LMH1228RTVR [TI]

具有集成时钟恢复器的 12G 超高清 SDI 双路电缆驱动器 | RTV | 32 | -40 to 85;
LMH1228RTVR
型号: LMH1228RTVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成时钟恢复器的 12G 超高清 SDI 双路电缆驱动器 | RTV | 32 | -40 to 85

时钟 驱动 电视 驱动器
文件: 总47页 (文件大小:2485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
带集成时钟恢复器的 LMH1228 12G UHD-SDI 双路输出电缆驱动器  
1 特性  
3 说明  
1
支持 ST-2082-1 (12G)ST-2081-1 (6G)ST-424  
(3G)ST-292 (HD) ST-259 (SD)  
LMH1228 器件是一款带有时钟恢复器的 12G UHD-  
SDI 低功耗双路输出电缆驱动器。它支持高达  
11.88Gbps SMPTE 视频速率,因此可为 4K/8K 应  
用实现超高清视频的高度集成和高性能解决方案。时钟  
和数据恢复 (CDR) 电路多种多样,因此片上时钟恢复  
器可自动检测并锁定到高达 11.88Gbps 的各种  
SMPTE 视频速率。主机端上的其他时钟恢复型 100  
驱动器输出可用于监控或信号分配用途。  
兼容 DVB-ASI AES10 (MADI)  
集成时钟恢复器锁定为 11.88Gbps5.94Gbps、  
2.97Gbps1.485Gbps 1.001 分频子速率和  
270Mbps SMPTE 速率  
集成眼图张开度监视器 (EOM)  
双路差分输出电缆驱动器  
片上 75终端和回损补偿网络  
自适应 PCB 输入均衡器  
片上时钟恢复器可减弱高频抖动并使用纯净的低抖动时  
钟完全重新生成数据。此时钟恢复器具有内置环路滤波  
器,且不需要任何输入参考时钟。LMH1228 还具有内  
部眼图张开度监视器和可编程引脚,可实现 CDR 锁定  
指示、输入信号检测或硬件干扰,从而为系统诊断和板  
启动提供支持。  
时钟恢复型 100Ω 环回输出  
75输出端的自动压摆率控制  
75Ω 输出端的自动预加重和输出振幅  
100输出端的可编程去加重功能和输出振幅  
75100输出端的极性反转  
没有输入信号时自动进入省电工作模式  
LMH1228 2.5V 单电源供电运行。它采用小尺寸  
5mm × 5mm 32 引脚 WQFN 封装。LMH1228 与  
LMH120812G 双路电缆驱动器)引脚兼容。  
功耗:25mW(典型值)  
通过使能引脚进行断电控制  
2.5V 单电源  
器件信息(1)  
功耗:305mW(典型值)  
器件型号  
LMH1228  
封装  
WQFN (32)  
封装尺寸(标称值)  
可通过引脚、SPI SMBus 接口进行编程  
工作温度范围:-40°C +85°C  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
5mm × 5mm 32 引脚 WQFN 封装  
2 应用  
简化方框图  
SMPTE 兼容串行数字接口  
100-Ω  
Driver  
UHDTV/4K/8K/HDTV/SDTV 视频  
广播视频路由器、交换机、分配放大器和监视器  
数字视频处理和编辑  
OUT0  
Cable  
Driver  
SDI_OUT1  
SDI_OUT2  
M
U
X
CDR  
PCB  
EQ  
Cable  
Driver  
IN0  
Control  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS568  
 
 
 
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 21  
7.5 Register Maps ........................................................ 25  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Applications ................................................ 27  
Power Supply Recommendations...................... 34  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
8
9
10 Layout................................................................... 34  
10.1 Layout Guidelines ................................................. 34  
10.2 Layout Example .................................................... 36  
11 器件和文档支持 ..................................................... 37  
11.1 文档支持................................................................ 37  
11.2 接收文档更新通知 ................................................. 37  
11.3 支持资源................................................................ 37  
11.4 ....................................................................... 37  
11.5 静电放电警告......................................................... 37  
11.6 出口管制提示......................................................... 37  
11.7 Glossary................................................................ 37  
12 机械、封装和可订购信息....................................... 37  
12.1 Package Option Addendum .................................. 38  
6.6 Recommended SMBus Interface Timing  
Specifications........................................................... 11  
6.7 Serial Parallel Interface (SPI) Timing  
Specifications........................................................... 12  
6.8 Typical Characteristics............................................ 14  
Detailed Description ............................................ 15  
7.1 Overview ................................................................. 15  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 16  
7
4 修订历史记录  
Changes from Revision B (September 2017) to Revision C  
Page  
首次公开发布 .......................................................................................................................................................................... 1  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
RTV Package  
32-Pin WQFN  
Top View  
1
24  
23  
22  
21  
20  
19  
18  
SDI_OUT1+  
SDI_VOD  
OUT0+  
OUT0-  
VDD_CDR  
VSS  
2
SDI_OUT1-  
3
VSS  
4
OUT0_SEL  
LMH1228  
5
RSV6  
6
IN0+  
VSS  
7
8
IN0-  
SDI_OUT2-  
SDI_OUT2+  
EP = VSS  
17  
OUT_CTRL  
Copyright © 2016, Texas Instruments Incorporated  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
HIGH-SPEED DIFFERENTIAL I/OS  
SDI_OUT1+  
SDI_OUT1–  
SDI_OUT2+  
SDI_OUT2–  
1
2
8
7
I/O, Analog  
Single-ended complementary outputs with on-chip 75-termination at SDI_OUT1+ and SDI_OUT1–.  
SDI_OUT1± include integrated return loss networks designed to meet the SMPTE output return loss  
requirements. Connect SDI_OUT1+ to a BNC through a 4.7-µF, AC-coupling capacitor. SDI_OUT1–  
should be similarly AC-coupled and terminated with an external 4.7-µF capacitor and 75-Ω resistor to  
GND.  
I/O, Analog  
O, Analog  
O, Analog  
Single-ended complementary outputs with on-chip 75-termination at SDI_OUT2+ and SDI_OUT2–.  
SDI_OUT2± include integrated return loss networks designed to meet the SMPTE output return loss  
requirements. SDI_OUT2± is used as a second cable driver. Connect SDI_OUT2+ to a BNC through a  
4.7-µF, AC-coupling capacitor. SDI_OUT2– should be similarly AC-coupled and terminated with an  
external 4.7-µF capacitor and 75-Ω resistor to GND.  
IN0+  
19  
18  
23  
22  
I, Analog  
I, Analog  
O, Analog  
O, Analog  
Differential inputs from host video processor. On-chip 100-differential termination. Requires external  
4.7-µF, AC-coupling capacitors for SMPTE applications.  
IN0–  
OUT0+  
Differential outputs to host video processor. On-chip 100-differential termination. Requires external 4.7-  
µF, AC-coupling capacitors for SMPTE applications.  
OUT0–  
CONTROL PINS  
OUT0_SEL enables the use of the 100-host-side output driver at OUT0±.  
See Table 2 for details.  
OUT0_SEL  
4
I, LVCMOS  
OUT0_SEL is internally pulled high by default (OUT0 disabled).  
HOST_EQ0 selects the equalizer setting for IN0±.  
See Table 4 for details.  
HOST_EQ0  
MODE_SEL  
9
I, 4-LEVEL  
I, 4-LEVEL  
MODE_SEL enables the SPI or SMBus serial control interface.  
See Table 9 for details.  
12  
SDI_OUT2_SEL enables the use of the 75-output driver at SDI_OUT2±.  
See Table 2 for details.  
SDI_OUT2_SEL  
14  
I, LVCMOS  
SDI_OUT2_SEL is internally pulled high by default (SDI_OUT2 disabled).  
(1) I = Input, O = Output, I/O = Input or Output, OD = Open Drain, LVCMOS = 2-State Logic, 4-LEVEL = 4-State Logic  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
OUT_CTRL selects the signal being routed to the output. It is used to enable or bypass the reclocker.  
See Table 6 for details.  
OUT_CTRL  
17  
I, 4-LEVEL  
I, 4-LEVEL  
SDI_VOD selects one of four output amplitudes for the cable drivers at SDI_OUT1± and SDI_OUT2±.  
See Table 7 for details.  
SDI_VOD  
LOCK_N  
24  
27  
LOCK_N is the reclocker lock indicator. LOCK_N is pulled low when the reclocker has acquired lock  
condition. LOCK_N is a 3.3-V tolerant, open-drain output. It requires an external resistor to a logic supply.  
LOCK_N can be reconfigured to indicate Signal Detector (SD_N) or Interrupt (INT_N) through register  
programming. See Status Indicators and Interrupts.  
O, LVCMOS,  
OD  
A logic-high at ENABLE enables normal operation for the LMH1228. A logic-low at ENABLE places the  
LMH1228 in Power-Down Mode.  
ENABLE  
32  
I, LVCMOS  
ENABLE is internally pulled high by default.  
SPI SERIAL CONTROL INTERFACE, MODE_SEL = F (FLOAT)  
SS_N is the Slave Select. When SS_N is at logic Low, it enables SPI access to the LMH1228 slave  
SS_N  
11  
I, LVCMOS  
device.  
SS_N is a 2.5-V LVCMOS input and is internally pulled high by default.  
MOSI is the SPI serial control data input to the LMH1228 slave device when the SPI bus is enabled.  
MOSI is a 2.5-V LVCMOS input.  
An external pullup resistor is recommended.  
MOSI  
MISO  
SCK  
13  
28  
29  
I, LVCMOS  
O, LVCMOS  
I, LVCMOS  
MISO is the SPI serial control data output from the LMH1228 slave device.  
MISO is a 2.5-V LVCMOS output.  
SCK is the SPI serial input clock to the LMH1228 slave device when the SPI interface is enabled. SCK is  
a 2.5-V LVCMOS input.  
An external pullup resistor is recommended.  
SMBUS SERIAL CONTROL INTERFACE, MODE_SEL = L (1 KΩ TO VSS)  
ADDR[1:0] are 4-level straps, read into the device at power up. They are used to select one of the 16  
supported SMBus addresses when SMBus is enabled. See Table 10 for details.  
ADDR0  
SDA  
11  
13  
28  
29  
Strap, 4-LEVEL  
SDA is the SMBus bidirectional data line to or from the LMH1228 slave device when SMBus is enabled.  
SDA is an open-drain I/O and requires an external pullup resistor to the SMBus termination voltage. SDA  
is 3.3-V tolerant.  
I/O, LVCMOS,  
OD  
ADDR[1:0] are 4-level straps, read into the device at power up. They are used to select one of the 16  
supported SMBus addresses when SMBus is enabled. See Table 10 for details.  
ADDR1  
Strap, 4-LEVEL  
SCL is the SMBus input clock to the LMH1228 slave device when SMBus is enabled. It is driven by a  
LVCMOS open-drain driver from the SMBus master. SCL requires an external pullup resistor to the  
SMBus termination voltage. SCL is 3.3-V tolerant.  
I/O, LVCMOS,  
OD  
SCL  
RESERVED  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
10  
15  
16  
25  
26  
Reserved pins. Do not connect.  
Reserved pin. This input must be tied high with 1-kΩ resistor to VIN. Alternatively, this pin setting can be  
overridden by register control. Refer to the LMH1228 and LMH1208 Programming Guide (SNAU206) for  
more details.  
RSV6  
5
I, LVCMOS  
POWER  
VSS  
3, 6, 20  
21  
I, Ground  
I, Power  
I, Power  
Ground reference.  
VDD_CDR  
VIN  
VDD_CDR powers the reclocker circuitry. It is connected to the same 2.5-V ± 5% supply as VIN.  
VIN is connected to an external 2.5-V ± 5% power supply.  
30  
VDD_LDO is the output of the internal 1.8-V LDO regulator. VDD_LDO output requires an external 1-µF  
and 0.1-µF bypass capacitor to VSS. The internal LDO is designed to power internal circuitry only.  
VDD_LDO  
EP  
31  
O, Power  
I, Ground  
EP is the exposed pad at the bottom of the RTV package. The exposed pad should be connected to the  
VSS plane through a 3 × 3 via array.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–30  
MAX  
2.75  
2.75  
2.75  
4
UNIT  
V
Supply voltage (VIN, VDD_CDR)  
Input voltage for 4-level pins  
V
Input/output voltage for 2-level control pins  
SMBus input/output voltage (SDA, SCL)  
SPI input/output voltage (SS_N, MISO, MOSI, and SCK)  
High-speed input/output voltage (IN0±, SDI_OUT1±, OUT0±, SDI_OUT2±)  
Input current (IN0±)  
V
V
2.75  
2.75  
30  
V
V
mA  
°C  
°C  
Operating junction temperature  
125  
150  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±6000  
±5500  
±1500  
UNIT  
All pins except 13 and 29  
Pins 13 and 29  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
2.375  
300  
NOM  
MAX  
2.625  
3.6  
UNIT  
V
Supply voltage  
VIN, VDD_CDR to VSS  
2.5  
VDDSMBUS  
SMBus: SDA, SCL open-drain termination voltage  
V
Before 5-inch board trace to IN0±  
850  
Source differential launch  
amplitude  
VIN0_LAUNCH  
mVp-p  
Before 20-inch board trace to IN0±  
650  
1000  
110  
TJUNCTION  
TAMBIENT  
Operating junction temperature  
Ambient temperature  
°C  
°C  
–40  
25  
< 20  
< 10  
85  
50 Hz to 1 MHz, sinusoidal  
NTpsmax  
Maximum supply noise(1)  
mVp-p  
1.1 MHz to 50 MHz, sinusoidal  
(1) The sum of the DC supply voltage and AC supply noise should not exceed the recommended supply voltage range.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
6.4 Thermal Information  
LMH1228  
RTV (WQFN)  
32 PINS  
32.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.0  
6.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
6.5  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
SDI_OUT1± enabled  
SDI_OUT2± disabled  
OUT0± disabled  
305  
350  
442  
mW  
mW  
mW  
SDI_OUT1± enabled  
SDI_OUT2± disabled  
OUT0± enabled  
Power dissipation,  
Measured with PRBS10,  
CDR Locked to 11.88 Gbps,  
VOD = default,  
PD  
SDI_OUT1± enabled  
SDI_OUT2± enabled  
OUT0± disabled  
HEO/VEO lock monitor disabled  
SDI_OUT1± enabled  
SDI_OUT2± enabled  
OUT0± enabled  
485  
25  
mW  
mW  
mA  
Power dissipation,  
Power Save Mode  
Power Save Mode,  
ENABLE = H, no signal applied at IN0±  
PDZ  
SDI_OUT1± enabled  
SDI_OUT2± disabled  
OUT0± disabled  
122  
146  
166  
211  
230  
SDI_OUT1± enabled  
SDI_OUT2± disabled  
OUT0± enabled  
Current consumption,  
140  
177  
194  
mA  
mA  
mA  
Measured with PRBS10,  
CDR Locked to 11.88 Gbps,  
VOD = default,  
IDD  
SDI_OUT1± enabled  
SDI_OUT2± enabled  
OUT0± disabled  
HEO/VEO lock monitor disabled  
SDI_OUT1± enabled  
SDI_OUT2± enabled  
OUT0± enabled  
Current consumption,  
Power Save Mode  
Power Save Mode,  
ENABLE = H, no signal applied at IN0±  
IDDZ  
10  
10  
mA  
mA  
Current consumption,  
Power-Down Mode  
Power-Down Mode,  
ENABLE = L, no signal applied at IN0±  
IDDZ_PD  
30  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SDI_OUT1± enabled  
SDI_OUT2± disabled  
OUT0± disabled  
200  
mA  
SDI_OUT1± enabled  
SDI_OUT2± disabled  
OUT0± enabled  
Current consumption,  
CDR acquiring lock to 11.88  
Gbps,  
VOD = default,  
HEO/VEO lock monitor enabled  
225  
271  
290  
mA  
mA  
mA  
IDDTRANS  
SDI_OUT1± enabled  
SDI_OUT2± enabled  
OUT0± disabled  
SDI_OUT1± enabled  
SDI_OUT2± enabled  
OUT0± enabled  
LVCMOS DC SPECIFICATIONS  
2-level input (SS_N, SCK, MOSI,  
SDI_OUT2_SEL, OUT0_SEL, ENABLE)  
0.72 ×  
VIN  
VIN +  
0.3  
V
V
VIH  
Logic high input voltage  
0.7 ×  
VIN  
2-level input (SCL, SDA)  
3.6  
2-level input (SS_N, SCK, MOSI,  
SDI_OUT2_SEL, OUT0_SEL, ENABLE,  
SCL, SDA)  
0.3 ×  
VIN  
VIL  
Logic low input voltage  
Logic high output voltage  
0
V
0.8 ×  
VIN  
VOH  
IOH = –2 mA, (MISO)  
IOL = 2 mA, (MISO)  
VIN  
V
V
0.2 ×  
VIN  
0
VOL  
Logic low output voltage  
IOL = 3 mA, (LOCK_N, SDA)  
LVCMOS (SDI_OUT2_SEL, ENABLE)  
LVCMOS (OUT0_SEL)  
0.4  
15  
65  
10  
15  
10  
V
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Input high leakage current  
(Vinput = VIN)  
IIH  
LVCMOS (LOCK_N)  
SPI mode: LVCMOS (SS_N, SCK, MOSI)  
SMBus mode: LVCMOS (SCL, SDA)  
LVCMOS (SDI_OUT2_SEL, ENABLE)  
LVCMOS (OUT0_SEL)  
–50  
–15  
–10  
–15  
–50  
–10  
LVCMOS (LOCK_N)  
Input low leakage current  
(Vinput = GND)  
IIL  
SPI mode: LVCMOS (SCK, MOSI)  
SPI mode: LVCMOS (SS_N)  
SMBus mode: LVCMOS (SCL, SDA)  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-LEVEL LOGIC DC SPECIFICATIONS (APPLY TO ALL 4-LEVEL INPUT CONTROL PINS)  
Measured voltage at 4-level pin with  
VLVL_H  
VLVL_F  
V LVL_R  
VLVL_L  
LEVEL-H input voltage  
LEVEL-F default voltage  
LEVEL-R input voltage  
LEVEL-L input voltage  
VIN  
V
V
V
V
external 1 kΩ to VIN  
2/3 ×  
VIN  
Measured voltage 4-level pin at default  
Measured voltage at 4-level pin with  
external 20 kΩ to VSS  
1/3 ×  
VIN  
Measured voltage at 4-level pin with  
external 1 kΩ to VSS  
0
4-levels (HOST_EQ0, MODE_SEL,  
OUT_CTRL, SDI_VOD)  
20  
20  
45  
45  
80  
80  
µA  
µA  
µA  
µA  
Input high leakage current  
(Vinput = VIN)  
IIH  
SMBus mode: 4-levels (ADDR0, ADDR1)  
4-levels (HOST_EQ0, MODE_SEL,  
OUT_CTRL, SDI_VOD)  
–160  
–160  
–93  
–93  
–40  
–40  
Input low leakage current  
(Vinput = GND)  
IIL  
SMBus mode: 4-levels (ADDR0, ADDR1)  
RECEIVER SPECIFICATIONS (IN0±)  
RIN0_TERM  
DC input differential termination Measured across IN0+ to IN0–  
80  
100  
–22  
–16  
–10  
120  
Ω
SDD11, 10 MHz – 2.8 GHz  
SDD11, 2.8 GHz – 6 GHz  
SDD11, 6 GHz – 11.1 GHz  
dB  
dB  
dB  
RLIN0_SDD11  
Input differential return loss(1)  
Differential to common-mode  
input conversion(1)  
RLIN0_SCD11  
VIN0_CM  
SCD11, 10 MHz to 11.1 GHz  
–21  
dB  
V
Input common-mode voltage at IN0+ or  
IN0– to GND  
DC common-mode voltage  
2.06  
Signal detect (default)  
Assert ON threshold level for  
IN0±  
11.88 Gbps, EQ and PLL pathological  
pattern  
CDON_IN0  
20  
18  
mVp-p  
mVp-p  
Signal detect (default)  
Deassert OFF threshold level  
for IN0±  
11.88 Gbps, EQ and PLL pathological  
pattern  
CDOFF_IN0  
DRIVER OUTPUT (SDI_OUT1+ AND SDI_OUT2+)  
SDI_OUT1+ and SDI_OUT1–,  
SDI_OUT2+ and SDI_OUT2– to VIN  
DC output single-ended  
ROUT_TERM  
termination  
63  
75  
87  
Ω
Measure AC signal at SDI_OUT1+ and  
SDI_OUT2+, with SDI_OUT1– and  
SDI_OUT2– AC terminated with 75 Ω  
SDI_VOD = H  
840  
mVp-p  
Output single-ended output  
VODCD_OUTP  
voltage  
SDI_VOD = F  
SDI_VOD = R  
SDI_VOD = L  
720  
800  
880  
760  
880  
mVp-p  
mVp-p  
mVp-p  
Measure AC signal at SDI_OUT1– and  
SDI_OUT2-, with SDI_OUT1+ and  
SDI_OUT2+ AC terminated with 75 Ω  
SDI_VOD = H  
840  
mVp-p  
Output single-ended output  
VODCD_OUTN  
voltage  
SDI_VOD = F  
SDI_VOD = R  
SDI_VOD = L  
720  
800  
880  
760  
880  
mVp-p  
mVp-p  
mVp-p  
Output pre-emphasis boost amplitude at  
SDI_OUT1+ and SDI_OUT2+, programmed  
to maximum setting through register,  
measured at SDI_VOD = F  
PRECD_OUTP  
Output pre-emphasis  
2
dB  
(1) This parameter is measured with the LMH1297EVM (Evaluation board for LMH1228).  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output pre-emphasis boost amplitude at  
SDI_OUT1– and SDI_OUT2–, programmed  
to maximum setting through register,  
measured at SDI_VOD = F  
PRECD_OUTN  
Output pre-emphasis  
2
dB  
Measured with PRBS10 pattern, default  
VOD at 20% – 80% amplitude, default pre-  
emphasis enabled  
34  
42  
ps  
11.88 Gbps  
tR_F_SDI  
Output rise and fall time(1)  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
36  
59  
43  
67  
ps  
ps  
ps  
ps  
60  
73  
400  
550  
700  
Measured with PRBS10 pattern, default  
VOD at 20% – 80% amplitude, default pre-  
emphasis enabled  
3
18  
ps  
11.88 Gbps  
Output rise and fall time  
mismatch(1)  
tR_F_DELTA  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
2.7  
0.8  
0.8  
72  
12  
11  
ps  
ps  
ps  
ps  
12  
150  
Measured with PRBS10 pattern, default  
VOD, default pre-emphasis enabled(2)  
12G/6G/3G/HD/SD  
Output overshoot or undershoot  
VOVERSHOOT  
5%  
(1)  
VDC_OFFSET  
VDC_WANDER  
DC offset  
12G/6G/3G/HD/SD  
±0.2  
20  
V
12G/6G/3G/HD/SD with EQ pathological  
pattern  
DC wander  
mV  
S22, 5 MHz to 1.485 GHz  
S22, 1.485 GHz to 3 GHz  
S22, 3 GHz to 6 GHz  
–25  
–22  
–12  
–8  
dB  
dB  
dB  
dB  
Output return loss at  
RLCD_S22  
SDI_OUT1+ and SDI_OUT2+  
reference to 75 Ω(1)  
S22, 6 GHz to 12 GHz  
(2) VOVERSHOOT overshoot/undershoot maximum measurements are largely affected by the PCB layout and input test pattern. The  
maximum value specified in Electrical Characteristics for VOVERSHOOT is based on bench evaluation across temperature and supply  
voltages with the LMH1297EVM.  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
DRIVER OUTPUT (OUT0±)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC output differential  
termination  
ROUT0_TERM  
Measured across OUT0+ and OUT0–  
80  
100  
410  
120  
620  
Ω
Measured with 8T pattern  
HOST_EQ0 = H  
mVp-p  
Output differential voltage at  
OUT0±  
HOST_EQ0 = F  
HOST_EQ0 = R  
HOST_EQ0 = L  
485  
560  
635  
810  
mVp-p  
mVp-p  
mVp-p  
VODOUT0  
Measured with 8T pattern  
HOST_EQ0 = H  
410  
mVp-p  
De-emphasized output  
differential voltage at OUT0±  
HOST_EQ0 = F  
HOST_EQ0 = R  
HOST_EQ0 = L  
550  
545  
532  
mVp-p  
mVp-p  
mVp-p  
VODOUT0_DE  
Measured with 8T Pattern, 20% – 80%  
amplitude  
tR/tF  
Output rise and fall time  
45  
ps  
Measured with the device powered up and  
outputs a 10-MHz clock signal  
–24  
dB  
SDD22, 10 MHz – 2.8 GHz  
RLOUT0-SDD22  
Output differential return loss(1)  
SDD22, 2.8 GHz – 6 GHz  
SDD22, 6 GHz – 11.1 GHz  
–16  
–15  
dB  
dB  
Measured with the device powered up and  
outputs a 10-MHz clock signal.  
SCC22, 10 MHz – 4.75 GHz  
–12  
dB  
Output common-mode return  
loss(1)  
RLOUT0-SCC22  
SCC22, 4.75 GHz – 11.1 GHz  
–9  
8
dB  
AC common-mode voltage on  
OUT0±(1)  
VOUT0_CM  
Default setting, PRBS31, 11.88 Gbps  
mV (rms)  
RECLOCKER OUTPUT JITTER  
Measured at SDI_OUT1+ and SDI_OUT2+,  
OUT0± disabled  
PRBS10, 3G/HD/SD12G/6G/3G/HD/SD  
AJCD  
Alignment jitter(1)  
Timing jitter(1)  
0.1  
0.14  
UI  
UI  
Measured at SDI_OUT1+ and SDI_OUT2+,  
OUT0± disabled  
TMJCD  
0.45  
PRBS10, 12G/6G/3G/HD/SD  
RECLOCKER SPECIFICATIONS  
SMPTE 12G, /1  
SMPTE 12G, /1.001  
SMPTE 6G, /1  
11.88  
11.868  
5.94  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Mbps  
SMPTE 6G, /1.001  
SMPTE 3G, /1  
5.934  
2.97  
LOCKRATE  
Reclocker lock data rates  
SMPTE 3G, /1.001  
SMPTE HD, /1  
2.967  
1.485  
1.4835  
270  
SMPTE HD, /1.001  
SMPTE SD, /1  
Reclocker automatically goes to  
bypass  
BYPASSRATE  
MADI  
125  
Mbps  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Applied 0.2 UI input sinusoidal jitter,  
measure –3-dB bandwidth on input-to-  
output jitter transfer  
13  
MHz  
11.88 Gbps  
BWPLL  
PLL bandwidth  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
7
5
3
1
MHz  
MHz  
MHz  
MHz  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps,  
1.485 Gbps, 270 Mbps  
JPEAKING  
PLL jitter peaking  
Lock time  
<0.3  
dB  
SMPTE supported data rates, disable  
HEO/VEO monitor, CTLE in AM0 Manual  
Mode  
TLOCK  
5
ms  
Measured with temperature ramp of 5°C  
per min, ramp up and down, –40°C to 85°C  
operating range at 11.88 Gbps  
TEMPLOCK  
TLAT  
VCO temperature lock range  
Reclocker latency  
125  
°C  
Measured from IN0± to SDI_OUT1+, 11.88  
Gbps  
1.5 UI +  
175  
ps  
ps  
Measured from IN0± to SDI_OUT2+, 11.88  
Gbps  
1.6 UI +  
130  
6.6 Recommended SMBus Interface Timing Specifications  
over recommended operating supply and temperature ranges unless otherwise specified(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
FSCL  
TBUF  
SMBUS SCL frequency  
10  
400  
kHz  
Bus free time between stop and start  
condition  
See Figure 1.  
1.3  
µs  
THD:STA  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
Hold time after (repeated) start condition.  
Repeated start condition setup time  
Stop condition setup time  
Data hold time  
After this period, the first clock is generated.  
See Figure 1.  
0.6  
0.6  
0.6  
0
µs  
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
See Figure 1.  
See Figure 1.  
Data setup time  
See Figure 1.  
100  
1.3  
0.6  
Clock low period  
See Figure 1.  
THIGH  
TR  
Clock high period  
See Figure 1.  
Clock and data rise time  
Clock and data fall time  
See Figure 1.  
300  
300  
TF  
See Figure 1.  
Time from minimum VDDIO to SMBus valid  
write or read access  
TPOR  
SMBus ready time after POR  
50  
ms  
(1) These parameters support SMBus 2.0 specifications.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
6.7 Serial Parallel Interface (SPI) Timing Specifications  
over recommended operating supply and temperature ranges unless otherwise specified(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
FSCK  
TPH  
SPI SCK frequency  
20  
MHz  
% SCK  
period  
SCK pulse width high  
SCK pulse width low  
40  
40  
See Figure 17 and Figure 18  
% SCK  
period  
TPL  
TSU  
MOSI setup time  
4
4
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
See Figure 17 and Figure 18  
See Figure 17 and Figure 18  
TH  
MOSI hold time  
TSSSU  
TSSH  
TSSOF  
TODZ  
TOZD  
TOD  
SS setup time  
14  
4
SS hold time  
SS off time  
1
MISO driven-to-tristate time  
MISO tristate-to-driven time  
MISO output delay time  
20  
10  
15  
See Figure 17 and Figure 18  
(1) Typical SPI load capacitance is 2 pF.  
ttLOW  
t
tR  
tHIGH  
SCL  
ttHD:STA  
t
tHD:DAT  
tSU:STA  
tF  
tSU:STO  
ttBUF  
t
tSU:DAT  
SDA  
SP  
ST  
ST  
SP  
Figure 1. SMBus Timing Parameters  
tSSOF  
tSSH  
SS_N  
SCK  
tPL  
tSSSU  
tPH  
tH  
tSU  
HiZ  
MOSI  
MISO  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
tODZ  
HiZ  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
Figure 2. SPI Timing Parameters (Write Operation)  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 3. SPI Timing Parameters (Read Operation)  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
6.8 Typical Characteristics  
TA = 25°C and VIN = VDD_CDR = 2.5 V (unless otherwise noted)  
Figure 4. Output at 11.88 Gbps, Measured at SDI_OUT1+,  
20-in. FR4 Before IN0±  
Figure 5. Output at 11.88 Gbps, Measured at SDI_OUT2+,  
20-in. FR4 Before IN0±  
1.0  
0
DE = 0  
DE = 1  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
œ2  
œ4  
DE = 2  
DE = 3  
DE = 4  
DE = 5  
DE = 6  
DE = 7  
œ6  
œ8  
œ10  
œ12  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
VOD Register Settings  
VOD Register Settings  
C001  
C002  
Figure 6. OUT0 VOD vs. OUT0 VOD and DE  
Register Settings  
Figure 7. OUT0 De-Emphasis vs. OUT0 VOD and DE  
Register Settings  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
SDI_OUT1+  
SDI_OUT2+  
SMPTE RL Specification Limit  
0
2
4
6
8
10  
12  
Frequency (GHz)  
C001  
Measured with LMH1297EVM  
Figure 8. Return Loss (RL) vs Frequency  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
7 Detailed Description  
7.1 Overview  
The LMH1228 is a 12G UHD-SDI dual output cable driver with integrated reclocker. From the host-side input at  
IN0±, the signal is equalized, reclocked, and routed to 75-cable driver outputs at SDI_OUT1+ and  
SDI_OUT2+. The 100-driver at OUT0± can be used as a host-side loop-back output for monitoring purposes.  
7.2 Functional Block Diagram  
100-Ω  
Driver  
OUT0  
Cable  
Driver  
SDI_OUT1  
SDI_OUT2  
M
U
X
CDR  
PCB  
EQ  
Cable  
Driver  
IN0  
Control  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. LMH1228 Block Diagram Overview  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.3 Feature Description  
The LMH1228 data path consists of several key blocks as shown in the functional block diagram. These key  
blocks are:  
4-Level Input Pins and Thresholds  
OUT0_SEL and SDI_OUT2_SEL Control  
Input Signal Detect  
Continuous Time Linear Equalizer (CTLE)  
Clock and Data (CDR) Recovery  
Internal Eye Opening Monitor (EOM)  
Output Function Control  
Output Driver Control  
Status Indicators and Interrupts  
7.3.1 4-Level Input Pins and Thresholds  
The 4-level input configuration pins use a resistor divider to provide four logic states for each control pin. There is  
an internal 30-kpullup and a 60-kpulldown connected to the control pin that sets the default voltage at 2/3 ×  
VIN. These resistors, together with the external resistor, combine to achieve the desired voltage level. By using  
the 1-kpulldown, 20-kpulldown, no connect, and 1-kpullup, the optimal voltage levels for each of the four  
input states are achieved as shown in Table 1.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTING  
Tie 1 kΩ to VIN  
NOMINAL PIN VOLTAGE  
H
F
R
L
VIN  
2/3 × VIN  
1/3 × VIN  
0
Float (leave pin open)  
Tie 20 kΩ to VSS  
Tie 1 kΩ to VSS  
Typical 4-Level Input Thresholds:  
Internal Threshold between L and R = 0.2 × VIN  
Internal Threshold between R and F = 0.5 × VIN  
Internal Threshold between F and H = 0.8 × VIN  
7.3.2 OUT0_SEL and SDI_OUT2_SEL Control  
The OUT0_SEL and SDI_OUT2_SEL pins select the LMH1228 data-path routes. Table 2 shows all possible  
signal path combinations and typical use cases for each configuration.  
Table 2. LMH1228 Signal Path Combinations  
LINE SIDE  
SECONDARY  
OUTPUT  
HOST SIDE  
LOOP-BACK TYPICAL APPLICATION  
OUTPUT  
MAIN  
OUTPUT  
OUT0_SEL  
SDI_OUT2_SEL  
INPUT  
H
H
L
H
L
IN0±  
IN0±  
IN0±  
IN0±  
SDI_OUT1±  
SDI_OUT1±  
SDI_OUT1±  
SDI_OUT1±  
Single cable driver  
Dual cable drivers  
SDI_OUT2±  
SDI_OUT2±  
H
L
OUT0±  
OUT0±  
Single cable driver with host-side loop-back enabled  
Dual cable drivers with host-side loop-back enabled  
L
7.3.3 Input Signal Detect  
IN0 has a signal detect circuit to monitor the presence or absence of an input signal. When the input signal  
amplitude for the selected input exceeds the signal detect assert threshold, the LMH1228 operates in normal  
operation mode.  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
In the absence of an input signal, the LMH1228 automatically goes into Power Save Mode to conserve power  
dissipation. When a valid signal is detected, the LMH1228 automatically exits Power Save Mode and returns to  
the normal operation mode. If the ENABLE pin is pulled low, the LMH1228 is forced into Power-Down Mode. In  
Power Save Mode, both the signal detect circuit and the serial interface remain active. In Power-Down Mode,  
only the serial interface remains active.  
Users can monitor the status of the signal detect through register programming. This can be done either by  
configuring the LOCK_N pin to output the SD_N status or by monitoring the signal detect status register.  
Table 3. Input Signal Detect Modes of Operation  
ENABLE  
SIGNAL INPUT  
OPERATING MODE  
Normal operation  
H
100-signal input at IN0±  
Signal Detector at IN0±  
Serial interface active  
Power Save Mode  
H
L
No signal at IN0±  
Signal Detector at IN0±  
Serial interface active  
Power-Down Mode  
Forced device power down  
Serial interface active  
Input signal ignored  
7.3.4 Continuous Time Linear Equalizer (CTLE)  
The LMH1228 has a continuous time linear equalizer (CTLE) block for IN0. The CTLE compensates for  
frequency-dependent loss due to the transmission media prior to the device input. The CTLE accomplishes this  
by applying variable gain to the input signal, thereby boosting higher frequencies more than lower frequencies.  
The CTLE block extends the signal bandwidth, restores the signal amplitude, and reduces ISI caused by the  
transmission medium.  
IN0 has an on-chip 100-Ω termination and is designed for AC coupling, requiring a 4.7-μF, AC-coupling capacitor  
for minimizing base-line wander. The PCB equalizer can compensate up to 20 inches of board trace at data rates  
up to 11.88 Gbps. There are two adapt modes for IN0: AM0 manual mode and AM1 adaptive mode. In AM0  
manual mode, fixed EQ boost settings are applied through user-programmable control. In AM1 adaptive mode,  
state machines automatically find the optimal EQ boost from a set of 16 predetermined settings defined in  
Registers 0x40-0x4F.  
The HOST_EQ0 pin determines the IN0 adapt mode and EQ boost level. For normal operation, HOST_EQ0 = F  
is recommended. HOST_EQ0 pin logic settings are shown in Table 4. These HOST_EQ0 pin settings can be  
overridden by register control. For more information, refer to the LMH1228 and LMH1208 Programming Guide  
(SNAU206).  
Table 4. HOST_EQ0 Pin EQ Settings  
RECOMMENDED BOARD  
HOST_EQ0(1) IN0± EQ BOOST  
TRACE IN0±(2)  
H
F
All Rates: AM0 Manual Mode, EQ=0x00  
< 1 inch  
Normal Operation  
12G to 3G Rates: AM1 Adaptive Mode  
1.5G, 270M Rates: AM0 Manual Mode, EQ= 0x00  
0-20 inches  
R
L
All Rates: AM0 Manual Mode, EQ=0x80  
All Rates: AM0 Manual Mode, EQ=0x90  
10-15 inches  
20 inches  
(1) The HOST_EQ0 pin is also used to set OUT0 VOD and de-emphasis values. See Host-Side 100-  
Output Driver (OUT0±) for more information.  
(2) Recommended board trace at 11.88 Gbps.  
7.3.5 Clock and Data (CDR) Recovery  
After the input signal passes through the CTLE, the equalized data is fed into the clock and data recovery (CDR)  
block. Using an internal PLL, the CDR locks to the incoming equalized data and recovers a clean internal clock  
to re-sample the equalized data. The LMH1228 CDR is able to tolerate high input jitter, tracking low-frequency  
input jitter below the PLL bandwidth while reducing high-frequency input jitter above the PLL bandwidth. The  
supported data rates are listed in Table 5.  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Table 5. Supported Data Rates  
INPUT  
DATA RATE  
RECLOCKER  
Enable  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps, 1.485 Gbps, 270 Mbps(1)  
IN0±  
125 Mbps  
Bypass  
(1) The LMH1228 supports divide-by-1.001 lock rates for 11.88 Gbps, 5.94 Gbps, 2.97 Gbps, and 1.485  
Gbps.  
7.3.6 Internal Eye Opening Monitor (EOM)  
The LMH1228 has an on-chip eye opening monitor (EOM) that can be used to analyze, monitor, and diagnose  
the post-equalized waveform, just prior to the CDR reclocker. The EOM is operational for 2.97 Gbps and higher  
data rates.  
The EOM monitors the post-equalized waveform in a time window that spans one unit interval and a configurable  
voltage range that spans up to ±400 mV. The time window and voltage range are divided into 64 steps, so the  
result of the eye capture is a 64 × 64 matrix of hits, where each point represents a specific voltage and phase  
offset relative to the main data sampler. The number of hits registered at each point needs to be taken in context  
with the total number of bits observed at that voltage and phase offset to determine the corresponding probability  
for that point.  
The resulting 64 × 64 matrix produced by the EOM can be processed by software and visualized in a number of  
ways. Two common ways to visualize this data are shown in Figure 10 and Figure 11. These diagrams depict  
examples of eye monitor plots implemented by software. The first plot is an example using the EOM data to plot  
a basic eye using ASCII characters, which can be useful for diagnostic software. The second plot shows the first  
derivative of the EOM data, revealing the density of hits and the actual waveforms and crossings that comprise  
the eye.  
Figure 10. Internal Input Eye Monitor Plot  
Figure 11. Internal Eye Monitor Hit Density Plot  
A common measurement performed by the EOM is the horizontal and vertical eye opening. The horizontal eye  
opening (HEO) represents the width of the post-equalized eye at 0-V differential amplitude, measured in unit  
intervals or picoseconds (ps). The vertical eye opening (VEO) represents the height of the post-equalized eye,  
measured midway between the mean zero crossing of the eye. This position in time approximates the CDR  
sampling phase. HEO and VEO measurements can be read back through register control.  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
7.3.7 Output Function Control  
The LMH1228 output function control for data routed to outputs SDI_OUT1, SDI_OUT2, and OUT0 is configured  
by the OUT_CTRL pin. The OUT_CTRL pin determines whether to bypass the reclocker. In normal operation  
(OUT_CTRL = F), the reclocker is enabled.  
OUT_CTRL pin logic settings are shown in Table 6. These settings can be overridden through register control by  
applying the appropriate override bit values. For more information, refer to the LMH1228 and LMH1208  
Programming Guide (SNAU206).  
Table 6. OUT_CTRL Settings for Bypass Modes(1)  
IN0± PCB  
EQUALIZER  
OUT_CTRL  
RECLOCKER SUMMARY  
Normal operation  
H, F  
Enable  
Enable  
Bypass  
Input IN0 equalizer enabled  
Reclocker enabled  
Input IN0 equalizer enabled in AM0 manual mode.  
IN0 EQ settings configurable by HOST_EQ0 pin.  
Reclocker bypassed  
R, L  
Enable  
(1) Regardless of OUT_CTRL pin setting, IN0 CTLE is always enabled.  
7.3.8 Output Driver Control  
7.3.8.1 Line-Side Output Cable Driver (SDI_OUT1+, SDI_OUT2+)  
The LMH1228 has two output cable driver (CD) blocks, one for SDI_OUT1 and another for SDI_OUT2. These  
SDI outputs are designed to drive 75-single-ended coaxial cables at data rates up to 11.88 Gbps. Both  
SDI_OUT1 and SDI_OUT2 feature an integrated 75-termination and return loss compensation network for  
meeting stringent SMPTE return loss requirements (see Figure 8). The cable drivers are designed for AC  
coupling, requiring a 4.7-μF, AC-coupling capacitor for minimizing base-line wander due to the rare-occurring  
pathological bit pattern.  
7.3.8.1.1 Output Amplitude (VOD)  
SDI_OUT1 and SDI_OUT2 are designed for transmission across 75-Ω single-ended impedance. The nominal  
SDI cable driver output amplitude (VOD) is 800 mVp-p single-ended. In the presence of long output cable lengths  
or crosstalk, the SDI_VOD pin can be used to optimize the cable driver output with respect to the nominal  
amplitude. Table 7 details VOD settings that can be applied to both SDI_OUT1 and SDI_OUT2. The SDI_VOD  
pin can be overridden through register control. In addition, the nominal VOD amplitude can be changed by  
register control. For more information, refer to the LMH1228 and LMH1208 Programming Guide (SNAU206).  
Table 7. SDI_VOD Settings for Line-Side Output Amplitude  
SDI_VOD  
DESCRIPTION  
H
F
R
L
about +5% of nominal  
800 mVp-p (nominal)  
about +10% of nominal  
about –5% of nominal  
7.3.8.1.2 Output Pre-Emphasis  
In addition to SDI cable driver VOD control, the LMH1228 can add pre-emphasis on the cable driver output to  
improve output signal integrity when the reclocker recovers a UHD (12G, 6G) or HD (3G, 1.5G) input data rate.  
By default, the LMH1228 automatically enables pre-emphasis on SDI_OUT1 and SDI_OUT2 at UHD (12G, 6G)  
rates, and pre-emphasis is disabled for all other data rates. When enabled, the amount of pre-emphasis applied  
to the cable driver outputs is determined by register control. If the reclocker is bypassed or if the user desires to  
disable automatic pre-emphasis, pre-emphasis can be enabled manually through register control. For more  
information, refer to the LMH1228 and LMH1208 Programming Guide (SNAU206).  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
 
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.3.8.1.3 Output Slew Rate  
SMPTE specifications require different output driver rise and fall times depending on the operating data rate. To  
meet these requirements, the output edge rate of SDI_OUT1 and SDI_OUT2 is automatically programmed  
according to the signal recovered by the reclocker. Typical edge rates at the cable driver output are shown in  
Table 8.  
Table 8. SDI_OUT1 and SDI_OUT2 Output Edge Rate  
CABLE DRIVER OUTPUT  
DETECTED DATA RATE  
EDGE RATE (TYP)  
11.88 Gbps  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
34 ps  
36 ps  
59 ps  
60 ps  
550 ps  
If the reclocker is bypassed, users must program the desired edge rate manually through register control. For  
more information, refer to the LMH1228 and LMH1208 Programming Guide (SNAU206).  
7.3.8.1.4 Output Polarity Inversion  
Polarity inversion is supported on both SDI_OUT1 and SDI_OUT2 outputs through register control.  
7.3.8.2 Host-Side 100-Output Driver (OUT0±)  
OUT0 is a 100-driver output. OUT0 serves as a host-side loop-back output. OUT0 also supports polarity  
inversion.  
The driver offers users the capability to select higher output amplitude and de-emphasis levels for longer board  
trace that connects the drivers to their downstream receivers. Driver de-emphasis provides transmitter  
equalization to reduce the ISI caused by the board trace.  
The VOD and de-emphasis levels for OUT0 are set by default to 570 mVp-p and –0.4 dB, and these values are  
recommended for driving 1-2 inches of board trace from OUT0± at 11.88 Gbps. These settings can be changed  
through register control if desired. When these parameters are controlled by registers, the VOD and de-emphasis  
levels can be programmed independently. For more information, refer to the LMH1228 and LMH1208  
Programming Guide (SNAU206).  
7.3.9 Status Indicators and Interrupts  
The LOCK_N pin is a 3.3-V tolerant, active-low, open-drain output. An external resistor to the logic supply is  
required. The LOCK_N pin can be configured to indicate reclocker lock, input signal detect, or an interrupt event.  
7.3.9.1 LOCK_N (Lock Indicator)  
By default, LOCK_N is the reclocker lock indicator, and this pin asserts low when the LMH1228 achieves lock to  
a valid SMPTE data rate. The LOCK_N pin functionality can also be configured through register control to  
indicate SD_N (signal detect) or INT_N (interrupt) events. For more information about how to reconfigure the  
LOCK_N pin functionality, refer to the LMH1228 and LMH1208 Programming Guide (SNAU206).  
7.3.9.2 SD_N (Signal Detect)  
The LOCK_N pin can be reconfigured through register control to indicate a SD_N (signal detect) event. When  
configured as a SD_N output, the pin asserts low at the end of adaptation after a valid signal is detected by the  
IN0 signal detect circuit. For more information about how to configure the LOCK_N pin for SD_N functionality,  
refer to the LMH1228 and LMH1208 Programming Guide (SNAU206).  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
7.3.9.3 INT_N (Interrupt)  
The LOCK_N pin can be configured to indicate an INT_N (interrupt) event. When configured as an INT_N output,  
the pin asserts low when an interrupt occurs, according to the programmed interrupt masks. Five separate masks  
can be programmed through register control as interrupt sources:  
If there is a loss of signal (LOS) event on IN0 (2 separate masks).  
If HEO or VEO falls below a certain threshold after CDR is locked (1 mask).  
If a CDR Lock event has occurred (2 separate masks).  
INT_N is a sticky bit, meaning that it will flag after an interrupt occurs and will not clear until read-back. Once the  
Interrupt Status Register is read, the INT_N pin will assert high again. For more information about how to  
configure the LOCK_N pin for INT_N functionality, refer to the LMH1228 and LMH1208 Programming Guide  
(SNAU206).  
7.4 Device Functional Modes  
The LMH1228 operates in one of two modes: System Management Bus (SMBus) or Serial Peripheral Interface  
(SPI) mode. To determine the mode of operation, the proper setting must be applied to the MODE_SEL pin at  
power up, as detailed in Table 9.  
Table 9. MODE_SEL Pin Settings  
LEVEL  
DESCRIPTION  
H
F
R
L
Reserved for factory testing – do not use  
Selects SPI Interface for register access  
Reserved for factory testing – do not use  
Selects SMBus Interface for register access  
7.4.1 System Management Bus (SMBus) Mode  
The SMBus interface can also be used to control the device. If MODE_SEL = Low (1 kΩ to VSS), Pins 13 and 29  
are configured as SDA and SCL. Pins 11 and 28 are address straps ADDR0 and ADDR1 during power up. The  
maximum operating speed supported on the SMBUS pins is 400 kHz.  
Table 10. SMBus Device Slave Addresses(1)  
ADDR0  
ADDR1  
7-BIT SLAVE  
8-BIT WRITE  
(LEVEL)  
(LEVEL)  
ADDRESS [HEX]  
COMMAND [HEX]  
L
L
L
R
F
H
L
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
L
L
R
R
R
R
F
F
F
F
H
H
H
H
R
F
H
L
R
F
H
L
R
F
H
(1) The 8-bit write command consists of the 7-bit slave address (Bits 7:1) with 0 appended to the LSB to  
indicate an SMBus write. For example, if the 7-bit slave address is 0x2D (010 1101'b), the 8-bit write  
command is 0x5A (0101 1010'b).  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.4.1.1 SMBus Read and Write Transaction  
SMBus is a two-wire serial interface through which various system component chips can communicate with the  
master. Slave devices are identified by having a unique device address. The two-wire serial interface consists of  
SCL and SDA signals. SCL is a clock output from the master to all of the slave devices on the bus. SDA is a  
bidirectional data signal between the master and slave devices. The LMH1228 SMBus SCL and SDA signals are  
open-drain and require external pullup resistors.  
Start and Stop:  
The master generates Start and Stop patterns at the beginning and end of each transaction.  
Start: High-to-low transition (falling edge) of SDA while SCL is high.  
Start: High-to-low transition (falling edge) of SDA while SCL is high.  
SDA  
SCL  
S
P
Start  
Condition  
Stop  
Condition  
Figure 12. Start and Stop Conditions  
The master generates nine clock pulses for each byte transfer. The 9th clock pulse constitutes the ACK cycle.  
The transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is recorded when the device  
pulls SDA low, while a NACK is recorded if the line remains high.  
ACK Signal  
from Receiver  
SDA  
MSB  
SCL  
1
2
3 - 6  
7
8
9
1
2
3 - 8  
9
S
P
ACK  
ACK  
Start  
Condition  
Stop  
Condition  
Byte Complete  
Interrupt Within  
Receiver  
Clock Line Held Low  
by Receiver While  
Interrupt Serviced  
Figure 13. Acknowledge (ACK)  
7.4.1.1.1 SMBus Write Operation Format  
Writing data to a slave device consists of three parts, as illustrated in Figure 14:  
1. The master begins with a start condition followed by the slave device address with the R/W bit set to 0’b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the 8-bit data is written, followed by a stop condition.  
Device  
Address  
Word Address  
Data  
SDA  
Line  
Figure 14. SMBus Write Operation  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
7.4.1.1.2 SMBus Read Operation Format  
SMBus read operation consists of four parts, as illustrated in Figure 15:  
1. The master begins with a start condition, followed by the slave device address with the R/W bit set to 0'b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the master initiates a restart condition, followed by the slave address  
with the R/W bit set to 1'b.  
4. After an ACK from the slave device, the 8-bit data is read-back. The last ACK is high if there are no more  
bytes to read, and the last read is followed by a stop condition.  
Device  
Address  
Device  
Address  
Word Address (n)  
Data (n)  
SDA  
Line  
Set word address in the device  
that will be read following restart  
and repeat of device address  
Figure 15. SMBus Read Operation  
7.4.2 Serial Peripheral Interface (SPI) Mode  
If MODE_SEL = F or H, the LMH1228 is in SPI mode. In SPI mode, the following pins are used for SPI bus  
communication:  
MOSI (Pin 13): Master Output Slave Input  
MISO (Pin 28): Master Input Slave Output  
SS_N (Pin 11): Slave Select (Active Low)  
SCK (Pin 29): Serial Clock (Input to the LMH1228 Slave Device)  
7.4.2.1 SPI Read and Write Transactions  
Each SPI transaction to a single device is 17 bits long and is framed by SS_N when asserted low. The MOSI  
input is ignored, and the MISO output is floated whenever SS_N is deasserted (high).  
The bits are shifted in left-to-right. The first bit is R/W, which is 1'b for read and 0'b for write. Bits A7-A0 are the  
8-bit register address, and bits D7-D0 are the 8-bit read or write data. The previous SPI command, address, and  
data are shifted out on MISO as the current command, address, and data are shifted in on MOSI. In all SPI  
transactions, the MISO output signal is enabled asynchronously when SS_N asserts low. The contents of a  
single MOSI or MISO transaction frame are shown in Figure 16.  
Figure 16. 17-Bit Single SPI Transaction Frame  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
 
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.4.2.2 SPI Write Transaction Format  
For SPI writes, the R/W bit is 0'b. SPI write transactions are 17 bits per device, and the command is executed on  
the rising edge of SS_N. The SPI transaction always starts on the rising edge of the clock.  
The signal timing for a SPI Write transaction is shown in Figure 17. The prime values on MISO (for example, A7')  
reflect the contents of the shift register from the previous SPI transaction and are listed as don’t-care for the  
current transaction.  
tSSOF  
tSSH  
SS_N  
SCK  
tPL  
tSSSU  
tPH  
tH  
tSU  
HiZ  
MOSI  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
tODZ  
HiZ  
MISO  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
Figure 17. Signal Timing for a SPI Write Transaction  
7.4.2.3 SPI Read Transaction Format  
A SPI read transaction is 34 bits per device and consists of two 17-bit frames. The first 17-bit read transaction  
frame shifts in the address to be read, followed by a dummy transaction second frame to shift out 17-bit read  
data. The R/W bit is 1'b for the read transaction, as shown in Figure 18.  
The first 17 bits from the read transaction specifies 1-bit of R/W and 8-bits of address A7-A0 in the first 8 bits.  
The eight 1’s following the address are ignored. The second dummy transaction acts like a read operation on  
address 0xFF and needs to be ignored. However, the transaction is necessary to shift out the read data D7-D0 in  
the last 8 bits of the MISO output. As with the SPI Write, the prime values on MISO during the first 16 clocks are  
listed as don’t care for this portion of the transaction. The values shifted out on MISO during the last 17 clocks  
reflect the read address and 8-bit read data for the current transaction.  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 18. Signal Timing for a SPI Read Transaction  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
7.4.2.4 SPI Daisy Chain  
The LMH1228 supports SPI daisy-chaining among multiple devices, as shown in Figure 19.  
MISO  
Device 1  
Device 2  
Device 3  
Device N  
Host  
LMH1228  
LMH1228  
LMH1228  
LMH1228  
. . .  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
SCK  
SS  
Figure 19. Daisy-Chain Configuration  
Each LMH1228 device is directly connected to the SCK and SS_N pins of the host. The first LMH1228 device in  
the chain is connected to the host’s MOSI pin, and the last device in the chain is connected to the host’s MISO  
pin. The MOSI pin of each intermediate LMH1228 device in the chain is connected to the MISO pin of the  
previous LMH1228 device, thereby creating a serial shift register. In a daisy-chain configuration of N × LMH1228  
devices, the host conceptually sees a shift register of length 17 × N for a basic SPI transaction, during which  
SS_N is asserted low for 17 × N clock cycles.  
7.5 Register Maps  
The LMH1228 register map is divided into three register pages. These register pages are used to control  
different aspects of the LMH1228 functionality. A brief summary of the pages is shown below:  
1. Share Register Page: This page corresponds to global parameters, such as LMH1228 device ID and  
LOCK_N status configuration. This is the default page at start-up. Access this page by setting Reg 0xFF[2:0]  
= 000’b.  
2. CTLE/CDR Register Page: This page corresponds to IN0 PCB CTLE, output mux settings, CDR settings,  
and output interrupt overrides. Access this page by setting Reg 0xFF[2:0] = 100’b.  
3. Driver Register Page: This page corresponds to OUT0, SDI_OUT1, and SDI_OUT2 driver output settings.  
Access this page by setting Reg 0xFF[2:0] = 101’b.  
For the complete register map, typical device configurations, and proper register reset sequencing, refer to the  
LMH1228 and LMH1208 Programming Guide (SNAU206).  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 SMPTE Requirements and Specifications  
SMPTE specifies several key requirements for the Serial Digital Interface to transport digital video over coaxial  
cables. Such requirements include return loss, AC coupling, and data rate dependency with rise and fall times.  
1. Return Loss: This specification details how closely the port resembles 75-Ω impedance across a specified  
frequency band. The LMH1228 features a built-in 75-return-loss network on SDI_OUT1 and SDI_OUT2 to  
minimize parasitics and improve overall signal integrity.  
2. AC Coupling: AC-coupling capacitors are required for transporting uncompressed serial data streams with  
heavy low-frequency content. The use of 4.7-μF, AC-coupling capacitors is recommended to avoid low-  
frequency DC wander.  
3. Rise/Fall Time: Output 75-signals are required to meet certain rise and fall timing depending on the data  
rate. This improves the eye opening observed for the receiving device. The LMH1228 SDI_OUT1 and  
SDI_OUT2 cable drivers feature automatic edge rate adjustment to meet SMPTE rise and fall time  
requirements.  
TI recommends placing the LMH1228 as close as possible to the 75-Ω BNC ports to meet SMPTE specifications.  
8.1.2 Low-Power Optimization  
The LMH1228 IN0 CTLE operates in either AM1 Adaptive Mode or AM0 Manual Mode. When operating in AM1,  
the LMH1228 uses HEO/VEO Lock Monitoring as a key parameter to achieve lock. HEO/VEO Lock Monitoring  
determines the CTLE boost setting that produces the best horizontal and vertical eye opening after the CTLE.  
Once AM1 adaptation is complete and the LMH1228 asserts CDR lock at the optimal IN0 CTLE setting,  
HEO/VEO Lock Monitoring is no longer required to maintain lock. Therefore, HEO/VEO Lock Monitoring can be  
disabled by setting CTLE/CDR Reg 0x3E[7] = 0'b after lock is declared. Disabling HEO/VEO Lock Monitoring  
optimizes power dissipation, reducing the overall power by approximately 25 mW.  
When operating in AM0, the LMH1228 does not use HEO/VEO Lock Monitoring, because the IN0 CTLE setting  
is set manually by the user. In AM0, HEO/VEO Lock Monitoring can be disabled at any time.  
8.1.3 Optimized Loop Bandwidth Settings for Arria 10 FPGA Applications  
The LMH1228 default loop bandwidth setting is optimized for a wide variety of applications. For applications  
using the Intel Arria 10 FPGA, further optimization of the loop bandwidth may be required. Refer to the LMH1228  
and LMH1208 Programming Guide (SNAU206) for detailed register settings when using the LMH1228 with an  
Arria 10 FPGA.  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
8.2 Typical Applications  
The LMH1228 is a dual cable driver with integrated reclocker that supports SDI data rates up to 11.88 Gbps.  
Figure 20 shows a typical application circuit for the LMH1228.  
Specific examples of typical applications for the LMH1228 as a dual cable driver and distribution amplifier are  
detailed in the following subsections.  
2.5 V  
Place 0.1-µF Capacitors  
close to each supply pin  
4.7 µF  
100-Coupled Trace  
VDD_CDR  
SDI_OUT1+  
VIN  
VDD_LDO  
(1.8 V) OUT0+  
Line-Side Output  
RX+  
RX-  
75-BNC  
SDI_OUT1-  
SS_N  
OUT0-  
4.7 µF  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
VIN  
75 Ω  
SCK  
1 kꢀ  
Host-Side FPGA/  
Video Processor  
MOSI  
VIN  
MISO  
LMH1228  
RSV6**  
EP  
VSS  
VSS  
VSS  
200 Ω  
MODE_SEL  
Level F (SPI Mode)  
LED  
LOCK_N  
100-Coupled Trace  
Line-Side Output  
SDI_OUT2+  
SDI_OUT2-  
TX+  
TX-  
IN0+  
IN0-  
75-BNC  
4.7 µF  
4.7 µF  
75 Ω  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
Optional pullup or pulldown  
resistors for 4-Level Strap  
Configuration Pins  
Optional pullup or pulldown  
resistors for 2-Level Strap  
Configuration Pins  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
Level H = 1 kΩ to VIN  
Level F = No Connect  
Level R = 20 kΩ to VSS  
Level L = 1 kΩ to VSS  
Level H = 1 kΩ to VIN  
Level L = 1 kΩ to VSS  
1 kꢀ  
or  
1 kꢀ  
or  
1 kꢀ  
or  
1 kꢀ  
20 kꢀ  
20 kꢀ  
20 kꢀ  
*Internally pulled high  
**Internally pulled low  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. LMH1228 Typical Application Circuit  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1 Dual Cable Driver  
The LMH1228 can be configured as a dual cable driver to route the same SDI output signal to multiple receivers.  
In this configuration, the LMH1228 adaptively equalizes 100-SDI input data at IN0 and uses the dual cable  
drivers at SDI_OUT1 and SDI_OUT2 to drive out the SDI signal.  
Figure 21 shows a typical application of an LMH1228 as a dual cable driver output. In this example, the  
LMH1219 Cable EQ with Integrated Reclocker provides an SDI input to the SDI FPGA. The FPGA then sends  
post-processed SDI data to the IN0 of the LMH1228, which drives the data on cable driver outputs SDI_OUT1  
and SDI_OUT2.  
IN0  
OUT0  
75-Ω SDI  
Input  
LMH1219  
EQ +  
Reclocker  
SerDes Rx  
SDI FPGA  
SDI_OUT1  
SDI_OUT2  
IN0  
75-Ω SDI  
Output 1  
SerDes Tx  
LMH1228  
Dual Cable  
Driver  
75-Ω SDI  
Output 2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. LMH1228 Dual Cable Driver Application  
8.2.1.1 Design Requirements  
For general LMH1228 design requirements, reference the guidelines in Table 11.  
For dual cable driver application-specific requirements, reference the guidelines in Table 12.  
Table 11. LMH1228 General Design Requirements  
DESIGN PARAMETER  
REQUIREMENTS  
SDI_OUT1+, SDI_OUT2+ AC-coupling capacitors 4.7-μF capacitors recommended  
SDI_OUT1–, SDI_OUT2– AC-coupling capacitors 4.7-μF capacitors recommended, AC terminated with 75 Ω to VSS.  
IN0± and OUT0± AC-coupling capacitors  
Input and Output Terminations  
4.7-μF capacitors recommended  
Input and output terminations provided internally. Do not add external terminations.  
10-μF and 1-μF bulk capacitors; place close to each device.  
0.1-μF capacitor; place close to each supply pin.  
DC power supply decoupling capacitors  
VDD_LDO decoupling capacitors  
MODE_SEL Pin  
1-μF and 0.1-μF capacitors; place as close as possible to the device VDD_LDO pin.  
SPI: Leave MODE_SEL unconnected (Level F)  
SMBus: Connect 1 kto VSS (Level L)  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps, 1.485 Gbps, or Divide-by-1.001 sub-rates and 270  
Mbps.  
Input Reclocked Data Rate  
For all other input data rates, the reclocker is automatically bypassed.  
Table 12. LMH1228 Dual Cable Driver Requirements  
DESIGN PARAMETER  
REQUIREMENTS  
OUT0_SEL Pin  
1 kto VIN (Level H) to disable the OUT0 loop-back output  
1 kto VSS (Level L) to enable SDI_OUT2 as secondary cable output  
SDI_OUT2_SEL Pin  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
8.2.1.2 Detailed Design Procedure  
The design procedure for dual cable driver applications is as follows:  
1. Select a power supply that meets the DC and AC requirements in Recommended Operating Conditions.  
2. Choose a small 0402 surface mount ceramic capacitor for AC-coupling capacitors to maintain characteristic  
impedance.  
3. Choose a high-quality, 75-Ω BNC connector that is capable of supporting 11.88-Gbps applications. Consult a  
BNC supplier regarding insertion loss, impedance specifications, and recommended footprint for meeting  
SMPTE return loss.  
4. Follow detailed high-speed layout recommendations provided in Layout Guidelines to ensure optimal signal  
quality when interconnecting 75-and 100-signals to the LMH1228.  
5. Determine whether SPI or SMBus communication is necessary. If the LMH1228 must be programmed with  
settings other than what is offered by pin control, users must use SPI or SMBus Mode for additional  
programming.  
6. Configure OUT0_SEL and SDI_OUT2_SEL pins according to the desired default use case.  
7. Tune the SDI_VOD output amplitude control pin for optimal signal quality depending on the cable length  
attached at SDI_OUT1+ and SDI_OUT2+. Use register control for more tuning options if necessary.  
8.2.1.3 Application Curves  
The LMH1228 performance on SDI_OUT1+ and SDI_OUT2+ was measured with the test setups shown in  
Figure 22 and Figure 23.  
LMH1228  
Pattern  
Generator  
TL  
Differential 100  
IN0  
Oscilloscope  
SDI_OUT1+  
VOD = 800 mVp-p,  
PRBS10  
FR4 Channel  
Figure 22. Test Setup for LMH1228 to SDI_OUT1+  
LMH1228  
SDI_OUT2+  
Pattern  
Generator  
TL  
Differential 100  
FR4 Channel  
IN0  
Oscilloscope  
VOD = 800 mVp-p,  
PRBS10  
Figure 23. Test Setup for LMH1228 to SDI_OUT2+  
The eye diagrams in this subsection show how the LMH1228 improves overall signal integrity in the data path for  
100-Ω differential FR4 PCB trace at IN0±.  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
 
 
 
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Measured at SDI_OUT1+  
Measured at SDI_OUT2+  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 24. 11.88 Gbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 25. 11.88 Gbps, TL = 20" FR4, Reclocked  
Measured at SDI_OUT1+  
Measured at SDI_OUT2+  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 26. 5.94 Gbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 27. 5.94 Gbps, TL = 20" FR4, Reclocked  
Measured at SDI_OUT1+  
Measured at SDI_OUT2+  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 28. 2.97 Gbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 29. 2.97 Gbps, TL = 20" FR4, Reclocked  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
Measured at SDI_OUT1+  
Measured at SDI_OUT2+  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 30. 1.485 Gbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 31. 1.485 Gbps, TL = 20" FR4, Reclocked  
Measured at SDI_OUT1+  
Measured at SDI_OUT2+  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 32. 270 Mbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 33. 270 Mbps, TL = 20" FR4, Reclocked  
8.2.2 Distribution Amplifier  
The LMH1228 can be configured as a distribution amplifier to distribute the same SDI input signal to multiple  
cable driver outputs. In this configuration, the LMH1228 uses the dual cable drivers at SDI_OUT1 and  
SDI_OUT2 to drive out the SDI signal seen at IN0. Meanwhile, the loop-back output on OUT0 is daisy-chained  
as a duplicate input to IN0 of the next LMH1228.  
Figure 34 shows a typical application where four LMH1228s are used in combination with an LMH1219 Cable EQ  
with Integrated Reclocker to form a 1:8 distribution amplifier network.  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
IN0  
OUT0 IN0  
OUT0  
SDI_OUT1  
SDI_OUT2  
75-Ω SDI  
Output 1  
75-Ω SDI  
Input  
LMH1219  
EQ +  
Reclocker  
LMH1228  
Dual Cable  
Driver  
75-Ω SDI  
Output 2  
IN0  
SDI_OUT1  
SDI_OUT2  
75-Ω SDI  
Output 3  
LMH1228  
Dual Cable  
Driver  
OUT0  
75-Ω SDI  
Output 4  
IN0  
SDI_OUT1  
SDI_OUT2  
75-Ω SDI  
Output 5  
LMH1228  
Dual Cable  
Driver  
OUT0  
75-Ω SDI  
Output 6  
IN0  
SDI_OUT1  
SDI_OUT2  
75-Ω SDI  
Output 7  
LMH1228  
Dual Cable  
Driver  
75-Ω SDI  
Output 8  
Copyright © 2016, Texas Instruments Incorporated  
Figure 34. LMH1228 Distribution Amplifier Application  
8.2.2.1 Design Requirements  
See Table 11 in Dual Cable Driver Design Requirements for general LMH1228 design requirements.  
For distribution amplifier application-specific requirements, reference the guidelines in Table 13.  
Table 13. LMH1228 Distribution Amplifier Requirements  
DESIGN PARAMETER  
REQUIREMENTS  
1 kto VSS (Level L) to enable OUT0 as a loop-back output to the next LMH1228  
IN0 input  
OUT0_SEL Pin  
SDI_OUT2_SEL Pin  
1 kto VSS (Level L) to enable SDI_OUT2 as secondary cable output  
8.2.2.2 Detailed Design Procedure  
See Dual Cable Driver Detailed Design Procedure and follow Steps 1 through 5. Refer to the additional steps  
below for distribution amplifier applications.  
1. Configure OUT0_SEL and SDI_OUT2_SEL pins according to the desired default use case.  
2. Tune the output VOD and de-emphasis level for the 100-driver prior to each LMH1228 IN0±. In the  
distribution amplifier example shown in Figure 34, this step applies to the LMH1219 OUT0± driver and all  
LMH1228 OUT0± drivers that are daisy-chained to a subsequent LMH1228 IN0±. If OUT0± is located within  
1-2 inches of IN0±, then use a lower VOD setting and no de-emphasis. If the OUT0± is located many inches  
away from IN0±, some VOD gain and de-emphasis may be required at OUT0± for the IN0 CTLE to equalize  
optimally. Use register control for more tuning options if necessary.  
3. Tune the SDI_VOD output amplitude control pin for optimal signal quality depending on the cable length  
attached at SDI_OUT1+ and SDI_OUT2+ for each LMH1228. Use register control for more tuning options if  
necessary.  
8.2.2.3 Application Curves  
The LMH1228 performance on OUT0± was measured with the test setup shown in Figure 22.  
LMH1228  
Pattern  
Generator  
TL  
Differential 100  
IN0  
Oscilloscope  
OUT0  
VOD = 800 mVp-p,  
PRBS10  
FR4 Channel  
Figure 35. Test Setup for LMH1228 to OUT0±  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
The eye diagrams in this subsection show how the LMH1228 improves overall signal integrity in the data path for  
100-Ω differential FR4 PCB trace at IN0±.  
Measured at OUT0±  
Measured at OUT0±  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 36. 11.88 Gbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 37. 5.94 Gbps, TL = 20" FR4, Reclocked  
Measured at OUT0±  
Measured at OUT0±  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 38. 2.97 Gbps, TL = 20" FR4, Reclocked  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 39. 1.485 Gbps, TL = 20" FR4, Reclocked  
Measured at OUT0±  
HOST_EQ0 = F, SDI_OUT2_SEL = L, OUT_CTRL = F  
Figure 40. 270 Mbps, TL = 20" FR4, Reclocked  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The LMH1228 requires decoupling capacitors to ensure a stable power supply. For power supply decoupling,  
0.1-μF surface-mount ceramic capacitors must be placed close to each VDD_CDR, VDD_LDO, and VIN supply  
pin to VSS. Larger bulk capacitors (for example, 10 μF and 1 μF) are recommended for VDD_CDR and VIN.  
2.5 V  
10 µF  
1 µF  
1 µF  
0.1 µF  
0.1 µF  
VDD_CDR  
VIN  
EP  
VDD_LDO  
(1.8 V)  
VSS  
VSS  
VSS  
LMH1228  
1 µF  
0.1 µF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. Recommended Power Supply Decoupling  
Good supply bypassing requires low inductance capacitors. This can be achieved through an array of multiple  
small body size surface-mount bypass capacitors to keep low supply impedance. Better results can be achieved  
through the use of a buried capacitor formed by a VDD and VSS plane separated by 2 to 4 mil dielectric in a  
printed-circuit board.  
10 Layout  
10.1 Layout Guidelines  
The following guidelines are recommended to optimize the board layout for the LMH1228.  
10.1.1 Board Stack-Up and Ground References  
Choose a suitable board stack-up that supports 75-Ω single-ended trace and 100-Ω differential trace routing  
on the top layer of the board. This is typically done with a Layer-2 ground plane reference for the 100-Ω  
differential traces and a Layer-3 ground plane reference for the 75-Ω single-end traces.  
Maintain a distance of at least 5 times the trace width between signal trace and ground reference if they are  
on the same layer. This prevents unwanted changes in the characteristic impedance.  
Maintain a consistent ground plane reference for each high-speed trace from source to end-point. Ground  
reference discontinuities lead to characteristic impedance mismatch.  
10.1.2 High-Speed PCB Trace Routing and Coupling  
Observe the following general high-speed recommendations for high-speed trace routing:  
For differential pairs, maintain a uniform width and gap for each differential pair where possible. When traces  
must diverge (for example, due to AC-coupling capacitors), ensure that the traces branch out or merge  
uniformly.  
To prevent reflections due to trace routing, ensure that trace bends are at most 45°. Right angle bends should  
be implemented with at least two 45° corners. Radial bends are ideal.  
Avoid using signal vias. If signal vias must be used, a return path (GND) via must be placed near the signal  
via to provide a consistent ground reference and minimize impedance discontinuities.  
Avoid via stubs by back-drilling as necessary.  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
Layout Guidelines (continued)  
10.1.2.1 SDI_OUT1± and SDI_OUT2±:  
Use an uncoupled trace with 75-Ω single-ended impedance for signal routing to SDI_OUT1± and  
SDI_OUT2±.  
The trace width is typically 8 to 10 mils with reference to a Layer-3 ground plane.  
10.1.2.2 IN0± and OUT0±:  
Use coupled traces with 100-Ω differential impedance for signal routing to IN0± and OUT0±.  
The trace width is typically 5 to 8 mils with reference to a Layer-2 ground plane.  
10.1.3 Anti-Pads  
Place anti-pads (ground relief) on the power and ground planes directly under the 4.7-μF, AC-coupling  
capacitor and IC landing pads to minimize parasitic capacitance. The size of the anti-pad and the number of  
layers to use the anti-pad depend on the board stack-up and can be determined by a 3-dimension  
electromagnetic simulation tool.  
10.1.4 BNC Connector Layout and Routing  
Use a well-designed BNC footprint to ensure the BNC's signal landing pad achieves 75-Ω characteristic  
impedance. BNC suppliers usually provide recommendations on BNC footprint for best results.  
Keep trace length short between the BNC and SDI_OUT1±. The trace routing for SDI_OUT1+ and  
SDI_OUT1– should be as symmetrical as possible, with approximately equal lengths and equal loading. The  
same is true for SDI_OUT2+ and SDI_OUT2–.  
10.1.5 Power Supply and Ground Connections  
Connect each supply pin (VDD_CDR, VIN, VDD_LDO) directly to the power or ground planes with a short via.  
The via is usually placed tangent to the supply pins' landing pads with the shortest trace possible.  
Power supply decoupling capacitors should be a small physical size (0402 or smaller) and placed close to the  
supply pins to minimize inductance. The capacitors are commonly placed on the bottom layer and share the  
ground of the EP (Exposed Pad).  
10.1.6 Footprint Recommendations  
Stencil parameters for the EP (Exposed Pad) such as aperture area ratio and the fabrication process have a  
significant impact on paste deposition. Inspection of the stencil prior to placement of the WQFN package is  
highly recommended to improve board assembly yields. If the via and aperture openings are not carefully  
monitored, the solder may flow unevenly through the EP. Stencil parameters for aperture opening and via  
locations are shown in the RTV package drawing in 机械、封装和可订购信息.  
The EP of the package must be connected to the ground plane through a 3 × 3 via array. These vias are  
solder-masked to avoid solder flowing into the plated-through holes during the board manufacturing process.  
Details about via dimensions are also shown in the RTV package drawing in 机械、封装和可订购信息.  
More information on the WQFN style package is provided in WQFN/SON PCB Attachment Application Report  
(SLUA271).  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
10.2 Layout Example  
The example shown in Figure 42 demonstrates the LMH1228 layout guidelines highlighted in Layout Guidelines.  
Larger bulk capacitors (10 µF, 1 µF)  
for VIN and VDD_CDR can be  
placed farther from IC.  
BNC Footprint  
Anti-pad  
Zo = 75  
W = 10 mils  
Via to  
VDD_LDO  
Pour  
4.7 µF  
Place 0.1-µF decoupling caps on  
Bottom Layer close to pins. Connect  
to Pour and EP with vias.  
Via to VIN  
Pour  
4.7 µF  
100-coupled  
trace  
4.7 µF  
75 ꢀ  
W = 8 mils  
S = 10 mils  
W = 8 mils  
Solder  
Paste  
Mask  
(Stencil)  
4.7 µF  
4.7 µF  
VSS Via to  
GND  
Via to  
VDD_CDR  
Pour  
W = 8 mils  
S = 10 mils  
W = 8 mils  
4.7 µF  
75  
EP  
(Exposed Pad)  
Via Array on Bottom  
Layer shared with VSS  
pins and decoupling caps  
where applicable  
100-coupled  
trace  
4.7 µF  
4.7 µF  
W = 10 mils  
> 5W  
Zo = 75 ꢀ  
Layer 3 GND Reference for  
75-Single-Ended Traces  
Layer 2 GND Reference for  
100-Differential Traces  
Note: All high speed signal traces are assumed to be on Layer 1 (Top Layer).  
Figure 42. LMH1228 High-Speed Trace Layout Example  
36  
版权 © 2017–2019, Texas Instruments Incorporated  
 
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
QFN/SON PCB 连接应用报告》(SLUA271)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过本协议的披露方获得的任何产品或技术数据(其中包括软  
件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制产品或此项技术的任  
何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政府机构授权的情况下,接收  
方不得在知情的情况下,以直接或间接的方式将其出口。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017–2019, Texas Instruments Incorporated  
37  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
LMH1228RTVR  
LMH1228RTVT  
Status  
Pins  
32  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking(5)(6)  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168  
HR  
ACTIVE  
ACTIVE  
WQFN  
RTV  
RTV  
1000  
250  
CU NIPDAU  
CU NIPDAU  
L1228  
L1228  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168  
HR  
WQFN  
32  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
38  
版权 © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
12.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P1  
K0  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMH1228RTVR  
LMH1228RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000  
250  
178.0  
178.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
WQFN  
Package Drawing Pins  
SPQ  
1000  
250  
Length (mm) Width (mm)  
Height (mm)  
35.0  
LMH1228RTVR  
LMH1228RTVT  
RTV  
RTV  
32  
32  
210.0  
210.0  
185.0  
185.0  
WQFN  
35.0  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
LMH1228  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
www.ti.com.cn  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
LMH1228  
www.ti.com.cn  
ZHCSKF4C MARCH 2017REVISED OCTOBER 2019  
版权 © 2017–2019, Texas Instruments Incorporated  
43  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH1228RTVR  
LMH1228RTVT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
L1228  
L1228  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMH1228RTVT

具有集成时钟恢复器的 12G 超高清 SDI 双路电缆驱动器 | RTV | 32 | -40 to 85
TI

LMH1251

YPBPR to RGB Decoder and 2:1 Video Switch
NSC

LMH1251

RGB Path: 400 MHz, −3 dB, 700 mVPP Bandwidth, Supports PC Video Display Resolutions up to UXGA (1600 x 1200 @ 75 Hz)
TI

LMH1251MT

YPBPR to RGB Decoder and 2:1 Video Switch
NSC

LMH1251MT

LMH1251 YPBPR to RGBHV Converter and 2:1 Video Switch
TI

LMH1251MT-NOPB

YPBPR Path: 70 MHz, −3 dB, 700 mVPP Bandwidth
TI

LMH1251MT/NOPB

YPbPr 至 RGBHV 转换器和 2:1 视频开关 | PW | 24 | 0 to 70
TI

LMH1251MTX

YPBPR to RGB Decoder and 2:1 Video Switch
NSC

LMH1251MTX

LMH1251 YPBPR to RGBHV Converter and 2:1 Video Switch
TI

LMH1297

具有集成时钟恢复器的 12G 超高清 SDI 双向 I/O
TI

LMH1297RTVR

具有集成时钟恢复器的 12G 超高清 SDI 双向 I/O | RTV | 32 | -40 to 85
TI

LMH1297RTVT

具有集成时钟恢复器的 12G 超高清 SDI 双向 I/O | RTV | 32 | -40 to 85
TI