LMG1205 [TI]

适用于 GaNFET 和 MOSFET、具有 5V UVLO 的 1.2A/5A 90V 半桥栅极驱动器;
LMG1205
型号: LMG1205
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 GaNFET 和 MOSFET、具有 5V UVLO 的 1.2A/5A 90V 半桥栅极驱动器

栅极驱动 驱动器
文件: 总27页 (文件大小:1631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMG1205  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
LMG1205 具有集成自举二极管100V1.2A 5A GaN 驱动器  
1 特性  
3 说明  
• 独立的高边和低边  
TTL 逻辑输入  
LMG1205 设计用于驱动采用同步降压、升压或半桥配  
置的高边和低边增强模式氮化镓 (GaN) FET。此器件  
具有一个集成于内部100V 自举二极管还为高边和  
低边输出分别提供了独立的输入可实现最大程度的灵  
活控制。高边偏置电压采用自举技术生成内部钳位为  
5V可防止栅极电压超过增强模GaN FET 的最大栅  
源电压额定值。LMG1205 的输入TTL 逻辑兼容并  
且无VDD 电压如何都能够承受高14V 的输入电  
压。LMG1205 具有分离栅输出可独立灵活地调节导  
通和关断强度。  
1.2A 峰值拉电流5A 灌电流  
• 高边浮动偏置电压轨  
工作电压高100VDC  
• 内部自举电源电压钳位  
• 分离输出实现可调的  
导通/关断强度  
0.6下拉电阻2.1上拉电阻  
• 快速传播时间典型值35ns)  
• 出色的传播延迟匹配  
典型值1.5ns)  
此外LMG1205 具有强劲的灌电流能力可使栅极保  
持低电平状态从而防止开关操作期间发生意外导通。  
LMG1205 的工作频率可高达数 MHzLMG1205 采用  
12 引脚 DSBGA 封装具有紧凑的外形尺寸和超小的  
封装电感。  
• 电源轨欠压锁定  
• 低功耗  
2 应用  
• 电流馈入型推挽式转换器  
• 半桥和全桥转换器  
• 同步降压转换器  
• 双开关正激式转换器  
• 有源钳位正激式转换器  
器件信息(1)  
封装尺寸标称值)  
器件型号  
LMG1205  
封装  
DSBGA (12)  
2.00mm x 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
0.1 F  
VIN  
HB  
HOH  
HS  
VDD  
1 F  
Load  
HI  
LI  
LMG1205  
LOH  
LOL  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
简化版应用示意图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSD37  
 
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
Table of Contents  
7.4 Device Functional Modes..........................................12  
8 Application and Implementation..................................13  
8.1 Application Information............................................. 13  
8.2 Typical Application.................................................... 13  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Examples.................................................... 18  
11 Device and Documentation Support..........................19  
11.1 Device Support........................................................19  
11.2 Documentation Support.......................................... 19  
11.3 接收文档更新通知................................................... 19  
11.4 支持资源..................................................................19  
11.5 Trademarks............................................................. 19  
11.6 静电放电警告...........................................................19  
11.7 术语表..................................................................... 19  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics............................................7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................11  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (February 2018) to Revision B (April 2023)  
Page  
• 将数据表标题从 80V 更改为 100V......................................................................................................................1  
Added clamping circuit delay time and functional explanation to 7.3.3 .......................................................12  
Changed equation in 8.2.2.2 .......................................................................................................................14  
Changes from Revision * (March 2017) to Revision A (February 2018)  
Page  
• 更改了数据表标题...............................................................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSD37  
2
Submit Document Feedback  
Product Folder Links: LMG1205  
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
5 Pin Configuration and Functions  
LOL  
LOH  
HS  
VSS  
VDD  
LI  
HI  
A
B
C
D
VDD  
HS  
4
HOL  
1
HOH  
HB  
2
3
5-1. YFX Package 12-Pin DSBGA Top View  
5-1. Pin Functions  
PIN  
TYPE (2)  
DESCRIPTION  
NUMBER  
A1  
NAME  
LOL  
Low-side gate driver sink-current output: connect to the gate of the low-side GaN FET with  
a short, low inductance path. A gate resistor can be used to adjust the turnoff speed.  
O
G
P
A2  
VSS  
VDD  
Ground return: all signals are referenced to this ground.  
5-V positive gate drive supply: locally decouple to VSS using low ESR/ESL capacitor  
located as close as possible to the IC.  
A3, C4(1)  
Low-side driver control input. The LMG1205 inputs have TTL type thresholds. Unused  
inputs must be tied to ground and not left open.  
A4  
LI  
I
Low-side gate driver source-current output: connect to the gate of low-side GaN FET with a  
short, low inductance path. A gate resistor can be used to adjust the turnon speed.  
B1  
LOH  
HI  
O
I
High-side driver control input. The LMG1205 inputs have TTL type thresholds. Unused  
inputs must be tied to ground and not left open.  
B4  
High-side GaN FET source connection: connect to the bootstrap capacitor negative  
terminal and the source of the high-side GaN FET.  
C1, D4(1)  
D1  
HS  
P
O
O
High-side gate driver turnoff output: connect to the gate of high-side GaN FET with a short,  
low inductance path. A gate resistor can be used to adjust the turnoff speed.  
HOL  
HOH  
High-side gate driver turnon output: connect to the gate of high-side GaN FET with a short,  
low inductance path. A gate resistor can be used to adjust the turnon speed.  
D2  
High-side gate driver bootstrap rail: connect the positive terminal of the bootstrap capacitor  
to HB and the negative terminal to HS. The bootstrap capacitor must be placed as close as  
possible to the IC.  
D3  
HB  
P
(1) A3 and C4, C1 and D4 are internally connected  
(2) I = Input, O = Output, G = Ground, P = Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
VHS 0.3  
5  
MAX  
UNIT  
VDD to VSS  
HB to HS  
7
V
V
V
V
V
7
15  
LI or HI input  
LOH, LOL output  
VDD +0.3  
HOH, HOL output  
HS to VSS  
VHB +0.3  
93  
V
V
HS to VSS (2)  
100  
5  
HB to VSS  
0
100  
V
HB to VSS(2)  
0
107  
V
Operating junction temperature  
Storage temperature, Tstg  
150  
°C  
°C  
150  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Device can withstand 1000 pulses up to the value indicated in the table of 100-ms duration and less than 1% duty cycle over its  
lifetime.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
5.5  
UNIT  
VDD  
V
V
LI or HI input  
0
14  
HS  
90  
V
5  
HB  
VHS + 4  
VHS + 5.5  
50  
V
HS slew rate  
V/ns  
°C  
Operating junction temperature  
125  
40  
6.4 Thermal Information  
LMG1205  
THERMAL METRIC(1)  
YFX (DSBGA)  
12 PINS  
76.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
0.6  
12.0  
1.6  
ψJT  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSD37  
4
Submit Document Feedback  
Product Folder Links: LMG1205  
 
 
 
 
 
 
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
6.4 Thermal Information (continued)  
LMG1205  
THERMAL METRIC(1)  
YFX (DSBGA)  
12 PINS  
12.0  
UNIT  
Junction-to-board characterization parameter  
°C/W  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
6.5 Electrical Characteristics  
Specifications are TJ = 25°C. Unless otherwise specified: VDD = VHB = 5 V, VSS = VHS = 0 V.  
No load on LOL and HOL or HOH and HOL(1)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.09  
2
MAX  
UNIT  
SUPPLY CURRENTS  
TJ = 25°C  
LI = HI = 0 V, VDD = VHB  
4 V  
=
=
IDD  
VDD quiescent current  
mA  
mA  
mA  
mA  
µA  
0.12  
3
TJ = 40°C to 125°C  
TJ = 25°C  
IDDO  
VDD operating current  
f = 500 kHz  
TJ = 40°C to 125°C  
TJ = 25°C  
0.10  
1.5  
0.1  
0.4  
LI = HI = 0 V, VDD = VHB  
4 V  
IHB  
Total HB quiescent current  
Total HB operating current  
HB to VSS quiescent current  
HB to VSS operating current  
0.12  
2.5  
8
TJ = 40°C to 125°C  
TJ = 25°C  
IHBO  
IHBS  
IHBSO  
f = 500 kHz  
TJ = 40°C to 125°C  
TJ = 25°C  
HS = HB = 80 V  
f = 500 kHz  
TJ = 40°C to 125°C  
TJ = 25°C  
mA  
1
TJ = 40°C to 125°C  
INPUT PINS  
TJ = 25°C  
2.06  
1.66  
VIR  
Input voltage threshold  
Rising edge  
Falling edge  
V
1.89  
1.48  
2.18  
1.76  
TJ = 40°C to 125°C  
TJ = 25°C  
VIF  
Input voltage threshold  
Input voltage hysteresis  
Input pulldown resistance  
V
TJ = 40°C to 125°C  
VIHYS  
RI  
400  
200  
mV  
kΩ  
TJ = 25°C  
100  
3.2  
2.5  
300  
4.5  
3.9  
TJ = 40°C to 125°C  
UNDERVOLTAGE PROTECTION  
TJ = 25°C  
3.8  
VDDR  
VDDH  
VHBR  
VHBH  
VDD rising threshold  
VDD threshold hysteresis  
HB rising threshold  
V
V
V
V
TJ = 40°C to 125°C  
0.2  
3.2  
TJ = 25°C  
TJ = 40°C to 125°C  
HB threshold hysteresis  
0.2  
0.45  
0.9  
BOOTSTRAP DIODE AND CLAMP  
TJ = 25°C  
VDL  
VDH  
RD  
Low-current forward voltage  
High-current forward voltage  
Dynamic resistance  
IVDD-HB = 100 µA  
IVDD-HB = 100 mA  
IVDD-HB = 100 mA  
V
V
0.65  
1
TJ = 40°C to 125°C  
TJ = 25°C  
TJ = 40°C to 125°C  
TJ = 25°C  
1.85  
5
3.6  
5.25  
TJ = 40°C to 125°C  
TJ = 25°C  
HB-HS clamp regulation voltage  
V
4.5  
TJ = 40°C to 125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSD37  
6
Submit Document Feedback  
Product Folder Links: LMG1205  
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
6.5 Electrical Characteristics (continued)  
Specifications are TJ = 25°C. Unless otherwise specified: VDD = VHB = 5 V, VSS = VHS = 0 V.  
No load on LOL and HOL or HOH and HOL(1)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.06  
0.21  
MAX  
UNIT  
LOW- and HIGH-SIDE GATE DRIVER  
TJ = 25°C  
VOL  
Low-level output voltage  
IHOL = ILOL = 100 mA  
IHOH = ILOH = 100 mA  
V
V
0.1  
TJ = 40°C to 125°C  
High-level output voltage  
VOH = VDD LOH  
or VOH = HB HOH  
TJ = 25°C  
VOH  
0.31  
TJ = 40°C to 125°C  
IOHL  
IOLL  
Peak source current  
Peak sink current  
HOH, LOH = 0 V  
HOL, LOL = 5 V  
1.2  
5
A
A
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tLPHL  
tLPLH  
tHPHL  
tHPLH  
LO turnoff propagation delay  
LI falling to LOL falling  
LI rising to LOH rising  
HI falling to HOL falling  
HI rising to HOH rising  
TJ = 25°C  
33.5  
ns  
TJ = 40°C to  
125°C  
50  
50  
50  
50  
LO turnon propagation delay  
HO turnoff propagation delay  
HO turnon propagation delay  
TJ = 25°C  
35  
33.5  
35  
ns  
ns  
ns  
TJ = 40°C to  
125°C  
TJ = 25°C  
TJ = 40°C to  
125°C  
TJ = 25°C  
TJ = 40°C to  
125°C  
tMON  
Delay matching  
LO on and HO off  
TJ = 25°C  
1.5  
1.5  
ns  
ns  
8
8
TJ = 40°C to 125°C  
TJ = 25°C  
tMOFF  
Delay matching  
LO off and HO on  
TJ = 40°C to 125°C  
CL = 1000 pF  
CL = 1000 pF  
CL = 1000 pF  
CL = 1000 pF  
tHRC  
tLRC  
tHFC  
tLFC  
tPW  
7
7
ns  
ns  
ns  
ns  
HO rise time (0.5 V 4.5 V)  
LO rise time (0.5 V 4.5 V)  
HO fall time (0.5 V 4.5 V)  
LO fall time (0.5 V 4.5 V)  
3.5  
3.5  
Minimum input pulse width  
that changes the output  
10  
40  
ns  
ns  
tBS  
Bootstrap diode  
reverse recovery time  
IF = 100 mA, IR = 100 mA  
(1) Parameters that show only a typical value are ensured by design and may not be tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
LI  
LI  
HI  
HI  
t
HPLH  
t
LPLH  
t
HPHL  
t
LPHL  
LO  
LO  
HO  
HO  
t
t
MON  
MOFF  
6-1. Timing Diagram  
6.7 Typical Characteristics  
6-2. Peak Source Current vs Output Voltage  
6-3. Peak Sink Current vs Output Voltage  
6-4. IDDO vs Frequency  
6-5. IHBO vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
6.7 Typical Characteristics (continued)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (ºC)  
TEMPERATURE (ºC)  
D005  
D006  
6-6. IDD vs Temperature  
6-7. IHB vs Temperature  
6-8. UVLO Rising Thresholds vs Temperature  
6-9. UVLO Falling Thresholds vs Temperature  
6-10. Input Thresholds vs Temperature  
6-11. Input Threshold Hysteresis vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
6.7 Typical Characteristics (continued)  
45  
40  
35  
30  
25  
20  
T_PLH  
T_PHL  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (ºC)  
6-13. Propagation Delay vs Temperature  
5.2  
D012  
6-12. Bootstrap Diode Forward Voltage  
5.1  
5
4.9  
4.8  
4.7  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (ºC)  
D014  
6-14. LO & HO Gate Drive High/Low Level Output Voltage  
vs Temperature  
6-15. HB Regulation Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
7 Detailed Description  
7.1 Overview  
The LMG1205 is a high frequency high- and low- side gate driver for enhancement mode Gallium Nitride (GaN)  
FETs in a synchronous buck, boost, or half-bridge configuration. The high-side bias voltage is generated using a  
bootstrap technique and is internally clamped at 5 V, which prevents the gate voltage from exceeding the  
maximum gate-source voltage rating of enhancement mode GaN FETs. The LMG1205 has split-gate outputs  
with strong sink capability, providing flexibility to adjust the turnon and turnoff strength independently.  
The LMG1205 can operate up to several MHz, and is available in a 12-pin DSBGA package that offers a  
compact footprint and minimized package inductance.  
7.2 Functional Block Diagram  
HB  
UVLO  
& CLAMP  
HOH  
LEVEL  
SHIFT  
HOL  
HS  
HI  
VDD  
UVLO  
LOH  
LOL  
LI  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 Input and Output  
The input pins of the LMG1205 are independently controlled with TTL input thresholds and can withstand  
voltages up to 12 V regardless of the VDD voltage. This allows the inputs to be directly connected to the outputs  
of an analog PWM controller with up to 12-V power supply, eliminating the need for a buffer stage.  
The output pulldown and pullup resistance of LMG1205 is optimized for enhancement mode GaN FETs to  
achieve high frequency and efficient operation. The 0.6-Ωpulldown resistance provides a robust low impedance  
turnoff path necessary to eliminate undesired turnon induced by high dv/dt or high di/dt. The 2.1-Ω pullup  
resistance helps reduce the ringing and over-shoot of the switch node voltage. The split outputs of the LMG1205  
offers flexibility to adjust the turnon and turnoff speed by independently adding additional impedance in either the  
turnon path and/or the turnoff path.  
If the input signal for either of the the two channels, HI or LI, is not used, the control pin must be tied to either  
VDD or VSS. These inputs must not be left floating.  
7.3.2 Start-up and UVLO  
The LMG1205 has an undervoltage lockout (UVLO) on both the VDD and bootstrap supplies. When the VDD  
voltage is below the threshold voltage of 3.8 V, both the HI and LI inputs are ignored, to prevent the GaN FETs  
from being partially turned on. Also, if there is insufficient VDD voltage, the UVLO actively pulls the LOL and  
HOL low. When the VDD voltage is above its UVLO threshold, but the HB to HS bootstrap voltage is below the  
UVLO threshold of 3.2 V, only HOL is pulled low. Both UVLO threshold voltages have 200 mV of hysteresis to  
avoid chattering.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
7-1. VDD UVLO Feature Logic Operation  
CONDITION (VHB-HS > VHBR for all cases below)  
VDD - VSS < VDDR during device start-up  
VDD - VSS < VDDR during device start-up  
VDD - VSS < VDDR during device start-up  
VDD - VSS < VDDR during device start-up  
VDD - VSS < VDDR - VDDH after device start-up  
VDD - VSS < VDDR - VDDH after device start-up  
VDD - VSS < VDDR - VDDH after device start-up  
VDD - VSS < VDDR - VDDH after device start-up  
HI  
H
L
LI  
HO  
L
LO  
L
L
H
H
L
L
L
H
L
L
L
L
L
H
L
L
L
L
H
H
L
L
L
H
L
L
L
L
L
7-2. VHB-HS UVLO Feature Logic Operation  
CONDITION (VDD > VDDR for all cases below)  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR during device start-up  
VHB-HS < VHBR - VHBH after device start-up  
VHB-HS < VHBR - VHBH after device start-up  
VHB-HS < VHBR - VHBH after device start-up  
VHB-HS < VHBR - VHBH after device start-up  
HI  
H
L
LI  
HO  
L
LO  
L
L
H
H
L
L
H
H
L
H
L
L
L
H
L
L
L
L
H
H
L
L
H
H
L
H
L
L
L
7.3.3 HS Negative Voltage and Bootstrap Supply Voltage Clamping  
Due to the intrinsic nature of enhancement mode GaN FETs, the source-to-drain voltage of the bottom switch is  
usually higher than a diode forward voltage drop when the gate is pulled low. This causes negative voltage on  
HS pin. Moreover, this negative voltage transient may become even more pronounced due to the effects of  
board layout and device drain/source parasitic inductances. With high-side driver using the floating bootstrap  
configuration, negative HS voltage can lead to an excessive bootstrap voltage, which can damage the high-side  
GaN FET. The LMG1205 solves this problem with an internal clamping circuit that prevents the bootstrap voltage  
from exceeding 5 V typical. The clamping circuit works by opening an internal switch in series with the internal  
bootstrap diode when the bootstrap voltage exceeds the threshold, preventing further charging. The clamping  
circuit has a delay of about 270 ns between the threshold being exceeded and charging being stopped. In  
addition, the clamping circuit is bypassed if an external bootstrap diode is used.  
7.3.4 Level Shift  
The level-shift circuit is the interface from the high-side input to the high-side driver stage which is referenced to  
the switch node (HS). The level shift allows control of the HO output, which is referenced to the HS pin and  
provides excellent delay matching with the low-side driver. Typical delay matching between LO and HO is around  
1.5 ns.  
7.4 Device Functional Modes  
7-3 shows the device truth table.  
7-3. Truth Table  
HI  
LI  
HOH  
Open  
Open  
H
HOL  
LOH  
Open  
H
LOL  
L
L
L
L
L
H
L
L
Open  
L
H
H
Open  
Open  
Open  
H
H
H
Open  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSD37  
12  
Submit Document Feedback  
Product Folder Links: LMG1205  
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
To operate GaN transistors at very high switching frequencies and to reduce associated switching losses, a  
powerful gate driver is employed between the PWM output of controller and the gates of the GaN transistor.  
Also, gate drivers are indispensable when the outputs of the PWM controller do not meet the voltage or current  
levels needed to directly drive the gates of the switching devices. With the advent of digital power, this situation  
is often encountered because the PWM signal from the digital controller is often a 3.3-V logic signal, which  
cannot effectively turn on a power switch. A level-shift circuit is needed to boost the 3.3 V signal to the gate-drive  
voltage (such as 12 V) in order to fully turn on the power device and minimize conduction losses.  
Traditional buffer drive circuits based on NPN/PNP bipolar transistors in totem-pole arrangement prove  
inadequate with digital power because they lack level-shifting capability. Gate drivers effectively combine both  
the level-shifting and buffer-drive functions. Gate drivers also address other needs such as minimizing the effect  
of high-frequency switching noise (by placing the high-current driver IC physically close to the power switch),  
driving gate-drive transformers and controlling floating power-device gates, reducing power dissipation and  
thermal stress in controllers by moving gate charge power losses from the controller into the driver.  
The LMG1205 is a MHz high- and low-side gate driver for enhancement mode GaN FETs in a synchronous  
buck, boost, or half-bridge configuration. The high-side bias voltage is generated using a bootstrap technique  
and is internally clamped at 5 V, which prevents the gate voltage from exceeding the maximum gate-source  
voltage rating of enhancement mode GaN FETs. The LMG1205 has split-gate outputs with strong sink capability,  
providing flexibility to adjust the turnon and turnoff strength independently.  
8.2 Typical Application  
The circuit in 8-1 shows a synchronous buck converter to evaluate LMG1205. Detailed synchronous buck  
converter specifications are listed in 8.2.1. Optimization of he power loop (loop impedance from VIN capacitor  
to PGND) is critical to the performance of the design. Having a high power loop inductance causes significant  
ringing in the SW node and also causes an associated power loss. For more information, please refer to 节  
11.2.1.  
0.1 F  
VIN  
Rgh  
HB  
HOH  
VDD  
HOL  
VOUT  
1 F  
HS  
HI  
LMG1205  
COUT  
Rgl  
LI  
LOH  
LOL  
VSS  
Copyright © 2017, Texas Instruments Incorporated  
8-1. Application Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
8.2.1 Design Requirements  
When designing a synchronous buck converter application that incorporates the LMG1205 gate driver and GaN  
power FETs, some design considerations must be evaluated first to make the most appropriate selection. Among  
these considerations are the input voltages, passive components, operating frequency, and controller selection.  
8-1 shows some sample values for a typical application. See 9, 10, and 8.2.2.3 for other key design  
considerations for the LMG1205.  
8-1. Design Parameters  
PARAMETER  
SAMPLE VALUE  
Half-bridge input supply voltage,  
VIN  
48 V  
Output voltage, VOUT  
Output current  
Dead time  
12 V  
8 A  
8 ns  
Inductor  
4.7 µH  
1 MHz  
Switching frequency  
8.2.2 Detailed Design Procedure  
This procedure outlines the design considerations of LMG1205 in a synchronous buck converter with  
enhancement mode GaN FET. For additional design help, see 11.2.1.  
8.2.2.1 VDD Bypass Capacitor  
The VDD bypass capacitor provides the gate charge for the low-side and high-side transistors and to absorb the  
reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated with 方程式  
1.  
QgH + QgL + Qrr  
CVDD  
>
DV  
(1)  
where  
QgH and QgL are gate charge of the high-side and low-side transistors, respectively  
Qrr is the reverse recovery charge of the bootstrap diode, which is typically around 4nC  
• ΔV is the maximum allowable voltage drop across the bypass capacitor  
TI recommends a 0.1µF or larger value, good-quality ceramic capacitor. The bypass capacitor must be placed  
as close as possible to the device pins to minimize the parasitic inductance.  
8.2.2.2 Bootstrap Capacitor  
The bootstrap capacitor provides the gate charge for the high-side switch, DC bias power for HB undervoltage  
lockout circuit, and the reverse recovery charge of the bootstrap diode. The required bypass capacitance can be  
calculated with 方程2.  
Q
+
I
+ I  
× T + Q  
ON rr  
gH  
HB  
GSS  
V  
C
>
(2)  
BST  
where  
IHB is the quiescent current of the high-side driver  
Ton is the maximum on-time period of the high-side transistor  
IGSS is the gate leakage current of the high-side transistor  
A good-quality ceramic capacitor must be used for the bootstrap capacitor. TI recommends placing the bootstrap  
capacitor as close as possible to the HB and HS pins.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSD37  
14  
Submit Document Feedback  
Product Folder Links: LMG1205  
 
 
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
8.2.2.3 Power Dissipation  
The power consumption of the driver is an important measure that determines the maximum achievable  
operating frequency of the driver. It must be kept below the maximum power dissipation limit of the package at  
the operating temperature. The total power dissipation of the LMG1205 is the sum of the gate driver losses and  
the bootstrap diode power loss.  
The gate driver losses are incurred by charge and discharge of the capacitive load. It can be approximated as  
P = CLoadH + CLoadL ì VD2D ì fSW  
(
)
(3)  
where  
CLoadH and CLoadL are the high-side and the low-side capacitive loads, respectively  
It can also be calculated with the total input gate charge of the high-side and the low-side transistors as  
P = QgH + QgL ì VDD ì fSW  
(
)
(4)  
There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and  
HO outputs. 8-2 shows the measured gate driver power dissipation versus frequency and load capacitance.  
At higher frequencies and load capacitance values, the power dissipation is dominated by the power losses  
driving the output loads and agrees well with the above equations. 8-2 can be used to approximate the power  
losses due to the gate drivers.  
Gate driver power dissipation (LO+HO), VDD = 5 V  
8-2. Neglecting Bootstrap Diode Losses  
The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the  
bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Because each of these  
events happens once per cycle, the diode power loss is proportional to the operating frequency. Larger  
capacitive loads require more energy to recharge the bootstrap capacitor resulting in more losses. Higher input  
voltages (VIN) to the half bridge also result in higher reverse recovery losses.  
8-3 and 8-4 show the forward bias power loss and the reverse bias power loss of the bootstrap diode  
respectively. The plots are generated based on calculations and lab measurements of the diode reverse time  
and current under several operating conditions. 8-3 and 8-4 can be used to predict the bootstrap diode  
power loss under different operating conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
The load of high-side driver is a GaN FET with total gate  
The load of high-side driver is a GaN FET with total gate  
charge of 10 nC.  
charge of 10 nC.  
8-4. Reverse Recovery Power Loss of Bootstrap  
8-3. Forward Bias Power Loss of Bootstrap  
Diode VIN = 50 V  
Diode VIN = 50 V  
The sum of the driver loss and the bootstrap diode loss is the total power loss of the IC. For a given ambient  
temperature, the maximum allowable power loss of the IC can be defined as 方程5.  
(TJ - TA)  
P =  
qJA  
(5)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNOSD37  
16  
Submit Document Feedback  
Product Folder Links: LMG1205  
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
8.2.3 Application Curves  
Conditions: Input Voltage = 48 V DC, Load Current = 5  
ATraces: Top Trace: Gate of Low-Side eGaN FET, Volt/div = 2  
V Bottom Trace: LI of LMG1205, Volt/div = 5 V Bandwidth Limit  
= 600 MHz Horizontal Resolution = 0.2 µs/div  
Conditions: Input Voltage = 48 V DC, Load Current = 10  
ATraces: Trace: Switch-Node Voltage, Volts/div = 20 V  
Bandwidth Limit = 600 MHz Horizontal Resolution = 50 ns/div  
8-6. Switch-Node Voltage  
8-5. Low-Side Driver Input and Output  
9 Power Supply Recommendations  
The recommended bias supply voltage range for LMG1205 is from 4.5 V to 5.5 V. The lower end of this range is  
governed by the internal UVLO protection feature of the VDD supply circuit. TI recommends keeping proper  
margin to allow for transient voltage spikes while not violating the LMG1205 absolute maximum VDD voltage  
rating and the GaN transistor gate breakdown voltage limit.  
The UVLO protection feature also involves a hysteresis function. This means that once the device is operating in  
normal mode, if the VDD voltage drops, the device continues to operate in normal mode as far as the voltage  
drop does not exceeds the hysteresis specification, VDDH. If the voltage drop is more than hysteresis  
specification, the device shuts down. Therefore, while operating at or near the 4.5-V range, the voltage ripple on  
the VDD power supply output must be smaller than the hysteresis specification of LMG1205 UVLO to avoid  
triggering device shutdown.  
A local bypass capacitor must be placed between the VDD and VSS pins. This capacitor must be located as  
close as possible to the device. TI recommends a low-ESR, ceramic, surface-mount capacitor. TI also  
recommends using 2 capacitors across VDD and GND: a 100-nF ceramic surface-mount capacitor for high  
frequency filtering placed very close to VDD and GND pin, and another surface-mount capacitor, 220 nF to 10  
μF, for IC bias requirements.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
10 Layout  
10.1 Layout Guidelines  
Small gate capacitance and Miller capacitance enable enhancement mode GaN FETs to operate with fast  
switching speed. The induced high dv/dt and di/dt, coupled with a low gate threshold voltage and limited  
headroom of enhancement mode GaN FETs gate voltage, make the circuit layout crucial to the optimum  
performance. Following are some recommendations:  
1. The first priority in designing the layout of the driver is to confine the high peak currents that charge and  
discharge the GaN FETs gate into a minimal physical area. This decreases the loop inductance and  
minimize noise issues on the gate terminal of the GaN FETs. The GaN FETs must be placed close to the  
driver.  
2. The second high current path includes the bootstrap capacitor, the local ground referenced VDD bypass  
capacitor and low-side GaN FET. The bootstrap capacitor is recharged on a cycle-by-cycle basis through the  
bootstrap diode from the ground referenced VDD capacitor. The recharging occurs in a short time interval  
and involves high peak current. Minimizing this loop length and area on the circuit board is important to  
ensure reliable operation.  
3. The parasitic inductance in series with the source of the high-side FET and the low-side FET can impose  
excessive negative voltage transients on the driver. TI recommends connecting the HS pin and VSS pin to  
the respective source of the high-side and low-side transistors with a short and low-inductance path.  
4. The parasitic source inductance, along with the gate capacitor and the driver pull-down path, can form an  
LCR resonant tank, resulting in gate voltage oscillations. An optional resistor or ferrite bead can be used to  
damp the ringing.  
5. Low ESR/ESL capacitors must be connected close to the IC, between VDD and VSS pins and between the  
HB and HS pins to support the high peak current being drawn from VDD during turnon of the FETs. Keeping  
bullet #1 (minimized GaN FETs gate driver loop) as the first priority, it is also desirable to place the VDD  
decoupling capacitor and the HB to HS bootstrap capacitor on the same side of the PC board as the driver.  
The inductance of vias can impose excessive ringing on the IC pins.  
6. To prevent excessive ringing on the input power bus, good decoupling practices are required by placing low-  
ESR ceramic capacitors adjacent to the GaN FETs.  
10-1 and 10-2 show recommended layout patterns for the LMG1205. Two cases are considered: (1)  
without any gate resistors, and (2) with an optional turnon gate resistor. Note that 0402 surface mount package  
is assumed for the passive components in the drawings. For information on DSBGA package assembly, refer to  
11.2.1.  
spacer  
10.2 Layout Examples  
Bootstrap  
Capacitor  
Bootstrap  
Capacitor  
HO  
HS  
HO  
HS  
To Hi-Side FET  
To Hi-Side FET  
HOH  
HOL  
HS  
HB  
HB  
HOH  
D
HS  
VDD  
HI  
D
HOL  
HS  
HS  
VDD  
HI  
C
B
A
C
B
A
LOH  
LOL  
LOH  
LOL  
LI  
VDD  
VSS  
LI  
VDD  
VSS  
2
4
3
1
4
3
2
1
Bypass  
Capacitor  
LO  
LO  
GND  
To Low-Side FET  
Bypass  
Capacitor  
GND  
To Low-Side FET  
10-2. Layout Example with HOH and LOH Gate  
10-1. Layout Example Without Gate Resistors  
Resistors  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
 
 
 
LMG1205  
www.ti.com.cn  
ZHCSG61B MARCH 2017 REVISED APRIL 2023  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
AN-1112 DSBGA Wafer Level Chip Scale Package  
Using the LMG1205HBEVM GaN Half-Bridge EVM  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this datasheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMG1205  
English Data Sheet: SNOSD37  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMG1205YFXR  
LMG1205YFXT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFX  
YFX  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
1205  
1205  
Samples  
Samples  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMG1205YFXR  
LMG1205YFXT  
DSBGA  
DSBGA  
YFX  
YFX  
12  
12  
3000  
250  
178.0  
178.0  
8.4  
8.4  
1.85  
1.85  
2.01  
2.01  
0.76  
0.76  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMG1205YFXR  
LMG1205YFXT  
DSBGA  
DSBGA  
YFX  
YFX  
12  
12  
3000  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFX0012  
DSBGA - 0.675 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.675 MAX  
C
SEATING PLANE  
0.05 C  
0.205  
0.165  
1.2 TYP  
SYMM  
D
C
SYMM  
1.2 TYP  
0.4 TYP  
D: Max = 1.905 mm, Min =1.845 mm  
E: Max = 1.756 mm, Min =1.695 mm  
B
A
2
1
3
4
0.28  
12X  
0.25  
0.4 TYP  
0.015  
C A B  
4215094/B 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFX0012  
DSBGA - 0.675 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
12X ( 0.225)  
2
3
1
4
A
B
(0.4) TYP  
SYMM  
C
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 40X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.225)  
METAL  
(
0.225)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4215094/B 08/2022  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFX0012  
DSBGA - 0.675 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
4
12X ( 0.25)  
1
2
3
A
(0.4) TYP  
B
C
SYMM  
METAL  
TYP  
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 40X  
4215094/B 08/2022  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY