LMG1210RVRR [TI]

适用于 GaNFET 和 MOSFET、具有 5V UVLO 和可编程死区时间的 1.5A、3A 200V 半桥栅极驱动器 | RVR | 19 | -40 to 125;
LMG1210RVRR
型号: LMG1210RVRR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 GaNFET 和 MOSFET、具有 5V UVLO 和可编程死区时间的 1.5A、3A 200V 半桥栅极驱动器 | RVR | 19 | -40 to 125

栅极驱动 驱动器
文件: 总31页 (文件大小:1896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
具有可调节死区时间的 LMG1210 200V1.5A3A 半桥 MOSFET 和  
GaN FET 驱动器 (适合 工作频率高达 50MHz 的应用)  
1 特性  
3 说明  
1
工作频率高达 50MHz  
10ns 典型传播延迟  
3.4ns 高侧至低侧匹配  
4ns 最小脉宽  
LMG1210 是一款 200V 半桥 MOSFET 和氮化镓场效  
应晶体管 (GaN FET) 驱动器,专为要求超高频率、高  
效率的 应用 而开发, 具有 可调节死区时间功能、极  
短的传播延迟以及 3.4ns 高侧/低侧匹配,以优化系统  
效率。此部件还 具备 一个内部 LDO,可确保 5V 的栅  
极驱动器电压(而与电源电压无关)。  
两个控制输入选项  
具有可调死区时间的单个 PWM 输入  
独立输入模式  
为了在各种应用中获得 最佳性能,LMG1210 允许设计  
人员选择最佳的自举二极管对高侧自举电容器充电。当  
低侧不导通时,内部开关会关闭自举二极管,以有效防  
止高侧自举过度充电,并将反向恢复电荷降至最低。  
GaN FET 上额外的寄生电容被最小化至小于 1pF,以  
减少额外的开关损耗。  
1.5A 峰值拉电流和 3A 峰值灌电流  
外部自举二极管可实现灵活性  
内部 LDO 可实现对电压轨的适应能力  
300V/ns CMTI  
HO LO 的电容小于 1pF  
UVLO 和过热保护  
LMG1210 具有 两种控制输入模式:独立输入模式  
(IIM) PWM 模式。在 IIM 中,每个输出都由专用输  
入独立控制。在 PWM 模式下,两个补偿输出信号由  
单个输入产生,用户可将每个沿的死区时间从 0ns 调  
节为 20nsLMG1210 可在 –40°C 125°C 的宽温度  
范围内运行,并采用低电感 WQFN 封装。  
低电感 WQFN 封装  
2 应用  
高速直流/直流转换器  
射频封装跟踪  
D 类音频放大器  
E 类无线充电  
高精度电机控制  
器件信息(1)  
器件型号  
LMG1210  
封装  
WQFN (19)  
封装尺寸(标称值)  
4.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化的典型应用  
BST  
200 V  
HB  
HO  
HS  
6 œ 18 V  
VIN  
EN  
LDO  
UVLO  
OTP  
5 V  
VDD  
LO  
EN  
PWM  
Dead  
Time  
PWM  
Delay  
Match  
VSS  
DHL  
DLH  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNOSD12  
 
 
 
 
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application ................................................. 16  
8.3 Do's and Don'ts ...................................................... 20  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
6.8 Timing Diagrams..................................................... 10  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 文档支持 ............................................................... 22  
11.2 接收文档更新通知 ................................................. 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 术语表 ................................................................... 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
Changes from Revision C (December 2018) to Revision D  
Page  
Changed Maximum High-side dynamic current from 0.61mA/MHz to 0.7mA/MHz .............................................................. 5  
Changes from Revision B (November 2018) to Revision C  
Page  
已更改 将差错从 2.5ns 更改为 3.4ns...................................................................................................................................... 1  
已更改 将最小脉宽从 3ns 更改为 4ns..................................................................................................................................... 1  
Changed Reordered Pin Functions table in alphabetical order.............................................................................................. 3  
已添加 Figure 14 IIM Timing Diagram ................................................................................................................................. 10  
已添加 CMTI performance reference app note .................................................................................................................... 13  
已添加 charge per cycle removed from the bootstrap due to dynamic high side current ................................................... 17  
已添加 Power Consumption Calculation reference app note .............................................................................................. 19  
Changes from Revision A (May 2018) to Revision B  
Page  
已更改 将销售状态从产品预览更改为最终信息。初始发行版。......................................................................................... 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
5 Pin Configuration and Functions  
RVR Package  
19-Pin WQFN  
Top View  
15  
16  
14  
13  
12  
11  
10  
(HS)  
HS  
HO  
HS  
Thermal Pad  
9
8
7
6
BST  
EN/HI  
17  
18  
LO  
(VSS)  
VSS  
DLH  
Thermal Pad  
PWM/LI  
19  
1
2
3
4
5
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
BST  
DHL  
17  
O
I
Bootstrap diode anode connection point.  
Sets the dead time for a high-to-low transition in PWM mode by connecting a resistor to VSS. If  
using IIM this pin can be left floating, tied to GND, tied to VDD.  
5
6
DLH  
Sets the dead time for a low-to-high transition in PWM mode by connecting a resistor to VSS. Tie  
to VDD to select IIM.  
I
I
I
EN/HI  
Enable input or high-side driver control. In PWM mode this is the EN pin. In IIM mode this is the  
HI pin.  
18  
19  
PWM/LI  
PWM input or low-side driver control. In PWM mode this is the PWM pin. In IIM mode this is the  
LI pin.  
HB  
HO  
HS  
LO  
12  
10  
I
O
I
High-side driver supply. Bootstrap diode cathode connection point.  
High-side driver output.  
9,13,16  
8
Switch node and high-side driver ground. These pins are internally connected.  
Low-side driver output.  
O
I
NC  
NC1  
1,11,15  
14  
Not internally connected.  
For proper operation, this pin should be either unconnected or tied to HS.  
Connected to HS.  
Thermal Pad  
(HS)  
21  
20  
I
I
Thermal Pad  
(VSS)  
Connected to VSS.  
VDD  
VIN  
4
2
O
I
Low-side driver supply and LDO output. 5 V  
6 V to 18 V input to LDO. If LDO is not required, connect to VDD.  
Low-side ground return: all low-side signals are referenced to this ground.  
VSS  
3,7  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.5  
MAX  
20  
UNIT  
V
VIN  
Input Supply Voltage  
VDD  
5V Supply Voltage  
-0.5  
5.5  
V
VHS  
High Side Voltage Without Bootstrap Diode  
Bootstrap supply voltage, continuous  
Input Pin Voltage on LI or HI  
Voltage on DLH and DHL pins  
Low-side gate driver output  
High-side gate driver output  
Bootstrap pin voltage  
-300  
-0.5  
300  
V
VHB-VHS  
VLI/PWM, VHI/EN  
VDHL, VDHL  
VLO  
5.5  
V
-0.5  
10  
V
-0.5  
VDD + 0.5  
VDD + 0.5  
VHB+ 0.5  
VDD + 0.5  
150  
V
-0.5  
V
VHO  
VHS-0.5  
-0.5  
V
VBST  
V
TJ  
Operating Junction Temperature Range  
Storage Temperature  
-40  
°C  
°C  
TSTG  
-55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±XXX V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±YYY V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
6
NOM  
MAX  
18  
UNIT  
V
VIN  
Input Supply Voltage (if using internal LDO)  
5V Supply Voltage (if bypassing internal LDO)  
VDD  
4.75  
-200  
3.80  
-0.3  
-40  
5.00  
5.25  
200  
5.25  
10  
V
(1)  
VHS-VSS  
VHB-VHS  
VLI,VHI  
TJ  
High-Side Voltage Without Bootstrap diode  
V
Bootstrap Supply Voltage  
V
Input Pin Voltage  
V
Operating Junction Temperature Range  
High Side Slew Rate  
125  
300  
1800  
1.8  
°C  
V/ns  
k  
V
CMTI  
RDHL, RDLH  
VDT  
Dead Time Adjustment External Resistance  
Dead Time Voltage Range  
20  
0.8  
(1) If using a bootstrap diode, actual negative HS pin voltage may be more limited, see Section 7.3.6 for details.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
6.4 Thermal Information  
LMG1210  
THERMAL METRIC(1)  
RVR (QFN)  
19 PINS  
40.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
40  
16.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.9  
ψJB  
16.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VDD=5V, HB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LI, HI=0V, Independent Mode  
300  
380  
475  
550  
850  
μA  
μA  
Quiescent Current for Low-Side  
Circuits Only, Vin=6V, powered  
through LDO  
IDD  
EN=0V, PWM=X, PWM Input Mode,  
RDHL and RDLH = 1.78MΩ  
IHB  
HB Quiescent Current  
HI=0V, Independent Mode  
VHS=100V  
520  
1
μA  
nA  
nA  
IHBS  
HB to VSS Quiescent Current  
HB to VSS Operating Current  
Low-side dynamic current  
High-side dynamic current  
IHBSO  
ILSDyn  
IHSDyn  
VHS=100V, FSW=1MHz  
Unloaded, PWM Mode  
Unloaded  
1
1
1.25 mA/MHz  
0.7 mA/MHz  
0.5  
LOW-SIDE TO HIGH-SIDE CAPACITANCE  
Low Side Pins Shorted Together,  
High Side Pins Shorted Together  
CISO  
Capacitance from High to Low Side  
0.25  
pF  
5V LDO  
V5V  
LDO Output  
VIN=10V  
IO=100mA  
VIN=12V  
VIN=12V  
4.75  
5.00  
400  
5.25  
750  
V
VDO  
Dropout Voltage  
Maximum Current  
Short Circuit Current  
mV  
mA  
mA  
ILDOM  
ISC  
100  
105  
250  
0.3  
Minimum Required Output  
Capacitance(1)  
Effective Capacitance at Bias  
Voltage  
COUT  
µF  
DIGITAL INPUT PINS (LI/PWM & HI/EN)  
VIR  
Input Rising Edge Threshold  
Input Falling Edge Threshold  
Input Hysteresis  
1.70  
0.70  
2.45  
1.30  
V
V
VIF  
VIHYS  
RIPD  
1
V
Input Pull-Down Resistance  
VLI, VHI=1V  
100  
200  
300  
kΩ  
UNDERVOLTAGE LOCKOUT  
VDDR  
VDDF  
VDDH  
VHBR  
VHBF  
VHBH  
VDD Rising Threshold  
VDD Falling Threshold  
VDD Hysteresis  
4.00  
3.8  
4.25  
4.05  
200  
4.50  
4.3  
V
V
mV  
V
HB-HS Rising Threshold  
HB-HS Falling Threshold  
HB-HS Hysteresis  
3.40  
3.30  
3.55  
3.45  
130  
3.8  
3.65  
V
mV  
BOOTSTRAP DIODE SWITCH  
RSW  
Diode Switch On Resistance  
ID=100mA  
0.4  
GATE DRIVER  
VOL  
Low-Level Output Voltage  
IOL=100mA  
0.16  
V
(1) Ensured by design  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
 
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VDD=5V, HB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH= -100mA  
MIN  
TYP  
MAX  
UNIT  
VDD-VOH  
IOL  
High-Level Output Voltage  
Peak Sink Current  
0.30  
4.3  
V
A
A
VLO,VHO=5V  
VLO,VHO=0V  
2.0  
3.1  
IOH  
Peak Source Current  
0.85  
1.58  
2.4  
VDD, VHB Floating, 1 mA pull-up  
applied to LO/HO  
VCLAMP  
Unpowered Gate Clamp Voltage  
0.55  
0.8  
V
THERMAL SHUTDOWN  
Thermal Shutdown Switching, Rising  
TSD  
150  
160  
3
°C  
°C  
°C  
°C  
Edge(2)  
Thermal Shut Down LDO, Rising  
Edge(2)  
TSD_LDO  
THYS_SD  
TSD_HS  
Thermal Hysteresis, LDO &  
Switching(2)  
10  
25  
Thermal Shutdown for High-Side,  
Rising Edge(2)  
160  
DEADTIME CONTROL RESISTORS  
RPU Internal Pullup Resistor  
(2) Ensured by design  
23.5  
27  
kΩ  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
6.6 Switching Characteristics  
VDD=5V, VHB-HS=4.6V, outputs unloaded over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INDEPENDENT INPUT MODE  
tPHL  
tPLH  
Turn-Off Delay  
Turn-On Delay  
10  
10  
18  
18  
ns  
ns  
High-Off to Low-On and Low-Off to  
High-On Delay Mismatch  
tMTCH  
Over temperature, TjHI=TjLO  
1
3.4  
ns  
PWM INPUT MODE  
PWM rising to LO falling and PWM  
falling to HO falling  
tPHL  
Turn-Off Delay  
Minimum Dead Time  
11  
21  
ns  
tDEAD_MIN  
Rext=1.78 MΩ  
Rext=20 kΩ  
-0.55  
16  
0.8  
20  
11  
3.1  
26  
20  
ns  
ns  
ns  
tDEAD_MAX Maximum Dead Time  
tEN Enable Propagation Time  
OTHER CHARACTERISTICS  
tOR  
Output Rise Time, Unloaded  
10%-90%  
0.5  
0.5  
3.5  
2.3  
ns  
ns  
ns  
ns  
tOF  
Output Fall Time, Unloaded  
Output Rise Time, Loaded  
Output Fall Time, Loaded  
90%-10%  
tORL  
tOFL  
CO=1nF, 10%-90%  
CO=1nF, 90%-10%  
5.6  
3.3  
Minimum input pulse width which  
changes the output  
Unloaded(2)  
(1)  
(1)  
tPW  
Minimum Input Pulse Width  
H-L-H Pulse extender width  
1.8  
4.0  
ns  
tPW,ext  
4.5  
25  
10  
60  
ns  
µs  
µs  
Independent Control Mode  
PWM Control Mode  
Start-Up Time of low side after VDD-  
GND goes over UVLO threshold.  
tSTLS  
100  
150  
Start-Up Time of High-Side After  
VHB-VHS Goes Above UVLO  
tSTHS  
tPWD  
16  
1
28  
3
µs  
ns  
Pulse-Width Distortion  
|tPLH-tPHL|, Independent Input Mode  
(1) Ensured by design  
(2) Pulses longer than tPW, but shorter than tPW,ext get extended to tPW,ext  
版权 © 2018–2019, Texas Instruments Incorporated  
7
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
1.75  
1.5  
1.25  
1
4
3.5  
3
2.5  
2
0.75  
0.5  
0.25  
0
1.5  
1
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LO, HO (V)  
LO, HO (V)  
D001  
D002  
1. Peak Source Current vs Output Voltage  
2. Peak Sink Current vs Output Voltage  
30  
24  
18  
12  
6
50  
40  
30  
20  
10  
0
-40 èC  
25 èC  
125 èC  
-40 èC  
25 èC  
125 èC  
0
0.05 0.1 0.2 0.3 0.5  
1
2
3 4 567 10  
20 30 50  
0.05 0.1 0.2 0.3 0.5  
1
2
3 4 567 10  
20 30 50  
Frequency (MHz)  
Frequency (MHz)  
D003  
D004  
3. IDD vs Frequency, Unloaded  
4. IHBO vs Frequency, Unloaded  
315  
310  
305  
300  
295  
290  
285  
280  
275  
270  
265  
700  
650  
600  
550  
500  
450  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
5. IDD vs Temperature  
6. IHB vs Temperature  
8
版权 © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
Typical Characteristics (接下页)  
13  
1.1  
1
DHL  
DLH  
12  
11  
10  
9
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Low Side TPLH  
Low Side TPHL  
High Side TPLH  
High Side TPHL  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
7. Propagation Delay vs Temperature  
8. Minimum Dead Time vs Temperature  
12  
0.8  
50 V/ns  
100 V/ns  
300 V/ns  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
11.6  
11.2  
10.8  
10.4  
10  
9.6  
-0.1  
-0.2  
9.2  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
3.5  
3.75  
4
4.25  
4.5  
4.75  
5
5.25  
5.5  
Phase of CMTI Relative to Signal (ns)  
Bootstrap Voltage (V)  
D010  
D009  
10. Propagation Delay vs relative phase of CMTI Phase  
9. Propagation Delay Change vs Bootstrap voltage  
4.5  
4.5  
LO Sink  
LO Source  
HO Sink  
HO Rise Time  
LO Rise Time  
LO Fall Time  
4
3.5  
3
4
HO Source  
HO Fall Time  
3.5  
2.5  
2
3
2.5  
2
1.5  
1
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D011  
D012  
11. LO and HO Output Current vs Temperature  
12. 1 nF Loaded Rise and Fall Time vs Temperature  
版权 © 2018–2019, Texas Instruments Incorporated  
9
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.8 Timing Diagrams  
TPLH  
TPHL  
TOR  
TOF  
50%  
50%  
PWM  
TON  
90%  
10%  
HO  
LO  
TDHL  
TDLH  
13. Timing diagram of LMG1210 in PWM mode under no load condition  
HI  
LI  
tPHL  
tPLH  
t
PHL  
HO  
LO  
tMTCH  
tMTCH  
tPHL  
tPWD = |tPLH t tPHL|  
14. Timing diagram of LMG1210 in IIM mode under no load condition  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
7 Detailed Description  
7.1 Overview  
The LMG1210 is a high-speed half-bridge driver specifically designed to work with enhancement mode GaN  
FETs. Designed to operate up to 50 MHz, the LMG1210 is optimized for maximum performance and highly  
efficient operation. This includes reducing additional capacitance at the switch node (HS) to less than 1 pF and  
increased dV/dt noise immunity up to 300 V/ns on the HS pin to minimize additional switching losses. By having  
a 21 ns maximum propagation delay with 3.4 ns maximum mismatch, excessive dead times can be greatly  
reduced.  
Auxiliary input voltages applied above 5 V enables an internal LDO to precisely regulate the output voltage at 5-  
V, preventing damage on the gate. An external bootstrap diode allows the designer to select an optimal diode.  
An integrated switch in series with the bootstrap diode stops overcharging of the bootstrap capacitor and  
decreases Qrr losses in the diode.  
The LMG1210 comes in a low-inductance WQFN package designed for small gate drive loops with minimal  
voltage overshoot.  
7.2 Functional Block Diagram  
BST  
HB  
VIN  
LDO  
HO  
HS  
EN  
VDD  
Dead Time  
Delay  
Match  
PWM  
LO  
VSS  
1.8 V  
1.8 V  
UVLO  
OTP  
DHL DLH  
7.3 Feature Description  
The LMG1210 provides numerous features optimized for driving external GaN FETs.  
7.3.1 Bootstrap Diode Operation  
An internal low impedance switch enables the bootstrap only when the low-side GaN FET is on. If used in a  
converter where the low-side FET operates in third quadrant conduction during the dead times, this provides two  
main benefits. First, it stops the bootstrap diode from overcharging the high-side bootstrap rail. Second, if using a  
p-n junction diode with Qrr as the bootstrap diode, it decreases the Qrr losses of the diode. There is a 1 k  
resistor connected between the drain and source of this internal bootstrap switch to allow the bootstrap capacitor  
to slowly charge at start-up before the low-side FET is turned on.  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
The part does not have an actual clamp on the high-side bootstrap supply. The bootstrap switch disables  
conduction during the dead times, and the actual bootstrap capacitor voltage is set by the operating conditions of  
the circuit during the low-side on-time. The bootstrap voltage can be approximately calculated in 公式 1 through  
公式 3.  
The bootstrap voltage is given by 公式 1:  
VBST = VDD – VF – VHS  
where  
VF is the forward voltage drop of the bootstrap diode and series bootstrap switch.  
(1)  
VHS is calculated in 公式 2:  
VHS = –IL × RDSON  
where  
IL is the inductor current defined as flowing out of the half-bridge  
and RDSON is the FET on resistance.  
(2)  
(3)  
Substituting (2) into (1) gives the expression for the bootstrap voltage as 公式 3:  
VBST = VDD – VF + IL × RDSON  
From (3) one can determine that in an application where the current flows out of the half-bridge (IL is positive) the  
bootstrap voltage can be charged up to a voltage higher than VDD if IL × RDSON is greater than VF. Take care not  
to overcharge the bootstrap too much in this application by choosing a diode with a larger VF or limiting the IL ×  
RDSON product.  
In an application where IL is negative, the IL × RDSON product subtracts from the available bootstrap cap voltage.  
In this case using a smaller VF diode is recommended if IL × RDSON is large.  
7.3.2 LDO Operation  
An internal LDO allows the driver to run off higher voltages from 6 V to 18 V and regulates the supply to 5 V, so  
the LMG1210 can run off of higher input voltages with wide tolerances. To maintain stability of the internal LDO,  
care must be taken to make sure a capacitor of at least 0.3 µF from VDD to VSS with an ESR below 500 mis  
used. A high-quality ceramic capacitor with an X7R dielectric is recommended. There is no maximum limit on the  
capacitance allowed on the output of the LDO.  
If the input supply is already 5 V ±5%, then the LDO can be bypassed. This is achieved by connecting the 5 V  
supply directly to the VDD pin. The VIN pin should be tied to the VDD pin, and the capacitor on the VIN pin can be  
removed. Do not ground the VIN pin.  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
Feature Description (接下页)  
7.3.3 Dead Time Selection  
In PWM mode the dead time can be set with a resistor placed between DHL/DLH and VSS. For a desired dead  
time (tdt), the corresponding required resistance can be calculated in 公式 4 with tdt in ns and Rext in kΩ.  
Rext = (900/tdt ) – 25  
(4)  
The maximum dead time is 20 ns, which gives a minimum resistor value of 20 kΩ. The minimum dead time is  
0.5ns, which gives a maximum resistor value of 1.8 MΩ. There is an internal pull-up resistor at DHL/DLH pin,  
which forms a voltage divider with the external resistor. This voltage decides the final dead time. The calculation  
between dead time tDT in ns and VDT is shown in 公式 5.  
tdt = (1.8-VDT ) x20  
(5)  
Before being used to generate the dead times, the voltages on the DHL and DLH pins are first filtered through an  
internal RC filter with a nominal corner frequency of 10 kHz to attenuate switching noise.  
The pulse widths of the HO and LO outputs are decreased from the PWM input by the chosen dead-times. The  
timing diagram under no load condition is shown in 13 and 14. PWM mode and Independent mode  
configurations can be found in 16 .  
7.3.4 Overtemperature Protection  
The LMG1210 has three separate overtemperature thresholds: two on the low-side and one on the high-side.  
The lowest overtemperature threshold is the low-side switching threshold at 150 degrees minimum. When  
exceeded, this disables switching on both the low and high sides. However, the 5 V LDO continues to operate.  
If the low-side temperature continues to rise, due to a short or external load on the 5 V LDO, then at 10 degrees  
higher, the low-side shuts down the 5 V LDO.  
The high-side has an independent overtemperature threshold at 160 minimum. When triggered, it only shuts off  
the high-side while the low-side may continue to operate.  
If it is undesirable in an application to have only the high side shut off and not the low side, TI recommends  
designing the thermal cooling of the board in a way to make the low-side die hotter. This can be achieved by  
controlling the size of the thermal planes connected to each thermal pad.  
7.3.5 High-Performance Level Shifter  
The LMG1210 uses a high-performance level shifter to translate the signal from the low side to the high side.  
The level shifter is built using TI's proprietary high-voltage capacitor technology, which showcases best-in-class  
CMTI (common-mode transient immunity), or dV/dt on the HS pin. The level shifter can handle very high CMT  
(common-mode transient) rates while simultaneously providing low propagation time which does not vary  
depending on CMT rate. For more information on LMG1210 CMTI performance refer to section 2.4 from Design  
Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation.  
7.3.6 Negative HS Voltage Handling  
The LMG1210 by itself can operate with -200V on the HS pin as stated in the recommended operating conditions  
table. However, if using a bootstrap diode, the system will be more limited based on the potential of high-currents  
flowing through the bootstrap diode.  
HS goes most negative during the dead times when the low-side FET is off. This also means the bootstrap  
switch is off so the BST pin is relatively high impedance. Therefore as HS goes negative, the bootstrap diode  
becomes forward biased and pulls the voltage at BST down with it. Because the bootstrap switch is off, very little  
current will flow until the bootstrap diode attempts to pull the BST pin below ground at which point the ESD diode  
on the BST pin will clamp the voltage at a diode drop below ground. The point where significant current begins to  
flow through the bootstrap diode is given in 公式 6  
VHS = – VBST – VESD – (VHB – VHS  
)
(6)  
Where VBST is the forward voltage drop of the selected bootstrap diode and VESD is the forward voltage drop of  
the ESD diode of the BST pin which is typically 0.7V at room temp. 15 shows a schematic of this current path.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
 
 
 
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
VDD  
Bootstrap  
Switch (open)  
Bootstrap  
Diode  
BST  
HB  
HS  
CBST  
ESD Diode  
Current Path  
15. Current Path Across Bootstrap Diode  
Once this negative voltage is exceeded, large currents will begin to flow out of the BST pin and through the  
bootstrap diode. The currents may be limited by the following: resistance of the BST ESD diode, resistance of  
the bootstrap diode, inductance of the bootstrap loop, or additional resistance purposely added in series with the  
bootstrap diode. If this current is too high, damage to the bootstrap diode or the LMG1210 can result. If this  
current delivers significant enough total charge, this can over-charge the bootstrap rail as well.  
The BST pin ESD diode has been specifically designed to be robust to carry up to a couple amps surge current  
without damage.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
7.4 Device Functional Modes  
The mode of operation is determined by the state of DHL and DLH pins during power up. The state of the pins is  
sampled at power up and cannot be changed during operation. There are two different modes: independent  
operation where separate HI and LI signals are required, and PWM mode where one PWM input signal is  
required and the LMG1210 generates the complementary HI and LI signals. For PWM input, the dead time for  
the low-to-high and high-to-low switch-node transition is independently set by an external resistor at DHL and  
DLH. For independent input mode, DLH is tied to VDD and DHL is internally set to high-impedance and can be  
tied to VDD, tied to ground or left floating.  
Operating  
Mode  
DLH  
DHL  
PWM  
Leave  
Floating or  
Tie to VSS  
Independent  
Input Mode  
VDD  
16. Operation Mode Selection  
1 lists the functional modes for the LMG1210.  
1. LMG1210 Truth Table  
INPUTS  
PWM MODE  
INDEPENDENT MODE  
EN/HI  
PWM/LI  
HO  
0
LO  
0
HO  
LO  
0
0
0
1
1
0
1
0
1
0
0
1
1
0
0
1
0
1
0
1
0
1
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMG1210 is designed to optimally drive GaN FETs in half-bridge configurations, such as synchronous buck  
and boost converters, as well as more complex topologies. By integrating the level shifting and bootstrap  
operation the complexities of driving the high-side device are solved for the designer.  
The list below shows some sample values for a typical 48 V to 12 V application synchronous buck.  
Input Voltage: 48 V  
Output Voltage: 12 V  
Output Current: 10 A  
Bias Voltage: 6 V  
Duty Cycle: 25 %  
Switching Frequency: 1 MHz  
Inductor: 4.7 µH  
8.2 Typical Application  
0 œ 200 V  
BST  
HB  
HO  
HS  
6 œ 18 V  
VIN  
LDO  
5 V  
VDD  
LO  
EN  
Dead  
PWM  
Time  
VSS  
LMG1210  
DHL  
DLH  
Controller  
17. Simplified LMG1210 Configured as Synchronous Buck Converter  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
Typical Application (接下页)  
8.2.1 Design Requirements  
When designing a multi-MHz application that incorporates the LMG1210 gate driver and GaN power FETs, some  
design considerations must be evaluated first to make the most appropriate selection. Among these  
considerations are layout optimization, circuit voltages, passive components, operating frequency, and controller  
selection.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Bypass Capacitor  
To properly drive the GaN FETs, TI recommends placing high-quality ceramic bypass capacitors as close as  
possible between the HB to HS and VDD to VSS. If using the LDO, the VDD-VSS capacitor is required to be at least  
0.3 µF at bias for stability. However, a larger capacitor may be required for many applications.  
The bootstrap capacitor must be large enough to support charging the high-side FET and supplying the high-side  
quiescent current when the high-side FET is on. The required capacitance can be calculated as 公式 7:  
(0.5 nC + Qrr + QgH + IHB × ton)/ΔV = CBST,min  
where  
QgH is the gate charge of the high-side GaN FET,  
IHB is the quiescent current of the high-side driver,  
tON is the maximum on time period of the high side,  
Qrr is the reverse recovery of the bootstrap diode,  
0.5 nC is the additional charge per cycle removed from the bootstrap due to high side dynamic current,  
and ΔV is the acceptable droop on the bootstrap capacitor voltage.  
(7)  
When using larger bootstrap capacitors, TI recommends that the VDD-VSS capacitor also be increased to keep  
the ratio at least 5 to 1. If this is not maintained, the charging of the bootstrap capacitor can pull the VDD-VSS rail  
down sufficiently to cause UVLO conditions and potentially unwanted behavior.  
8.2.2.2 Bootstrap Diode Selection  
The bootstrap diode blocks the high voltage from the gate drive circuitry when the switch node swings high, with  
the rated blocking voltage equal to the maximum Vds of the GaN FET. For low or moderate frequency operation  
ultra-fast recovery diodes (<50 ns) are recommended. The internal low voltage switch in the LMG1210 acts to  
reduce the reverse recovery. For high-frequency operation a Schottky diode is recommended. To minimize  
switching losses and improve performance, it is important to select a diode with low capacitance.  
For extreme cases, where the low-side FET on time is less than 20 ns, TI recommends using a small GaN FET  
as synchronous bootstrap instead of a diode. In this case, TI recommends leaving the BST pin floating or  
connected to VDD, and to connect the source of the synchronous bootstrap directly to VDD  
.
8.2.2.3 Handling Ground Bounce  
For the best switching performance, it is important to connect the VSS gate return to the source of the low-side  
FET with a very low-inductance path.  
However, doing so can cause the ground of the LMG1210 to bounce relative to the system or controller ground  
and cause erroneous switching transitions on the inputs. Multiple strategies can be employed to eliminate these  
undesired transitions.  
The LMG1210 has input hysteresis built into the input buffers to help counteract this effect, but this alone may  
not be sufficient in all applications. The simplest option is to tie the system ground together and the power  
ground only at the LMG1210 (single-point connection). This gives the cleanest solution but may not always be  
possible depending on system grounding requirements.  
For moderate ground-bounce cases, a simple R-C filter can be built with a simple resistor in series with the  
inputs. The resistor should be close to the inputs of the LMG1210. The input capacitance of the LMG1210  
produces an RC filter which can help decrease ringing at the inputs. The addition of a small C on the inputs to  
supplement the LMG1210 input capacitance can also be helpful. This solution is acceptable for moderate cases  
in applications where the extra delay is acceptable.  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Typical Application (接下页)  
For more extreme cases or where no delay is tolerable, using a common-mode choke provides the best results.  
One example application where the ground bounce is particularly challenging is when using a current sense  
resistor. In this application, the LMG1210 ground is connected to the GaN source, while the controller ground is  
connected to the other side of the current sense resistor as shown in 18.  
BST  
0 œ 200 V  
HB  
HO  
HS  
6 œ 18 V  
VIN  
LDO  
RC filter  
5 V  
VDD  
LO  
EN/HI  
Dead  
Time  
PWM/LI  
VSS  
Vsense  
Rsense  
LMG1210  
DHL  
DLH  
CM choke  
Controller  
18. LMG1210 Configured With Current Sense Resistor Using a CMC as Filter  
The combination of high dI/dt experienced through the sense resistor inductance will cause severe ground noise  
that could cause false triggering or even damage the part. To prevent this, a common-mode choke (CMC) can be  
used. Each signal requires its own CMC. Also, to provide additional RC filtering, a 100 Ω resistor should be  
added to the signal output line before the LMG1210.  
8.2.2.4 Independent Input Mode  
In independent input mode, the signals LI and HI will propagate to the outputs LO and HO maintaining the same  
phase shift, varied only by the timing mismatch.  
In this mode, the dead time-generating circuit will be inoperative, and the correct dead time value would have to  
be generated by the controller.  
LI and HI cannot be high at the same time. The controller is responsible for assuring that the LI and HI on-times  
do not overlap and cause shoot-through.  
8.2.2.5 Computing Power Dissipation  
The power dissipation of the LMG1210 can be divided up into three parts. One is the quiescent current which is  
defined in the Electrical Characteristics table. This is the current consumed when no switching is taking place.  
The second is the dynamic power consumed in the internal circuits of the driver at each switching transition  
regardless of the load on the output. This can be measured by switching the driver with no output load.  
The third component is the power used to switch the load capacitance presented by the external FET.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
Typical Application (接下页)  
If operating in PWM mode, there is an additional quiescent current consumed in the dead time resistors. The  
additional current consumed in each dead time pin can be calculated as 公式 8.  
Iqdxx = 1.8/(25k + Rext  
)
(8)  
The first component, the quiescent power, is given in the Electrical Characteristics table. The second component,  
the dynamic power dissipation can be calculated as 公式 9.  
IINT = IDYN × Fsw  
where  
IDYN is the dynamic current consumption found in the Electrical Characteristics table  
and Fsw is the switching frequency in MHz.  
(9)  
The third component of the power dissipation is the gate driver power. The current associated to this loss can be  
calculated given the Qg of the FET as 公式 10:  
I FET,g= Qg × Fsw  
(10)  
or alternatively in terms of Ciss as 公式 11:  
IFET,g = Ciss × Vsup × Fsw  
(11)  
These current consumption numbers should be calculated for both the high side and low side separately and  
added together. When a total current consumption is computed, multiplying it by the input supply voltage gives a  
worst-case approximation for the total power dissipation of the LMG1210. If using a non-zero external gate  
resistor of value Rg,ext, some of this power will be dissipated in this external resistor, and can be subtracted from  
the power consumed inside the IC. For further details when calculating total driver power loss see section 2 from  
Design Considerations for LMG1205 Advanced GaN FET Driver During High-Frequency Operation.  
The WQFN package has two thermal pads: one for the low-side die and another for the high-side die. Though  
there is good thermal coupling between the die and the associated thermal pad, there is very limited thermal  
coupling between a die and the opposite thermal pad. This means that if power dissipation calculations indicate a  
die needs improved cooling, the cooling must be focused on cooling the correct thermal pad.  
8.2.3 Application Curves  
19. 1-MHz, 80-V Operation  
20. 10-MHz Operation, No Bus Voltage  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
 
 
 
 
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.3 Do's and Don'ts  
When using the LMG1210, DO:  
1. Read and fully understand the data sheet, including the application notes and layout recommendations.  
2. Use a four-layer board and place the return power path on an inner layer to minimize power-loop inductance.  
3. Use small, surface-mount bypass and bus capacitors to minimize parasitic inductance.  
4. Use the proper size decoupling capacitors and place them close to the IC as described in the Layout  
Guidelines section.  
5. Use common-mode chokes for the input signals to reduce ground bounce noise. If not, ensure the signal  
source is connected to the signal VSS plane which is tied to the power source only at the LMG1210 IC.  
To avoid issues in your system when using the LMG1210, DON'T:  
1. Use a single-layer or two-layer PCB for the LMG1210 as the power-loop and bypass capacitor inductances  
will be excessive and prevent proper operation of the IC.  
2. Reduce the bypass capacitor values below the recommended values.  
3. Allow the device to experience pin transients above 200 V as they may damage the device.  
4. Drive the IC from a controller with a separate ground connection than the VSS pin of the IC, unless  
connecting though a CMC.  
9 Power Supply Recommendations  
The power to the LMG1210 can be supplied either through the LDO or the LDO can be bypassed and 5 V can  
be supplied directly. The maximum input voltage to the LDO of the LMG1210 is specified in the electrical  
characteristics table. The minimum input voltage of the LDO is set by the minimum drop-out of the LDO at the  
operational current. The dropout at max current is specified in the electrical characteristics table, but a lower  
dropout can be used in a lower-current application. A local bypass capacitor must be placed between the VIN and  
VSS pins, and the VDD and VSS pins. This capacitor must be placed as close as possible to the device. TI  
recommends a low-ESR, ceramic, surface-mount capacitor. TI also recommends using 2 capacitors across VDD  
and VSS pin: a 100 nF ceramic surface-mount capacitor for high frequency filtering placed very close to VDD and  
VSS pin, and another surface-mount capacitor, 220 nF to 10 μF, for IC bias requirement. The VIN and VSS  
capacitor can be removed if the LDO is bypassed.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
10 Layout  
10.1 Layout Guidelines  
The layout of the LMG1210 is critical for performance and functionality. The low inductance WQFN package  
helps mitigate many of the problems associated with board level parasitics, but take care with layout and  
placement with components to ensure proper operation. The following design rules are recommended.  
Place LMG1210 as close to the GaN FETs as possible to minimize the length of high-current traces between  
the HO/LO and the Gate of the GaN FETs  
Place bootstrap diode as close as possible to the LMG1210 to minimize the inductance of the BST to HB  
loop.  
Place the bypass capacitors across VIN to VSS, VDD to VSS, and HB to HS as close to the LMG1210 pins as  
possible. The VDD to VSS cap is a higher priority than the VIN to VSS cap.  
Separate power traces and signal traces, such as output and input signals, and minimize any overlaps  
between layers  
Minimize capacitance from the high-side pins to the input pins to minimize noise injection.  
10.2 Layout Example  
21. LMG1210 Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
LMG1210 半桥 GaN 驱动器的死区时间优化》(SNVA815)  
LMG1205 高级 GaN FET 驱动器在高频运行期间的设计注意事项 (SNVA723)  
LMG1210 TINA-TI 参考设计》(SNOM617)  
LMG1210 TINA-TI 瞬态 Spice 模型》(SNOM616)  
LMG1210 PSpice 瞬态模型》(SNOM615)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
LMG1210 作为 MSL3 发布。超过其车间寿命的产品可以通过烘烤进行再加工,以排除残留的湿气。IPC/JEDEC J-  
STD-033C 提供有关烘烤规程的指导,以及为了确保塑料外壳(托盘、卷带封装或管)能够承受所考虑温度,您应  
留意哪些方面。  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
LMG1210  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
LMG1210  
www.ti.com.cn  
ZHCSHO1D NOVEMBER 2018REVISED JANUARY 2019  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMG1210RVRR  
LMG1210RVRT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RVR  
RVR  
19  
19  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
LMG1210  
LMG1210  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMG1210RVRR  
LMG1210RVRT  
WQFN  
WQFN  
RVR  
RVR  
19  
19  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
4.3  
4.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMG1210RVRR  
LMG1210RVRT  
WQFN  
WQFN  
RVR  
RVR  
19  
19  
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMG1210RVRT

适用于 GaNFET 和 MOSFET、具有 5V UVLO 和可编程死区时间的 1.5A、3A 200V 半桥栅极驱动器 | RVR | 19 | -40 to 125
TI

LMG12D14V

T-1 3/4 (5mm) SOLID STATE LAMP
SUNLED

LMG12D5V

T-1 3/4 (5mm) SOLID STATE LAMP
SUNLED

LMG2610

具有集成驱动器、保护和电流检测功能且适用于 ACF 的 650V 170/248mΩ GaN 半桥
TI

LMG2610RRGR

具有集成驱动器、保护和电流检测功能且适用于 ACF 的 650V 170/248mΩ GaN 半桥 | RRG | 40 | -40 to 125
TI

LMG2610RRGT

具有集成驱动器、保护和电流检测功能且适用于 ACF 的 650V 170/248mΩ GaN 半桥 | RRG | 40 | -40 to 125
TI

LMG3410R050

具有集成驱动器和保护功能的 600V 50mΩ GaN
TI

LMG3410R050RWHR

具有集成驱动器和保护功能的 600V 50mΩ GaN | RWH | 32 | -40 to 150
TI

LMG3410R050RWHT

具有集成驱动器和保护功能的 600V 50mΩ GaN | RWH | 32 | -40 to 150
TI

LMG3410R070

具有集成驱动器和保护功能的 600V 70mΩ GaN
TI

LMG3410R070RWHR

具有集成驱动器和保护功能的 600V 70mΩ GaN | RWH | 32 | -40 to 150
TI

LMG3410R070RWHT

具有集成驱动器和保护功能的 600V 70mΩ GaN | RWH | 32 | -40 to 150
TI