LMH0318RTWT [TI]

具有集成电缆驱动器的 3G HD/SD SDI 时钟恢复器 | RTW | 24 | -40 to 85;
LMH0318RTWT
型号: LMH0318RTWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电缆驱动器的 3G HD/SD SDI 时钟恢复器 | RTW | 24 | -40 to 85

时钟 驱动 驱动器
文件: 总57页 (文件大小:1214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
LMH0318 具有集成电缆驱动器的 3Gbps HD/SD SDI 时钟恢复器  
1 特性  
2 应用  
1
支持 ST 424(3G)292(HD)259(SD)MADI 和  
DVB-ASI  
兼容 SMPTE 的串行数字接口 (SDI)  
广播视频路由器、交换机和监视器  
数字视频处理和编辑  
锁定至速率 2.97Gbps1.485Gbps 或相应的  
1/1.001 子速率以及 DVB-ASI  
DVB-ASI 和分布式放大器  
带有快速锁定时间的无参考运行,涵盖所有支持的  
或选定的数据速率  
3 说明  
75Ω 100Ω 发送器输出  
LMH0318 是一款具有集成电缆驱动器的 3Gbps 高清  
(HD)/标清 (SD) SDI 时钟恢复器,设计用于驱动兼容  
SMPTE-SDI DVB-ASI 标准的串行视频数据。 时钟  
和数据恢复电路可消除积累的抖动并检测传入数据速  
率,无需采用外部基准时钟。 具有 75Ω 50Ω 输出  
的集成驱动器支持多种多媒体选件,如同轴电缆和  
FR4 印刷电路板 (PCB)。  
集成了 2:1 复用输入,1:2 解复用/扇出输出  
基于输入速率检测的自动转换率  
片上眼图监视器  
功耗仅 300mW,输入信号丢失时自动断电  
可通过 SPI SMBus 接口编程  
单个 2.5V 电源运行  
小型 4mm x 4mm 24 引脚 QFN 封装  
工作温度范围:-40℃ 至 85℃  
LMH1218 引脚兼容,可轻松升级至 12G  
器件信息(1)  
部件号  
LMH0318  
封装  
WQFN (24)  
封装尺寸(标称值)  
4mm x 4mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化 SPI 电路原理图  
VDD  
VDD  
VDD  
1 KW  
1 KW  
0.01 mF  
0.01 mF  
MODE_SEL  
ENABLE  
6
1
7
21  
OUT0+  
4.7 mF  
4.7 mF  
OUT  
OUT  
11  
IN0+  
20  
75W T-Line  
4.7 mF  
FPGA  
FPGA  
100W Differential T-Line  
12  
OUT0-  
19  
IN0-  
DAP  
VSS  
75W  
24  
10  
LMH0318  
VSS  
8
OUT  
OUT  
IN1+  
IN1-  
4.7 mF  
IN+  
IN-  
OUT1+  
100W Differential T-Line  
4.7 mF  
23  
FPGA  
9
100W Differential T-Line  
OUT1-  
22  
2
3
4
13  
15  
16  
SS_N  
SCK  
MOSI  
LOS_INT_N  
MISO  
LOCK  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS508  
 
 
 
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 24  
8.5 Programming .......................................................... 24  
Application and Implementation ........................ 43  
9.1 Application Information............................................ 43  
9.2 Typical Application ................................................. 43  
9.3 Do's and Don'ts....................................................... 48  
9.4 Initialization Set Up ................................................. 48  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
9
10 Power Supply Recommendations ..................... 48  
11 Layout................................................................... 49  
11.1 Layout Guidelines ................................................. 49  
11.2 Layout Example .................................................... 49  
11.3 Solder Profile......................................................... 50  
12 器件和文档支持 ..................................................... 51  
12.1 器件支持................................................................ 51  
12.2 文档支持................................................................ 51  
12.3 社区资源................................................................ 51  
12.4 ....................................................................... 51  
12.5 静电放电警告......................................................... 51  
12.6 Glossary................................................................ 51  
13 机械封装和可订购信息 .......................................... 51  
7.6 Recommended SMBus Interface AC Timing  
Specifications........................................................... 11  
7.7 Serial Parallel Interface (SPI) Bus Interface AC  
Timing Specifications ............................................... 11  
7.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8
4 修订历史记录  
日期  
修订版本  
注释  
2015 9 月  
*
首次发布。  
2
版权 © 2015, Texas Instruments Incorporated  
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
5 说明(续)  
LMH0318 的输入端集成了 2 1 多路复用器,支持在两个视频源之间进行选择,同时可编程均衡器可以补偿 PC  
板损耗,以此延长信号范围。 该片上时钟恢复器借助宽范围时钟和数据恢复 (CDR) 电路,在无需外部参考时钟和  
环路滤波器组件的情况下,自动检测并锁定 270Mbps 2.97Gbps 的串行数据,从而简化了电路板设计并降低了  
系统成本。 经时钟恢复的串行数据可路由到 75Ω 50Ω 发送器输出或同时路由到这两个输出(1 2 扇出模  
式)。 输出电压摆幅兼容 ST 424344292 259 标准。  
非破坏性眼图监视器支持实时测量串行数据,从而简化系统启动或现场调试过程。 LMH0318 LMH1218(具有  
集成时钟恢复器的 12Gbps 电缆驱动器)引脚兼容。  
6 Pin Configuration and Functions  
24-Pin WQFN  
Package RTWA0024A  
(Top View)  
VSS  
24  
VDD  
IN1+  
IN1-  
7
8
23 OUT1+  
22 OUT1-  
21 VDD  
9
DAP = GND  
VSS  
10  
20 OUT0+  
19 OUT0-  
IN0+ 11  
12  
IN0-  
Copyright © 2015, Texas Instruments Incorporated  
3
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Pin Descriptions – SPI Mode/ Mode_SEL = 1 kto VDD  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
CONTROL/INDICATOR I/O  
Determines Device Configuration: SPI or SMBus  
1 kto VDD:  
MODE_SEL  
1
Input, 4-Level  
Input, 2-Level  
SPI mode. See Initialization Set Up  
SS_N  
2
3
4
SPI Slave Select. . This pin has internal pull up  
Input, 2.5V  
LVCMOS, 2-Level  
SCK  
SPI serial clock input  
MOSI  
Input, 2-Level  
SPI Master Output / Slave Input. LMH0318 SPI data receive  
No Connect  
5,14,17,  
18  
RESERVED  
Powers down device when pulled low  
1 kto VDD:  
Power down until valid signal detected  
Float(Default):  
Reserved  
20 kto GND:  
Reserved  
1 kto GND:  
ENABLE  
6
Input, 4-Level  
Power down including signal detects and Reset Registers upon  
power-up  
Output,  
LVCMOS Open  
Drain, 2-Level  
Programmable Interrupt caused by change in LOS, violation of internal  
eye monitor threshold, or change in lock. External 4.7-kpull-up resistor  
is required. This pin is 3.3 V LVCMOS tolerant.  
LOS_INT_N  
MISO  
13  
15  
Output, 2.5 V  
LVCMOS, 2-Level  
SPI Master Input / Slave Output. LMH0318 SPI data transmit  
Indicates CDR lock detect status  
High:  
Output, 2.5V  
LVCMOS, 2-Level  
LOCK  
16  
CDR locked  
Low:  
CDR not locked  
HIGH SPEED DIFFERENTIAL I/O  
IN0+  
11  
12  
8
Input, Analog  
Input, Analog  
Input, Analog  
Input, Analog  
Inverting and non-inverting differential inputs. An on-chip 100 Ω  
terminating resistor connects IN0+ to IN0-. Inputs require 4.7 µF AC  
coupling capacitors.  
IN0-  
IN1+  
IN1-  
Inverting and non-inverting differential inputs. An on-chip 100 Ω  
terminating resistor connects IN1+ to IN1-. Inputs require 4.7 µF AC  
coupling capacitors.  
9
Output, 75 Ω CML  
OUT0+  
OUT0-  
20  
19  
Inverting and non-inverting 75 Ω outputs. An on-chip 75 Ω terminating  
resistor connects OUT0+ and OUT0- to VDD. Outputs require 4.7 µF AC  
coupling capacitors  
Compatible  
Output, 75 Ω CML  
Compatible  
OUT1+  
OUT1-  
23  
22  
Output, Analog  
Output, Analog  
Inverting and non-inverting differential outputs. An on-chip 100 Ω  
terminating resistor connects OUT1+ to OUT1-. Outputs require 4.7 µF AC  
coupling capacitors  
POWER  
VDD  
7, 21  
2.5 V Supply  
Ground  
2.5 V ± 5%  
VSS  
10, 24  
Connect directly to ground (GND)  
Exposed DAP, connect to GND using at least 5 vias (see 23 )  
DAP  
Ground  
4
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Pin Descriptions – SMBUS Mode/ MODE_SEL = 1 kto GND  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
Determines Device Configuration: SPI or SMBus  
1 kto GND: SMBUS mode. See Initialization Set Up  
MODE_SEL  
ADDR0  
Input, 4-Level  
2
4-level strap pins used to set the SMBus address of the device. The pin  
state is read on power-up. The multi-level nature of these pins allows for  
16 unique device addresses. Note SMBus section for further details. The  
four strap options include:  
1 kto VDD:  
Represents logic state 11’b  
Input, 4-Level  
ADDR1  
15  
Float(Default): Represents logic state 10'b 7-bits SMBus address = 0x17  
20 kto GND:  
Represents logic state 01'b  
1 kto GND:  
Represents logic state 00'b  
SMBus clock input / open drain. External 2-kto 5-kpull-up resistor is  
required as per SMBus interface standard. This pin is 3.3 V LVCMOS  
tolerant.  
SCL  
3
4
Input, 2-Level  
SMBus data input / open drain. External 2-kto 5-kpull-up resistor is  
required as per SMBus interface standard. This pin is 3.3 V LVCMOS  
tolerant.  
I/O, Open Drain, 2-  
Level  
SDA  
5,14,17,  
18  
RESERVED  
No Connect  
Powers down device when pulled low  
1 kto VDD:  
Power down until valid signal detected  
Float(Default): Reserved  
20 kto GND:  
ENABLE  
6
Input, 4-Level  
Reserved  
1 kto GND:  
Power down including signal detects and Reset Registers upon  
power-up  
Output, LVCMOS Programmable Interrupt caused by change in LOS, violation of internal  
LOS_INT_N  
LOCK  
13  
16  
Open Drain, 2-  
Level  
eye monitor threshold, change in lock. External 4.7-kpull-up resistor is  
required. This pin is 3.3 V LVCMOS tolerant.  
Indicates CDR lock Status  
High:  
Output, 2.5 V  
LVCMOS, 2-Level  
CDR locked  
Low:  
CDR not locked  
HIGH SPEED DIFFERENTIAL I/O  
IN0+  
11  
12  
8
Input, Analog  
Input, Analog  
Input, Analog  
Input, Analog  
Inverting and non-inverting differential inputs. An on-chip 100 Ω  
terminating resistor connects IN0+ to IN0-. Inputs require 4.7 µF AC  
coupling capacitors.  
IN0-  
IN1+  
IN1-  
Inverting and non-inverting differential inputs. An on-chip 100 Ω  
terminating resistor connects IN0+ to IN0-. Inputs require 4.7 µF AC  
coupling capacitors.  
9
Output, 75 Ω CML  
OUT0+  
OUT0-  
20  
19  
Inverting and non-inverting 75 Ω outputs. An on-chip 75 Ω terminating  
resistor connects OUT0+ and OUT0- to VDD. Outputs require 4.7 µF AC  
coupling capacitors  
Compatible  
Output, 75 Ω CML  
Compatible  
OUT1+  
OUT1-  
23  
22  
Output, Analog  
Output, Analog  
Inverting and non-inverting differential outputs. An on-chip 100 Ω  
terminating resistor connects OUT1+ to OUT1-. Outputs require 4.7 µF AC  
coupling capacitors  
VDD  
VSS  
DAP  
7, 21  
2.5 V Supply  
Ground  
2.5V ± 5%  
10, 24  
Connect directly to ground (GND)  
Exposed DAP, connect to GND using at least 5 vias (see 23 )  
Ground  
Copyright © 2015, Texas Instruments Incorporated  
5
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.5  
-0.5  
-0.5  
-0.5  
-30  
MAX  
2.75  
4.0  
UNIT  
V
Supply Voltage (VDD to GND)  
3.3 V Open drain I/O input/output voltage (SDA, SCL, LOS_INT_N)  
2.5V LVCMOS Input/Output Voltage  
High Speed input Voltage  
V
2.75  
2.75  
30  
V
V
High Speed Input Current  
mA  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other  
conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions  
indicate conditions at which the device is functional and the device should not be operated beyond such conditions. Absolute Maximum  
Numbers are ensured for a junction temperature range of -40°C to +125°C. Models are validated to Maximum Operating Voltages only.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±4500  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±1500  
V may actually have higher performance.  
7.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
3
TYP  
2.5  
3.3  
40  
MAX  
2.625  
3.6  
UNIT  
V
Supply voltage(1)  
3.3 V Open drain I/O input/output voltage(1)  
Supply noise, 50 Hz to 10 MHz, sinusoidal  
Ambient Temperature  
V
mVpp  
ºC  
-40  
25  
85  
1000  
400  
3.6  
Source transmit differential launch amplitude  
SMBus clock frequency (SCL) in SMBus slave mode  
SMBUS SDA and SCL Voltage Level  
SPI Clock Frequency  
300  
500  
100  
mVP-P  
kHz  
V
10  
20  
MHz  
(1) DC plus AC power should not exceed these limits.  
7.4 Thermal Information  
RTWA0024A  
THERMAL METRIC(1)(2)  
UNIT  
24 PINS  
34  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
31.4  
11.8  
0.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
11.8  
2.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) No heat sink is assumed for these estimations. Depending on the application, a heat sink, faster air flow, and/or reduced ambient  
temperature ( < 85ºC) may be required in order to maintain the maximum junction temperature specified in Electrical Characteristics.  
6
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
7.5 Electrical Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
PD  
Power dissipation  
Locked 75 Ω OUT0 only  
(800 mVpp), EOM  
powered down  
300  
195  
mW  
mW  
Locked OUT1 only (600  
mVpp, diff), EOM powered  
down  
Transient power during  
CDR lock acquisition, 75 Ω  
OUT0 and OUT1 powered  
up, EOM powered down  
400  
195  
500  
mW  
mW  
PD_RAW  
Power dissipation in force EQ bypass, OUT0  
RAW mode (CDR bypass) 720mVpp, OUT1 600mVpp  
IN0 to OUT0 and OUT1 or  
IN1 to OUT0 and OUT1  
IN0 to OUT0, OUT1  
powered down  
160  
80  
mW  
mW  
IN1 to OUT1, OUT0  
powered down  
4-LEVEL INPUT and 2.5 V LVCMOS DC SPECIFICATIONS  
VIH  
High level input voltage  
4-level input (MODE_SEL,  
ADDR0/1, ENABLE pins)  
0.95*VDD  
0.67*VDD  
0.33*VDD  
0.1  
V
V
V
V
VIF  
Float level input voltage  
4-level input (MODE_SEL,  
ADDR0/1, ENABLE pins)  
VI20K  
VIL  
20K to GND input voltage 4-level input (MODE_SEL,  
ADDR0/1, ENABLE pins)  
Low level input voltage  
4-level input (MODE_SEL,  
ADDR0/1, ENABLE pins)  
VOH  
VOL  
IIH  
High level output voltage  
Low level output voltage  
IOH = -3 mA  
IOL = 3 mA  
2
V
V
0.4  
15  
Input high leakage current Vinput = VDD  
SPI Mode: LVCMOS  
µA  
µA  
(SPI_SCK, SPI_SS_N)  
pins  
SMBus Mode: LVCMOS  
(SMB_SDA, SMB_SCL)  
pins  
15  
SMBus Mode: 4-Levels  
(ADDR0, ADDR1) pins  
20  
20  
44  
44  
80  
80  
µA  
µA  
4-Levels (MODE_SEL,  
ENABLE) pins  
IIL  
Input low leakage current  
Vinput = GND  
SPI Mode: LVCMOS  
(SPI_MOSI, SPI_SCK)  
pins  
-15  
µA  
Vinput = GND  
SPI Mode: LVCMOS  
(SPI_SS_N) pins  
-37  
-15  
µA  
µA  
SMBus Mode: LVCMOS  
(SMB_SDA, SMB_SCL  
pins  
SMBus Mode: 4-Levels  
(ADDR0, ADDR1) pins  
-160  
-160  
-93  
-93  
-40  
-40  
µA  
µA  
4-Levels (MODE_SEL,  
ENABLE) pins  
Copyright © 2015, Texas Instruments Incorporated  
7
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.3-V TOLERANT LVCMOS / LVTTL DC SPECIFICATIONS (SDA, SCL, LOS_INT_N)  
VIH25  
High level input voltage  
Low level input voltage  
Low level output voltage  
Input high current  
2.5 V Supply Voltage  
1.75  
3.6  
0.8  
0.4  
40  
V
V
VIL  
GND  
VOL  
IOL = 1.25 mA  
V
IIH  
VIN = 2.5 V, VDD = 2.5 V  
VIN = GND, VDD = 2.5 V  
20  
μA  
μA  
IIL  
Input low current  
-10  
10  
SIGNAL DETECT  
SDH  
Signal detect (default)  
2.97 Gbps, EQ  
22  
22  
22  
16  
16  
9
mVP-P  
mVP-P  
mVP-P  
mVP-P  
mVP-P  
mVP-P  
Assert threshold level(1)(2) Pathological Pattern  
2.97 Gbps, PLL  
Pathological Pattern  
2.97 Gbps, PRBS10  
Pattern  
SDL  
Signal detect (default)  
De-assert threshold  
level(1)  
2.97 Gbps EQ  
Pathological Pattern  
2.97 Gbps, PLL  
Pathological Pattern  
2.97 Gbps, PRBS10  
Pattern  
HIGH SPEED RECEIVE RX INPUTS (IN_n+, IN_n-)  
R_RD  
DC Input differential  
resistance  
75  
100  
125  
RLRX-SDD  
Input differential return  
loss(3)(4)  
Measured with the device  
powered up.  
-14  
-6.5  
-20  
dB  
dB  
dB  
SDD11 10 MHz to 2 GHz  
SDD11 2 GHz to 3 GHz  
RLRX-SCD  
Differential to common  
mode Input  
Measure with the device  
powered up.SCD11, 10  
MHz to 3 GHz  
conversion(3)(4)  
HIGH SPEED OUTPUTS (OUT_n+, OUT_n-)  
VVOD_OUT1  
Output differential  
voltage(3)(4)  
Default setting, 8T clock  
pattern  
400  
720  
600  
-9  
700  
880  
mVP-P  
dB  
VVOD_OUT1_DE  
De-emphasis Level  
VOD = 600mV, maximum  
De-Emphasis with 16T  
clock pattern  
VVOD_OUT1_CLK  
VVOD_OUT0  
Clock output differential  
voltage  
2.97 GHz,1.485 GHz, and  
270 MHz  
560  
800  
100  
mVP-P  
mVP-P  
Output single ended  
voltage at OUT0+ with  
OUT0- terminated(5)(3)  
Default setting  
RDIFF_OUT1  
DC output differential  
resistance  
(1) Data with extraordinarily long periods of high-frequency 1010 data, and for long, lossy channels, the signal amplitude at the input to the  
device may be severely attenuated by the channel and may fall below the signal detect assert and/or de-assert thresholds.  
(2) The voltage noise on the receiver inputs which has an amplitude larger than the signal detect assert threshold may trigger a signal  
detect assert condition  
(3) These limits are ensured by bench characterization and are not production tested.  
(4) Dependent on board layout. Characterization data was measured with LMH1218EVM evaluation board  
(5) ATE Production tested using DC method. Apply differential DC signal at the input and measure OUT0P amplitude. OUT0N terminated in  
75 Ohm.  
8
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RDIFF_OUT0  
TR_F_OUT1  
TR_F_OUT0  
DC output single ended  
resistance  
75  
Output rise/fall time  
Full Slew Rate, 20% to  
80% using 8T Pattern  
45  
ps  
Output rise/fall time,  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
35  
35  
900  
3
45  
45  
ps  
ps  
ps  
ps  
ps  
ps  
(3)(4)  
PRBS15  
400  
1500  
18  
TR_F_OUT0_delta  
Output rise/fall time  
mismatch(3)(4)  
3
18  
72  
500  
VOVR_UDR_SHOOT  
Output overshoot,  
undershoot(3) (4)  
3G/HD/SD Measured with  
8T pattern  
2.4%  
±0.2  
20  
<10%  
VDC_OFFSET  
VDC_WANDER  
DC offset  
3G/HD/SD  
V
DC wander  
3G/HD/SD EQ  
Pathological  
mV  
RLOUT0_S22  
OUT0 single ended 75-Ω  
S22 5 MHz to 1.485 GHz  
S22 1.485 GHz to 3 GHz  
SDD22 10 MHz - 2 GHz  
SDD22 2 GHz - 3 GHz  
SCC22 10 MHz - 3 GHz  
< -15  
< -10  
-20  
dB  
dB  
dB  
dB  
return loss(3)(4)(6)  
RLOUT1_SDD22  
OUT1 differential 100-Ω  
return loss(4)(7)  
-17  
RLOUT1_SCC22  
OUT1 common mode 50-  
-11  
8
dB  
return loss(4)(7)  
VVCM_OUT1_NOISE  
AC common mode voltage VOD = 0.6 Vpp, DE = 0dB,  
mVRMS  
noise(4)  
PRBS31, 2.97 Gbps  
Reclocked Data  
Raw Data  
TRCK_LATENCY  
TRAW_LATENCY  
Latency reclocked  
Latency CDR bypass  
1.5 UI +195  
230  
ps  
ps  
TRANSMIT OUTPUT JITTER SPECIFICATIONS  
AJ_OUT0  
Alignment jitter(4)  
OUT0, PRBS15, 2.97  
Gbps  
0.045  
0.06  
0.91  
UI  
UI  
TJ_OUT1  
RJ_OUT1  
Total jitter (1E-12)(4)  
Random jitter (rms)  
OUT1, PRBS15 2.97 Gbps  
OUT1, PRBS15, 2.97  
Gbps  
psRMS  
DJ_OUT1  
Deterministic jitter  
OUT1, PRBS15, 2.97  
Gbps  
6.8  
psP-P  
(6) Output return loss is dependent on board design, this is measured with the LMH1218EVM evaluation board  
(7) Measure with the device powered up and outputs a clock signal.  
Copyright © 2015, Texas Instruments Incorporated  
9
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CLOCK DATA RECOVERY  
DDATA_RATE  
SMPTE 424(8)  
SMPTE 292(8)  
SMPTE 259M(8)  
2.970  
2.967  
Gbps  
1.485  
1.4835  
Gbps  
Mbps  
MHz  
270  
PPLL_BW  
PLL bandwidth at -3 dB  
Measured with 0.2UI SJ at  
2.97 Gbps  
5
Measured with 0.2UI SJ at  
1.485 Gbps  
3
1
MHz  
MHz  
Measured with 0.2UI SJ at  
270 Mbps  
JTOL  
Total input jitter tolerance  
Lock time(3)(9)  
TJ = DJ + RJ + SJ,  
DJ+RJ = 0.15 UI  
SJ/PJ, low to high upward  
sweep (10 kHz to 10 MHz)  
0.65  
<5  
UI  
ms  
°C  
TLOCK  
From signal detected to  
the lock asserted,  
HEO/VEO lock monitor  
disable, same setting for  
2.97G, 1.485G and 270  
MHz data rates  
TTEMP_LOCK  
CDR lock with temperature Temperature Lock Range,  
ramp  
5ºC per minute ramp up  
and down, -40ºC to 85ºC  
operating range  
125  
(8) Data rate tolerance is within ±1000 ppm  
(9) The total CDR lock time depends on number of rate settings enabled and application data rate  
10  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
7.6 Recommended SMBus Interface AC Timing Specifications(1)(2)(3)  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
fSMB  
tBUF  
Bus operating frequency  
10  
100  
400  
kHz  
Bus free time between stop and  
start condition  
1.3  
μs  
Hold time after (repeated) start  
condition  
After this period, the first clock is  
generated  
tHD:STA  
0.6  
0.6  
μs  
μs  
Repeated start condition setup  
time  
tSU:STA  
MODE_SEL = 0  
tSU:STO  
tHD:DAT  
tSU:DAT  
tLOW  
tHIGH  
tF  
Stop condition setup time  
Data hold time  
0.6  
0
μs  
ns  
ns  
μs  
μs  
ns  
ns  
Data setup time  
100  
1.3  
0.6  
Clock low period  
Clock high period  
50  
300  
300  
SDA fall time read operation  
SDA rise time read operation  
tR  
(1) SMBus operation is available 20ms after power up  
(2) These specifications support SMBus 2.0 specifications  
(3) These Parameters are not production tested  
7.7 Serial Parallel Interface (SPI) Bus Interface AC Timing Specifications(1)(2)(3)  
Over operating free-air temperature range (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
f SCK  
TSCK  
tPH  
SCK frequency  
MODE_SEL = 1  
10  
20  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
SCK period  
50  
SCK pulse width high  
SCK pulse width low  
MOSI setup time  
MOSI hold time  
0.40*TSCK  
0.40*TSCK  
tPL  
tSU  
4
4
tH  
tSSSu  
tSSH  
tSSOF  
tODZ  
tOZD  
SS_N setup time  
SS_N hold time  
14  
4
18  
SS_N off time  
1
MISO driven to TRI-STATE time  
20  
MISO TRI-STATE-to-Driven  
time  
10  
15  
ns  
ns  
tOD  
MISO output delay time  
(1) Typical values are parametric norms at VDD = 2.5 V, TA = 25ºC, and recommended operating conditions at the time of product  
characterization. Typical values are not production tested.  
(2) These specifications support SPI 1.0 specifications.  
(3) These Parameters are not production tested  
版权 © 2015, Texas Instruments Incorporated  
11  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
7.8 Typical Characteristics  
Typical device characteristics at TA = +25°C and VDD = 2.5 V, unless otherwise noted.  
2. 75 Ω OUT0 PRBS10 at 1.485 Gbps  
1. 75 Ω OUT0 PRBS10 at 2.97 Gbps  
12  
版权 © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8 Detailed Description  
8.1 Overview  
The LMH0318 is a 2.97Gbps/1.485Gbps/0.27Gbps multi-rate serial digital video data reclocker with integrated  
cable driver intended for equalizing, reclocking, and driving data compatible to the SMPTE standards. It is a 2-  
input, 2-output single-core chip, enabling 1:2 fan-out or 2:1 MUX operations. Each input has a 100 Ω continuous  
time linear equalizer (CTLE) at the front-end, intended to compensate for loss over STP coax or FR-4 PCB trace.  
The LMH0318 OUT0 is a 75 Ω cable driver compatible to the SMPTE requirements.  
The referenceless Clock-and-Data Recovery (CDR) circuit selects between the two inputs based on user choice.  
The reclocked output can be driven to one or two outputs. One of the outputs supports 100-differential cable  
connection, while the other output can drive a 75 Ω SMPTE specified cable while meeting transmitter  
requirements as specified in SMPTE standard. The LMH0318 locks to all required SDI data rates, including  
270Mbps, 1.485 Gbps, 1.4835 Gbps, 2.97 Gbps, and 2.967 Gbps. The LMH0318 is assembled in a 4 mm × 4  
mm 24-pin QFN package. The chip can be programmed using SPI or SMBus interface.  
8.2 Functional Block Diagram  
Mux Control  
Mute  
OUT0(75 )  
LA  
Loss Of  
Signal  
75 BNC  
FR4 EQ  
100 ꢀ  
FPGA/Cross Point  
2
2
Raw  
OUT1(100 )  
Retimed  
Clock  
FR4 EQ  
100 ꢀ  
FPGA/Cross Point  
100 Data or Clock  
Mute  
CDR  
Polarity Control  
Loss Of  
Signal  
Eye  
Monitor  
VCO  
Control Logic Block  
Status  
版权 © 2015, Texas Instruments Incorporated  
13  
 
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
8.3 Feature Description  
The LMH0318 data path consists of several key blocks as shown in the Functional Block Diagram. These key  
circuits are:  
Loss of Signal Detector  
Continuous Time Linear Equalizer (CTLE) for FR4 Compensation  
2:1 Multiplexer/1:2 Fanout  
CDR  
Eye Monitor  
Differential Output Selection  
75 Ω and 100 Ω Output Drivers  
SMBus/SPI Configuration  
8.3.1 Loss of Signal Detector  
The LMH0318 supports two high speed differential input ports, with internal 100 Ω terminations. The inputs must  
be AC coupled. The external AC coupling capacitor value should take into account the pathological low  
frequency content. For most applications, the RC time constant of 4.7 µF AC coupling capacitor plus the 50 Ω  
termination resistor is capable of handing the pathological video pattern's low frequency content.  
The signal detect circuit is designed to assert when data traffic with a certain minimum amplitude is present at  
the input of the device. It is also designed to de-assert, or remain de-asserted, when there is noise below certain  
amplitude at the input to the device.  
The LMH0318 has two signal detect circuits, one for each input. Each signal detect threshold can be set  
independently. By default, both signal detects are powered on. The user selects IN1 or IN0 through SMBus/SPI  
interface.  
8.3.2 Continuous Time Linear Equalizer (CTLE)  
The LMH0318 has receive-side equalization, and a key part is the Continuous Time Linear Equalizer (CTLE).  
This circuit operates on the received differential signal and compensates for frequency-dependent loss due to the  
transmission media. The CTLE applies gain to the input signal. This gain varies over frequency: higher  
frequencies are boosted more than lower frequencies. The CTLE works to restore the input signal to full  
amplitude across a wide range of frequencies.  
The CTLE consists of 4 stages with each stage having two boost control bits. This allows 256 different boost  
settings. CTLE boost levels are determined by summing the boost levels of the 4 stages. The CTLE is configured  
manually. See LMH0318 Programming Guide (SNLU183) on how to quickly select the most appropriate CTLE  
boost setting.  
There are two CTLEs, one for each input, IN0 and IN1. Only one CTLE is enabled at a time, according to the  
user input channel selection. If IN0 is selected, the CTLE for IN0 is powered on and the IN1 CTLE is powered  
off. The CTLE is able to handle low loss channels without over-equalizing by bypassing the CTLE.  
14  
版权 © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Feature Description (接下页)  
8.3.3 2:1 Multiplexer  
A 2:1 input multiplexor connects IN0 and IN1 to the CDR. By default, IN0 is selected. To select IN1, the 2:1  
multiplexer must be set. See LMH0318 Programming Guide (SNLU183) for detailed settings.  
8.3.4 Clock and Data Recovery  
By default, the equalized data is fed into the CDR for clock and data recovery. The CDR consists of a reference-  
less Phase Frequency Detector (PFD), Charge Pump (CP), Voltage Controlled Oscillator (VCO), and Output  
Data Multiplexer (Mux).  
The inputs to the Phase and Frequency Detector (PFD) are the data after the CTLE as well as I and Q clocks  
from the VCO. The LMH0318 will attempt to lock to the incoming data by tuning the VCO to phase-lock to the  
incoming data rate.  
The supported data rates are listed in the following table. See LMH0318 Programming Guide (SNLU183) for  
further information on configuring the LMH0318 for different data rates.  
1. Supported Data Rates  
DATA RATE RANGE  
2.97 Gbps, 2.967 Gbps  
1.485 Gbps, 1.4835 Gbps  
270 Mbps  
CDR MODE  
Enabled  
COMMENT  
Enabled  
Enabled  
125 Mbps  
Disabled  
At 125 Mbps device is in CDR bypass  
8.3.5 Eye Opening Monitor (EOM)  
The LMH0318 has an on-chip eye opening monitor (EOM) which can be used to analyze, monitor, and diagnose  
the performance of the link. The EOM operates on the post-equalized waveform, just prior to the data sampler.  
Therefore, it captures the effects of all the equalization circuits within the receiver before the data is reclocked.  
The EOM is operational for 1.485 Gbps and higher data rates.  
The EOM monitors the post-equalized waveform in a time window that spans one unit interval and a configurable  
voltage range that spans up to ±400 mV differential. The time window and voltage range are divided into 64  
steps, so the result of the eye capture is a 64 × 64 matrix of “hits,” where each point represents a specific voltage  
and phase offset relative to the main data sampler. The number of “hits” registered at each point needs to be  
taken in context with the total number of bits observed at that voltage and phase offset in order to determine the  
corresponding probability for that point. The number of bits observed at each point is configurable.  
A common measurement performed by the EOM is the horizontal and vertical eye opening. The horizontal eye  
opening (HEO) represents the width of the post-equalized eye at 0 V differential amplitude, measured in unit  
intervals or picoseconds. The vertical eye opening (VEO) represents the height of the post-equalized eye,  
measured midway between the mean zero crossing of the eye. This position in time approximates the CDR  
sampling phase.  
The resulting 64 × 64 matrix produced by the EOM can be processed by software and visualized in a number of  
ways. Two common ways to visualize this data are shown in 20 and 21. These diagrams depict examples  
of an eye monitor plot implemented by software. The first plot is an example of using the EOM data to plot a  
basic eye using ASCII characters, which can be useful for simple diagnostics software. The second plot shows  
the first derivative of the EOM data, revealing the density of hits and the actual waveforms and crossing that  
comprise the eye.  
版权 © 2015, Texas Instruments Incorporated  
15  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
8.3.6 Fast EOM  
Fast EOM is a mechanism that provides an option to read out EOM through SPI/SMBus interfaces by reading  
the hits observed for each point of 64 × 64 points matrix. Since SPI interface operates at faster clock rate than  
SMBus interface, the SPI master will have to wait until the EOM start bit, reg 0x24[0], goes low. This indicates  
EOM samples are available and the SPI master can proceed to read register 0x25 and 0x26. See SPI Fast EOM  
Operation and LMH0318 Programming Guide (SNLU183) for further details of Fast EOM operation.  
8.3.6.1 SMBus Fast EOM Operation  
In SMBus mode, the read on register 0x26 acts as an automatic trigger to read the next EOM count value:  
1. Enable EOM (power it on), and set VRANGE=0. Write reg 0x24[7] to 1 to turn on fast EOM  
2. Read register 0x25 as burst of 2 bytes (EOM hit count) and discard  
3. Read register 0x25 as burst of 2 bytes (EOM hit count) and discard  
4. Read register 0x25 as burst of 2 bytes (EOM hit count) and save  
5. Perform Step 4 4095 times (64 × 64 cells)  
8.3.6.2 SPI Fast EOM Operation  
To perform EOM calculation over SPI:  
1. Enable EOM (power it on), and set VRANGE=0. Write reg 0x24[7] to 1 to turn on fast EOM  
2. Read reg 0x26 to initialize. Discard read data  
3. Read Reg 0x24[0] which is EOM start bit. Wait for this bit to go low  
4. Read register 0x26 EOM hit count and discard. Read on register 0x26 will automatically trigger the next Fast  
Eye calculation  
5. Read Reg 0x24[0]. Wait for this bit to go low  
6. Do burst read on register 0x25 and 0x26 to get the EOM hit count value.  
7. Repeat Steps 5 and 6 4095 times (64 × 64 cells)  
8.3.7 LMH0318 Device Configuration  
The control pins can be used to configure different operations depending on the functional modes as described  
in 2.  
2. Control Pins  
FUNCTIONAL MODES  
PIN #  
1
PIN NAME  
SPI  
SMBus_Slave  
1 kto GND  
MODE_SEL  
1 kto VDD  
SPI_SS_N  
SPI_SCK  
SPI_MOSI  
ENABLE  
2
IN_OUT_SEL_SPI_SS_N_ADDR0  
EQ_SCL_SCK  
ADDR0  
3
SMBUS_SCL  
SMBUS SDA  
ENABLE  
4
OUT_CTRL_MOSI_SDA  
ENABLE  
6
13  
15  
16  
LOS_INT_N  
LOS_INT_N  
SPI_MISO  
LOCK  
LOS_INT_N  
ADDR1  
VOD_MISO_ADDR1  
LOCK  
LOCK  
16  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8.3.7.1 MODE_SEL  
This pin can be configured in 4 possible ways:  
1. 1 kto VDD: This puts the part in SPI mode  
2. Float (Default): Reserved  
3. 20 kto GND: Reserved  
4. 1 kto GND: This puts the part in SMBus mode  
8.3.7.2 ENABLE  
Normal operation when ENABLE is pulled high, and powers down the device when pulled low.  
3. ENABLE Selection  
ENABLE  
1 kto GND  
POWER CONDITION  
Power down device (signal detectors powered down, registers at reset state)  
20 kto GND  
Float  
Reserved  
Reserved  
1 kto VDD  
Normal Operation  
8.3.7.3 LOS_INT_N  
LOS_INT_N pin is an open drain output. When the channel that has been selected cannot detect a signal at the  
high-speed input pins (as defined by the assert levels), the pin pulls low. Pin 13 can be configured through share  
register 0xFF[5] for interrupt functionality.  
In SMBus/SPI mode, this pin can be configured as an interrupt. This pin is asserted low when there is an  
interrupt and goes back high when the interrupt status register is read. There are 7 separate masks for different  
interrupt sources. These interrupt sources are:  
1. If there is a LOS transition on IN0, irrespective of the input channel selected (2 separate masks).  
2. If there is a LOS transition on IN1, irrespective of the input channel selected (2 separate masks).  
3. HEO or VEO goes below a certain threshold as specified in the registers (1 mask).  
4. Lock transition, whether it is asserted or de-asserted – disabled by default (2 mask).  
8.3.7.4 LOCK  
Indicates the lock status of the CDR. When CDR is locked this pin is asserted high.  
版权 © 2015, Texas Instruments Incorporated  
17  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
8.3.7.5 SMBus MODE  
The SMBus interface can also be used to control the device. If pin 1 (MODE_SEL) is pulled low through 1 kto  
GND, then Pins 3, 4 are configured as the SMBUS_SCL and SMBUS_SDA respectively. Pins 2, 15 are address  
straps, ADDR0/ADDR1 respectively, during power up.  
The maximum operating speed supported on the SMBus pins is 400 kHz.  
4. SMBus MODE  
7-Bit SLAVE  
ADDRESS [HEX]  
8-Bit WRITE  
COMMAND [HEX]  
ADDR0  
ADDR1  
ADDR0 [BINARY]  
ADDR1 [BINARY]  
1 kto GND  
1 kto GND  
1 kto GND  
1 kto GND  
20 kto GND  
20 kto GND  
20 kto GND  
20 kto GND  
Float  
1 kto GND  
20 kto GND  
Float  
00  
00  
00  
00  
01  
01  
01  
01  
10  
10  
10  
10  
11  
11  
11  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1A  
1C  
1E  
20  
22  
24  
26  
28  
2A  
2C  
2E  
30  
32  
34  
36  
38  
1 kto VDD  
1 kto GND  
20 kto GND  
Float  
1 kto VDD  
1 kto GND  
20 kto GND  
Float  
Float  
Float  
Float  
1 kto VDD  
1 kto GND  
20 kto GND  
Float  
1 kto VDD  
1 kto VDD  
1 kto VDD  
1 kto VDD  
1 kto VDD  
Note: These are 7 bit addresses. Therefore, the LSB must be added to indicate read/write. LSB equal to zero  
indicates write and 1 indicates SMBus read operation. For example, for 7 bit hex address 0x0D, the I2C hex  
address byte is 0x1A to write and 0X1B to read.  
18  
版权 © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8.3.7.6 SMBus READ/WRITE Transaction  
The System Management Bus (SMBus) is a two-wire serial interface through which various system component  
chips can communicate with the master. Slave devices are identified by having a unique device address. The  
two-wire serial interface consists of SCL and SDA signals. SCL is a clock output from the Master to all of the  
Slave devices on the bus. SDA is a bidirectional data signal between the Master and Slave devices. The  
LMH0318 SMBUS SCL and SDA signals are open drain and require external pull up resistors.  
Start and Stop:  
The Master generates Start and Stop conditions at the beginning and end of each transaction.  
Start: High to low transition (falling edge) of SDA while SCL is high  
Stop: Low to high transition (rising edge) of SDA while SCL is high  
3. Start and Stop Conditions  
The Master generates 9 clock pulses for each byte transfer. The 9th clock pulse constitutes the ACK cycle. The  
transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is when the device pulls SDA  
low, while a NACK is recorded if the line remains high.  
4. Acknowledge (ACK)  
版权 © 2015, Texas Instruments Incorporated  
19  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Writing data from a master to a slave comprises of 3 parts as noted in figure 5  
The master begins with start condition followed by the slave device address with the R/W bit cleared  
The 8-bit register address that will be written  
The data byte to write  
5. SMBus Write Operation  
SMBus read operation consists of four parts  
The master initiates the read cycle with start condition followed by slave device address with the R/W bit  
cleared  
The 8-bit register address that is to be read  
After acknowledgment from the slave, the master initiates a re-start condition  
The slave device address is resent followed with R/W bit set  
After acknowledgment from the slave, the data is read back from the slave to the master. The last ACK is  
high if there are no more bytes to read  
6. SMBus Read Operation  
t
LOW  
t
t
HIGH  
R
t
HD:STA  
SCL  
SDA  
t
t
t
SU:STA  
HD:DAT  
F
t
t
BUF  
SU:STO  
t
SU:DAT  
See  
*
Note  
ST  
SP  
SP  
ST  
7. SMBus Timing Parameters  
20  
版权 © 2015, Texas Instruments Incorporated  
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8.3.7.7 SPI Mode  
The SPI (Serial Peripheral Interface) bus standard can be used to control the device. The SPI Mode is enabled  
when MODE_SEL Pin 1 is pulled high through the 1-kΩ resistor. The SPI bus comprises of 4 pins: Pin 2, Pin 3,  
Pin 4, and Pin 15:  
1. MOSI Pin 4: Master Output Slave Input. Configured as toggling input.  
2. MISO Pin 15: Master Input, Slave Output: Configured as a toggling output  
3. SS_N Pin 2: Slave Select (active low). Configured as toggling input.  
4. SCK Pin 3: Serial clock (output from master). Configured as toggling input.  
The maximum operating speed supported on the SPI bus is 20 MHz.  
8.3.7.7.1 SPI READ/WRITE Transaction  
Each SPI transaction to a single device is 17 bits long and is framed by SS_N asserted low. The MOSI input is  
ignored and the MISO output is floated whenever SS_N is de-asserted (High).  
The bits are shifted in left-to-right. The first bit is R/W, so it is 1 for reads and 0 for writes. Bits A7-A0 are the 8-bit  
register address, and bits D7-D0 are the 8-bit read or write data. The prior SPI command, address, and data are  
shifted out on MISO as the current command, address, and data are shifted in on MOSI. In all SPI transactions,  
the MISO output signal is enabled asynchronously when SS_N becomes asserted.  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
8. MOSI Format  
8.3.7.7.2 SPI Write Transaction Format  
For SPI writes, the R/W bit is 0. SPI write transactions are 17 bits per device, and the command is executed on  
the rising edge of SS_N, as shown in 9. The SPI transaction always starts on the rising edge of the clock.  
9. MOSI Write Sequence  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
The signal timing for a SPI Write transaction is shown in 10. The “prime” values on MISO (for example, A7)  
reflect the contents of the shift register from the previous SPI transaction, and are a "don’t-care" for the current  
transaction.  
tSSOF  
SS_N  
tSSH  
t
t
t
PL  
SSSU  
PH  
SCK  
t
H
t
SU  
MOSI  
MISO  
HiZ  
D7  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
todz  
HiZ  
R/W'  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
D7'  
10. Signal Timing for a SPI Write Transaction  
版权 © 2015, Texas Instruments Incorporated  
21  
 
 
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
8.3.7.7.3 SPI Read Transaction Format  
An SPI read transaction is 34 bits per device consisting of two 17-bit frames. The first 17-bit read transaction,  
first frame, shifts in the address to be read, followed by a dummy transaction, second frame, to shift out the 17-  
bit read data. The R/W bit is 1 for the read transaction, as shown in 11.  
The first 17 bits from the read transaction specifies 1-bit of RW and 8-bits of address A7-A0. The eight 1’s  
following the address are ignored. The second dummy transaction acts like a read operation on address 0xFF  
and needs to be ignored. However, the transaction is necessary in order to shift out the read data D7-D0 in the  
last 8 bits of the MISO output.  
The signal timing for a SPI read transaction is shown in 11. As with the SPI write, the “prime” values on MISO  
during the first 16 clocks are a don’t-care for this portion of the transaction. Note, that the values shifted out on  
MISO during the last 17 clocks reflect the read address and 8-bit read data for the current transaction.  
SS_N  
(host)  
t
SSOF  
t
SSOF  
t
SSH  
t
t
t
PL  
SSSU PH  
SCK  
(host)  
t
H
8X1“  
17X1“  
t
SU  
MOSI  
(host)  
1
A7 A6 A5 A4 A3 A2 A1 A0  
todz  
tod  
tozd  
MISO  
(device)  
D
1
D
0
A
0
A
7
A
6
A
5
A
4
A
3
A
2
A
1
D
7
D
6
D
5
D
4
D
3
D
2
Don‘t Care  
1
11. Signal Timing for a SPI Read Transaction  
22  
版权 © 2015, Texas Instruments Incorporated  
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8.3.7.8 SPI Daisy Chain  
The LMH0318 includes an enhanced SPI controller that supports daisy-chaining the serial configuration data  
among multiple LMH0318 devices. The LMH0318 device supports SPI Daisy Chain between devices with an 8-  
bit SPI addressing scheme. Each LMH0318 device is directly connected to the SCK and SS_N pins of the Host.  
However, only the first LMH0318 device in the chain is connected to the Host’s MOSI pin, and only the last  
device in the chain is connected to the Host’s MISO pin. The MOSI pin of each intermediate LMH0318 device in  
the chain is connected to the MISO pin of the previous LMH0318 device, thereby creating a serial shift register.  
This architecture is shown in 12.  
MISO  
Device 1  
Device 2  
Device 3  
Device N  
Host  
LMH0318  
LMH0318  
LMH0318  
LMH0318  
. . .  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
SCK  
SS  
12. Daisy-Chain Configuration  
In a daisy-chain configuration of N LMH0318 devices, the Host conceptually sees a long shift register of length  
17xN. Therefore the length of a Basic SPI Transaction, as described above, is 17xN; in other words, SS_N is  
asserted for 17xN clock cycles.  
8.3.7.8.1 SPI Daisy Chain Write Example  
The following example make some assumptions:  
The daisy-chain is 3 LMH0318 devices long, comprising Devices 1, 2, and 3 as shown in 12. Therefore, each  
Basic SPI Transaction is 17x3 = 51 clocks long.  
In 13, the following occurs at the end of the transaction:  
Write 0x5A to register 0x12 in Device 3  
Write 0x3C to register 0x34 in Device 2  
Write 0x00 to register 0x56 in Device 1  
Note that the bits are shifted out of MOSI left to right. The MISO pin is not shown as it reflects shift register  
contents from a prior transaction.  
MOSI  
(Write)  
0
0x12  
0x5A  
0
0x34  
0x3C  
0
0x56  
0x00  
13. MOSI Write Example  
版权 © 2015, Texas Instruments Incorporated  
23  
 
 
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
8.3.7.8.2 SPI Daisy Chain Write Read Example  
In 14 and 15, the following occurs at the end of the first transaction:  
Write 0x22 to register 0x01 in Device 3  
Latch the data from register 0x34 in Device 2  
Write 0x44 to register 0x76 in Device 1  
MOSI  
(Host)  
0
0x01  
0x22  
1
0x34  
0xFF  
0
0x76  
0x44  
14. SPI Daisy Chain Write Read First Frame Illustration  
MOSI  
(Host)  
1
0
0xFF  
0x01  
0xFF  
0x22  
1
1
0xFF  
0x34  
0xFF  
0x3C  
1
0
0xFF  
0x76  
0xFF  
0x44  
MISO  
(Host)  
15. SPI Daisy Chain Write Read second Frame Illustration  
8.3.7.8.2.1 SPI Daisy Chain Length of Daisy Chain Illustration  
A useful operation for the Host may be to detect the length of the daisy-chain. This is a simple matter of shifting  
in a series of known data values (0x7F, 0xAA) in the example in 16. After N+1 writes, the known data value  
will begin to appear on the Host's MISO pin.  
MOSI  
(Host)  
1
x
0x7F  
xx  
0xAA  
xx  
1
x
0x7F  
xx  
0xAA  
xx  
1
1
0x7F  
0x7F  
0xAA  
0xAA  
MISO  
(Host)  
16. MOSI (Host)  
8.3.8 Power-On Reset  
The LMH0318 has an internal power-on reset (PoR) circuitry which initiates a self-clearing reset after the power  
is applied to the VDD pins.  
8.4 Device Functional Modes  
The LMH0318 features can be programmed via SPI, or SMBus interface. LMH0318 Device Configuration  
describes detailed operation using SPI, or SMBus interface.  
8.5 Programming  
For more information on device programming, See LMH0318 Programming Guide (SNLU183). Register  
initialization is required at power-up or after reset. See Initialization Set Up  
24  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Programming (接下页)  
8.5.1 Register Maps  
The LMH0318 register set definition is organized into four groups:  
1. Global Registers: Chip ID, Interrupt status, LOS registers  
2. Receiver Registers: Equalizer boost settings and signal detect setting  
3. CDR Registers: PLL control  
4. Transmitter Registers: OUT0 and OUT1 parameter setting  
The typical device initialization sequence for the LMH0318 includes the followings. For detailed register settings  
See LMH0318 Programming Guide (SNLU183).  
1. Shared Register Configuration  
(a) Reading device ID  
(b) Selecting interrupt on to LOS pin  
(c) Settings up the register to access the channel registers  
2. Channel Register Configuration  
(a) CDR Reset  
(b) Interrupt register configuration  
(c) Optional Input/Output selection  
(d) Optional VOD selection  
(e) CDR Reset and Release  
8.5.2 Global Registers  
Table 5. Global Registers  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg_0x00 Share  
SMBUS_addr3  
SMBUS_addr2  
SMBUS_addr1  
SMBUS_addr0  
Reserved  
SMBus Observation  
0x00  
SMBus Address Observation  
SMBus strap observation  
7
6
5
4
3
2
1
0
0
0
R
R
0
R
0
R
0
RW  
RW  
RW  
RW  
Reserved  
0
Reserved  
0
Reserved  
0
Reset Shared Regs  
Reg 0x04 Share  
Reserved  
0x01  
0
Shared Register Reset  
7
6
RW  
RW  
rst_i2c_regs  
1: Reset Shared Registers  
0: Normal operation  
0
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reg 0x06 Share  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
1
Enable SMBus Strap  
0x00  
0
Allow SMBus strap observation  
7
6
5
4
RW  
RW  
RW  
RW  
0
0
0
Copyright © 2015, Texas Instruments Incorporated  
25  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Programming (接下页)  
Table 5. Global Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
3
2
1
0
Test control[3]  
0
RW  
RW  
RW  
RW  
Set to >9 to allow strap observation on  
share reg 0x00  
Test control[2]  
Test control[1]  
Test control[0]  
Reg 0xF0 Share  
VERSION[7]  
VERSION[6]  
VERSION[5]  
VERSION[4]  
VERSION[3]  
VERSION[2]  
VERSION[1]  
VERSION[0]  
Reg 0xFF Control  
Reserved  
0
0
0
Device Version  
0x01  
Device Version  
Device revision  
7
6
5
4
3
2
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
1
Channel Control  
0x00  
0
Enable Channel Control  
7
6
RW  
RW  
Reserved  
0
los_int_bus_sel  
1: Selects interrupt onto LOS pin  
0: Selects signal detect onto LOS pin  
5
0
RW  
4
3
Reserved  
0
0
RW  
RW  
Reserved  
en_ch_Access  
1: Enables access to channel registers  
0: Enables access to share registers  
2
0
RW  
1
0
Reserved  
0
0
RW  
RW  
Reserved  
Reset_Channel_Regs  
Reg_0x00 Channel  
Reset all Channel Registers to Default  
Values  
0x00  
7
6
5
4
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rst_regs  
0
0
0
0
0
1: Reset Channel Registers ( self  
clearing )  
2
0
0: Normal operation  
1
0
Reserved  
Reserved  
Reg_0x01 Channel  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LOS1  
0
0
LOS_status  
0x00  
Signal Detect Status  
7
6
5
4
3
2
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
1: Loss of signal on IN1  
0: Signal present on IN1  
1
0
0
0
R
R
LOS0  
1: Loss of signal on IN0  
0: Signal present on IN0  
26  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Programming (接下页)  
Table 5. Global Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
CDR_Status_1  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg_0x02 Channel  
Reserved  
0x00  
CDR Status  
7
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
R
Reserved  
0
Reserved  
0
cdr_status[4]  
cdr_status[3]  
Reserved  
0
0
11: CDR locked  
00: CDR not locked  
0
Reserved  
0
Reserved  
0
Interrupt Status Register  
Reg 0x54 Channel  
Sigdet  
0x00  
Interrupt Status ( clears upon read )  
1: Signal Detect from the selected input  
asserted  
0: Signal Detect from the selected input  
de-asserted  
7
0
R
cdr_lock_int  
1: CDR Lock interrupt  
0: No interrupt from CDR Lock  
6
5
4
0
0
0
R
R
R
signal_det1_int  
signal_det0_int  
heo_veo_int  
1: IN1 Signal Detect interrupt  
0: No interrupt from IN1 Signal Detect  
1: IN0 Signal Detect interrupt  
0: No interrupt from IN0 Signal Detect  
1: HEO_VEO Threshold reached  
interrupt  
3
0
R
0: No interrupt from HEO_VEO  
cdr_lock_loss_int  
1: CDR loss of lock interrupt  
0: No interrupt from CDR lock  
2
1
0
0
0
0
R
R
R
signal_det1_loss_int  
signal_det0_loss_int  
1: IN1 Signal Detect loss interrupt  
0: No interrupt from IN1 Signal Detect  
1: IN0 Signal Detect loss interrupt  
0: No interrupt from IN0 Signal Detect  
Copyright © 2015, Texas Instruments Incorporated  
27  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Programming (接下页)  
Table 5. Global Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
Interrupt Mask  
ADDRESS  
Reg 0x56 Channel  
Reserved  
Interrupt Control  
0x00  
0
7
6
RW  
RW  
cdr_lock_int_en  
1: Enable Interrupt if CDR lock is  
achieved  
0: Disable interrupt if CDR lock is  
achieved  
0
0
0
signal_det1_int_en  
signal_det0_int_en  
heo_veo_int_en  
1: Enable interrupt if IN1 Signal Detect  
is asserted  
0: Disable interrupt if IN1 Signal Detect  
is asserted  
5
4
RW  
RW  
1: Enable interrupt if IN0 Signal Detect  
is asserted  
0: Disable interrupt if IN0 Signal Detect  
is asserted  
1: Enable interrupt if HEO-VEO  
threshold is reached  
0: Disable interrupt due to HEO-VEO  
threshold  
3
2
1
0
0
0
RW  
RW  
RW  
cdr_lock_loss_int_en  
1: Enable interrupt if CDR loses lock  
0: Disable interrupt if CDR loses lock  
signal_det1_loss_int_en  
1: Enable interrupt if there is loss of  
signal on IN1  
0: Disable interrupt if there is loss of  
signal on IN1  
signal_det0_loss_int_en  
1: Enable interrupt if there is loss of  
signal on IN0  
0: Disable interrupt if there is loss of  
signal on IN0  
0
0
RW  
28  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8.5.3 Receiver Registers  
Table 6. Receiver Registers  
FIELD REGISTER  
REGISTER NAME  
EQ_Boost  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x03 Channel  
4 Stage EQ Boost Levels. Read-back  
value going to CTLE in reg_0x52. Used  
for setting EQ value when reg_0x2D[3] is  
high  
0x80  
7
6
5
4
3
2
1
0
eq_BST0[1]  
eq_BST0[0]  
eq_BST1[1]  
eq_BST1[0]  
eq_BST2[1]  
eq_BST2[0]  
eq_BST3[1]  
eq_BST3[0]  
Reg_0x0D Channel  
Reserved  
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
2 Bits control for stage 0 of the CTLE.  
Adapts during CTLE adaptation  
0
2 Bits control for stage 1 of the CTLE.  
Adapts during CTLE adaptation  
0
0
2 Bits control for stage 2 of the CTLE.  
Adapts during CTLE adaptation  
0
0
2 Bits control for stage 3 of the CTLE.  
Adapts during CTLE adaptation  
0
SD_EQ  
0x00  
0
270 Mbps EQ Boost Setting  
7
6
5
4
3
2
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Mr_auto_eq_en_bypass  
1: EQ Bypass for 270 Mbps  
0: Use EQ Settings in reg0x03[7:0] for 270  
Mbps  
Note: If 0x13[1] mr_eq_en_bypass is set,  
bypass would be set and auto-bypass has  
no significance.  
0
0
RW  
EQ_SD_CONFIG  
Reg 0x13 Channel  
Reserved  
0x90  
1
Channel EQ Bypass and Power Down  
7
6
RW  
RW  
sd_0_PD  
1: Power Down IN0 Signal Detect  
0: IN0 Signal Detect normal operation  
0
sd_1_PD  
1: Power Down IN1 Signal Detect  
0: IN1 Signal Detect normal operation  
5
4
0
1
RW  
RW  
Reserved  
eq_PD_EQ  
Controls the power-state of the selected  
channel. The un-selected channel is  
always powered-down  
1: Powers down selected channel EQ  
stage  
3
0
RW  
0: Powers up EQ of the selected channel  
2
1
0
Reserved  
0
0
0
RW  
RW  
RW  
eq_en_bypass  
1: Bypass stage 3 and 4 of CTLE  
0: Enable Stage 3 and 4 of CTLE  
Reserved  
Copyright © 2015, Texas Instruments Incorporated  
29  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Table 6. Receiver Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x14 Channel  
Reserved  
SD0_CONFIG  
0x00  
IN0 Signal Detect Threshold Setting  
7
6
5
4
3
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Reserved  
sd_0_refa_sel[1]  
sd_0_refa_sel[0]  
sd_0_refd_sel[1]  
sd_0_refd_sel[0]  
Controls signal detect SDH- Assert [5:4],  
SDL- De-Assert [3:2], thresholds for IN0  
0000: Default levels (nominal)  
0101: Nominal -2 mV  
1010: Nominal +5 mV  
1111: Nominal +3 mV  
2
0
RW  
1
0
Reserved  
0
RW  
RW  
Reserved  
0
SD1_CONFIG  
Reg_0x15 Channel  
Reserved  
0x00  
IN1 Signal Detect Threshold Setting  
7
6
5
4
3
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Reserved  
sd_1_refa_sel[1]  
sd_1_refa_sel[0]  
sd_1_refd_sel[1]  
sd_1_refd_sel[0]  
Controls signal detect SDH- Assert [5:4],  
SDL- De-Assert [3:2], thresholds for IN1  
0000: Default levels (nominal)  
0101: Nominal -2 mV  
1010: Nominal +5 mV  
1111: Nominal +3 mV  
2
0
RW  
1
0
Reserved  
0
RW  
RW  
Reserved  
0
0x88  
1
EQ_BOOST_OV  
Reg_0x2D Channel  
Reserved  
EQ Boost Override  
7
6
5
4
RW  
RW  
RW  
RW  
Reserved  
0
Reserved  
0
Reserved  
0
reg_eq_bst_ov  
1: Enable EQ boost over ride See  
LMH0318 Programming Guide (SNLU183)  
0: Disable EQ boost over ride  
3
1
RW  
2
1
0
Reserved  
0
0
0
RW  
RW  
RW  
Reserved  
Reserved  
CTLE Setting  
Reg_0x31 Channel  
CTLE Mode of Operation and Input/Output  
Mux Selection  
0x00  
0
7
6
Reserved  
RW  
RW  
adapt_mode[1]  
adapt_mode[0]  
00: Normal Operation - Manual CTLE  
Setting  
01: Test Mode - See the LMH0318  
Programming Guide (SNLU183) for details  
Other Settings - Invalid  
00  
5
4
3
2
1
Reserved  
0
0
0
0
RW  
RW  
RW  
RW  
Reserved  
Reserved  
input_mux_ch_sel[1]  
input_mux_ch_sel[0]  
IN0/1 and OUT0/1 selection  
00: selects IN0 and OUT0/1  
01: selects IN0 and OUT0  
10: selects IN1 and OUT1  
11: selects IN1 and OUT0/1  
0
0
RW  
30  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Table 6. Receiver Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
LOW_RATE_  
EQ_BST  
Reg 0x3A Channel  
HD and SD EQ Level  
0x00  
7
6
5
4
3
2
1
0
fixed_eq_BST0[1]  
fixed_eq_BST0[0]  
fixed_eq_BST1[1]  
fixed_eq_BST1[0]  
fixed_eq_BST2[1]  
fixed_eq_BST2[0]  
fixed_eq_BST3[1]  
fixed_eq_BST3[0]  
Reg_0x40 Channel  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
When CTLE is operating in test mode,  
Reg 0x3A[7:0] forces fixed EQ setting. In  
normal operating manual mode Reg_0x03  
forces EQ boost. See LMH0318  
Programming Guide (SNLU183) for details  
BST_Indx0  
Index0 4 Stage EQ Boost. See LMH0318  
Programming Guide (SNLU183)  
0x00  
7
6
5
4
3
2
1
0
I0_BST0[1]  
I0_BST0[0]  
I0_BST1[1]  
I0_BST1[0]  
I0_BST2[1]  
I0_BST2[0]  
I0_BST3[1]  
I0_BST3[0]  
Reg 0x41 Channel  
I1_BST0[1]  
I1_BST0[0]  
I1_BST1[1]  
I1_BST1[0]  
I1_BST2[1]  
I1_BST2[0]  
I1_BST3[1]  
I1_BST3[0]  
Reg 0x42 Channel  
I2_BST0[1]  
I2_BST0[0]  
I2_BST1[1]  
I2_BST1[0]  
I2_BST2[1]  
I2_BST2[0]  
I2_BST3[1]  
I2_BST3[0]  
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Index 0 Boost Stage 0 bit 1  
Index 0 Boost Stage 0 bit 0  
Index 0 Boost Stage 1 bit 1  
Index 0 Boost Stage 1 bit 0  
Index 0 Boost Stage 2 bit 1  
Index 0 Boost Stage 2 bit 0  
Index 0 Boost Stage 3 bit 1  
Index 0 Boost Stage 3 bit 0  
Index1 4 Stage EQ Boost.  
Index 1 Boost Stage 0 bit 1  
Index 1 Boost Stage 0 bit 0  
Index 1 Boost Stage 1 bit 1  
Index 1 Boost Stage 1 bit 0  
Index 1 Boost Stage 2 bit 1  
Index 1 Boost Stage 2 bit 0  
Index 1 Boost Stage 3 bit 1  
Index 1 Boost Stage 3 bit 0  
Index2 4 Stage EQ Boost.  
Index 2 Boost Stage 0 bit 1  
Index 2 Boost Stage 0 bit 0  
Index 2 Boost Stage 1 bit 1  
Index 2 Boost Stage 1 bit 0  
Index 2 Boost Stage 2 bit 1  
Index 2 Boost Stage 2 bit 0  
Index 2 Boost Stage 3 bit 1  
Index 2 Boost Stage 3 bit 0  
0
0
0
0
0
0
BST_Indx1  
0x40  
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
0
0
0
0
0
0
BST_Indx2  
0x80  
1
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
0
0
Copyright © 2015, Texas Instruments Incorporated  
31  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Table 6. Receiver Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x43 Channel  
I3_BST0[1]  
I3_BST0[0]  
I3_BST1[1]  
I3_BST1[0]  
I3_BST2[1]  
I3_BST2[0]  
I3_BST3[1]  
I3_BST3[0]  
Reg 0x44 Channel  
I4_BST0[1]  
I4_BST0[0]  
I4_BST1[1]  
I4_BST1[0]  
I4_BST2[1]  
I4_BST2[0]  
I4_BST3[1]  
I4_BST3[0]  
Reg 0x45 Channel  
I5_BST0[1]  
I5_BST0[0]  
I5_BST1[1]  
I5_BST1[0]  
I5_BST2[1]  
I5_BST2[0]  
I5_BST3[1]  
I5_BST3[0]  
Reg 0x46 Channel  
I6_BST0[1]  
I6_BST0[0]  
I6_BST1[1]  
I6_BST1[0]  
I6_BST2[1]  
I6_BST2[0]  
I6_BST3[1]  
I6_BST3[0]  
Reg 0x47 Channel  
I7_BST0[1]  
I7_BST0[0]  
I7_BST1[1]  
I7_BST1[0]  
I7_BST2[1]  
I7_BST2[0]  
I7_BST3[1]  
I7_BST3[0]  
BST_Indx3  
0x50  
Index3 4 Stage EQ Boost.  
Index 3 Boost Stage 0 bit 1  
Index 3 Boost Stage 0 bit 0  
Index 3 Boost Stage 1 bit 1  
Index 3 Boost Stage 1 bit 0  
Index 3 Boost Stage 2 bit 1  
Index 3 Boost Stage 2 bit 0  
Index 3 Boost Stage 3 bit 1  
Index 3 Boost Stage 3 bit 0  
Index4 4 Stage EQ Boost.  
Index 4 Boost Stage 0 bit 1  
Index 4 Boost Stage 0 bit 0  
Index 4 Boost Stage 1 bit 1  
Index 4 Boost Stage 1 bit 0  
Index 4 Boost Stage 2 bit 1  
Index 4 Boost Stage 2 bit 0  
Index 4 Boost Stage 3 bit 1  
Index 4 Boost Stage 3 bit 0  
Index5 4 Stage EQ Boost.  
Index 5 Boost Stage 0 bit 1  
Index 5 Boost Stage 0 bit 0  
Index 5 Boost Stage 1 bit 1  
Index 5 Boost Stage 1 bit 0  
Index 5 Boost Stage 2 bit 1  
Index 5 Boost Stage 2 bit 0  
Index 5 Boost Stage 3 bit 1  
Index 5 Boost Stage 3 bit 0  
Index6 4 Stage EQ Boost.  
Index 6 Boost Stage 0 bit 1  
Index 6 Boost Stage 0 bit 0  
Index 6 Boost Stage 1 bit 1  
Index 6 Boost Stage 1 bit 0  
Index 6 Boost Stage 2 bit 1  
Index 6 Boost Stage 2 bit 0  
Index 6 Boost Stage 3 bit 1  
Index 6 Boost Stage 3 bit 0  
Index7 4 Stage EQ Boost.  
Index 7 Boost Stage 0 bit 1  
Index 7 Boost Stage 0 bit 0  
Index 7 Boost Stage 1 bit 1  
Index 7 Boost Stage 1 bit 0  
Index 7 Boost Stage 2 bit 1  
Index 7 Boost Stage 2 bit 0  
Index 7 Boost Stage 3 bit 1  
Index 7 Boost Stage 3 bit 0  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
0
1
0
0
0
0
BST_Indx4  
BST_Indx5  
BST_Indx6  
BST_Indx7  
0xC0  
7
6
5
4
3
2
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
0
0
0
0
0
0
0x90  
7
6
5
4
3
2
1
0
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
0
0
0
0x54  
0
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
0
1
0
1
0
0
0xA0  
1
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
0
0
0
0
32  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Table 6. Receiver Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x48 Channel  
I8_BST0[1]  
BST_Indx8  
BST_Indx9  
BST_Indx10  
BST_Indx11  
BSTIndx12  
0xB0  
Index8 4 Stage EQ Boost.  
7
6
5
4
3
2
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x95  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Index 8 Boost Stage 0 bit 1  
Index 8 Boost Stage 0 bit 0  
Index 8 Boost Stage 1 bit 1  
Index 8 Boost Stage 1 bit 0  
Index 8 Boost Stage 2 bit 1  
Index 8 Boost Stage 2 bit 0  
Index 8 Boost Stage 3 bit 1  
Index 8 Boost Stage 3 bit 0  
Index9 4 Stage EQ Boost.  
Index 9 Boost Stage 0 bit 1  
Index 9 Boost Stage 0 bit 0  
Index 9 Boost Stage 1 bit 1  
Index 9 Boost Stage 1 bit 0  
Index 9 Boost Stage 2 bit 1  
Index 9 Boost Stage 2 bit 0  
Index 9 Boost Stage 3 bit 1  
Index 9 Boost Stage 3 bit 0  
Index10 4 Stage EQ Boost.  
Index 10 Boost Stage 0 bit 1  
Index 10 Boost Stage 0 bit 0  
Index 10 Boost Stage 1 bit 1  
Index 10 Boost Stage 1 bit 0  
Index 10 Boost Stage 2 bit 1  
Index 10 Boost Stage 2 bit 0  
Index 10 Boost Stage 3 bit 1  
Index 10 Boost Stage 3 bit 0  
Index11 4 Stage EQ Boost.  
Index 11 Boost Stage 0 bit 1  
Index 11 Boost Stage 0 bit 0  
Index 11 Boost Stage 1 bit 1  
Index 11 Boost Stage 1 bit 0  
Index 11 Boost Stage 2 bit 1  
Index 11 Boost Stage 2 bit 0  
Index 11 Boost Stage 3 bit 1  
Index 11 Boost Stage 3 bit 0  
Index12 4 Stage EQ Boost.  
Index 12 Boost Stage 0 bit 1  
Index 12 Boost Stage 0 bit 0  
Index 12 Boost Stage 1 bit 1  
Index 12 Boost Stage 1 bit 0  
Index 12 Boost Stage 2 bit 1  
Index 12 Boost Stage 2 bit 0  
Index 12 Boost Stage 3 bit 1  
Index 12 Boost Stage 3 bit 0  
I8_BST0[0]  
0
I8_BST1[1]  
1
I8_BST1[0]  
1
I8_BST2[1]  
0
I8_BST2[0]  
0
I8_BST3[1]  
0
I8_BST3[0]  
0
Reg 0x49 Channel  
I9_BST0[1]  
0X95  
7
6
5
4
3
2
1
0
1
I9_BST0[0]  
0
I9_BST1[1]  
0
I9_BST1[0]  
1
I9_BST2[1]  
0
I9_BST2[0]  
1
I9_BST3[1]  
0
I9_BST3[0]  
1
Reg 0x4A Channel  
I10_BST0[1]  
I10_BST0[0]  
I10_BST1[1]  
I10_BST1[0]  
I10_BST2[1]  
I10_BST2[0]  
I10_BST3[1]  
I10_BST3[0]  
Reg 0x4B Channel  
I11_BST0[1]  
I11_BST0[0]  
I11_BST1[1]  
I11_BST1[0]  
I11_BST2[1]  
I11_BST2[0]  
I11_BST3[1]  
I11_BST3[0]  
Reg 0x4C Channel  
I12_BST0[1]  
I12_BST0[0]  
I12_BST1[1]  
I12_BST1[0]  
I12_BST2[1]  
I12_BST2[0]  
I12_BST3[1]  
I12_BST3[0]  
0x69  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
0
1
0
0
1
0xD5  
7
6
5
4
3
2
1
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0x99  
1
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
1
1
0
0
1
Copyright © 2015, Texas Instruments Incorporated  
33  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Table 6. Receiver Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x4D Channel  
I13_BST0[1]  
BST_Indx13  
0xA5  
Index13 4 Stage EQ Boost.  
Index 13 Boost Stage 0 bit 1  
Index 13 Boost Stage 0 bit 0  
Index 13 Boost Stage 1 bit 1  
Index 13 Boost Stage 1 bit 0  
Index 13 Boost Stage 2 bit 1  
Index 13 Boost Stage 2 bit 0  
Index 13 Boost Stage 3 bit 1  
Index 13 Boost Stage 3 bit 0  
Index14 4 Stage EQ Boost.  
Index 14 Boost Stage 0 bit 1  
Index 14 Boost Stage 0 bit 0  
Index 14 Boost Stage 1 bit 1  
Index 14 Boost Stage 1 bit 0  
Index 14 Boost Stage 2 bit 1  
Index 14 Boost Stage 2 bit 0  
Index 14 Boost Stage 3 bit 1  
Index 14 Boost Stage 3 bit 0  
Index15 4 Stage EQ Boost.  
Index 15 Boost Stage 0 bit 1  
Index 15 Boost Stage 0 bit 0  
Index 15 Boost Stage 1 bit 1  
Index 15 Boost Stage 1 bit 0  
Index 15 Boost Stage 2 bit 1  
Index 15 Boost Stage 2 bit 0  
Index 15 Boost Stage 3 bit 1  
Index 15 Boost Stage 3 bit 0  
7
6
5
4
3
2
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
I13_BST0[0]  
0
I13_BST1[1]  
1
I13_BST1[0]  
0
I13_BST2[1]  
0
I13_BST2[0]  
1
I13_BST3[1]  
0
I13_BST3[0]  
1
BST_Indx14  
BST_Indx15  
Active_EQ  
Reg 0x4E Channel  
I14_BST0[1]  
0xE6  
7
6
5
4
3
2
1
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
I14_BST0[0]  
1
I14_BST1[1]  
1
I14_BST1[0]  
0
I14_BST2[1]  
0
I14_BST2[0]  
1
I14_BST3[1]  
1
I14_BST3[0]  
0
Reg 0x4F Channel  
I15_BST0[1]  
0xF9  
7
6
5
4
3
2
1
0
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
I15_BST0[0]  
I15_BST1[1]  
1
I15_BST1[0]  
1
I15_BST2[1]  
1
I15_BST2[0]  
0
I15_BST3[1]  
0
I15_BST3[0]  
1
Reg 0x52 Channel  
eq_bst_to_ana[7]  
eq_bst_to_ana[6]  
eq_bst_to_ana[5]  
eq_bst_to_ana[4]  
eq_bst_to_ana[3]  
eq_bst_to_ana[2]  
eq_bst_to_ana[1]  
eq_bst_to_ana[0]  
Reg 0x55 Channel  
Reserved  
0x00  
0
Active CTLE Boost Setting Read Back  
Read-back returns CTLE boost settings  
7
6
5
4
3
2
1
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
EQ_Control  
0x00  
0
EQ Adaptation Control  
7
6
5
4
3
2
R
Reserved  
0
RW  
RW  
RW  
RW  
RW  
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
INIT_CDR_SM_4  
At power-up, this bit needs to be set to  
1'b. See initialization set up  
1
0
0
0
RW  
RW  
Reserved  
34  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
8.5.4 CDR Registers  
Table 7. CDR Registers  
REGISTER  
NAME  
FIELD REGISTER  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x09 Channel  
Reserved  
Output_Mux_OV  
0x00  
Output Data Mux Override  
7
6
0
0
RW  
RW  
Reserved  
1: Enable values from 0x1E[7:5] &  
0x1C[7:5] to control output mux  
0: Register 0x1C[3:2] determines the  
output selection  
5
Reg_bypass_pfd_ovd  
0
RW  
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reg 0x0A Channel  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
RW  
RW  
RW  
RW  
RW  
0
0
0
CDR_Reset  
0x50  
0
CDR State Machine Reset  
7
6
5
4
RW  
RW  
RW  
RW  
1
0
1
1: Enable 0x0A[2] to control CDR Reset  
0: Disable CDR Reset  
3
2
reg_cdr_reset_ov  
reg_cdr_reset_sm  
0
0
RW  
RW  
1: Enable CDR Reset if 0x0A[3] = 1'b  
0: Disable CDR Reset if 0x0A[3] = 1'b  
1
0
Reserved  
0
0
RW  
RW  
Reserved  
CDR_Status  
Reg 0x0C Channel  
reg_sh_status_control[3]  
reg_sh_status_control[2]  
reg_sh_status_control[1]  
reg_sh_status_control[0]  
Reserved  
0x08  
0
CDR Status Control  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Determines what is shown in Reg 0x02.  
See LMH0318 Programming Guide  
(SNLU183)  
0
0
0
1
Reserved  
0
Reserved  
0
Reserved  
0
EOM Vrange Setting and EOM Power  
Down Control  
EOM_Vrange  
Reg 0x11 Channel  
eom_sel_vrange[1]  
0xE0  
7
6
Sets eye monitor ADC granularity if  
0x2C[6] =0'b  
00: 3.125 mV  
01: 6.25 mV  
10: 9.375 mV  
11  
RW  
RW  
eom_sel_vrange[0]  
11: 12.5 mV  
0: EOM Operational  
1: Power down EOM  
5
eom_PD  
1
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Copyright © 2015, Texas Instruments Incorporated  
35  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Table 7. CDR Registers (continued)  
REGISTER  
NAME  
FIELD REGISTER  
ADDRESS  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
Full Temperature  
Range  
Reg 0x16 Channel  
0x7A  
Temperature Range Setting  
7
6
5
4
3
2
1
0
INIT_CDR_SM_27  
INIT_CDR_SM_26  
INIT_CDR_SM_25  
INIT_CDR_SM_24  
INIT_CDR_SM_23  
INIT_CDR_SM_22  
INIT_CDR_SM_21  
INIT_CDR_SM_20  
Reg 0x23 Channel  
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
At power-up, this register needs to be set  
to 0x25. See initialization set up  
0
1
0
HEO_VEO_OV  
0x40  
1: Enable reg 0x24[1] to acquire HEO/VEO  
0: Disable reg 0x24[1] to acquire HEO/VEO  
7
eom_get_heo_veo_ov  
0
RW  
6
5
4
3
2
1
0
Reserved  
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0x00  
Reserved  
0
Reserved  
0
0
Reserved  
Reserved  
0
Reserved  
0
Reserved  
0
EOM_CNTL  
Reg 0x24 Channel  
0x00  
Eye Opening Monitor Control Register  
1: Enable Fast EOM mode  
0: Disable fast EOM mode  
7
6
fast_eom  
Reserved  
0
0
R
R
1: No zero crossing in the eye diagram  
observed  
0: Zero crossing in the eye diagram  
detected  
5
get_heo_veo_error_no_hits  
0
R
get_heo_veo_error_no_ope  
ning  
1: Eye diagram is completely closed  
0: Open eye diagram detected  
4
0
R
3
2
Reserved  
Reserved  
0
0
R
R
1: Acquire HEO & VEO(self-clearing)  
0: Normal operation  
1
0
eom_get_heo_veo  
eom_start  
0
0
RW  
R
1: Starts EOM counter(self-clearing)  
0: Normal operation  
EOM_MSB  
Reg 0x25 Channel  
eom_count[15]  
eom_count[14]  
eom_count[13]  
eom_count[12]  
eom_count[11]  
eom_count[10]  
eom_count[9]  
0x00  
Eye opening monitor hits(MSB)  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
MSBs of EOM counter  
eom_count[8]  
36  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Table 7. CDR Registers (continued)  
REGISTER  
NAME  
FIELD REGISTER  
ADDRESS  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
EOM_LSB  
Reg 0x26 Channel  
eom_count[7]  
eom_count[6]  
eom_count[5]  
eom_count[4]  
eom_count[3]  
eom_count[2]  
eom_count[1]  
eom_count[0]  
Reg 0x27 Channel  
heo[7]  
0x00  
Eye opening monitor hits(LSB)  
7
6
5
4
3
2
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
0
LSBs of EOM counter  
Horizontal Eye Opening  
0
0
0
0
HEO  
0x00  
7
6
5
4
3
2
1
0
0
R
R
R
R
R
R
R
R
heo[6]  
0
heo[5]  
0
HEO value. This is measured in 0-63  
phase settings. To get HEO in UI, read  
HEO, convert hex to dec, then divide by  
64.  
heo[4]  
0
heo[3]  
0
heo[2]  
0
heo[1]  
0
heo[0]  
0
VEO  
Reg 0x28 Channel  
veo[7]  
0x00  
Vertical Eye Opening  
7
6
5
4
3
2
1
0
0
0
R
R
R
R
R
R
R
R
veo[6]  
veo[5]  
0
This is measured in 0-63 vertical steps. To  
get VEO in mV, read VEO, convert hex to  
dec, then multiply by 3.125mV  
veo[4]  
0
veo[3]  
0
veo[2]  
0
veo[1]  
0
veo[0]  
0
Auto_EOM _Vrange  
Reg 0x29 Channel  
Reserved  
eom_vrange_setting[1]  
0x00  
0
EOM Vrange Readback  
7
6
RW  
R
Auto Vrange readback of eye monitor  
granularity  
00: 3.125mV  
01: 6.25mV  
10: 9.375mV  
00  
5
eom_vrange_setting[0]  
11: 12.5mV  
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
Copyright © 2015, Texas Instruments Incorporated  
37  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Table 7. CDR Registers (continued)  
REGISTER  
NAME  
FIELD REGISTER  
ADDRESS  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
EOM Hit Timer  
EOM_Timer_Thr  
Reg 0x2A Channel  
eom_timer_thr[7]  
eom_timer_thr[6]  
eom_timer_thr[5]  
eom_timer_thr[4]  
eom_timer_thr[3]  
eom_timer_thr[2]  
eom_timer_thr[1]  
eom_timer_thr[0]  
Reg 0x2C Channel  
Reserved  
0x30  
7
6
5
4
3
2
1
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
EOM timer for how long to check each  
phase/voltage setting  
0
0
0
0
VEO_Scale  
0x32  
0
VEO_Scale  
7
6
RW  
RW  
1: Enable Auto VEO scaling  
0: VEO scaling based on Vrange Setting  
(0x11[7:6])  
veo_scale  
0
5
4
3
2
1
0
Reserved  
1
1
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
Reserved  
0
Reserved  
0
Reserved  
1
Reserved  
0
HEO VEO Threshold  
Reg 0x32 Channel  
heo_int_thresh[3]  
heo_int_thresh[2]  
heo_int_thresh[1]  
heo_int_thresh[0]  
veo_int_thresh[3]  
veo_int_thresh[2]  
veo_int_thresh[1]  
veo_int_thresh[0]  
0x11  
0
HEO/VEO Interrupt Threshold  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
Compares HEO value, 0x27[7:0], vs  
threshold 0x32[7:4] * 4  
0
1
0
0
Compares VEO value, 0x28[7:0], vs  
threshold 0x32[3:0 * 4  
0
1
38  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Table 7. CDR Registers (continued)  
REGISTER  
NAME  
FIELD REGISTER  
ADDRESS  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
CDR State Machine  
Control  
Reg 0x3E Channel  
INIT_CDR_SM_3  
0x80  
1
CDR State Machine Setting  
At power-up, this bit needs to be set to 0'b.  
See initialization set up  
7
RW  
6
5
4
3
2
1
0
Reserved  
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
HEO_VEO_Lock  
Reg 0x69 Channel  
Reserved  
0x0A  
0
HEO/VEO Interval Monitoring  
7
6
5
4
3
2
1
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
0
Reserved  
0
Reserved  
0
hv_lckmon_cnt_ms[3]  
hv_lckmon_cnt_ms[2]  
hv_lckmon_cnt_ms[1]  
hv_lckmon_cnt_ms[0]  
1
While monitoring lock, this sets the interval  
time. Each interval is 6.5 ms. At default  
condition, HEO_VEO Lock Monitor occurs  
once every 65 ms.  
0
1
0
CDR State Machine  
Control  
Reg 0x6A Channel  
0x44  
CDR State Machine Control  
7
6
5
4
3
2
1
0
INIT_CDR_SM_57  
INIT_CDR_SM_56  
INIT_CDR_SM_55  
INIT_CDR_SM_54  
INIT_CDR_SM_53  
INIT_CDR_SM_52  
INIT_CDR_SM_51  
INIT_CDR_SM_50  
Reg 0xA0 Channel  
Reserved  
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
0
At power-up, this register should be set to  
0x00. See initialization set up  
0
1
0
0
SMPTE_Rate_Enable  
0x1f  
0
SMPTE_Data_Rate_Lock_Restriction  
7
6
5
RW  
RW  
RW  
Reserved  
0
Reserved  
0
1: Enable CDR Lock to 270 Mbps  
0: Disable CDR Lock to 270 Mbps  
4
3
2
dvb_enable  
hd_enable  
3G_enable  
1
1
1
RW  
RW  
RW  
1: Enable CDR Lock to 1.485/1.4835 Gbps  
0: Disable CDR Lock to 1.485/1.4835 Gbps  
1: Enable CDR Lock to 2.97/2.967 Gbps  
0: Disable CDR Lock to 2.97/2.967 Gbps  
1
0
Reserved  
Reserved  
1
1
RW  
RW  
Reserved  
Reserved  
Copyright © 2015, Texas Instruments Incorporated  
39  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
8.5.5 Transmitter Registers  
Table 8. Transmitter Registers  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
OUT0 Mux Selection  
ADDRESS  
Reg 0x1C Channel  
pfd_sel0_data_mux[2]  
pfd_sel0_data_mux[1]  
pfd_sel0_data_mux[0]  
Out0_Mux_Select  
0x18  
7
6
0
0
RW  
RW  
When 0x09[5] = 1'b OUT0 Mux  
Selection can be controlled as follows:  
000: Mute  
001: 10 MHz Clock  
010: Raw Data  
100: Retimed Data  
5
0
RW  
Other Settings - Invalid  
vco_clk_sel  
When 0x09[5] = 1'b and 0x1E[[7:5] =  
101'b OUT1 clock selection can be  
controlled as follows:  
1: OUT1 puts out line rate clock  
0: OUT1 puts out 10MHz clock  
4
3
1
1
RW  
RW  
mr_drv_out_ctrl[1]  
mr_drv_out_ctrl[0]  
Controls both OUT0 and OUT1:  
00:  
OUT0: Mute  
OUT1: Mute  
01:  
OUT0: Locked Reclocked Data /  
Unlocked Raw Data  
OUT1: Locked Output Clock / Unlocked  
Mute  
2
0
RW  
10:  
OUT0: Locked Reclocked Data /  
Unlocked RAW  
OUT1: Locked Reclocked Data /  
Unlocked Raw  
11:  
OUT0: Forced Raw  
OUT1: Forced Raw  
1
0
Reserved  
0
0
RW  
RW  
Reserved  
OUT1_Mux_Select  
Reg 0x1E Channel  
pfd_sel_data_mux[2]  
pfd_sel_data_mux[1]  
pfd_sel_data_mux[0]  
0xE9  
1
OUT1 Mux Selection  
7
6
RW  
RW  
When 0x09[5] = 1'b OUT0 Mux  
Selection can be controlled as follows:  
111: Mute  
101: 10MHz Clock if reg 0x1c[4]=0 and  
full rate clock if reg 0x1c[4] = 1  
010: Full Rate Clock  
1
5
1
RW  
001: Retimed Data  
000: Raw Data  
Other Settings - Invalid  
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
1
0
0
1
RW  
RW  
RW  
RW  
RW  
40  
Copyright © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
Table 8. Transmitter Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
OUT1 Invert  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
Reg 0x1F Channel  
pfd_sel_inv_out1  
0x10  
0
Invert OUT1 Polarity  
1: Inverts OUT1 polarity  
0: OUT1 Normal polarity  
7
RW  
6
5
4
3
2
1
0
Reserved  
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
Reserved  
1
Reserved  
0
Reserved  
0
Reserved  
0
Reserved  
0
OUT0_VOD  
Reg 0x80 Channel  
drv_0_sel_vod[3]  
drv_0_sel_vod[2]  
drv_0_sel_vod[1]  
drv_0_sel_vod[0]  
0x54  
0
OUT0 VOD_PD  
7
6
5
RW  
RW  
RW  
Controls OUTDriver 0 VOD Setting  
0011: Nominal - 10%  
0100: Nominal - 5%  
0101: Nominal 800 mV  
0110: Nominal + 5%  
0111: Nominal + 10%  
Other Settings - Invalid  
1
0
4
1
RW  
3
2
Reserved  
0
1
RW  
RW  
Reserved  
mr_drv_0_ov  
1: Enable 0x80[0] to override pin/sm  
control  
1
0
0
0
RW  
RW  
0: Disable 0x80[0] to override pin/sm  
control  
sm_drv_0_PD  
1: Power down OUT0  
0: OUT1 in normal operating mode  
OUT1_VOD  
Reg 0x84 Channel  
Reserved  
0x04  
OUT1 VOD Control  
7
6
5
0
0
0
RW  
RW  
RW  
drv_1_sel_vod[2]  
drv_1_sel_vod[1]  
drv_1_sel_vod[0]  
OUTDriver1 VOD Setting  
000: 570 mVDifferential(Diff) Peak to  
Peak(PP)  
010: 730 mV(Diff PP)  
100: 900 mV(Diff PP)  
110: 1035 mV(Diff PP)  
4
3
0
0
RW  
RW  
Reserved  
drv_1_sel_scp  
1: Enables short circuit protection on  
OUT1  
2
1
RW  
0: Disable short circuit protection on  
OUT1  
mr_drv_1_ov  
sm_drv_1_PD  
1: Enable 0x80[0] to override pin/sm  
control  
0: Disable 0x80[0] to override pin/sm  
control  
1
0
0
0
RW  
RW  
1: Power down OUT1 driver  
0: OUT1 in normal operating mode  
OUT1_DE  
Reg 0x85  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
OUT1 DE Control  
7
6
5
4
0
0
0
0
RW  
RW  
RW  
RW  
Copyright © 2015, Texas Instruments Incorporated  
41  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Table 8. Transmitter Registers (continued)  
FIELD REGISTER  
REGISTER NAME  
BITS  
DEFAULT  
R/RW  
DESCRIPTION  
ADDRESS  
drv_1_dem_range  
drv_1_dem[2]  
3
2
1
0
0
0
RW  
RW  
RW  
Controls de-emphasis of 50 Ω Driver  
0000: DE Disabled  
0001: 0.2 dB  
drv_1_dem[1]  
0010: 1.8 dB  
.........  
0111: 11 dB  
drv_1_dem[0]  
0
0
RW  
42  
版权 © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMH0318 is a single channel SDI reclocker with integrated cable driver that supports different application  
spaces. The following sections describe the typical use cases and common implementation practices.  
9.1.1 General Guidance for All Applications  
The LMH0318 supports two modes of configuration: SPI Mode, and SMBus Mode. Once one of these two control  
mechanism is chosen, pay attention to the PCB layout for the high speed signals. The LMH0318 has strong  
equalization capabilities that allow it to recover data over lossy channels. As a result, the optimal placement for  
the LMH0318 is with the higher loss channel at its input and lower loss channel segment at the output in order to  
meet the various SMPTE requirements. The SMPTE specifications also define the use of AC coupling capacitors  
for transporting uncompressed serial data streams with heavy low frequency content. This specification requires  
the use of a 4.7 µF AC coupling capacitor to avoid low frequency DC wander. The 75 signal is also required to  
meet certain rise/fall timing to facilitate highest eye opening for the receiving device. The LMH0318 built-in 75 Ω  
termination minimizes parasitic, improving overall signal integrity. Note: When the FPGA is not transmitting valid  
SMPTE data, the FPGA output should be muted (P=N).  
9.2 Typical Application  
VDD  
VDD  
VDD  
1 KW  
1 KW  
0.01 mF  
MODE_SEL  
0.01 mF  
ENABLE  
6
1
7
21  
OUT0+  
4.7 mF  
4.7 mF  
OUT  
OUT  
11  
IN0+  
20  
75W T-Line  
4.7 mF  
FPGA  
FPGA  
100W Differential T-Line  
12  
OUT0-  
19  
IN0-  
DAP  
VSS  
75W  
24  
10  
LMH0318  
VSS  
8
OUT  
OUT  
IN1+  
IN1-  
4.7 mF  
IN+  
IN-  
OUT1+  
100W Differential T-Line  
4.7 mF  
23  
FPGA  
9
100W Differential T-Line  
OUT1-  
22  
2
3
4
13  
15  
16  
SS_N  
SCK  
MOSI  
LOS_INT_N  
MISO  
LOCK  
17. LMH0318 SPI Mode Configuration  
版权 © 2015, Texas Instruments Incorporated  
43  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Typical Application (接下页)  
SMPTE specifies the requirements for the Serial Digital Interface to transport digital video at SD, HD, 3Gb/s and  
higher data rates over coaxial cables. One of the requirements is meeting the required return loss. This  
requirement specifies how closely the port resembles 75 impedance across a specified frequency band.  
Output return loss is dependent on board design. The LMH0318 meets this requirement. To gain additional  
return loss margin, a return loss network, as shown in 18, can be used on the output .  
VDD  
VDD  
VDD  
1 KW  
1 KW  
0.01 mF  
3.3 nH  
MODE_SEL  
0.01 mF  
ENABLE  
6
1
7
21  
OUT0+  
4.7 mF  
4.7 mF  
75 W  
OUT  
OUT  
11  
IN0+  
20  
75W T-Line  
75 W  
FPGA  
FPGA  
100W Differential T-Line 4.7 mF  
12  
OUT0-  
19  
IN0-  
75 W  
DAP  
VSS  
3.3 nH  
24  
10  
LMH0318  
VSS  
8
OUT  
OUT  
IN1+  
IN1-  
4.7 mF  
IN+  
IN-  
OUT1+  
4.7 mF  
100W Differential T-Line  
23  
FPGA  
9
100W Differential T-Line  
OUT1-  
22  
2
3
4
13  
15  
16  
SS_N  
SCK  
MOSI  
LOS_INT_N  
MISO  
LOCK  
18. LMH0318 SPI Mode Configuration with Return Loss Network  
9.2.1 Design Requirements  
For the LMH0318 design example, the requirements noted in 9 apply.  
9. LMH0318 Design Parameters  
DESIGN PARAMETER  
REQUIREMENT  
Required. 4.7 µF AC coupling capacitors are recommended.  
Capacitors may be implemented on the PCB or in the connector.  
Input AC coupling capacitors  
Required. Both OUT0 and OUT1 require AC coupling capacitors.  
OUT0 AC Coupling capacitors is expected to be 4.7 µF to comply  
with SMPTE wander requirement.  
Output AC coupling capacitors  
To minimize power supply noise, use 0.01 µF capacitors as close to  
the device VDD pins as possible.  
DC Power Supply Coupling Capacitors  
Distance from Device to BNC  
Keep this distance as short as possible.  
Design differential trace impedance of IN0, IN1, and OUT1 with 100  
± 5%, single-ended trace impedance for OUT0 with 75 ± 5%  
High Speed IN0, IN1, OUT0, and OUT1 trace impedance  
44  
版权 © 2015, Texas Instruments Incorporated  
 
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
VDD  
VDD  
MODE_SEL  
0.01 mF  
1 KW  
1 KW  
0.01 mF  
ENABLE  
1
6
7
21  
4.7 mF  
OUT  
OUT  
11  
12  
OUT0+  
IN0+  
20  
19  
75W T-Line  
4.7 mF  
100W Differential T-Line  
4.7 mF  
FPGA  
OUT0-  
IN0-  
DAP  
VSS  
75W  
LMH0318  
24  
10  
VSS  
8
9
OUT  
OUT  
IN1+  
IN1-  
4.7 mF  
IN+  
OUT1+  
FPGA  
4.7 mF  
100W Differential T-Line  
23  
FPGA  
100W Differential T-Line  
IN-  
OUT1-  
22  
2
15  
3
4
13  
16  
ADDR0  
ADDR1  
SCL  
SDA  
LOS_INT_N  
LOCK  
19. LMH0318 SMBus Mode Configuration  
版权 © 2015, Texas Instruments Incorporated  
45  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
1. Maximum power draw for PCB regulator selection. In this case, use the transient CDR power (during  
acquisition) specified in the datasheet, multiplied by the number of channels.  
2. Maximum operational power for thermal calculation. For thermal calculation, use the locked power number.  
Transient power consumption is only observed during lock acquisition, which typically lasts for <5ms.  
Additional margin can be applied in case of unsupported data rates being applied which extend the lock time.  
Note that the CDR should operate in bypass mode for any unsupported data rates.  
3. Consult the BNC vendor for optimum BNC landing pattern.  
4. Use IBIS-AMI model for simple channel simulation before PCB layout.  
5. Closely compare schematic against typical connection diagram in the data sheet.  
6. Plan out the PCB layout and component placement to minimize parasitic.  
46  
版权 © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
9.2.3 Application Curves  
Two common ways to visualize this data are shown in 20 and 21. These diagrams depict examples of eye  
monitor plot implemented by software. The first plot is an example of using the EOM data to plot a basic eye  
using ASCII characters, which can be useful for simple diagnostics software. The second plot shows the first  
derivative of the EOM data, revealing the density of hits and the actual waveforms and crossing that comprise  
the eye. Measurements were done at default operating conditions.  
20. Internal Input Eye Monitor Plot at 2.97 Gbps,  
PRBS10  
21. Internal Eye Monitor Hit Density Plot at 2.97 Gbps,  
PRBS10  
版权 © 2015, Texas Instruments Incorporated  
47  
 
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
9.3 Do's and Don'ts  
In order to meet SMPTE standard requirements for jitter, AC timing, and return loss use the following guidelines:  
1. Do place BNC as close to the device as possible.  
2. Do consult BNC vendor to provide optimum landing pad for the BNC to comply with the required  
specifications.  
3. Place return loss network as close to the device as possible.  
4. Do pay attention to the recommended solder paste to ensure reliable GND connection to DAP.  
5. Do use control impedance for both 100 and 75 for IN0/1 and OUT0/1.  
9.4 Initialization Set Up  
After power up or register reset write the initialization sequences in 10.  
10. LMH0318 Register Initialization  
DESCRIPTION  
ADDRESS [Hex]  
0xFF  
VALUE [Hex]  
0x04  
Enable Channel Registers  
Enable Full Temperature Range  
0x16  
0x25  
0x3E  
0x00  
Initialize CDR State Machine Control  
0x55  
0x02  
0x6A  
0x00  
(2)  
Restore media CTLE setting(1)  
Reset CDR  
0x03  
xx  
0x0A  
0x5C  
0x50  
Release Reset  
0x0A  
(1) See LMH0318 Programming Guide (SNLU183) on how to quickly select the most appropriate CTLE boost setting.  
(2) xx Value depends on media loss characteristics  
10 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the recommended operating conditions in terms of DC  
voltage, AC noise, and start-up ramp time.  
2. The maximum current draw for the LMH0318 is provided in the data sheet. This figure can be used to  
calculate the maximum current the supply must provide. Current consumption can be derived from the typical  
power consumption specification in the data sheet.  
3. The LMH0318 does not require any special power supply filtering, provided the recommended operating  
conditions are met. Only standard supply decoupling is required.  
48  
版权 © 2015, Texas Instruments Incorporated  
 
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
11 Layout  
11.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Set trace impedances to 75 ± 5% single ended, 100 ± 5% differential.  
2. Maintain the same signal reference plane for 75 single-end trace, and reference plane for 100 Ω  
differential traces.  
3. Use the smallest size surface mount components.  
4. Use solid planes. Provide GND or VDD relief under the component pads to minimize parasitic capacitance.  
5. Select trace widths that minimize the impedance mismatch along the signal path.  
6. Select a board stack-up that supports 75 or 50 single-end trace, 100 coupled differential traces.  
7. Use surface mount ceramic capacitors.  
8. Place return loss network as close to the device as possible.  
9. Maintain symmetry on the complimentary signals.  
10. Route 100 traces uniformly (keep trace widths and trace spacing uniform along the trace).  
11. Avoid sharp bends; use 45-degree or radial bends.  
12. Walk along the signal path, identify geometry changes and estimate their impedance changes.  
13. Maintain 75 impedance with a well-designed connectors’ footprint.  
14. Consult a 3-D simulation tool to guide layout decisions.  
15. Use the shortest path for VDD and Ground hook-ups; connect pin to planes with vias to minimize or  
eliminate trace.  
16. When a high speed trace changes layer, provide at least 2 return vias to improve current return path.  
11.2 Layout Example  
The following example layout demonstrates how the thermal pad should be laid out using standard WQFN board  
routing guidelines.  
Note: Thermal pad is divided into 4 squares with solder paste  
22. LMH0318 Recommended Four Squares Solder Paste  
版权 © 2015, Texas Instruments Incorporated  
49  
LMH0318  
ZHCSE54 SEPTEMBER 2015  
www.ti.com.cn  
Layout Example (接下页)  
5 Vias without solder paste are located between 4 squares solder paste  
23. LMH0318 Recommended Solder Paste Mask and vias  
Top etch plus traces  
24. Example Layout  
11.3 Solder Profile  
The LMH0318 RTW024A Package solder profile and solder paste material can be found at the following link:  
SNOA401  
50  
版权 © 2015, Texas Instruments Incorporated  
LMH0318  
www.ti.com.cn  
ZHCSE54 SEPTEMBER 2015  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
如需支持,请访问以下网站:  
TI 工程师 (E2E) 社区:http://e2e.ti.com/  
E2E 社区高速接口论坛:http://e2e.ti.com/support/interface/high_speed_interface/  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
LMH0318 编程指南SNLU183  
《无引线框架封装》应用笔记 SNOA401  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
51  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH0318RTWR  
LMH0318RTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
L0318A1  
L0318A1  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH0324

3G HD/SD 低功耗 SDI 自适应电缆均衡器
TI

LMH0324RTWR

3G HD/SD 低功耗 SDI 自适应电缆均衡器 | RTW | 24 | -40 to 85
TI

LMH0324RTWT

3G HD/SD 低功耗 SDI 自适应电缆均衡器 | RTW | 24 | -40 to 85
TI

LMH0336

3 Gbps HD/SD SDI Low Power Reclocker
TI

LMH0340

3G, HD, SD, DVB-ASI SDI Serializer and Driver with LVDS Interface
NSC

LMH0340

具有 LVDS 接口的 3G HD/SD DVB-ASI SDI 串行器和驱动器
TI

LMH0340SQ

3G, HD, SD, DVB-ASI SDI Serializer and Driver with LVDS Interface
NSC

LMH0340SQ/NOPB

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340SQE

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver with LVDS Interface
NSC

LMH0340SQE

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340SQE/NOPB

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340SQX

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver with LVDS Interface
NSC