PHIB1  
Polarity (0* = Not Inverted, 1 = Inverted)  
PHIB1,  
PHIB2,  
Polarity /  
State  
[3]  
Not Used  
[2]  
[1]  
PHIB2 Active (0 = Tristate, 1* = Active)  
PHIB2 Source (0* = Timing, 1 = DC logic 1)  
[0]  
[7]  
PHIB2 Polarity (0* = Not Inverted, 1 = Inverted)  
Not Used  
[6]  
[5]  
[4]  
PHIC1 Active (0 = Tristate, 1* = Active)  
PHIC1 Source (0* = Timing, 1 = DC logic 1)  
PHIC1 Polarity (0* = Not Inverted, 1 = Inverted)  
PHIC1  
PHIC2  
[3]  
Polarity /  
State  
Not Used  
[2]  
[1]  
[0]  
PHIC2 Active (0 = Tristate, 1* = Active)  
PHIC2 Source (0* = Timing, 1 = DC logic 1)  
PHIC2 Polarity (0* = Not Inverted, 1 = Inverted)  
126  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7]  
REGISTER DESCRIPTION  
8
3
3
0000 0000  
Not Used  
[6]  
RS Active (0 = Tristate, 1* = Active)  
[5]  
RS Source (0* = Timing, 1 = DC logic 1)  
RS Polarity (0* = Not Inverted, 1 = Inverted)  
[4]  
RS, CP  
Polarity /  
State  
[3]  
Not Used  
[2]  
[1]  
CP Active (0 = Tristate, 1* = Active)  
CP Source (0* = Timing, 1 = DC logic 1)  
[0]  
[7]  
CP Polarity (0* = Not Inverted, 1 = Inverted)  
Not Used  
8
4
4
0000 0000  
[6]  
[5]  
[4]  
SH1 Active (0 = Tristate, 1* = Active)  
SH1 Source (0* = Timing, 1 = DC logic 1)  
SH1 Polarity (0* = Not Inverted, 1 = Inverted)  
SH1, SH2  
Polarity /  
State  
[3]  
[2]  
[1]  
Not Used  
SH2 Active (0 = Tristate, 1* = Active)  
SH2 Source (0* = Timing, 1 = DC logic 1)  
[0]  
[7]  
SH2 Polarity (0* = Not Inverted, 1 = Inverted)  
Not Used  
8
5
5
0000 0000  
[6]  
[5]  
[4]  
SH3 Active (0 = Tristate, 1* = Active)  
SH3 Source (0* = Timing, 1 = DC logic 1)  
SH3 Polarity (0* = Not Inverted, 1 = Inverted)  
SH3, SH4  
Polarity /  
State  
[3]  
[2]  
[1]  
Not Used  
SH4 Active (0 = Tristate, 1* = Active)  
SH4 Source (0* = Timing, 1 = DC logic 1)  
[0]  
[7]  
SH4 Polarity (0* = Not Inverted, 1 = Inverted)  
Not Used  
8
6
6
0000 0000  
[6]  
[5]  
[4]  
SH5 Active (0 = Tristate, 1* = Active)  
SH5  
Polarity /  
State  
SH5 Source (0* = Timing, 1 = DC logic 1)  
SH5 Polarity (0* = Not Inverted, 1 = Inverted)  
Not Used  
[3:0]  
[7:0]  
8
7
7
0000 0000  
Reserved  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
127  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
8
8
0010 0000  
[7]  
LVDS TXCLK Disable  
0 LVDS TXCLK Enabled - Default  
1 LVDS TXCLK Disabled  
[6]  
CMOS CLKOUT Disable  
0 CMOS CLKOUT Enabled - Default  
1 CMOS CLKOUT Disabled  
[5:4]  
LVDS Drive Adjust  
00 Reduce 100mV  
01 Reduce 50 mV  
10 Default  
11 Increase 50 mV  
[3]  
[2]  
[1]  
[0]  
LVDS  
LVDS TXCLK Delay  
Configuration 0 TXCLK timing normal  
1 TXCLK delayed  
BOL CB Bit Latency  
0 Normal Compensation  
1 No latency compensation  
LVDS Disable TXOUT0  
0 TXOUT0 LVDS Pair Enabled  
1 TXOUT0 LVDS Pair Disabled  
LVDS Mode Select  
0 LM98714  
1 Flexible CB Mapping  
128  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
9
9
0000 0000  
Selects CB Bit Mapping  
CB1 Mapping  
[7:4]  
0000 CBO1 from LM98714 definition  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
CB1/CB0 CB  
Mapping  
[3:0]  
CB0 Mapping  
0000 CBO0 from LM98714 definition  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
129  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
10  
A
0000 0000  
Selects CB Bit Mapping  
CB3 Mapping  
[7:4]  
0000 CBO30 from LM98714 definition  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
CB3/CB2 CB 1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
Mapping  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
[3:0]  
CB2 Mapping  
0000 CBO2 from LM98714 definition  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if  
TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
130  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
11  
B
0000 0000  
Selects CB Bit Mapping  
D2 Mapping  
[7:4]  
0000 D2 (Normal output for particular bit position)  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
D2/CB4 CB  
Mapping  
1110 Active White Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
[3:0]  
CB4 Mapping  
0000 CBO4 from LM98714 definition  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
131  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
12  
C
0000 0000  
Selects CB Bit Mapping  
D4 Mapping  
[7:4]  
0000 D4 (Normal output for particular bit position)  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
D4/D3 CB  
Mapping  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
[3:0]  
D3 Mapping  
0000 D4 (Normal output for particular bit position)  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
132  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
[7:4]  
[3:0]  
REGISTER DESCRIPTION  
8
13  
D
0000 0000  
Not Used  
Selects CB Bit Mapping  
D5 Mapping  
0000 D5 (Normal output for particular bit position)  
0001 CBO0 from LM98714 definition  
0010 CBO1 from LM98714 definition  
0011 CBO2 from LM98714 definition  
0100 CBO3 from LM98714 definition  
0101 CBO4 from LM98714 definition  
0110 R - High for a red channel pixel  
0111 G - High for a green channel pixel  
1000 B - High for a blue channel pixel  
1001 Parity - 21 bit if TXOUT0 enabled, 14 bit if TXOUT0 disabled  
D5 CB  
Mapping  
1010 Ping - High for pixels processed by the Ping section of a channel,  
low for Pong  
1011 Line#lsb - Line = 0 to 3 for lines 0 to 3 in multiline sequences  
1100 Line#msb  
1101 Black Loop Pixels - High for pixels processed by the Black Loop  
1110 ActiveWhite Loop Pixels - High for pixels processed by the White  
Loop  
1111 CLP Pixels - High for pixels where the input CLP switch is closed  
Select level of CLK outputs during register updating (UNLOCK state)  
8
14  
E
0000 0000  
These can be modified during LOCK state to allow user to set up chip for  
what happens during the next UNLOCK state  
[7]  
[6]  
[5]  
PHIA1 Unlock State  
0 = Low, 1 = High  
PHIA2 Unlock State  
0 = Low, 1 = High  
Unlock State PHIB1 Unlock State  
Output Values 0 = Low, 1 = High  
PHIA, PHIB,  
[4]  
[3]  
[2]  
[1]  
[0]  
PHIC, RS, CP PHIB2 Unlock State  
0 = Low, 1 = High  
PHIC1 Unlock State  
0 = Low, 1 = High  
PHIC2 Unlock State  
0 = Low, 1 = High  
RS Unlock State  
0 = Low, 1 = High  
CP Unlock State  
0 = Low, 1 = High  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
133  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
15  
F
0000 0000  
[7:5]  
Not Used  
Select level of CLK outputs during register updating (UNLOCK state)  
These can be modified during LOCK state to allow user to set up chip for  
what happens during the next UNLOCK state  
[4]  
SH1 Unlock State  
Unlock State 0 = Low, 1 = High  
Output Values  
[3]  
[2]  
[1]  
[0]  
SH1, SH2,  
SH2 Unlock State  
SH3, SH4, SH5 0 = Low, 1 = High  
SH3 Unlock State  
0 = Low, 1 = High  
SH4 Unlock State  
0 = Low, 1 = High  
SH5 Unlock State  
0 = Low, 1 = High  
8
8
16 to  
17  
10 to  
11  
0000 0000  
0000 0000  
Reserved  
18  
19  
20  
12  
13  
14  
[7]  
Reserved  
Inhibit Scrambling Individual LVDS Bits if 1.  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
Do Not Scramble LVDS[6]  
Do Not Scramble LVDS[5]  
Do Not Scramble LVDS[4]  
Do Not Scramble LVDS[3]  
Do Not Scramble LVDS[2]  
Do Not Scramble LVDS[1]  
Do Not Scramble LVDS[0]  
Reserved  
Scrambler  
Inhibit 0  
8
0000 0000  
Inhibit Scrambling Individual LVDS Bits if 1.  
Do Not Scramble LVDS[13]  
Do Not Scramble LVDS[12]  
Do Not Scramble LVDS[11]  
Do Not Scramble LVDS[10]  
Do Not Scramble LVDS[9]  
Do Not Scramble LVDS[8]  
Do Not Scramble LVDS[7]  
Reserved  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
Scrambler  
Inhibit 1  
8
0000 0000  
Inhibit Scrambling Individual LVDS Bits if 1.  
Do Not Scramble LVDS[20]  
Do Not Scramble LVDS[19]  
Do Not Scramble LVDS[18]  
Do Not Scramble LVDS[17]  
Do Not Scramble LVDS[16]  
Do Not Scramble LVDS[15]  
Do Not Scramble LVDS[14]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
Scrambler  
Inhibit 2  
134  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
Table 18. Register Definitions (continued)  
PAGE ADDR ADDR DEFAULT  
(DEC) (DEC) (HEX) (BINARY)  
REGISTER  
TITLE  
BITS  
REGISTER DESCRIPTION  
8
21 to  
30  
15 to  
1E  
0000 0000  
Reserved  
8
31  
1F  
[3:0]  
Page Register  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
135  
Product Folder Links: LM98725  
LM98725  
SNAS474H APRIL 2009REVISED MARCH 2015  
www.ti.com  
8 Layout  
8.1 Layout Example  
U1A 74AC04/SO  
R1 150  
TP1  
1
2
1
U1B 74AC04/SO  
3
TEST POINT  
TP2  
R2 4.7  
4
1
U1C 74AC04/SO  
5
R3 4.7  
TEST POINT  
6
U1D 74AC04/SO  
9
R4 4.7  
8
TP3  
U1E 74AC04/SO  
11  
1
R5 10  
10  
TEST POINT  
U1F 74AC04/SO  
13  
R6 10  
12  
U2A 74AC04/SO  
1
R7 10  
R8 4.7  
R10 4.7  
R11 4.7  
2
6
U2B 74AC04/SO  
3
U3  
DS90CR218A/SO  
U7  
LM98725  
8
9
RXIN0-  
4
1
2
3
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
PHIC2  
PHIC1  
SH1  
SH5  
SH4  
PHIB2  
PHIB1  
VC  
DGND  
PHIA2  
PHIA1  
CP  
U2C 74AC04/SO  
5
R9  
100  
U5  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
11  
PHI-TG2  
GND  
PHI-TG3  
PHI-2  
PHI-1  
NC  
10  
9
8
7
6
5
4
3
2
1
U2D 74AC04/SO  
9
VC  
PHI-TG1  
PHI-1  
PHI-2  
NC  
PHI-2  
NC  
PHI-SEL  
V0D  
VOUT1  
VOUT2  
RXIN0+  
RXIN1-  
CE  
CAL  
4
5
6
7
8
9
10  
11  
10  
CE  
CAL  
RESET  
SH_R  
SDI  
SDO  
SCLK  
SEN  
8
24  
26  
27  
29  
30  
31  
33  
34  
35  
37  
39  
40  
41  
43  
45  
46  
47  
1
RXOUT0  
+12V  
RESET#  
SH_R  
R12  
100  
RXOUT1  
RXOUT2  
RXOUT3  
RXOUT4  
RXOUT5  
RXOUT6  
RXOUT7  
RXOUT8  
RXOUT9  
RXOUT10  
RXOUT11  
RXOUT12  
RXOUT13  
RXOUT14  
RXOUT15  
RXOUT16  
RXOUT17  
RXOUT18  
RXOUT19  
RXOUT20  
U2E 74AC04/SO  
11  
NC  
R13 47  
R14 47  
PHI-1  
PHI-CLB  
PHI-R  
GND  
RS  
SH3  
CLKOUT/SH2  
10  
SDIO  
SCLK  
SEN#  
11  
14  
RXIN1+  
RXIN2-  
U2F 74AC04/SO  
13  
12  
44  
43  
42  
R15  
100  
VC  
VD  
VOUT3  
VC  
VD  
DGND  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
VA  
VA  
AGND  
VA  
VREFB  
VREFT  
VA  
AGND  
VCLP  
VA  
C1  
47uF/25V  
C2  
15  
16  
RXIN2+  
0.1u  
VREFB  
VREFT  
41  
40  
39  
38  
37  
36  
35  
34  
D0_TXOUT0-  
D1_TXOUT0+  
D2_TXOUT1-  
D3_TXOUT1+  
D4_TXOUT2-  
D5_TXOUT2+  
D6_TXCLK-  
RXCLKIN-  
TP4  
1
R16  
100  
VCLP  
R27  
9.0k 1%  
R17  
100  
C3  
R18  
100  
C4  
47uF/25V  
R19  
100  
C5  
47uF/25V  
17  
IBIAS  
RXCLKIN+  
PDN  
47uF/25V  
2
D7_TXCLK+  
22  
23  
24  
25  
26  
27  
28  
22  
4
5
AGND  
OSr  
AGND  
OSg  
AGND  
OSb  
CPOFILT2  
33  
32  
INCLK-  
INCLK+  
Q1  
R20 2SC945  
Q2  
R21 2SC945  
Q3  
R22 2SC945  
C6  
C7  
C8  
tbd  
tbd  
tbd  
12  
20  
7
13  
18  
19  
21  
LVDSVCC  
PLLVCC  
LVDSGND  
LVDSGND  
LVDSGND  
PLLGND  
23  
RXCLKOUT  
31  
30  
29  
DVB  
CPOFILT1  
DGND  
100  
100  
100  
C10  
0.1uF  
PLLGND  
C20  
0.1  
R23  
2k  
R24  
2k  
R25  
2k  
INCLK-  
INCLK+  
TP5 TP6 TP7  
R26  
100  
J1  
Pin 12  
Pin 15  
Pin 18  
Pin 21  
VA  
Pin 44  
Pin 52  
Install 100 Ohm for LVDS INCLK.  
Install solder jumper for CMOS  
INCLK  
VA  
VA  
VA  
VD  
VC  
VCLP  
VREFB  
VREFT  
C13  
0.1uF  
C14  
0.1uF  
C15  
0.1uF  
C15  
0.1uF  
C16  
0.1uF  
C17  
0.1uF  
C18  
0.1uF  
C11  
C19  
0.1uF  
C12  
0.1uF  
4.7uF  
Figure 68. Example Application Circuit  
136  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM98725  
LM98725  
www.ti.com  
SNAS474H APRIL 2009REVISED MARCH 2015  
9 Device and Documentation Support  
9.1 Trademarks  
All trademarks are the property of their respective owners.  
9.2 Device Support  
For additional information, see Texas Instruments' E2E community resources: http://e2e.ti.com.  
9.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
9.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
137  
Product Folder Links: LM98725  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM98725CCMT/NOPB  
LM98725CCMTX/NOPB  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
DGG  
DGG  
56  
56  
34  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
0 to 70  
0 to 70  
LM98725CCMT  
LM98725CCMT  
1000 RoHS & Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM98725CCMTX/NOPB TSSOP  
DGG  
56  
1000  
330.0  
24.4  
8.6  
14.5  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP DGG 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
LM98725CCMTX/NOPB  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
DGG TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM98725CCMT/NOPB  
56  
34  
495  
10  
2540  
5.79  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY