LMH1226RTWR [TI]

12G SDI 双路输出时钟恢复器 | RTW | 24 | -40 to 85;
LMH1226RTWR
型号: LMH1226RTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12G SDI 双路输出时钟恢复器 | RTW | 24 | -40 to 85

时钟
文件: 总51页 (文件大小:1840K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
LMH1226 低功耗双路输出 12G 超高清时钟恢复器  
1 特性  
3 说明  
1
支持 ST-2082-1(12G)ST-2081-1(6G)ST-424  
LMH1226 是一款低功耗双路输出 12G 超高清时钟恢  
(3G)ST-292(HD) ST-259(SD)  
复器。该器件支持高达 11.88Gbps SMPTE 视频速  
率以及基于 IP 传输的 10GbE 视频,能够应用于  
4K/8K 超高清 (UHD) 应用至 RTNIN1 上的自适应电  
路板走线均衡器与 SFF-8431 兼容,并且支持 SMPTE  
10GbE 数据速率。  
支持适用于 SMPTE 2022-5/6 SFF8431 (SFP+)  
兼容 DVB-ASI AES10 (MADI)  
无基准的时钟恢复器锁定至 SMPTE 10GbE 速  
率:11.88Gbps5.94Gbps2.97Gbps、  
1.485Gbps 或经 1.001 分频的子速率、270Mbps  
10.3125Gbps  
该时钟恢复器可削弱高频抖动并且提供出色的信号完整  
性。该器件的高输入抖动容差改善了时序裕度。该时钟  
恢复器内置有环路滤波器,运行时无需精准的输入基准  
时钟。非破坏性眼图监视器支持实时测量串行数据,从  
而简化系统调试并加速电路板调通。  
无基准,锁定迅速  
输入 1 (IN1) 上具有自适应电路板走线均衡器  
低功耗:214mW(典型值)  
省电模式:16mW  
集成 1:2 扇出输出,具有去加重功能  
片上环路滤波器和眼图监视器  
凭借集成的 1:2 扇出,该器件能够灵活输出多种视频信  
号。输出驱动器提供可编程的去加重功能,用于补偿其  
输出端的电路板走线损失。LMH1226 的功耗典型值为  
214mW。无输入信号时,功耗会进一步降至 16mW。  
2.5V 单电源或片上 1.8V 稳压器供电  
可通过控制引脚、SPI 或者 SMBus 接口进行配置  
4mm × 4mm 24 引脚 QFN 封装  
工作温度范围:-40°C +85°C  
LMH1226 LMH1219 (带有集成时钟恢复器的 12G  
超高清电缆均衡器)引脚兼容。  
2 应用  
器件信息(1)  
兼容 SMPTE 的串行数字接口 (SDI)  
器件型号  
LMH1226  
封装  
QFN (24)  
封装尺寸(标称值)  
UHDTV/4K/8K/HDTV/SDTV 视频  
广播视频路由器、交换机和监视器  
数字视频处理和编辑  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
10GbE - SDI 媒体网关  
简化框图  
2
2
100-Ω  
Driver  
OUT0±  
OUT1±  
Reclocker  
with  
Integrated  
LoopFilter,  
EyeMon  
Data  
2
Diff 100 Ω  
Term  
PCB  
EQ  
IN1±  
Clock  
100-Ω  
Driver  
OUT_MUX  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
VDD_LDO Single 2.5 V  
or  
Control  
Pins  
Lock  
Indicator  
SPI  
or  
Dual 2.5 V and 1.8 V  
SMBus  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS534  
 
 
 
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
7.4 Device Functional Modes........................................ 20  
7.5 LMH1226 Register Map .......................................... 25  
Application and Implementation ........................ 37  
8.1 Application Information............................................ 37  
8.2 Typical Application ................................................. 37  
Power Supply Recommendations...................... 41  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
8
9
10 Layout................................................................... 41  
10.1 PCB Layout Guidelines......................................... 41  
10.2 Layout Example .................................................... 42  
11 器件和文档支持 ..................................................... 43  
11.1 接收文档更新通知 ................................................. 43  
11.2 社区资源................................................................ 43  
11.3 ....................................................................... 43  
11.4 静电放电警告......................................................... 43  
11.5 术语表 ................................................................... 43  
12 机械、封装和可订购信息....................................... 43  
6.6 Recommended SMBus Interface AC Timing  
Specifications .......................................................... 11  
6.7 Serial Parallel Interface (SPI) AC Timing  
Specifications........................................................... 11  
6.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (October 2017) to Revision D  
Page  
首次公开发布的完整生产版产品说明书 .................................................................................................................................. 1  
Changes from Revision B (February 2017) to Revision C  
Page  
已添加 封装图 ...................................................................................................................................................................... 43  
Changes from Revision A (May 2016) to Revision B  
Page  
Changed eq_en_bypass bit description from "Gain Stages 3 and 4" to "Gain Stages 2 and 3" ........................................ 27  
Changed bit location of IN1 Carrier Detect Power Down Control from Reg 0x13[5] to Reg 0x15[6] .................................. 27  
Changes from Original (April 2016) to Revision A  
Page  
Deleted min and max VOD_DE amplitude specification when VOD_DE = Level F ............................................................. 8  
Changed typical VOD_DE amplitude specifications for Levels F, R, and L .......................................................................... 8  
Changed DEM value and DEM register settings in Table 5 to match correct VOD_DE pin logic levels ............................. 18  
已添加 new row for VOD = 5, DEM = 5 setting in 10 ..................................................................................................... 39  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
5 Pin Configuration and Functions  
RTW Package  
24-Pin QFN  
Top View  
RSV1  
RSV2  
1
2
3
4
5
6
18 OUT0+  
17 OUT0-  
16 VSS  
VSS  
LMH1226  
IN1+  
15 OUT1+  
14 OUT1-  
13 VDD_CDR  
IN1-  
EP = VSS  
MODE_SEL  
Pin Functions  
PIN  
(1)  
I/O  
DESCRIPTION  
NAME  
NO.  
High-Speed Differential I/Os  
IN1+  
4
5
I, Analog  
I, Analog  
O, Analog  
Differential complementary inputs with internal 100-termination. Requires external  
4.7-µF AC coupling capacitors for SMPTE and 10 GbE.  
IN1-  
OUT0+  
18  
Differential complementary outputs with 100-internal termination. Requires external  
4.7-µF AC coupling capacitors. Output driver OUT0± can be disabled under user  
control.  
OUT0-  
OUT1+  
OUT1-  
17  
15  
14  
O, Analog  
O, Analog  
O, Analog  
Differential complementary outputs with 100 internal termination. Requires external  
4.7-µF AC coupling capacitors. Output driver OUT1± can be disabled under user  
control.  
RSV1  
1
2
Reserved pins.  
Do not connect.  
RSV2  
Control Pins  
LOCK_N is the reclocker lock indicator for the selected input. LOCK_N is pulled LOW  
when the reclocker has acquired locking condition. LOCK_N is an open drain output,  
LOCK_N  
12  
O, LVCMOS, OD 3.3 V tolerant, and requires an external 2-kto 5-kpull-up resistor to logic supply.  
LOCK_N pin can be re-configured to indicate INT_N (Interrupt) through register  
programming.  
IN_OUT_SEL selects the signal flow at input ports to output ports. See Table 2 for  
I, 4-LEVEL  
IN_OUT_SEL  
OUT_CTRL  
8
details. This pin setting can be overridden by register control.  
OUT_CTRL selects the signal flow from IN1± to OUT1± and OUT0±. It selects  
reclocked data, reclocked data and clock, bypassed reclocker data (equalized data to  
output driver), or bypassed equalizer and reclocker data. See Table 4 for details. This  
19  
I, 4-LEVEL  
pin setting can be overridden by register control.  
(1) I = Input, O = Output, IO = Input or Output, OD = Open Drain, LVCMOS = 2-State Logic, 4-LEVEL = 4-State Logic  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
(1)  
I/O  
DESCRIPTION  
NAME  
VOD_DE  
MODE_SEL  
NO.  
11  
6
VOD_DE selects the driver output amplitude and de-emphasis level for both OUT0±  
and OUT1±. See Table 5 for details. This pin setting can be overridden by register  
control.  
I, 4-LEVEL  
I, 4-LEVEL  
MODE_SEL enables SPI or SMBus serial control interface. See Table 6 for details.  
Serial Control Interface (SPI Mode), MODE_SEL = F (Float)  
SS_N is the Slave Select. When SS_N is at logic Low, it enables SPI access to the  
LMH1226 slave device. SS_N is a LVCMOS input reference to VDDIO.  
SS_N  
MISO  
MOSI  
SCK  
7
I, LVCMOS  
O, LVCMOS  
I, LVCMOS  
I, LVCMOS  
MISO is the SPI control serial data output from the LMH1226 slave device. MISO is a  
LVCMOS output reference to VDDIO.  
20  
10  
21  
MOSI is used as the SPI control serial data input to the LMH1226 slave device. MOSI  
is LVCMOS input reference to VDDIO.  
SCK is the SPI serial input clock to the LMH1226 slave device. SCK is LVCMOS  
reference to VDDIO.  
Serial Control Interface (SMBus Mode) , MODE_SEL = L (1 kΩ to VSS)  
ADDR0  
ADDR1  
7
Strap, 4-LEVEL  
Strap, 4-LEVEL  
ADDR[1:0] are SMBus address straps to select one of the 16 supported SMBus  
addresses. ADDR[1:0] are 4-level straps and are read into the device at power up.  
20  
SDA is the SMBus bi-directional open drain SDA data line to or from the LMH1226  
SDA  
SCL  
10  
21  
IO, LVCMOS, OD slave device. SDA is an open drain IO and tolerant to 3.3 V. SDA requires an external  
2-kto 5-kpull-up resistor to the SMBus termination voltage.  
SCL is the SMBus input clock to the LMH1226 slave device. It is driven by a  
I, LVCMOS, OD  
LVCMOS open drain driver from the SMBus master. SCL is tolerant to 3.3 V and  
requires an external 2-kto 5-kpull up resistor to the SMBus termination voltage.  
Power  
VSS  
3, 9, 16  
24  
I, Ground  
I, Power  
Ground reference.  
VIN is connected to an external power supply. It accepts either 2.5 V ± 5% or 1.8 V ±  
5%. When VIN is powered from 2.5 V, VDD_LDO is the output of an on-chip LDO  
regulator. For lower power operation, both VIN and VDD_LDO should be connected  
to a 1.8 V supply.  
VIN  
VDDIO powers the LVCMOS IO and 4-level input logic and connects to 2.5 V ± 5%  
supply.  
VDDIO  
22  
I, Power  
VDD_LDO is the output of the internal 1.8 V LDO regulator when VIN is connected to  
a 2.5 V supply. VDD_LDO output requires external 1-μF and 0.1-μF bypass  
capacitors to VSS. The internal LDO is designed to power internal circuitry only.  
VDD_LDO is an input when VIN is powered from 1.8 V for lower power operation.  
When VIN is connected to a 1.8 V supply, both VIN and VDD_LDO should be  
connected to a 1.8 V supply.  
VDD_LDO  
23  
13  
IO, Power  
VDD_CDR  
EP  
I, Power  
VDD_CDR powers the reclocker circuitry and connects to 2.5 V ± 5% supply.  
EP is the exposed pad at the bottom of the QFN package. The exposed pad must be  
connected to the ground plane through a via array. See 29 for details.  
I, Ground  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
MAX  
2.75  
2.0  
UNIT  
V
Supply Voltage for 2.5 V Mode (VDD_CDR, VIN, VDDIO)  
Supply Voltage for 1.8 V Mode (VIN, VDD_LDO)  
V
4-Level Input/Output Voltage (IN_OUT_SEL, OUT_CTRL, VOD_DE,  
MODE_SEL, ADDR0, ADDR1)  
–0.5  
2.75  
V
SMBus Input/Output Voltage (SDA, SCL)  
SPI Input/Output Voltage (SS_N, MISO, MOSI, and SCK)  
Input Voltage (IN1±)  
–0.5  
–0.5  
–0.5  
–30  
4.0  
2.75  
2.75  
30  
V
V
V
Input Current (IN1±)  
mA  
°C  
°C  
Operating Junction Temperature  
Storage temperature  
125  
150  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500 V HBM is possible with the necessary precautions. Pins listed as ±4500 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250 V CDM is possible with the necessary precautions. Pins listed as ±1500 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
1.71  
NOM  
2.5  
MAX  
2.625  
1.89  
UNIT  
(1)  
Single Supply Mode  
VIN, VDDIO, VDD_CDR to VSS  
V
V
V
V
VIN, VDD_LDO to VSS  
1.8  
(2)(3)  
Dual Supply Mode  
VDDSMBUS  
VDD_CDR, VDDIO to VSS  
2.375  
2.375  
300  
2.5  
2.625  
3.6  
SMBus: SDA, SCL Open Drain Termination Voltage  
Source Differential Launch Amplitude Before 5-Inch Board Trace  
Source Differential Launch Amplitude Before 20-Inch Board Trace  
Operating Junction Temperature  
850 mVp-p  
1000 mVp-p  
VIN1_LAUNCH  
650  
TJUNCTION  
TAMBIENT  
100  
85  
°C  
°C  
Ambient Temperature  
–40  
25  
Maximum Supply Noise  
50 Hz to 1 MHz, Sinusoidal  
Tolerance  
<20  
mVp-p  
mVp-p  
(4)  
NTpsmax  
Maximum Supply Noise  
1.1 MHz to 6 GHz, Sinusoidal  
Tolerance  
<10  
(1) In Single Supply Mode, the VIN, VDDIO and VDD_CDR supplies are 2.5 V. The VDD_LDO is the 1.8 V LDO output of an internal LDO  
regulator, the VDD_LDO pin should not be connected to any external supply voltage.  
(2) In Dual Supply Mode, the VIN and VDD_LDO are connected to a 1.8 V supply, while the VDD_CDR and VDDIO supplies are 2.5 V.  
(3) In Dual Supply Mode, the VDDIO supply should be powered before or at the same time as VIN and VDD_LDO = 1.8 V.  
(4) The sum of the DC supply voltage and AC supply noise should not exceed the recommended supply voltage range.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
6.4 Thermal Information  
LMH1226  
RTW (QFN)  
24 PINS  
33.2  
THERMAL METRIC(1)(2)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.8  
11.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
11.3  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) No heat sink is assumed for these estimations. Depending on the application, a heat sink, faster air flow, and/or reduced ambient  
temperature (< 85°C) may be required in order to maintain the maximum junction temperature specified in Electrical Characteristics.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Power Dissipation, Dual Measured with PRBS-10, Locked  
PDDUAL  
214  
16  
mW  
mW  
mW  
mW  
Supply Mode  
to 11.88 Gbps, only OUT1 enabled  
Power Dissipation, Dual  
Supply Mode  
PDZ_DUAL  
PDSINGLE  
PDZ_SINGLE  
Power Save Mode, no input signal  
Power Dissipation,  
Single Supply Mode  
Measured with PRBS-10, Locked  
to 11.88 Gbps, only OUT1 enabled  
227  
27  
Power Dissipation,  
Single Supply Mode  
Power Save Mode, no input signal  
Measured at 2.5 V supply with  
PRBS-10, Locked to 11.88 Gbps,  
VOD = Default, only OUT1  
enabled  
73  
17  
80  
25  
Current Consumption,  
Dual Supply Mode  
IDDDUAL  
mA  
mA  
Measured at 1.8 V supply with  
PRBS-10, Locked to 11.88 Gbps,  
VOD = Default, only OUT1  
enabled  
Forced Power Save Mode,  
MODE_SEL = LEVEL-H,  
measured at 2.5 V supply  
4
3
5
9
Current Consumption,  
Dual Supply Mode  
IDDZ_DUAL  
Forced Power Save Mode,  
MODE_SEL = LEVEL-H,  
measured at 1.8 V supply  
Measured at 2.5 V supply with  
PRBS-10, Acquiring Lock, VOD =  
Default, OUT0 and OUT1 enabled  
Current Consumption,  
Dual Supply Mode,  
IDDTRANS_DUAL Acquiring Lock,  
HEO/VEO Lock Monitor  
90  
101  
mA  
V
Measured at 1.8 V supply with  
PRBS-10, Acquiring Lock, VOD =  
Default, OUT0 and OUT1 enabled  
30  
37  
Disabled  
LDO 1.8 V Output  
Voltage  
VDDLDO  
VIN = 2.5 V, Single Supply Mode  
1.71  
1.8  
1.89  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS  
2-Level Input (SS_N, SCK, MOSI),  
VDDIO = 2.5 V  
0.7 x VDDIO  
VDDIO + 0.3  
3.6  
VIH  
High Level Input Voltage  
V
2-Level Input (SCL, SDA), VDDIO  
= 2.5 V  
0.7 x VDDIO  
2-Level Input (SS_N, SCK, MOSI),  
VDDIO = 2.5 V  
-0.3  
0.3 x VDDIO  
0.3 x VDDIO  
VDDIO  
VIL  
Low Level Input Voltage  
V
V
V
2-Level Input (SCL, SDA), VDDIO  
= 2.5 V  
0
High Level Output  
Voltage  
IOH = -2 mA, (MISO), VDDIO =  
2.5 V  
VOH  
0.8 x VDDIO  
IOL = 2 mA, (MISO), VDDIO = 2.5  
V
0
0
0.2 x VDDIO  
0.4  
Low Level Output  
Voltage  
VOL  
IOL = 3 mA, (LOCK_N, SCL,  
SDA), VDDIO = 2.5 V  
SPI Mode: LVCMOS (SS_N, SCK,  
MOSI), Vinput = VDDIO  
15  
Input High Leakage  
Current  
IIH  
µA  
µA  
SMBus Mode: LVCMOS  
(LOCK_N, SCL, SDA), Vinput =  
VDDIO  
10  
SPI: LVCMOS (SS_N), Vinput =  
VSS  
-40  
-15  
-10  
Input Low Leakage  
Current  
SPI: LVCMOS (SCK, MOSI),  
Vinput = VSS  
IIL  
SMBus: LVCMOS (CD_N, SCL,  
SDA), Vinput = VSS  
4-LEVEL LOGIC DC SPECIFICATIONS (REFERENCE TO VDDIO, APPLY TO ALL 4-LEVEL INPUT CONTROL PINS)  
V4_LVL_H  
V4_LVL_F  
LEVEL-H Input Voltage  
Pull-up 1 kto VDDIO  
VDDIO  
V
V
LEVEL-F Default Voltage Float, VDDIO = 2.5 V  
2/3 x VDDIO  
External Pull-down 20 kΩ to VSS,  
VDDIO = 2.5 V  
V4_LVL_R  
V4_LVL_L  
LEVEL-R Input Voltage  
LEVEL-L Input Voltage  
1/3 x VDDIO  
0
V
V
External Pull-down 1 kto VSS  
4-Levels (IN_OUT_SEL,  
OUT_CTRL, VOD_DE,  
MODE_SEL); Vinput = VDDIO  
20  
20  
45  
45  
80  
80  
Input High Leakage  
Current  
I4_LVL_IH  
µA  
µA  
SMBus Mode: 4-Levels (ADDR0,  
ADDR1), Vinput = VDDIO  
4-Levels (IN_OUT_SEL,  
OUT_CTRL, VOD_DE,  
MODE_SEL), Vinput = VSS  
-160  
-160  
-93  
-93  
-40  
-40  
Input Low Leakage  
Current  
I4_LVL_IL  
SMBus Mode: 4-Levels (ADDR0,  
ADDR1), Vinput = VSS  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RECEIVER SPECIFICATIONS (IN1±)  
DC Input Differential  
RIN1_TERM  
Measured across IN1+ to IN1-  
80  
100  
120  
Termination  
SDD11, 10 MHz - 2.8 GHz  
SDD11, 2.8 GHz - 6 GHz  
SDD11, 6 GHz - 11.1 GHz  
-21  
-17  
-8  
Input Differential Return  
Loss  
RLIN1_SDD11  
dB  
(1)  
Differential to common  
mode Conversion  
RLIN1_SCD11  
SCD11, 10 MHz to 11.1 GHz  
-23  
15  
dB  
mV (rms)  
V
(1)  
Input AC Common Mode  
VIN1_CM_TOL  
Voltage Tolerance  
DC Common Mode  
Input common mode voltage at  
IN1+ or IN1- to VSS  
VIN1_CM  
Voltage  
2.06  
10.3125 Gbps, 1010 Clock Pattern  
10.3125 Gbps, PRBS-31 Pattern  
39  
25  
CD_N = LOW, Signal  
Detect (default), Assert  
ON Threshold Level  
CDON_IN1  
mVp-p  
mVp-p  
11.88 Gbps, EQ and PLL  
Pathological Pattern  
20  
10.3125 Gbps, 1010 Clock Pattern  
10.3125 Gbps, PRBS-31 Pattern  
15  
15  
CD_N = HIGH, Signal  
Detect (default), De-  
assert OFF Threshold  
Level for  
CDOFF_IN1  
11.88 Gbps, EQ and PLL  
Pathological Pattern  
18  
TRANSMITTER OUTPUT (OUT0± AND OUT1±)  
8T pattern, VOD_DE = LEVEL-H,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
410  
560  
635  
810  
410  
500  
480  
480  
8T pattern, VOD_DE = LEVEL-F,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
485  
620  
Output Differential  
Voltage(2)  
VOD  
mVp-p  
8T pattern, VOD_DE = LEVEL-R,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
8T pattern, VOD_DE = LEVEL-L,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
8T pattern, VOD_DE = LEVEL-H,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
8T pattern, VOD_DE = LEVEL-F,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
De-emphasized Output  
Differential Voltage(2)  
VODDE  
mVp-p  
8T pattern, VOD_DE = LEVEL-R,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
8T pattern, VOD_DE = LEVEL-L,  
see Figure 13  
SD, HD, 3G, 6G, 12G, and 10  
GbE  
(1) This parameter was measured with an LMH1219EVM.  
(2) ATE production tested with DC method.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC Output Differential  
Termination  
Measured across OUTn+ and  
OUTn-  
ROUT_TERM  
80  
100  
120  
20% - 80% using 8T Pattern  
SMPTE SD, HD, 3G, 6G, 12G,  
and 10 GbE, measured after 1  
inch trace  
tR/tF  
Output Rise/Fall Time(1)  
45  
ps  
Output Differential  
SDD22, 10 MHz - 2.8 GHz  
SDD22, 2.8 GHz - 6 GHz  
-17  
-15  
Return Loss, Measured  
with the device powered  
up and outputs a 10  
MHz clock signal.(1)  
RLTX-SDD22  
dB  
SDD22, 6 GHz - 11.1 GHz  
SCC22, 10 MHz - 4.75 GHz  
-15  
-12  
Output Common Mode  
Return Loss, measured  
with the device powered  
up and outputs a 10  
RLTX-SCC22  
dB  
SCC22, 4.75 GHz - 11.1 GHz  
-12  
5
MHz clock signal.(3)  
AC Common Mode  
Voltage(3)  
Default Setting, PRBS-31, 10.3125  
Gbps  
VTX_CM  
mV (rms)  
OUTPUT JITTER  
11.88 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
0.11  
0.106  
0.075  
0.07  
0.15  
UI  
UI  
UI  
UI  
UI  
5.94 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
2.97 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
Total Jitter (BER1e-12),  
TJ  
Reclocked Output(4)  
1.485 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
270 Mbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
0.07  
10.3125 Gbps, PRBS-10, 500  
mVp-p and 1000 mVp-p launch  
amplitude, 20 inch FR4 board  
trace at IN1±  
0.09  
5
0.15  
UI  
11.88 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
mUI (rms)  
mUI (rms)  
mUI  
Random Jitter,  
Reclocked Output  
RJ  
10.3125 Gbps, PRBS-10, 500  
mVp-p and 1000 mVp-p launch  
amplitude, 20 inch FR4 board  
trace at IN1±  
4.1  
40  
34  
11.88 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
Deterministic Jitter,  
Reclocked Output  
DJ  
10.3125 Gbps, PRBS-10, 500  
mVp-p and 1000 mVp-p launch  
amplitude, 20 inch FR4 board  
trace at IN1±  
mUI  
(3) This parameter was measured with an LMH1219EVM.  
(4) These limits are ensured by bench characterization and are not production tested.  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
125 Mbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
0.17  
Total Jitter (BER1e-12),  
RAW (Reclocker  
Bypassed)  
TJRAW  
UI  
1.25 Gbps, PRBS-10, 500 mVp-p  
and 1000 mVp-p launch amplitude,  
20 inch FR4 board trace at IN1±  
0.17  
CLOCK AND DATA RECOVERY  
SMPTE 12G, /1  
SMPTE 12G, /1.001  
SMPTE 6G, /1  
SMPTE 6G, /1.001  
SMPTE 3G, /1  
SMPTE 3G, /1.001  
SMPTE HD, /1  
SMPTE HD, /1.001  
SMPTE SD, /1  
10 GbE  
11.88  
11.868  
5.94  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Mbps  
Gbps  
Mbps  
Gbps  
5.934  
2.97  
Reclocker Lock Data  
LOCKRATE  
Rates  
2.967  
1.485  
1.4835  
270  
10.3125  
125  
MADI  
Bypass reclocker data  
BYPASSRATE  
rate  
1 GbE  
1.25  
Measured with 0.2 UI SJ at -3 dB,  
10.3125 Gbps  
8
13  
7
Measured with 0.2 UI SJ at -3 dB,  
11.88 Gbps  
Measured with 0.2 UI SJ at -3 dB,  
5.94 Gbps  
BWPLL  
PLL Bandwidth  
MHz  
Measured with 0.2 UI SJ at -3 dB,  
2.97 Gbps  
5
Measured with 0.2 UI SJ at -3 dB,  
1.485 Gbps  
3
Measured with 0.2 UI SJ at -3 dB,  
270 Mbps  
1
SD, HD, 3G, 6G, 12G, and 10  
GbE  
JPEAKING  
PLL Jitter Peaking  
IN1 Input Jitter  
0.3  
dB  
UI  
Total jitter tolerance combination  
Tolerance per SFF-8431 of Dj, Pj, and Rj at 10 GbE, with  
JTOL_IN1  
>0.7  
Appendix D.11  
RX stress eye mask Y1, Y2 limits  
Sinusoidal jitter, tested at 3G, 6G  
and 12G; SJ amplitude low to high  
sweep, tested at BER 1e-12  
IN1 Input Jitter  
Tolerance with SJ  
JTOL  
0.65  
5
UI  
ms  
°C  
All supported data rates, disable  
HEO/VEO monitor  
TLOCK  
Reclocker lock time  
Lock Temperature Range (5 °C  
per min, ramp up and down),  
-40°C to 85°C operating range  
VCO Lock with Temp  
Ramp  
TEMPLOCK  
125  
TLATENCY  
TPD-RAW  
Reclocker Latency(5)  
Propagation Delay  
IN1, all supported data rates  
1.5 UI + 190  
190  
ps  
ps  
Raw Data (reclocker bypassed),  
IN1± EQ = default  
(5) This parameter is data rate dependent. For example, at 11.88 Gbps, 1.5 UI = 1.5 x 84.17 ps = 126.25 ps. Therefore, TLatency = (126.25 +  
190) ps = 316.25 ps.  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Operating at 11.88 Gbps  
Operating at 5.94 Gbps  
Operating at 2.97 Gbps  
Operating at 1.485 Gbps  
Operating at 270 Mbps  
MIN  
TYP  
297  
MAX  
UNIT  
MHz  
MHz  
GHz  
GHz  
MHz  
297  
Output Clock Frequency  
OUT1 Programmed to  
Output Recovered Clock  
FCLKOUT  
2.97  
1.485  
270  
(1)(2)(3)  
6.6 Recommended SMBus Interface AC Timing Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
NOM  
MAX  
UNIT  
kHz  
µs  
FSCL  
TBUF  
SMBus SCL Frequency  
400  
Bus Free Time Between Stop and  
Start Condition  
1.3  
Hold time after (Repeated) Start  
Condition.  
After this period, the first clock is  
generated.  
0.6  
µs  
THD:STA  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
Repeated Start Condition Setup Time  
Stop Condition Setup Time  
Data Hold Time  
0.6  
0.6  
0
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
Data Setup Time  
100  
1.3  
0.6  
Clock Low Period  
THIGH  
TR  
Clock High Period  
Clock/Data Rise Time  
Clock/Data Fall Time  
300  
300  
TF  
(1) These parameters support SMBus 2.0 specifications.  
(2) These parameters are not production tested.  
(3) See Figure 1 for timing diagrams.  
6.7 Serial Parallel Interface (SPI) AC Timing Specifications(1)  
PARAMETER  
SPI SCK Frequency  
SCK Period  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
FSCK  
TSCK  
TPH  
10  
20  
50  
SCK Pulse Width High  
SCK Pulse Width Low  
MOSI Setup Time  
0.40 x TSCK  
ns  
TPL  
0.40 x TSCK  
ns  
TSU  
4
4
ns  
TH  
MOSI Hold Time  
ns  
TSSSU  
TSSH  
TSSOF  
TODZ  
TOZD  
TOD  
SS_N Setup Time  
14  
4
ns  
SS_N Hold Time  
ns  
SS_N Off Time  
1
µs  
MISO Driven-to-Tristate Time  
MISO Tristate-to-Driven Time  
MISO Output Delay Time  
20  
10  
15  
ns  
ns  
ns  
(1) See Figure 2 for timing diagrams.  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
ttLOW  
t
tR  
tHIGH  
SCL  
ttHD:STA  
t
tHD:DAT  
tSU:STA  
tF  
tSU:STO  
ttBUF  
t
tSU:DAT  
SDA  
SP  
ST  
ST  
SP  
Figure 1. SMBUS Timing Parameters  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 2. SPI Timing Parameters  
6.8 Typical Characteristics  
TA = 25°C and VDD = 2.5 V (unless otherwise noted)  
Figure 3. 10.3125 Gbps, Input: 20 in. FR4 Trace  
Figure 4. 11.88 Gbps, Input: 20 in. FR4 Trace  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Typical Characteristics (continued)  
TA = 25°C and VDD = 2.5 V (unless otherwise noted)  
Figure 5. 5.94 Gbps, Input: 20 in. FR4 Trace  
Figure 6. 2.97 Gbps, Input: 20 in. FR4 Trace  
Figure 7. 1.485 Gbps, Input: 20 in. FR4 Trace  
Figure 8. 270 Mbps, Input: 20 in. FR4 Trace  
1.0  
0
œ2  
DE = 0  
DE = 1  
DE = 2  
DE = 3  
DE = 4  
DE = 5  
DE = 6  
DE = 7  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
œ4  
œ6  
œ8  
œ10  
œ12  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
VOD Register Settings  
VOD Register Settings  
C001  
C002  
Figure 9. VOD vs. VOD and DEM Register Settings  
Figure 10. De-Emphasis vs. VOD and DEM Register Settings  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMH1226 is a SMPTE and 10 GbE compatible multi-rate serial digital video reclocker for SMPTE ST-2081/2,  
ST-424, ST-292, ST-259, and 10 GbE SFF-8431 requirements. The LMH1226 has a 100-Ω PCB (printed circuit  
board) equalizer at IN1. The 100-Ω PCB equalizer input supports high speed signals across differential PCB  
traces that connect to an external SFF-8431 optical module or on-board FPGA. The input then passes through a  
multi-rate reclocker with a built-in loop-filter. The multi-rate reclocker is compatible with SMPTE data rates (11.88,  
5.94, 2.97, 1.485 Gbps, 270 Mbps) and their divide-by-1.001 sub-rates. It is also compatible with the 10 GbE  
data rate (10.3125 Gbps). After the reclocker, an internal 1:2 fan-out mux allows users to select the data or clock  
content for each output. At both outputs, the LMH1226 has 100-drivers with de-emphasis. The de-emphasis  
feature of the drivers is designed to compensate for insertion loss caused by output PCB traces.  
The operating mode of the LMH1226 can be set by 4-level control pins, SPI, or SMBus serial control interface.  
The LMH1226 can be powered from a single 2.5 V supply or dual 2.5 V/1.8 V supplies for lower power  
consumption. The LMH1226 is offered in a small 4 mm x 4 mm 24-lead QFN package.  
7.2 Functional Block Diagram  
VOD SEL  
CDR Bypass  
DE SEL  
2
EQ Sel  
100-Ω  
OUT0±  
Driver  
LOS1  
Data  
Reclocker with  
2
VOD SEL  
DE SEL  
To FPGA  
or ASIC  
Diff 100 Ω  
Term  
Integrated  
LoopFilter,  
EyeMon  
PCB EQ  
IN1±  
Clock  
2
100-Ω  
OUT1±  
Driver  
OUT_MUX  
LOS1  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
7.3 Feature Description  
The LMH1226 consists of several key blocks:  
4-Level Input Configuration Pins  
Input Carrier Detect  
Continuous Time Linear Equalizer (CTLE)  
Input-Output Mux Selection  
Clock and Data Recovery (CDR) Reclocker  
Internal Eye Opening Monitor (EOM)  
Output Function Control  
Output Driver Amplitude and De-Emphasis Control  
Status Indicators and Interrupts  
7.3.1 4-Level Input Configuration Pins  
The 4-level input configuration pins use a resistor divider to provide four logic states for each control pin. There is  
an internal 30-kΩ pull-up and a 60-kΩ pull-down connected to the control pin that sets the default voltage at 2/3 x  
VDDIO. These resistors, together with the external resistor, combine to achieve the desired voltage level. By  
using the 1-kΩ pull-down, 20-kΩ pull-down, no connect, and 1-kΩ pull-up, the optimal voltage levels for each of  
the four input states are achieved as shown in Table 1.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTING  
RESULTING PIN VOLTAGE  
H
F
R
L
Tie 1 kto VDDIO  
Float (leave pin open)  
Tie 20 kto VSS  
Tie 1 kto VSS  
VDDIO  
2/3 × VDDIO  
1/3 × VDDIO  
0
Typical 4-Level Input Thresholds:  
Internal Threshold between L and R = 0.2 × VDDIO  
Internal Threshold between R and F = 0.5 × VDDIO  
Internal Threshold between F and H = 0.8 × VDDIO  
7.3.2 Input Carrier Detect  
The LMH1226 has a Carrier Detect circuit to monitor the presence or absence of the input signal. When the input  
signal amplitude surpasses the Carrier Detect assert threshold, the LMH1226 operates in normal mode.  
In the absence of an input signal, the LMH1226 automatically goes into Power Save Mode to conserve power  
consumption. When a valid signal is detected, the LMH1226 automatically exits Power Save Mode and returns to  
the normal operating mode.  
7.3.3 Continuous Time Linear Equalizer (CTLE)  
The LMH1226 has a Continuous Time Linear Equalizer (CTLE) block for IN1. The CTLE compensates for  
frequency-dependent loss due to the transmission media prior to the device input. The CTLE accomplishes this  
by applying variable gain to the input signal, thereby boosting higher frequencies more than lower frequencies.  
The CTLE can be bypassed either by using the OUT_CTRL pin or via register control.  
7.3.3.1 Adaptive PCB Trace Equalizer (IN1±)  
The IN1 PCB equalizer has an on-chip 100-Ω termination and is designed for AC coupling, requiring a 4.7-μF AC  
coupling capacitor for minimizing base-line wander due to the rare-occurring pathological bit pattern. The PCB  
equalizer can compensate up to 20 inches of board trace at data rates up to 11.88 Gbps. There are two adapt  
modes for IN1: AM0 manual mode and AM1 adaptive mode. In AM0 manual mode, fixed EQ boost settings are  
applied through user-programmable register control, whereas in AM1 adaptive mode, state machines  
automatically find the optimal equalization setting from a set of 16 pre-determined settings defined in Registers  
0x40-0x4F.  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
 
 
 
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
By default, AM1 adaptive mode is enabled at the data rate determined by the IN_OUT_SEL pin. The PCB  
equalizer is able to adapt at 10.3125 Gbps (10 GbE) and 2.97 Gbps, 5.94 Gbps, and 11.88 Gbps (SMPTE) data  
rates. At 1.485 Gbps and 270 Mbps data rates, the equalization is fixed at 0x00 (minimum EQ boost). This fixed  
EQ value can be changed via register control. For more details, refer to the LMH1226 Register Map.  
7.3.4 Input-Output Mux Selection  
By default, the LMH1226 input-to-output signal flow and data rate selection are configured by the IN_OUT_SEL  
pin logic settings shown in Table 2. These settings can be overridden via register control by applying the  
appropriate override bit values. For more information, refer to the LMH1226 Register Map.  
Table 2. IN_OUT_SEL Pin Settings  
LEVEL  
DEFINITION  
SMPTE Data Rates: IN1 to OUT0 and OUT1  
SMPTE Data Rates: IN1 to OUT1 (OUT0 disabled)  
10 GbE Data Rate: IN1 to OUT1 (OUT0 disabled)  
10 GbE Data Rate: IN1 to OUT0 and OUT1  
H
F
R
L
7.3.5 Clock and Data Recovery (CDR) Reclocker  
After the input signal passes through the CTLE, the equalized data is fed into the clock and data recovery (CDR)  
block. Using an internal PLL, the CDR locks to the incoming equalized data and recovers a clean internal clock  
to re-sample the equalized data. The LMH1226 CDR is able to tolerate high input jitter, tracking low frequency  
input jitter below the PLL bandwidth while reducing high frequency input jitter above the PLL bandwidth.  
The supported data rates are listed in Table 3. IN1 locks to either SMPTE or 10 GbE data rates according to the  
IN_OUT_SEL pin logic shown previously in Table 2. When locked to SMPTE data rates according to  
IN_OUT_SEL pin logic, IN1 can be programmed to lock to the 10 GbE data rate, and vice versa, via register  
control by applying the appropriate override bit values. For more information, refer to the LMH1226 Register  
Map.  
Table 3. Supported Data Rates  
IN_OUT_SEL  
DATA RATE  
RECLOCKER MODE  
Reclocker Enabled  
LEVEL  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps, 1.485 Gbps,  
270 Mbps(1)  
H, F  
125 Mbps  
Reclocker Disabled (CDR Bypassed)  
Reclocker Enabled  
10.3125 Gbps  
1.25 Gbps  
R, L  
Reclocker Disabled (CDR Bypassed)  
(1) Divide-by-1.001 lock rates available only for 11.88 Gbps, 5.94 Gbps, 2.97 Gbps, and 1.485 Gbps.  
NOTE  
If the selected data rate (SMPTE or 10 GbE) is changed while the device is operating with  
active data, a CDR reset and release is required for the CDR to re-acquire lock. If the  
input data signal is toggled off and on after the selected data rate is changed, the Carrier  
Detect circuit will reset the CDR. In this case, no register write is needed for the CDR to  
re-acquire lock.  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
7.3.6 Internal Eye Opening Monitor (EOM)  
The LMH1226 has an on-chip eye opening monitor (EOM) that can be used to analyze, monitor, and diagnose  
the post-equalized waveform, just prior to the CDR reclocker. The EOM is operational for 2.97 Gbps and higher  
data rates.  
The EOM monitors the post-equalized waveform in a time window that spans one unit interval and a configurable  
voltage range that spans up to ±400 mV differential. The time window and voltage range are divided into 64  
steps, so the result of the eye capture is a 64 × 64 matrix of hits, where each point represents a specific voltage  
and phase offset relative to the main data sampler. The number of hits registered at each point needs to be  
taken in context with the total number of bits observed at that voltage and phase offset in order to determine the  
corresponding probability for that point. The number of bits observed at each point is configurable.  
The resulting 64 × 64 matrix produced by the EOM can be processed by software and visualized in a number of  
ways. Two common ways to visualize this data are shown in Figure 11 and Figure 12. These diagrams depict  
examples of eye monitor plots implemented by software. The first plot is an example using the EOM data to plot  
a basic eye using ASCII characters, which can be useful for simple diagnostic software. The second plot shows  
the first derivative of the EOM data, revealing the density of hits and the actual waveforms and crossings that  
comprise the eye.  
Figure 11. Internal Input Eye Monitor Plot  
Figure 12. Internal Eye Monitor Hit Density Plot  
A common measurement performed by the EOM is the horizontal and vertical eye opening. The horizontal eye  
opening (HEO) represents the width of the post-equalized eye at 0-V differential amplitude, measured in unit  
intervals or picoseconds (ps). The vertical eye opening (VEO) represents the height of the post-equalized eye,  
measured midway between the mean zero crossing of the eye. This position in time approximates the CDR  
sampling phase.  
7.3.7 Output Function Control  
By default, the LMH1226 output function control for OUT0 and OUT1 is configured by the OUT_CTRL pin logic  
settings shown in Table 4. These settings can be overridden via register control by applying the appropriate  
override bit values. For more information, refer to the LMH1226 Register Map.  
Table 4. OUT_CTRL Pin Settings  
LEVEL  
DEFINITION  
H
F
OUT0 and OUT1: Raw Data, Both EQ and Reclocker Bypassed  
OUT0 and OUT1: Recovered Data, Both EQ and Reclocker Enabled  
OUT0: Recovered Data, EQ and Reclocker Enabled  
OUT1: Full-Rate Recovered Clock if Data Rate 3 Gbps. 297 MHz Recovered  
Clock if Data Rate > 3 Gbps(1)  
R
L
OUT0 and OUT1: Equalized Data, EQ Enabled, Reclocker Bypassed  
(1) This setting is only valid for SMPTE data rates. It is not supported for the 10 GbE data rate.  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
 
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.3.8 Output Driver Amplitude and De-Emphasis Control  
The VOD_DE control pin selects the output amplitude and de-emphasis settings for both OUT0 and OUT1. It  
offers users the capability to select higher output amplitude and de-emphasis levels for longer board trace that  
connects the drivers to their downstream receivers. Driver de-emphasis provides transmitter equalization to  
reduce the ISI caused by the board trace.  
By default, the output driver VOD and de-emphasis settings are configured by the VOD_DE pin logic settings  
shown in Table 5. These settings can be overridden via register control by applying the appropriate override bit  
values. When these parameters are controlled by registers, the VOD and de-emphasis levels for each channel  
can be programmed independently. For more information, refer to the LMH1226 Register Map.  
Table 5. Recommended VOD_DE Pin and Register Settings for Different FR4 Trace Lengths(1)  
VOD REG SETTING  
OUT0±: 0x30[5]=1, 0x30[2:0]  
OUT1±: 0x32[5]=1, 0x32[2:0]  
DEM REG SETTING  
OUT0±: 0x31[6]=1, 0x31[2:0]  
OUT1±: 0x33[6]=1, 0x33[2:0]  
FR4 TRACE  
LENGTH  
(inches)  
VOD_DE  
LEVEL  
VOD  
VODDE  
DEM (dB)  
(mVpp)(2)  
(mVpp)(2)  
H
F
R
L
0
2
3
5
0
2
3
5
410  
560  
635  
810  
410  
500  
480  
480  
0
0 – 1  
2 – 4  
5 – 6  
7 – 8  
-0.9  
-2.4  
-6.1  
(1) The output drivers are capable of providing higher VOD and DEM levels (max settings are 7). For more VOD and de-emphasis levels,  
refer to 10.  
(2) See Figure 13.  
VOD  
VODDE  
Figure 13. VOD and VODDE Levels  
7.3.9 Status Indicators and Interrupts  
7.3.9.1 LOCK_N (Lock Indicator)  
The LOCK_N pin is a 3.3 V tolerant, active-low open drain output. An external resistor to the logic supply is  
required. By default, LOCK_N is the reclocker lock indicator, and this pin asserts low when the LMH1226  
achieves lock to a valid SMPTE or 10 GbE data rate. The LOCK_N pin functionality can also be configured via  
register control to indicate CD_N (Carrier Detect) or INT_N (Interrupt) events. For more information about how to  
reconfigure the LOCK_N pin functionality, refer to the LMH1226 Register Map.  
7.3.9.2 CD_N (Carrier Detect)  
The LOCK_N pin can be reconfigured via register control to indicate a CD_N (Carrier Detect) event. When  
configured as a CD_N output, the pin asserts low at the end of adaptation after a valid signal is detected by the  
Carrier Detect circuit. Under register control, this pin can be reconfigured to indicate CD_N. For more information  
about how to configure the LOCK_N pin for CD_N functionality, refer to the LMH1226 Register Map.  
7.3.9.3 INT_N (Interrupt)  
The LOCK_N pin can be configured to indicate an INT_N (Interrupt) event. When configured as an INT_N output,  
the pin asserts low when an interrupt occurs, according to the programmed interrupt masks. Five separate masks  
can be programmed via register control as interrupt sources:  
If there is a Loss of Signal (LOS) event on IN1 (2 separate masks).  
If HEO or VEO falls below a certain threshold after CDR is locked (1 mask).  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
If a CDR Lock event has occurred (2 separate masks).  
INT_N is a sticky bit, meaning that it will flag after an interrupt event occurs and will not clear until read back.  
Once the Interrupt Status Register is read, the INT_N pin will assert high again. For more information about how  
to configure the LOCK_N pin for INT_N functionality, refer to the LMH1226 Register Map.  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
The LMH1226 operates in one of two modes: System Management Bus (SMBus) or Serial Peripheral Interface  
(SPI) mode. In order to determine the mode of operation, the proper setting must be applied to the MODE_SEL  
pin at power-up, as detailed in Table 6.  
Table 6. MODE_SEL Pin Settings  
LEVEL  
DEFINITION  
Forced Power Save Mode, only SPI is enabled (all other circuitry powered down)  
Select SPI Interface for register access  
H
F
R
L
Reserved for factory testing – do not use  
Select SMBus Interface for register access  
NOTE  
Changing logic states between LEVEL-L and LEVEL-H after power up is not allowed.  
7.4.1 System Management Bus (SMBus) Mode  
If MODE_SEL = L, the LMH1226 is in SMBus mode. In SMBus mode, Pins 10 and 21 are configured as SDA  
and SCL. Pins 7 and 20 act as 4-level address straps for ADDR0 and ADDR1 at power up to determine the 7-bit  
slave address of the LMH1226, as shown in Table 7.  
Table 7. SMBus Device Slave Addresses(1)  
ADDR0  
ADDR1  
7-BIT SLAVE  
8-BIT WRITE  
(LEVEL)  
(LEVEL)  
ADDRESS [HEX]  
COMMAND [HEX]  
L
L
L
R
F
H
L
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
3A  
3C  
3E  
40  
42  
44  
46  
48  
4A  
4C  
4E  
50  
52  
54  
56  
58  
L
L
R
R
R
R
F
F
F
F
H
H
H
H
R
F
H
L
R
F
H
L
R
F
H
(1) The 8-bit write command consists of the 7-bit slave address (Bits 7:1) with 0 appended to the LSB to  
indicate an SMBus write. For example, if the 7-bit slave address is 0x1D (001 1101'b), the 8-bit write  
command is 0x3A (0011 1010'b).  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
7.4.1.1 SMBus Read and Write Transactions  
SMBus is a two-wire serial interface through which various system component chips can communicate with the  
master. Slave devices are identified by having a unique device address. The two-wire serial interface consists of  
SCL and SDA signals. SCL is a clock output from the master to all of the slave devices on the bus. SDA is a  
bidirectional data signal between the master and slave devices. The LMH1226 SMBus SCL and SDA signals are  
open drain and require external pull-up resistors.  
Start and Stop:  
The master generates start and stop patterns at the beginning and end of each transaction.  
Start: High to low transition (falling edge) of SDA while SCL is high.  
Stop: Low to high transition (rising edge) of SDA while SCL is high.  
SDA  
SCL  
S
P
Start  
Stop  
Condition  
Condition  
Figure 14. Start and Stop Conditions  
The master generates nine clock pulses for each byte transfer. The 9th clock pulse constitutes the ACK cycle.  
The transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is recorded when the device  
pulls SDA low, while a NACK is recorded if the line remains high.  
ACK Signal  
from Receiver  
SDA  
MSB  
SCL  
1
2
3 - 6  
7
8
9
1
2
3 - 8  
9
S
P
ACK  
ACK  
Start  
Stop  
Condition  
Condition  
Byte Complete  
Interrupt Within  
Receiver  
Clock Line Held Low  
by Receiver While  
Interrupt Serviced  
Figure 15. Acknowledge (ACK)  
7.4.1.1.1 SMBus Write Operation Format  
Writing data to a slave device consists of three parts, as illustrated in Figure 16:  
1. The master begins with a start condition, followed by the slave device address with the R/W bit set to 0'b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the 8-bit data is written, followed by a stop condition.  
Device  
Address  
Word Address  
Data  
SDA  
Line  
Figure 16. SMBus Write Operation  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.4.1.1.2 SMBus Read Operation Format  
Reading data from a slave device consists of four parts, as illustrated in Figure 17:  
1. The master begins with a start condition, followed by the slave device address with the R/W bit set to 0'b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the master initiates a re-start condition, followed by the slave address  
with the R/W bit set to 1'b.  
4. After an ACK from the slave device, the 8-bit data is read back. The last ACK is high if there are no more  
bytes to read, and the last read is followed by a stop condition.  
Device  
Device  
Address  
Word Address (n)  
Address  
Data (n)  
SDA  
Line  
Set word address in the device  
that will be read following restart  
and repeat of device address  
Figure 17. SMBus Read Operation  
7.4.2 Serial Peripheral Interface (SPI) Mode  
If MODE_SEL = F or H, the LMH1226 is in SPI mode. In SPI mode, the following pins are used for SPI bus  
communication:  
MOSI (pin 10): Master Output Slave Input  
MISO (pin 20): Master Input Slave Output  
SS_N (pin 7): Slave Select (active low)  
SCK (pin 21): Serial clock (input to the LMH1226 slave device)  
7.4.2.1 SPI Read and Write Transactions  
Each SPI transaction to a single device is 17 bits long and is framed by SS_N when asserted low. The MOSI  
input is ignored, and the MISO output is floated whenever SS_N is de-asserted (high).  
The bits are shifted in left-to-right. The first bit is R/W, which is 1'b for "read" and 0'b for "write." Bits A7-A0 are  
the 8-bit register address, and bits D7-D0 are the 8-bit read or write data. The previous SPI command, address,  
and data are shifted out on MISO as the current command, address, and data are shifted in on MOSI. In all SPI  
transactions, the MISO output signal is enabled asynchronously when SS_N asserts low. The contents of a  
single MOSI or MISO transaction frame are shown in Table 8.  
Table 8. 17-Bit Single SPI Transaction Frame  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7.4.2.1.1 SPI Write Transaction Format  
For SPI writes, the R/W bit is 0'b. SPI write transactions are 17 bits per device, and the command is executed on  
the rising edge of SS_N. The SPI transaction always starts on the rising edge of the clock.  
The signal timing for a SPI Write transaction is shown in Figure 18. The "prime" values on MISO (for example,  
A7') reflect the contents of the shift register from the previous SPI transaction and are don’t-care for the current  
transaction.  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
tSSOF  
tSSH  
SS_N  
tPL  
tSSSU  
tPH  
SCK  
tH  
tSU  
HiZ  
MOSI  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tODZ  
HiZ  
MISO  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
Figure 18. Signal Timing for a SPI Write Transaction  
7.4.2.1.2 SPI Read Transaction Format  
A SPI read transaction is 34 bits per device and consists of two 17-bit frames. The first 17-bit read transaction  
frame shifts in the address to be read, followed by a dummy transaction second frame to shift out 17-bit read  
data. The R/W bit is 1'b for the read transaction, as shown in Figure 19.  
The first 17 bits from the read transaction specifies 1-bit of R/W and 8-bits of address A7-A0 in the first 8 bits.  
The eight 1’s following the address are ignored. The second dummy transaction acts like a read operation on  
address 0xFF and needs to be ignored. However, the transaction is necessary in order to shift out the read data  
D7-D0 in the last 8 bits of the MISO output. As with the SPI Write, the “prime” values on MISO during the first 16  
clocks are don’t-care for this portion of the transaction. The values shifted out on MISO during the last 17 clocks  
reflect the read address and 8-bit read data for the current transaction.  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 19. Signal Timing for a SPI Read Transaction  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.4.2.2 SPI Daisy Chain  
The LMH1226 supports SPI daisy-chaining among multiple devices, as shown in Figure 20.  
MISO  
Device 1  
Device 2  
Device 3  
Device N  
Host  
LMH1226  
LMH1226  
LMH1226  
LMH1226  
. . .  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
SCK  
SS  
Figure 20. Daisy-Chain Configuration  
Each LMH1226 device is directly connected to the SCK and SS_N pins of the host. The first LMH1226 device in  
the chain is connected to the host’s MOSI pin, and the last device in the chain is connected to the host’s MISO  
pin. The MOSI pin of each intermediate LMH1226 device in the chain is connected to the MISO pin of the  
previous LMH1226 device, thereby creating a serial shift register. In a daisy-chain configuration of N x LMH1226  
devices, the host conceptually sees a shift register of length 17 x N for a basic SPI transaction, during which  
SS_N is asserted low for 17 x N clock cycles.  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
7.5 LMH1226 Register Map  
The LMH1226 register map is divided into three register pages. These register pages are used to control  
different aspects of the LMH1226 functionality. A brief summary of the pages is shown below:  
1. Share Register Page: This page corresponds to global parameters, such as LMH1226 device ID and  
LOCK_N status configuration. This is the default page at start-up.  
2. CTLE/CDR Register Page: This page corresponds to IN1 PCB CTLE, input and output mux settings,  
internal CDR settings, and output interrupt overrides. Access this page by setting Reg 0xFF[2:0] = 100’b.  
3. Drivers Register Page: This page corresponds to both OUT0 and OUT1 driver output settings. Access this  
page by setting Reg 0xFF[2:0] = 101’b.  
Please note the following about the LMH1226 default register values in the register map:  
Default register values were read after power-up with no active inputs applied to IN1.  
Default register values for Reserved "Read-Only" bits may vary dynamically from part to part.  
7.5.1 Share Register Page  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:5  
Field  
Default Type  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x40  
0x02  
0x00  
0x01  
0x00  
0x00  
0x04  
0x11  
0x00  
R
R
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
Reserved  
Reserved  
0 = Internal state machine register initialization not done.  
1 = Internal state machine register initialization done.  
4
3:1  
0
reset_done  
Reserved  
reset_init  
R
Reset  
Share/Channel  
Regs  
0xE2  
0x10  
RW Reserved  
1 = Initialize internal state machine register settings. Refer to  
the LMH1219 Programming Guide for details.  
RW  
0xF0  
0xF1  
Device Revision  
Device ID  
7:0  
7:0  
7:6  
Version  
Device_ID  
Reserved  
0x02  
0x86  
R
R
Device Revision  
For LMH1226, Device ID = 0x86  
RW Reserved  
Controls the output on LOCK_N pin  
00 = Default behavior (LOCK_N outputs lock status from  
reclocker)  
5:4  
los_int_bus_sel  
RW 01 = Reserved  
10 = LOS of IN1  
11 = Interrupts are output on LOCK_N pin, as determined by  
CTLE/CDR Page Reg 0x56[6:0]  
Register  
Communication  
Control  
0xFF  
0x00  
3
2
Reserved  
RW Reserved  
0 = The shared registers are enabled.  
RW 1 = Enables communication access to the Register Page  
specified in Reg 0xFF[1:0].  
page_select_enable  
Enable communication access to a specific Register Page  
00 = CTLE/CDR Register Page  
01 = Drivers Register Page  
1:0  
page_select  
RW  
Other settings are invalid.  
7.5.2 CTLE/CDR Register Page  
Copyright © 2016–2018, Texas Instruments Incorporated  
25  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Address Register Name  
Bit  
Field  
Default Type  
RW Reserved  
Reset registers (self-clearing)  
0 = Normal Operation  
Description  
7:3  
Reserved  
Reset CTLE/CDR  
0x00  
2
rst_CTLE/CDR_regs  
0x00  
RW  
Registers  
1 = Reset CTLE/CDR Registers. Register re-initialization  
procedure required after resetting the CTLE/CDR Registers.  
1:0  
7:2  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
0 = Signal Present on IN1  
1 = Loss of Signal on IN1  
0x01  
0x02  
LOS Status  
CDR_Status  
1
0
LOS1  
0x03  
0x41  
R
R
Reserved  
Reserved  
CDR status indicator. See "Lock Data Rate Indication"  
subsection in the LMH1219 Programming Guide for more  
information.  
7:0  
CDR_Status  
R
7:6  
5:4  
3:2  
eq_BST0  
eq_BST1  
eq_BST2  
RW Used for setting manual EQ value for IN1 when Reg 0x2D[3]  
= 1. EQ boost value can be read back on CTLE/CDR Page  
Reg 0x52.  
[7:6]: 2-bit control for Stage 0 of the CTLE.  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
IN1 Manual EQ  
Boost  
RW  
0x03  
0x80  
1:0  
eq_BST3  
RW  
0x04  
0x05  
0x06  
0x07  
0x08  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
7:0  
7:6  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
Output Mux Override Control  
0 = Reg 0x1C[3:2] determines the output selection for both  
RW OUT0 and OUT1  
5
reg_out_control_ov  
Output Mux  
Override Control  
0x09  
0x00  
1 = Enable individual output mux control based on values  
from Reg 0x1C[7:5] and Reg 0x1E[7:5]  
4:3  
2:0  
7:4  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
0 = Disables CDR Reset (Normal Operating Mode)  
1 = Enables Reg 0x0A[2] to control CDR Reset  
3
2
reg_cdr_reset_ov  
reg_cdr_reset  
RW  
RW  
CDR Reset  
Control  
0x0A  
0x50  
0 = No CDR Reset if Reg 0x0A[3] = 1  
1 = CDR Reset if Reg 0x0A[3] = 1  
1:0  
7:0  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
0x0B  
0x0C  
Reserved  
0x1F  
0x08  
Value determines what CDR status outputs are displayed in  
CTLE/CDR Page Reg 0x02. See "Lock Data Rate Indication"  
subsection in the LMH1219 Programming Guide for more  
information.  
7:4 reg_sh_status_control  
RW  
CDR Output  
Status Control  
3:0  
7:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
0x0D  
0x0E  
0x0F  
0x10  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x93  
0x69  
0x27  
26  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
Field  
Default Type  
Description  
Sets the expected incoming eye diagram vertical eye  
opening interval if Reg 0x2C[6] = 0  
00 = 3.125 mV (3.125 mV x 64 = 200 mV; ±100 mV range)  
01 = 6.25 mV (6.25 mV x 64 = 400 mV; ±200 mV range)  
10 = 9.375 mV (9.375 mV x 64 = 600 mV; ±300 mV range)  
11 = 12.5 mV (12.5 mV x 64 = 800 mV; ±400 mV range)  
7:6  
eom_sel_vrange  
RW  
EOM Voltage  
0x11  
0xE0  
Range Control  
0 = EOM is always powered up  
1 = Power down EOM when not in use  
5
eom_PD  
RW  
4:0  
7:0  
7:4  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
IN1 CTLE Power-Down Control  
0x12  
0x13  
0x14  
Reserved  
0xA0  
0x90  
0 = Powers up EQ of IN1  
1 = Powers down EQ of IN1  
3
eq_PD_EQ  
RW  
IN1 Carrier  
Detect and CTLE  
Control  
Note: The un-selected channel is always powered-down.  
2
1
Reserved  
RW Reserved  
0 = Enable Gain Stages 2 and 3 of IN1 CTLE  
1 = Bypass Gain Stages 2 and 3 of IN1 CTLE  
eq_en_bypass  
RW  
0
7:0  
7
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
Reserved  
0x00  
0x00  
IN1 Carrier Detect Power Down Control  
RW 0 = Power Up IN1 Carrier Detect  
1 = Power Down IN1 Carrier Detect  
6
cd_1_PD  
IN1 Carrier  
Detect Threshold  
Setting  
5:4  
cd_1_refa_sel  
RW Controls IN1 Carrier Detect Assert and De-Assert Thresholds  
0000 = Default levels (nominal)  
0x15  
0101 = Nominal - 2 mV  
1010 = Nominal + 5 mV  
3:2  
cd_1_refd_sel  
RW  
1111 = Nominal + 3 mV  
1:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x25  
0x25  
0x40  
0x00  
0xA0  
0x03  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
Copyright © 2016–2018, Texas Instruments Incorporated  
27  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Address Register Name  
Bit  
Field  
Default Type  
Description  
In normal operating mode, Reg 0x1C[7:5] returns the mux  
select value applied at OUT0.  
When Reg 0x09[5] = 1, OUT0 mux selection is controlled by  
Reg 0x1C[7:5] as follows:  
7:5  
out_sel0_data_mux  
RW 000 = Mute  
001 = 10 MHz Clock  
010 = Raw Data (EQ Only)  
100 = Retimed Data  
Other Settings are invalid.  
When Reg 0x09[5] = 1 and Reg 0x1E[7:5] = 101'b, OUT1  
clock selection can be controlled by Reg 0x1C[4] as follows:  
0 = OUT1 outputs 10 MHz clock  
4
VCO_Div40  
drv_out_ctrl  
RW  
OUT Mux  
0x1C  
1 = OUT1 outputs VCO divide-by-40  
0x58  
Select_0  
Controls output mux selection for both OUT0 and OUT1 if  
Reg 0x3F[3] = 1 to override the OUT_CTRL pin  
00 = Mute both OUT0 and OUT1  
01 = When CDR is locked, output reclocked data on OUT0  
and output clock on OUT1. If locked data rate is 3G, OUT1  
3:2  
RW = VCO. If locked data rate is > 3G, OUT1 = VCO/40. When  
unlocked, output raw data on OUT0 and mute OUT1.  
10 = When locked, output retimed data on both OUT0 and  
OUT1. When unlocked, output raw data on both OUT0 and  
OUT1. This is the default setting.  
11 = Output raw data on both OUT0 and OUT1.  
1:0  
7:0  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
0x1D  
0x1E  
Reserved  
0x00  
0x09  
In normal operating mode, Reg 0x1E[7:5] returns the mux  
select value applied at OUT1.  
When Reg 0x09[5] = 1, OUT1 mux selection is controlled by  
Reg 0x1E[7:5] as follows:  
000 = Raw Data (EQ Only)  
7:5  
out_sel1_data_mux  
RW 001 = Retimed Data  
OUT Mux  
Select_1  
010 = Full Rate VCO clock  
101 = 10 MHz Clock if Reg 0x1C[4] = 0 and VCO/40 clock if  
Reg 0x1C[4] = 1  
111 = Mute  
Other Settings are invalid  
4:0  
7
Reserved  
RW Reserved  
0 = OUT1 normal polarity  
RW 1 = Inverts OUT1 driver polarity  
Note: No polarity inversion for OUT0  
sel_inv_out1  
0x1F  
OUT1 Polarity  
0x10  
6:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
0x20  
0x21  
0x22  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0 = Disable HEO/VEO Acquisition override.  
1 = Enable HEO/VEO Acquisition override. Value determined  
by Reg 0x24[1].  
eom_get_heo_  
veo_ov  
7
0x23  
HEO_VEO_OV  
0x40  
RW  
6:0  
7
Reserved  
fast_eom  
Reserved  
Reserved  
0 = Disable Fast EOM mode  
RW  
1 = Enable Fast EOM mode  
6
R
R
Reserved  
Zero Crossing Error Detector Status  
0 = Zero crossing errors in the eye diagram observed  
1 = No zero crossing errors in the eye diagram observed  
get_heo_veo_error_  
no_hits  
5
4
0x24  
EOM Control  
0x40  
Vertical Eye Closure Detector Status  
0 = Open eye diagram detected  
1 = Eye diagram completely closed  
get_heo_veo_error_  
no_opening  
R
R
3:2  
1
Reserved  
eom_get_heo_veo  
eom_start  
Reserved  
RW 1 = Acquire HEO and VEO (self-clearing) if Reg 0x23[7] = 1  
RW 1 = Start EOM counter (self-clearing)  
0
28  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
7:0  
7:0  
Field  
Default Type  
Description  
0x25  
0x26  
EOM_MSB  
EOM_LSB  
eom_count_msb  
eom_count_lsb  
0x00  
0x00  
R
R
MSBs of EOM counter  
LSBs of EOM counter  
HEO value. This is measured in 0-63 phase settings. To get  
HEO in UI, read HEO, convert hex to dec, then divide by 64.  
0x27  
HEO  
7:0  
heo  
0x00  
R
VEO value. This is measured in 0-63 vertical steps. To get  
VEO in mV, convert hex to dec, then multiply by the EOM  
Voltage Range defined in Reg 0x29[6:5].  
0x28  
VEO  
7:0  
7
veo  
0x00  
R
Reserved  
RW Reserved  
Readback of automatic EOM Voltage Range granularity.  
00 = 3.125 mV  
01 = 6.25 mV  
10 = 9.375 mV  
11 = 12.5 mV  
Auto EOM  
Voltage Range  
0x29  
6:5  
eom_vrange_setting  
0x00  
R
4:0  
7:0  
7:0  
7
Reserved  
eom_timer_thr  
Reserved  
RW Reserved  
0x2A  
0x2B  
EOM_timer_thr  
Reserved  
0x30  
0x00  
RW EOM timer for how long to check each phase/voltage setting.  
RW Reserved  
RW Reserved  
Reserved  
0 = VEO scaling based on manual Voltage Range settings  
RW (see Reg 0x11[7:6])  
0x2C  
VEO Scale  
6
veo_scale  
0x72  
1 = Enable Auto VEO scaling  
5:0  
7:4  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
IN1 EQ Boost Override Control  
CTLE Boost  
Override  
0 = Disable IN1 EQ boost override  
1 = Override the internal IN1 EQ boost settings with values in  
0x2D  
3
reg_eq_bst_ov  
0x00  
RW  
Reg 0x03[7:0]  
2:0  
7:0  
Reserved  
Reserved  
RW Reserved  
0x2E  
0x2F  
0x30  
Reserved  
Rate Overrides  
Reserved  
0x24  
0x06  
0x00  
RW Reserved  
Reference Rate Selection for CDR Lock if Reg 0x3F[2] = 1  
00 = Select SMPTE rates  
01 = Select 10G Ethernet rate  
7:6  
refn_rate  
RW  
Other settings are Invalid  
5:0  
7:0  
7
Reserved  
Reserved  
Reserved  
R
Reserved  
RW Reserved  
RW Reserved  
Adapt Mode Override Value if Reg 0x3F[5] = 1  
00 = Manual CTLE for IN1. Set CTLE/CDR Page Reg  
RW 0x2D[3] = 1 to enable IN1 EQ boost settings with values in  
Reg 0x03[7:0].  
6:5  
4:2  
1:0  
adapt_mode  
Reserved  
IN1 Adaptation  
Mode and Input  
Mux Select  
01 = Automatic CTLE Adaptation for IN1.  
0x31  
0x00  
RW Reserved  
Input Mux Selection if Reg 0x3F[4] = 1 to override  
IN_OUT_SEL pin  
RW 10 = IN1 to OUT1 only  
11 = IN1 to OUT0 and OUT1  
Other settings are Invalid  
input_mux_ch_sel  
Compares HEO value, Reg 0x27[7:0] vs. threshold from Reg  
0x32[7:4] x 4.  
7:4  
3:0  
heo_int_thresh  
veo_int_thresh  
RW  
HEO/VEO  
Interrupt  
Threshold  
0x32  
0x11  
Compares VEO value. Reg 0x28[7:0] vs. threshold from Reg  
0x32[3:0] x 4.  
RW  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x88  
0x3F  
0x1F  
0x11  
0x00  
0x00  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
Reserved  
Reserved  
Copyright © 2016–2018, Texas Instruments Incorporated  
29  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Address Register Name  
Bit  
7:0  
7:6  
5:4  
3:2  
Field  
Default Type  
Description  
0x39  
0x3A  
Reserved  
Reserved  
0x00  
R
Reserved  
fixed_eq_BST0  
fixed_eq_BST1  
fixed_eq_BST2  
RW Fixed IN1 CTLE setting for 270M and 1.5G SMPTE rates. If  
Reg 0x3F[0] = 0, Reg 0x3A fixed IN1 CTLE setting is also  
RW  
used for 3G rate.  
Low Data Rate  
IN1 EQ Boost  
RW  
0x00  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
1:0  
fixed_eq_BST3  
RW  
0x3B  
0x3C  
0x3D  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
0x96  
0x90  
0x00  
R
R
Reserved  
Reserved  
RW Reserved  
Enable HEO/VEO lock monitoring. Once the lock and  
adaptation processes are complete, HEO/VEO monitoring is  
performed once per the interval determined by Reg  
0x69[3:0].  
7
heo_veo_lockmon_en  
RW  
HEO_VEO Lock  
Monitor Enable  
0x3E  
0x80  
6:0  
7:6  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
0 = Normal Behavior (Automatic Adaptation when IN1 is  
selected)  
5
mr_adapt_mode_ov  
RW  
1 = Override Automatic Adaptation for IN1. Adaptation  
behavior is controlled by Reg 0x31[6:5].  
0 = Input channel selection determined by IN_OUT_SEL pin  
4
3
mr_in_out_sel_ov  
mr_out_ctrl_ov  
RW 1 = Override input channel selection pin settings. Input  
selection is controlled by Reg 0x31[1:0].  
0 = Output mux settings determined by OUT_CTRL pin  
RW 1 = Override output mux pin settings. Output mux is  
controlled by Reg 0x1C[3:2].  
Pin Override  
Register Control  
0x3F  
0x01  
0 = SMPTE or 10 GbE reference rates determined by  
IN_OUT_SEL pin  
1 = Override reference rate pin settings. Reference rates for  
2
mr_refn_rate_ov  
RW  
CDR lock are controlled by Reg 0x2F[7:6].  
0 = IN1 EQ boost Bypass is controlled by OUT_CTRL pin  
behavior  
1
0
mr_eqbst_pin_ov  
RW 1 = Override IN1 EQ boost pin control. IN1 EQ boost bypass  
characteristics are controlled by settings in Reg 0x2D[3] and  
Reg 0x03[7:0].  
0 = Disables IN1 EQ Adaptation for 3G data rate  
RW  
mr_en_3G_divsel_eq  
1 = Enables IN1 EQ Adaptation for 3G data rate  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
EQ_index_0_BST0  
EQ_index_0_BST1  
EQ_index_0_BST2  
EQ_index_0_BST3  
EQ_index_1_BST0  
EQ_index_1_BST1  
EQ_index_1_BST2  
EQ_index_1_BST3  
EQ_index_2_BST0  
EQ_index_2_BST1  
EQ_index_2_BST2  
EQ_index_2_BST3  
EQ_index_3_BST0  
EQ_index_3_BST1  
EQ_index_3_BST2  
EQ_index_3_BST3  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Index 0 Boost  
IN1 Index 0  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
0x40  
0x41  
0x42  
0x43  
0x00  
0x40  
0x80  
0x50  
Index 1 Boost  
IN1 Index 1  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
Index 2 Boost  
IN1 Index 2  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
Index 3 Boost  
IN1 Index 3  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:6  
5:4  
3:2  
1:0  
7:0  
Field  
Default Type  
Description  
EQ_index_4_BST0  
EQ_index_4_BST1  
EQ_index_4_BST2  
EQ_index_4_BST3  
EQ_index_5_BST0  
EQ_index_5_BST1  
EQ_index_5_BST2  
EQ_index_5_BST3  
EQ_index_6_BST0  
EQ_index_6_BST1  
EQ_index_6_BST2  
EQ_index_6_BST3  
EQ_index_7_BST0  
EQ_index_7_BST1  
EQ_index_7_BST2  
EQ_index_7_BST3  
EQ_index_8_BST0  
EQ_index_8_BST1  
EQ_index_8_BST2  
EQ_index_8_BST3  
EQ_index_9_BST0  
EQ_index_9_BST1  
EQ_index_9_BST2  
EQ_index_9_BST3  
EQ_index_10_BST0  
EQ_index_10_BST1  
EQ_index_10_BST2  
EQ_index_10_BST3  
EQ_index_11_BST0  
EQ_index_11_BST1  
EQ_index_11_BST2  
EQ_index_11_BST3  
EQ_index_12_BST0  
EQ_index_12_BST1  
EQ_index_12_BST2  
EQ_index_12_BST3  
EQ_index_13_BST0  
EQ_index_13_BST1  
EQ_index_13_BST2  
EQ_index_13_BST3  
EQ_index_14_BST0  
EQ_index_14_BST1  
EQ_index_14_BST2  
EQ_index_14_BST3  
EQ_index_15_BST0  
EQ_index_15_BST1  
EQ_index_15_BST2  
EQ_index_15_BST3  
Reserved  
RW  
Index 4 Boost  
IN1 Index 4  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xC0  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
Boost for  
Adaptation  
RW  
RW  
RW  
Index 5 Boost  
IN1 Index 5  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0x90  
RW  
RW  
RW  
Index 6 Boost  
IN1 Index 6  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0x54  
RW  
RW  
RW  
Index 7 Boost  
IN1 Index 7  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xA0  
RW  
RW  
RW  
Index 8 Boost  
IN1 Index 8  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xB0  
RW  
RW  
RW  
Index 9 Boost  
IN1 Index 9  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0x95  
RW  
RW  
RW  
Index 10 Boost  
IN1 Index 10  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0x69  
RW  
RW  
RW  
Index 11 Boost  
IN1 Index 11  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xD5  
RW  
RW  
RW  
Index 12 Boost  
IN1 Index 12  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0x99  
RW  
RW  
RW  
Index 13 Boost  
IN1 Index 13  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xA5  
RW  
RW  
RW  
Index 14 Boost  
IN1 Index 14  
Boost for  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xE6  
RW  
Adaptation  
RW  
RW  
Index 15 Boost  
IN1 Index 15  
Boost for  
Adaptation  
[7:6]: 2-bit control for Stage 0 of the CTLE  
[5:4]: 2-bit control for Stage 1 of the CTLE.  
[3:2]: 2-bit control for Stage 2 of the CTLE.  
[1:0]: 2-bit control for Stage 3 of the CTLE.  
RW  
0xF9  
0x4F  
0x50  
RW  
RW  
Reserved  
0x00  
RW Reserved  
Copyright © 2016–2018, Texas Instruments Incorporated  
31  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Address Register Name  
Bit  
Field  
Default Type  
Description  
0x51  
0x52  
0x53  
Reserved  
7:0  
Reserved  
0x00  
0x00  
0x00  
RW Reserved  
IN1 Active EQ  
Readback  
IN1 CTLE boost setting readback from Active CTLE  
Adaptation.  
7:0  
7:0  
eq_bst_to_ana  
Reserved  
R
R
Reserved  
Reserved  
0 = Carrier Detect from the selected input de-asserted  
1 = Carrier Detect from the selected input asserted  
Note: Clears when Reg 0x54 is read-back.  
7
6
cardet  
R
R
0 = No interrupt from CDR Lock  
1 = CDR Lock Interrupt  
cdr_lock_int  
Note: Clears when Reg 0x54 is read-back.  
0 = No interrupt from IN1 Carrier Detect  
1 = IN1 Carrier Detect Interrupt  
Note: Clears when Reg 0x54 is read-back.  
5
4
3
carrier_det1_int  
Reserved  
R
R
R
Reserved  
Interrupt Status  
Register  
0x54  
0x00  
0 = No interrupt from HEO/VEO  
1 = HEO/VEO Threshold Reached Interrupt  
Note: Clears when Reg 0x54 is read-back.  
heo_veo_int  
0 = No interrupt from CDR Lock  
2
1
cdr_lock_loss_int  
R
R
1 = CDR Loss of Lock Interrupt  
Note: Clears when Reg 0x54 is read-back.  
0 = No interrupt from IN1 Carrier Detect  
1 = IN1 Carrier Detect Loss Interrupt  
Note: Clears when Reg 0x54 is read-back.  
carrier_det1_loss_int  
0
7:0  
7
Reserved  
Reserved  
Reserved  
R
R
Reserved  
Reserved  
0x55  
Reserved  
0x02  
RW Reserved  
0 = Disable interrupt if CDR lock is achieved  
1 = Enable interrupt if CDR lock is achieved  
6
cdr_lock_int_en  
RW  
RW  
0 = Disable interrupt if IN1 Carrier Detect is asserted  
1 = Enable interrupt if IN1 Carrier Detect is asserted  
5
4
3
carrier_det1_int_en  
Reserved  
RW Reserved  
Interrupt Control  
Register  
0x56  
0x00  
0 = Disable interrupt if HEO/VEO threshold is reached  
1 = Enable interrupt if HEO/VEO threshold is reached  
heo_veo_int_en  
RW  
RW  
RW  
0 = Disable interrupt if CDR loses lock  
1 = Enable interrupt if CDR loses lock  
2
1
cdr_lock_loss_int_en  
carrier_det1_loss_int_  
en  
0 = Disable interrupt if there is loss of signal (LOS) on IN1  
1 = Enable interrupt if there is loss of signal (LOS) on IN1  
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:4  
0x26  
0x31  
0x70  
0x3D  
0xFF  
0x00  
0x00  
0x00  
0x00  
While monitoring lock, these bits set the amount of interval  
HEO_VEO Lock  
Monitor  
0x69  
0x0A  
times to monitor HEO or VEO lock. Each interval is 6.5 ms.  
Therefore, by default, Reg 0x69[3:0] = 1010'b causes  
HEO_VEO lock monitor to occur once every 65 ms.  
3:0  
hv_lckmon_cnt_ms  
RW  
7:4  
3:0  
7:0  
veo_lck_thrsh  
heo_lck_thrsh  
Reserved  
RW  
RW  
HEO and VEO  
Lock Threshold  
HEO/VEO lock thresholds. Lock will not be declared until  
HEO (heo_lck_thrsh x 4) and VEO (veo_lck_thrsh x 4).  
0x6A  
0x6B  
0x44  
0x40  
Reserved  
RW Reserved  
32  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:5  
Field  
Default Type  
RW Reserved  
Description  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x77  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x87  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x03  
0x20  
0x00  
0x00  
0x00  
0x00  
0x00  
0x50  
0x00  
0x80  
0x70  
0x04  
0x00  
0x00  
0xA5  
0x23  
0x2C  
0x32  
0x37  
0x3E  
0x3F  
0x04  
0x04  
0x04  
0x06  
0x04  
0x04  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
0 = Disable CDR Lock to 270 Mbps  
1 = Enable CDR Lock to 270 Mbps  
4
3
2
1
0
dvb_enable  
hd_enable  
3G_enable  
6G_enable  
12G_enable  
RW  
RW  
RW  
RW  
RW  
0 = Disable CDR Lock to 1.485/1.4835 Gbps  
1 = Enable CDR Lock to 1.485/1.4835 Gbps  
SMPTE Data  
Rate Lock Enable  
0xA0  
0x1F  
0 = Disable CDR Lock to 2.97/2.967 Gbps  
1 = Enable CDR Lock to 2.97/2.967 Gbps  
0 = Disable CDR Lock to 5.94/5.934 Gbps  
1 = Enable CDR Lock to 5.94/5.934 Gbps  
0 = Disable CDR Lock to 11.88/11.868 Gbps  
1 = Enable CDR Lock to 11.88/11.868 Gbps  
Copyright © 2016–2018, Texas Instruments Incorporated  
33  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.5.3 Drivers Register Page  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:6  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Field  
Default Type  
RW Reserved  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x08  
0x80  
0x07  
0x3F  
0x00  
0x00  
0xA0  
0x24  
0x27  
0x01  
0x05  
0x37  
0x01  
0x25  
0x37  
0x02  
0x0A  
0x02  
0x08  
0x04  
0x3C  
0x00  
0x00  
0x08  
0x01  
0x08  
0x01  
0xA7  
0x00  
0x00  
0x00  
0x00  
0x00  
0xC0  
0x00  
0x00  
0x00  
0x00  
0x05  
0x00  
0x00  
0x20  
0x40  
0x89  
0x0B  
0x20  
0x00  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
Reserved  
Reserved  
RW Reserved  
RW Reserved  
R
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
Reserved  
34  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
Field  
Default Type  
Description  
0x2F  
Reserved  
7:0  
Reserved  
0x00  
RW Reserved  
OUT0 Mute Override Control  
0 = Disable OUT0 Mute Override Control  
1 = Enable OUT0 Mute Override Control by value in Reg  
0x30[6].  
7
6
5
tx0_mute_ov  
tx0_mute_val  
tx0_vod_ov  
RW  
RW  
RW  
0 = Normal Operation  
1 = Mute OUT0 if Reg 0x30[7] = 1  
OUT0 Output  
Control  
0x30  
0x0A  
OUT0 VOD Override Control  
0 = VOD settings for OUT0 determined by VOD_DE pin  
1 = Override VOD pin settings for OUT0. VOD settings for  
OUT0 are controlled by Reg 0x30[2:0]  
4:3  
2:0  
7
Reserved  
tx0_vod  
RW Reserved  
VOD settings with DE = 0 for OUT0 if Reg 0x30[5] = 1. See  
Figure 9.  
RW Reserved  
OUT0 De-Emphasis Override Control  
RW  
Reserved  
0 = De-emphasis for OUT0 determined by VOD_DE pin  
1 = Override De-emphasis settings for OUT0. De-emphasis  
settings for OUT0 are controlled by Reg 0x31[2:0]  
6
5
tx0_dem_ov  
tx0_PD_ov  
RW  
OUT0 Power Down Override Control  
0 = Disable OUT0 Power Down Override Control  
1 = Enable OUT0 Power Down Override Control by value in  
Reg 0x31[4].  
OUT0  
De-Emphasis  
Control  
RW  
RW  
0x31  
0x32  
0x33  
0x01  
0x0A  
0x11  
0 = Normal Operation  
1 = Power Down OUT0 if Reg 0x31[5] = 1  
4
3
tx0_PD  
Reserved  
tx0_dem  
RW Reserved  
De-emphasis settings for OUT0 if Reg 0x31[6] = 1. See  
Figure 10.  
2:0  
RW  
RW  
RW  
RW  
OUT1 Mute Override Control  
0 = Disable OUT1 Mute Override Control  
1 = Enable OUT1 Mute Override Control by value in Reg  
0x32[6].  
7
6
5
tx1_mute_ov  
tx1_mute_val  
tx1_vod_ov  
0 = Normal Operation  
1 = Mute OUT1 if Reg 0x32[7] = 1  
OUT1 Output  
Control  
OUT1 VOD Override Control  
0 = VOD settings for OUT1 determined by VOD_DE pin  
1 = Override VOD pin settings for OUT1. VOD settings for  
OUT1 are controlled by Reg 0x32[2:0]  
4:3  
2:0  
7
Reserved  
tx1_vod  
RW Reserved  
VOD settings with DE = 0 for OUT1 if Reg 0x32[5] = 1. See  
Figure 9.  
RW Reserved  
OUT1 De-Emphasis Override Control  
RW  
Reserved  
0 = De-emphasis for OUT1 determined by VOD_DE pin  
1 = Override De-emphasis settings for OUT1. De-emphasis  
settings for OUT1 are controlled by Reg 0x33[2:0]  
6
5
tx1_dem_ov  
tx1_PD_ov  
RW  
OUT1 Power Down Override Control  
0 = Disable OUT1 Power Down Override Control  
1 = Enable OUT1 Power Down Override Control by value in  
Reg 0x33[4].  
OUT1  
De-Emphasis  
Control  
RW  
RW  
0 = Normal Operation  
1 = Power Down OUT1 if Reg 0x33[5] = 1  
4
3
tx1_PD  
Reserved  
tx1_dem  
RW Reserved  
De-emphasis settings for OUT1 if Reg 0x33[6] = 1. See  
Figure 10.  
2:0  
RW  
0x34  
0x35  
0x36  
0x37  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
0x17  
0x61  
0x02  
0x00  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
Copyright © 2016–2018, Texas Instruments Incorporated  
35  
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Field  
Default Type  
RW Reserved  
Description  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x0F  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
R
R
R
R
R
R
R
R
R
R
R
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
Reserved  
36  
版权 © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 General Guidance for SMPTE and 10 GbE Applications  
SMPTE specifications define the use of AC coupling capacitors for transporting uncompressed serial data  
streams with heavy low frequency content. The use of 4.7-μF AC coupling capacitors is recommended to avoid  
low frequency DC wander. SFF-8431 (SFP+) requires the 100-Ω signal to meet the electrical, return loss, jitter,  
and eye mask specifications. It is recommended to place the LMH1226 as close as possible to the 100-Ω SFP+  
optical module in order to meet the specifications for SFF-8431. Refer to 9 for design guidelines.  
8.1.2 LMH1219 and LMH1226 Compatibility  
The LMH1226 is pin compatible with LMH1219 (12G UHD cable equalizer with integrated reclocker). Both  
LMH1219 and LMH1226 devices support Single Supply Mode and Dual Supply Mode as shown in 27 and 图  
28, respectively.  
8.2 Typical Application  
The LMH1226 is a multi-rate reclocker that supports SDI data rates up to 11.88 Gbps and 10 GbE. 21 shows  
a typical implementation of the LMH1226 as a SDI reclocker. Signal from a FPGA or optical module is connected  
to the input port at IN1±. Equalized and reclocked data is output at OUT0± and OUT1± to a downstream video  
processor.  
2.5 V (Single Supply)  
0.1-µF Capacitor close to each supply pin  
10 µF  
1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
100-Coupled Trace  
VDD_CDR VDDIO  
VIN  
RX+  
OUT0+  
OUT0-  
RSV1  
RSV2  
RSV1 and RSV2: No Connect  
RX-  
4.7 µF  
EP  
VSS  
VSS  
VSS  
VDD_LDO  
(1.8 V)  
FPGA/Video  
Processor  
LMH1226  
1 µF 0.1 µF  
100-Coupled Trace  
100 Coupled Trace  
RX+  
TX+  
TX-  
OUT1+  
OUT1-  
IN1+  
IN1-  
FPGA/Optical  
Module  
RX-  
4.7 µF  
4.7 µF  
VDDIO  
220 ꢀ  
VDDIO  
VDDIO  
VDDIO  
LED  
1 kꢀ  
1 kꢀ  
1 kꢀ  
FLOAT for SPI Mode  
1 kꢀ  
or  
20 kꢀ  
1 kꢀ  
or  
20 kꢀ  
1 kꢀ  
or  
20 kꢀ  
Optional pullup or  
pulldown resistors for  
strap configuration  
21. LMH1226 SPI Mode Connection Diagram  
版权 © 2016–2018, Texas Instruments Incorporated  
37  
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
9. LMH1226 Design Requirements  
DESIGN PARAMETER  
REQUIREMENTS  
AC Coupling capacitors at IN1± should be 4.7-μF capacitors. Choose small 0402 surface  
mount ceramic capacitors. This allows both SMPTE and 10 GbE data traffic.  
IN1± Input AC coupling capacitors  
Both OUT0± and OUT1± require AC coupling capacitors. Choose small 0402 surface mount  
ceramic capacitors. 4.7-μF AC coupling capacitors are recommended.  
Output AC coupling Capacitors  
Decoupling capacitors are required to minimize power supply noise. Place 10-μF and 1-μF  
bulk capacitors close to each device. Place a 0.1-μF capacitor close to each supply pin.  
DC power supply decoupling capacitors  
VDD_LDO decoupling capacitors  
Place 1-μF and 0.1-μF surface mount ceramic capacitors as close as possible to the device  
VDD_LDO pin.  
High Speed IN1, OUT0, and OUT1 trace  
impedance  
IN1±, OUT0± and OUT1± should be routed with coupled board traces with 100-differential  
impedance.  
SFP+ (SFF-8431) return loss  
Place SFP module within 1-2 inches of the LMH1226 to minimize insertion and return loss.  
Set MODE_SEL to Level-F (pin unconnected) for SPI. Set MODE_SEL to Level-L (connect 1  
kto VSS) for SMBus. SMBus is 3.3 V tolerant.  
Use of SPI or SMBus interface  
8.2.2 Detailed Design Procedure  
The following general design procedure is recommended:  
1. Select a suitable power supply voltage for the LMH1226. See Power Supply Recommendations for details.  
2. Check that the power supply meets the DC and AC requirements in Recommended Operating Conditions.  
3. Select the proper pull-high or pull-low resistors for IN_OUT_SEL and OUT_CTRL for setting the signal path.  
4. Depending on the length and insertion loss of the output traces for OUT0± and OUT1±, select the proper  
pull-high or pull-low resistors for VOD_DE to set the output amplitude and de-emphasis settings. Refer to  
Table 5 for details.  
5. Follow all design requirements detailed in 9 to optimize LMH1226 performance.  
6. For additional layout recommendations, refer to PCB Layout Guidelines.  
8.2.3 Recommended VOD and DEM Register Settings  
10 shows recommended output amplitude and de-emphasis register settings for most applications.  
10. VOD and DEM Register Settings  
VOD REG SETTING  
DEM REG SETTING  
OUT0±: 0x30[5]=1, 0x30[2:0]  
OUT1±: 0x32[5]=1, 0x32[2:0]  
OUT0±: 0x31[6]=1, 0x31[2:0]  
OUT1±: 0x33[6]=1, 0x33[2:0]  
VOD (mVpp)  
DEM (dB)  
0
1
2
2
3
3
3
4
4
4
4
5
5
5
5
0
1
1
2
1
2
3
1
2
3
4
1
2
3
4
410  
486  
560  
560  
635  
635  
635  
716  
716  
716  
716  
810  
810  
810  
810  
0
-0.1  
-0.1  
-0.9  
-0.3  
-1.3  
-2.4  
-0.5  
-1.8  
-3.0  
-4.0  
-0.8  
-2.4  
-3.6  
-4.6  
38  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
10. VOD and DEM Register Settings (接下页)  
VOD REG SETTING  
DEM REG SETTING  
OUT0±: 0x30[5]=1, 0x30[2:0]  
OUT1±: 0x32[5]=1, 0x32[2:0]  
OUT0±: 0x31[6]=1, 0x31[2:0]  
OUT1±: 0x33[6]=1, 0x33[2:0]  
VOD (mVpp)  
DEM (dB)  
5
6
6
6
6
6
7
7
7
7
7
5
1
2
3
4
5
1
2
3
4
5
810  
880  
880  
880  
880  
880  
973  
973  
973  
973  
973  
-6.1  
-1.0  
-2.7  
-4.0  
-5.0  
-6.5  
-1.2  
-3.1  
-4.6  
-5.7  
-7.1  
8.2.4 Application Performance Plots  
The LMH1226 performance was measured with the test setup shown in 22.  
Pattern  
TL  
Generator  
VOD = 800 mVp-p,  
PRBS10  
Differential 100  
FR4 Channel  
IN1±  
LMH1226 OUT0±  
Oscilloscope  
22. Test Setup for LMH1226 PCB Equalizer (IN1±)  
The eye diagrams in this subsection show how the LMH1226 improves overall signal integrity in the data path for  
100-Ω differential FR4 PCB trace at IN1.  
Time (30 ps/DIV)  
VOD_DE = H, IN_OUT_SEL = L, OUT_CTRL = F  
24. 10.3125 Gbps, TL = 20 in. 5-Mil FR4, Reclocked  
Time (30 ps/DIV)  
VOD_DE = H, IN_OUT_SEL = L, OUT_CTRL = L  
23. 10.3125 Gbps, TL = 20 in. 5-Mil FR4, EQ Only  
版权 © 2016–2018, Texas Instruments Incorporated  
39  
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Time (20 ps/DIV)  
Time (20 ps/DIV)  
VOD_DE = H, IN_OUT_SEL = H, OUT_CTRL = L  
25. 11.88 Gbps, TL = 20 in. 5-Mil FR4, EQ Only  
VOD_DE = H, IN_OUT_SEL = H, OUT_CTRL = F  
26. 11.88 Gbps, TL = 20 in. 5-Mil FR4, Reclocked  
40  
版权 © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
9 Power Supply Recommendations  
The LMH1226 is designed to provide flexibility in supply rails. There are two ways to power the LMH1226:  
Single Supply Mode (2.5 V): This mode offers ease of use, with the internal circuitry receiving power from  
the on-chip 1.8 V regulator. In this mode, 2.5 V is applied to VDD_CDR, VIN, and VDDIO. See 27 for more  
details.  
Dual Supply Mode (2.5 V and 1.8 V): This mode provides lower power consumption. In this mode, 1.8 V is  
connected to both VIN and VDD_LDO. VDD_CDR, and VDDIO are powered from a 2.5 V supply. See 28  
for more details.  
When Dual Supply Mode is used, the 2.5 V supply for VDD_CDR and VDDIO should be powered before or at  
the same time as the 1.8 V supply that powers VIN and VDD_LDO.  
2.5 V  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
VDD_CDR  
VDDIO  
VIN  
Internal LDO  
2.5 V to 1.8 V  
EP  
VSS  
VSS  
VSS  
VDD_LDO (1.8 V)  
1 µF  
0.1 µF  
27. Typical Connection for Single 2.5 V Supply  
2.5 V  
10 µF  
0.1 µF  
1 µF  
0.1 µF  
1.8 V  
VDD_CDR  
VDDIO  
VIN  
1 µF  
1 µF  
EP  
0.1 µF  
VSS  
VSS  
VSS  
VDD_LDO  
0.1 µF  
28. Typical Connection for Dual 2.5 V and 1.8 V Supply  
For power supply de-coupling, 0.1-μF surface-mount ceramic capacitors are recommended to be placed close to  
each VDD_CDR, VIN, VDD_LDO, and VDDIO supply pin to VSS. Larger bulk capacitors (for example, 10 µF and  
1 µF) are recommended for VDD_CDR and VIN. Good supply bypassing requires low inductance capacitors.  
This can be achieved through an array of multiple small body size surface-mount bypass capacitors in order to  
keep low supply impedance. Better results can be achieved through the use of a buried capacitor formed by a  
VDD and VSS plane separated by 2-4 mil dielectric in a printed circuit board.  
10 Layout  
10.1 PCB Layout Guidelines  
The following guidelines are recommended for designing the board layout for the LMH1226:  
1. Choose a suitable board stack-up that supports 100-differential trace routing on the board's top layer. This  
is typically done with a Layer 2 ground plane reference for the 100-differential traces.  
版权 © 2016–2018, Texas Instruments Incorporated  
41  
 
 
LMH1226  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
PCB Layout Guidelines (接下页)  
2. Place anti-pad (ground relief) on the power and ground planes directly under the 4.7-µF AC coupling  
capacitor and IC landing pads to minimize parasitic capacitance. The size of the anti-pad depends on the  
board stack-up and can be determined by a 3-dimension electromagnetic simulation tool.  
3. Keep trace length within 1-2 inches between the SFP module and IN1±. This minimizes insertion loss and  
return loss.  
4. Use coupled differential traces with 100-impedance for signal routing to IN1±, OUT0± and OUT1±. They  
are usually 5-8 mil trace width reference to a ground plane at Layer 2.  
5. The exposed pad EP of the package should be connected to the ground plane through an array of vias.  
These vias are solder-masked to avoid solder flowing into the plated-through holes during the board  
manufacturing process.  
6. Connect each supply pin (VDD_CDR, VIN, VDDIO, VDD_LDO) to the power or ground planes with a short  
via. The via is usually placed tangent to the supply pins' landing pads with the shortest trace possible.  
7. Power supply bypass capacitors should be placed close to the supply pins. They are commonly placed at the  
bottom layer and share the ground of the EP.  
10.2 Layout Example  
The following example demonstrates the high speed signal trace routing to the LMH1226.  
1. Anti-pad under passive components.  
2. 100-Ω coupled trace.  
3. Vias with solder mask.  
2
1
2
3
1
2
2
29. LMH1226 PCB Layout Example  
42  
版权 © 2016–2018, Texas Instruments Incorporated  
LMH1226  
www.ti.com.cn  
ZHCSID0D APRIL 2016REVISED JUNE 2018  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2016–2018, Texas Instruments Incorporated  
43  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH1226RTWR  
LMH1226RTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
L1226A2  
L1226A2  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH1226RTWR  
LMH1226RTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
178.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH1226RTWR  
LMH1226RTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH1226RTWT

12G SDI 双路输出时钟恢复器 | RTW | 24 | -40 to 85
TI

LMH1228

具有集成时钟恢复器的 12G 超高清 SDI 双路电缆驱动器
TI

LMH1228RTVR

具有集成时钟恢复器的 12G 超高清 SDI 双路电缆驱动器 | RTV | 32 | -40 to 85
TI

LMH1228RTVT

具有集成时钟恢复器的 12G 超高清 SDI 双路电缆驱动器 | RTV | 32 | -40 to 85
TI

LMH1251

YPBPR to RGB Decoder and 2:1 Video Switch
NSC

LMH1251

RGB Path: 400 MHz, −3 dB, 700 mVPP Bandwidth, Supports PC Video Display Resolutions up to UXGA (1600 x 1200 @ 75 Hz)
TI

LMH1251MT

YPBPR to RGB Decoder and 2:1 Video Switch
NSC

LMH1251MT

LMH1251 YPBPR to RGBHV Converter and 2:1 Video Switch
TI

LMH1251MT-NOPB

YPBPR Path: 70 MHz, −3 dB, 700 mVPP Bandwidth
TI

LMH1251MT/NOPB

YPbPr 至 RGBHV 转换器和 2:1 视频开关 | PW | 24 | 0 to 70
TI

LMH1251MTX

YPBPR to RGB Decoder and 2:1 Video Switch
NSC

LMH1251MTX

LMH1251 YPBPR to RGBHV Converter and 2:1 Video Switch
TI