LMH32404-Q1 [TI]

具有集成多路复用功能的汽车类四通道差分输出跨阻放大器;
LMH32404-Q1
型号: LMH32404-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成多路复用功能的汽车类四通道差分输出跨阻放大器

放大器
文件: 总39页 (文件大小:2331K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
LMH32404-Q1 具有集成式钳位和环境光消除功能的汽车类四通道、差分输  
出、多路复用跨阻放大器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
• 增益20kΩ  
LMH32404-Q1 是一款四通道、单端输入转差分输出跨  
阻放大器 (TIA)适用于光探测和测距 (LIDAR) 应用和  
激光测距系统。  
• 性能CPD = 1pF:  
LMH32404-Q1 在每个通道上集成了一个 100mA 钳  
可以为放大器提供保护并允许器件迅速从过载输入  
状况中恢复。LMH32404-Q1 还在每个通道上提供一个  
集成式环境光消除 (ALC) 电路可取代光电二极管与  
放大器之间的交流耦合从而节省布板空间和系统成  
本。测量直流和低频时应禁ALC 回路。  
– 带宽350 MHz  
– 输入参考噪声56nARMS  
– 上升下降时间1.25ns  
• 静态电流28 mA/通道  
• 待机模式10 mA/通道  
• 低功耗模式2.5mA4 个通道)  
• 通道开关时间10ns  
• 集成式环境光消除  
• 集成100mA 保护钳位  
4 个输入通道4 个差分输出通道  
• 集成的多路复用器可实现光学传感器ADC/TDC  
之间的灵活配置  
每个 LMH32404-Q1 通道在输出端有集成的开关用  
于断开差分输出放大器与输出引脚的连接并将通道置  
于待机模式。在不同通道之间切换时转换时间仅为  
10ns当不使用放大器时以使用 EN 脚将  
LMH32404-Q1 置于低功耗模式以节省能源。  
器件信息(1)  
• 可以将多LMH32404 并联组合以实现更宽的视  
(FoV)  
封装尺寸标称值)  
器件型号  
封装  
VQFN (28)  
LMH32404-Q1  
5.00mm × 4.00mm  
2 应用  
(1) 要了解所有可用封装请参阅数据表末尾的封装选项附录。  
机械扫描激光雷达  
固态扫描激光雷达  
激光测距仪  
.
.
安全区域扫描仪  
VDD1x  
EN  
VDD2  
M1-4  
100mA  
Clamp  
10 kΩ  
OUT1Þ  
10 Ω  
IN1  
TIA  
+
2x  
œ
10 Ω  
Ambient Light  
Cancellation  
OUT1+  
100mA  
Clamp  
10 kΩ  
OUT2Þ  
10 Ω  
10 Ω  
TIA  
+
2x  
œ
IN2  
Ambient Light  
Cancellation  
OUT2+  
100mA  
Clamp  
10 kΩ  
OUT3Þ  
10 Ω  
10 Ω  
TIA  
+
2x  
œ
IN3  
Ambient Light  
Cancellation  
OUT3+  
100mA  
Clamp  
10 kΩ  
OUT4Þ  
10 Ω  
10 Ω  
TIA  
+
2x  
œ
IN4  
Ambient Light  
Cancellation  
OUT4+  
Output  
Common-Mode  
闭环带宽  
VOD  
Output Offset  
GND  
VOCM  
IDC EN  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA63  
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................20  
8 Application and Implementation..................................23  
8.1 Application Information............................................. 23  
8.2 Typical Application.................................................... 25  
9 Power Supply Recommendations................................28  
10 Layout...........................................................................29  
10.1 Layout Guidelines................................................... 29  
10.2 Layout Example...................................................... 29  
11 Device and Documentation Support..........................30  
11.1 Device Support........................................................30  
11.2 Documentation Support.......................................... 30  
11.3 Receiving Notification of Documentation Updates..30  
11.4 支持资源..................................................................30  
11.5 Trademarks............................................................. 30  
11.6 Electrostatic Discharge Caution..............................30  
11.7 术语表..................................................................... 30  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................5  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Electrical Characteristics: Logic Threshold and  
Switching Characteristics ............................................. 9  
6.7 Typical Characteristics..............................................10  
7 Detailed Description......................................................16  
7.1 Overview...................................................................16  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................18  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2020) to Revision A (November 2021)  
Page  
• 将数据表的状态从预告信更改为量产数..................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN1  
VDD1  
IN2  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
OUT1œ  
OUT1+  
OUT2œ  
OUT2+  
OUT3œ  
OUT3+  
OUT4œ  
OUT4+  
VDD1  
VDD1  
IN3  
Thermal  
Pad  
VDD1  
IN4  
Not to scale  
5-1. RHF Package, 28-Pin VQFN, Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
9
I
I
Device enable pin. EN = logic low = normal operation (default); EN = logic high = low power mode.(1)  
Amplifier ground.  
GND  
11,26  
Ambient light cancellation loop enable. IDC_EN = logic low = enable DC cancellation (default);  
IDC_EN = logic high = disable DC cancellation.(1)  
IDC_EN  
28  
I
IN1  
IN2  
IN3  
IN4  
1
3
6
8
I
I
I
I
Transimpedance amplifier input - Channel 1.  
Transimpedance amplifier input - Channel 2.  
Transimpedance amplifier input - Channel 3.  
Transimpedance amplifier input - Channel 4.  
Select Channel 1. M1 = logic high = Channel 1 operational and output switches closed. M1 = logic low  
(default) = Channel 1 in standby power mode and output switches open. (1)  
M1  
25  
24  
13  
12  
22  
21  
20  
19  
I
I
Select Channel 2. M2 = logic high = Channel 2 operational and output switches closed. M2 = logic low  
(default) = Channel 2 in standby power mode and output switches open. (1)  
M2  
Select Channel 3. M3 = logic high = Channel 3 operational and output switches closed. M3 = logic low  
(default) = Channel 3 in standby power mode and output switches open. (1)  
M3  
I
Select Channel 4. M4 = logic high = Channel 4 operational and output switches closed. M4 = logic low  
(default) = Channel 4 in standby power mode and output switches open. (1)  
M4  
I
Channel 1 inverting amplifier output. When light is incident on the photodiode the output pin transitions  
in a negative direction from the no light condition.  
O
O
O
O
OUT1–  
OUT1+  
OUT2–  
OUT2+  
Channel 1 noninverting amplifier output. When light is incident on the photodiode the output pin  
transitions in a positive direction from the no light condition.  
Channel 2 inverting amplifier output. When light is incident on the photodiode the output pin transitions  
in a negative direction from the no light condition.  
Channel 2 noninverting amplifier output. When light is incident on the photodiode the output pin  
transitions in a positive direction from the no light condition.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Channel 3 inverting amplifier output. When light is incident on the photodiode the output pin transitions  
in a negative direction from the no light condition.  
18  
O
O
O
O
I
OUT3–  
Channel 3 noninverting amplifier output. When light is incident on the photodiode the output pin  
transitions in a positive direction from the no light condition.  
OUT3+  
OUT4–  
OUT4+  
VDD1  
17  
16  
Channel 4 inverting amplifier output. When light is incident on the photodiode the output pin transitions  
in a negative direction from the no light condition.  
Channel 4 noninverting amplifier output. When light is incident on the photodiode the output pin  
transitions in a positive direction from the no light condition.  
15  
Positive power supply for the transimpedance amplifier stage. Each pin should be tied to the same  
power supply with independent power-supply bypassing.  
2, 4, 5, 7  
14,23  
Positive power supply for the differential amplifier stage. Tie VDD1 and VDD2 to the same power  
supply with independent power-supply bypassing.  
VDD2  
I
VOCM  
VOD  
27  
10  
I
I
Differential amplifier common-mode output control.  
Differential amplifier differential output offset control.  
Thermal pad  
Connect the thermal pad to the same potential as pin 11 and 26 (GND).  
(1) TI recommends driving a digital pin with a low-impedance source rather than leaving the pin floating because fast-moving transients  
can couple into the pin and inadvertently change the logic level.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.65  
VDD  
VDD  
25  
UNIT  
V
(2)  
VDD1, VDD2  
Total supply voltage, (VDD  
Voltage at Output pins  
Voltage at Logic pins  
)
0
V
V
0.2  
IIN  
Continuous current into IN  
Continuous output current  
Junction temperature  
mA  
mA  
°C  
°C  
°C  
IOUT  
TJ  
35  
150  
125  
150  
TA  
Operating free-air temperature  
Storage temperature  
40  
65  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) VDD1 and VDD2 should always be tied to the same supply and have separate power-supply bypass capacitors.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
±1500  
±1000  
V(ESD) Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.45  
125  
UNIT  
V
VDD  
TA  
Total supply voltage  
3.3  
Operating free-air temperature  
°C  
40  
6.4 Thermal Information  
LMH32404-Q1  
RHF (VQFN)  
28 PINS  
39.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
31.5  
17.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ΨJT  
17.8  
ΨJB  
RθJC(bot)  
6.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH32404-Q1  
 
 
 
 
 
 
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
VDD = 3.3 V, VOCM = Open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(differential load between OUT+  
and OUT-), and TA = 25. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
tR, tF  
Small-signal bandwidth  
VOUT = 100 mVPP  
350  
300  
1.25  
750  
12  
MHz  
MHz  
ns  
Large-signal bandwidth  
VOUT = 1 VPP  
Rise and fall time  
VOUT = 100 mVPP, Pulse width = 10 ns  
VOUT = 1 VPP, Pulse width = 10 ns  
IIN = 100 mA, Pulse width = 10 ns  
IIN = 100 mA, Pulse width = 10 ns  
f = 250 MHz  
Slew Rate(4)  
V/µs  
ns  
Overload recovery time (1% settling)  
Overload pulse width extension(5)  
Integrated input current noise  
Adjacent channel crosstalk  
Non adjacent channel crosstalk  
All hostile channels crosstalk  
5
ns  
iN  
56  
nARMS  
dBc  
dBc  
dBc  
f = 100 MHz  
-49  
-58  
-39  
f = 100 MHz  
f = 100 MHz  
DC PERFORMANCE  
Z21  
Small-signal transimpedance gain(6)  
17  
20  
23  
20  
kΩ  
Channel-to-channel gain matching  
Differential output offset voltage  
±0.1  
%
VOD  
±5  
mV  
20  
(VOUTVOUT+  
)
Differential output offset voltage  
drift, ΔVOD/ΔTA  
±20  
µV/°C  
INPUT PERFORMANCE  
VIN Default input bias voltage  
Input pin floating  
2.42  
60  
2.47  
1.1  
72  
2.52  
V
Input pin floating  
mV/°C  
µA  
Default input bias voltage drift, ΔVIN/ΔTA  
IIN  
DC Input current range  
Z21 < 3-dB degradation from IIN = 5 µA  
OUTPUT PERFORMANCE  
VOH  
VOL  
Single-sided output voltage swing(high)(2) TA = 25°C  
Single-sided output voltage swing (low)(2) TA = 25°C  
2.85  
24  
2.9  
0.36  
26.6  
27.1  
25.1  
70  
V
V
0.39  
32  
TA = 25°C, IIN = 50 µA , RL = 25 Ω  
TA = 40°C, IIN = 50 µA , RL = 25 Ω  
TA = 125°C, IIN = 50 µA , RL = 25 Ω  
IOUT  
Linear output drive (sink and source)  
mA  
ISC  
Output short-circuit current (differential) (3)  
DC differential output impedance  
mA  
Ω
MX = high  
MX = low  
18  
21  
24  
ZOUT  
1
MΩ  
OUTPUT COMMON-MODE CONTROL (VOCM) PERFORMANCE  
SSBW  
LSBW  
Small-signal bandwidth  
Large-signal bandwidth  
VOCM = 100 mVPP at VOCM pin  
VOCM = 1 VPP at VOCM pin  
375  
120  
MHz  
MHz  
f = 10 MHz, 1 nF capacitor to GND on VOCM  
pin  
eN  
Output common-mode noise  
15  
nV/Hz  
IN floating, VOCM = 1.1 V (driven)  
1
0.5%  
±1%  
17  
V/V  
Gain, (ΔVOCM/ΔVOCM)  
AV  
TA = 25°C, VOCM = 0.7 V to 2.3 V  
2%  
45  
2%  
25  
Gain Error  
TA = 40°C to 125°C, VOCM = 0.7 V to 2.3 V  
Input impedance  
kΩ  
mV  
V/A  
VOCM  
VOCM pin default offset from 1.1 V  
VOCM error vs Input current, ΔVOCM/ΔIIN  
VOCM floating, (VOCM - 1.1 V)  
VOCM driven to 1.1 V  
8
10  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VDD = 3.3 V, VOCM = Open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(differential load between OUT+  
and OUT-), and TA = 25. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output common-mode voltage,  
(VOUT+ + VOUT-)/2  
VOCM  
TA = 25°C, VOCM floating  
1
1.1  
1.2  
V
Output common-mode voltage drift,  
(ΔVOCM/ΔTA)  
300  
1.1  
µV/°C  
TA = 40°C to 125°C, VOCM floating  
Output common-mode voltage,  
(VOUT+ + VOUT-)/2  
VOCM  
TA = 25°C, VOCM driven to 1.1V  
1.05  
1.15  
1.3  
V
µV/°C  
V
Output common-mode voltage drift,  
(ΔVOCM/ΔTA)  
TA = 40°C to 125°C,  
VOCM driven to 1.1V  
10  
1.2  
TA = 25°C, VOCM offset shift from VOCM = 1.1  
V (driven) < 10-mV  
VOCM headroom to positive supply  
voltage  
TA = 40°C to 125°C, VOCM offset shift from  
VOCM = 1.1 V (driven) < 10-mV  
1
V
TA = 25°C, VOCM offset shift from VOCM = 1.1  
V (driven) < 10-mV  
0.2  
0.65  
V
VOCM headroom to negative supply  
voltage  
TA = 40°C to 125°C, VOCM offset shift from  
VOCM = 1.1 V (driven) < 10-mV  
0.25  
V
OUTPUT DIFFERENTIAL OFFSET (VOD) PERFORMANCE  
SSBW  
LSBW  
VOD  
Small-signal bandwidth  
Large-signal bandwidth  
Default VOD pin voltage  
Differential output offset,  
VOD = 100 mVPP  
VOD = 1 VPP  
45  
17  
MHz  
MHz  
V
0.5  
VOS_D  
IN floating, VOD = 0.5 V  
IN floating, VOD = 0.5 V  
IN floating, VOD floating  
IN floating, VOD floating  
IN floating, VOCM = 1.1 V (driven)  
470  
470  
500  
0.03  
500  
530  
530  
mV  
mV/℃  
mV  
VOUT = (VOUTVOUT+  
)
Differential output offset drift, ΔVOS_D  
ΔTA  
/
/
Differential output offset,  
VOS_D  
VOUT = (VOUTVOUT+  
)
Differential output offset drift, ΔVOS_D  
ΔTA  
0.05  
-1.01  
mV/℃  
V/V  
Gain, (ΔVOUT/ΔVOD),  
where VOUT = (VOUTVOUT+  
)
AV  
±0.8%  
±1.5%  
2.5  
5%  
TA = 25, VOD = 0.3 V to 1.2 V  
5%  
Gain Error  
TA = 40to 125, VOD = 0.3 V to 1.2 V  
Input impedance  
kΩ  
AMBIENT LIGHT CANCELLATION PERFORMANCE (IDC_EN = 0 V) (7)  
20  
60  
IIN = 0 µA 10 µA  
Settling time, 1% (2 mV) of settled VOS  
IIN = 10 µA 0 µA  
µs  
Differential output offset (VOUTVOUT+  
shift from IDC = 10 µA < 10 mV  
)
Ambient light current cancellation range  
POWER SUPPLY  
1.8  
2.5  
mA  
MX = 3.3 V, TA = 25°C  
MX = 0 V, TA = 25°C  
VDD1 = VDD2  
22.8  
8.5  
54  
27.7  
10.4  
74  
32.5  
13.4  
Quiescent current, per channel,  
(VDD1 + VDD2)  
IQ  
mA  
dB  
PSRR+ Positive power-supply rejection ratio  
SHUTDOWN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH32404-Q1  
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VDD = 3.3 V, VOCM = Open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(differential load between OUT+  
and OUT-), and TA = 25. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.35  
2.25  
2.55  
MAX  
UNIT  
TA = 25°C  
3
Total disabled quiescent current  
IQ  
mA  
TA = 40°C  
TA = 125°C  
(EN = VDD  
)
(1) Input capacitance of photodiode.  
(2) Output slammed to the rail and VOCM adjusted to achieve output swing.  
(3) Device cannot withstand continuous short-circuit between the differential outputs.  
(4) Average of rising and falling slew rate.  
(5) Pulse width extension measured at 50% of pulse height of a square wave.  
(6) Gain measured at the amplifier output pins when driving a 100-Ωresistive load. At higher resistor loads the gain will increase.  
(7) Enabling the ambient light cancellation loop will add noise to the system.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
 
 
 
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.6 Electrical Characteristics: Logic Threshold and Switching Characteristics  
VDD = 3.3 V, VOCM = Open, VOD = 0 V, CPD (1) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(differential load between OUT+  
and OUT-), and TA = 25. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC THRESHOLD PERFORMANCE  
EN CONTROL TRANSIENT PERFORMANCE  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA  
Enable transition-time (1% settling)  
Disable transition-time (1% settling)  
Enable transition-time (1% settling)  
Disable transition-time (1% settling)  
250  
8
ns  
ns  
µs  
ns  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA  
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA  
=
=
4
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA  
3
MULTIPLEXER CONTROL TRANSIENT PERFORMANCE  
Channel to Channel transition-time  
(1% settling)  
Ambient loop disabled, 0 0.5V transition  
at VOUT.  
10  
8
ns  
ns  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA  
Disable transition-time (1% settling)  
(1) Input capacitance of photodiode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH32404-Q1  
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted)  
89  
86  
83  
80  
77  
74  
71  
89  
86  
83  
80  
77  
74  
71  
PCB Only  
0.5 pF  
1 pF  
2 pF  
3 pF  
25 °C  
125 °C  
-40 °C  
4.7 pF  
10 pF  
10M  
100M  
1G  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 100 mVPP  
VOUT = 100 mVPP  
6-1. Small Signal Response vs Input Capacitance  
89  
6-2. Small Signal Response vs Ambient Temperature  
89  
86  
83  
80  
77  
74  
71  
86  
83  
80  
77  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
VOUT = 0.1 Vpp  
VOUT = 1.0 Vpp  
VOUT = 1.5 Vpp  
74  
71  
10M  
100M  
1G  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 100 mVPP  
.
6-3. Small Signal Response vs Channels  
6-4. Frequency Response vs Output Swing  
1
0
Amplifier Disabled  
Amplifier Enabled  
10k  
-1  
-2  
-3  
-4  
-5  
1k  
100  
10  
ALC Disabled  
ALC Enabled  
1M  
10M  
100M  
Frequency (Hz)  
1G  
1M  
10M  
Frequency (Hz)  
IDC_IN = 100 µA  
IDC_IN = 100 µA  
6-6. Closed-Loop Output Impedance vs Frequency  
6-5. Low-Side Frequency Response vs Ambient Light  
Cancellation  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted)  
30  
10  
40  
CPD = none  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 3 pF  
CPD = 4.7 pF  
CPD = 10 pF  
IDC = 0 A  
IDC = 10 A  
IDC = 100 A  
IDC = 1 mA  
10  
1
1
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-7. Input Noise Density vs Input Capacitance  
6-8. Input Noise Density vs Ambient Light DC Current  
200  
TA = 25 °C  
TA = -40 °C  
TA = 125 °C  
Differential Noise  
Single-Ended Noise  
10  
100  
1
10k  
10  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-9. Input Noise Density vs Ambient Temperature  
-20  
6-10. Output Noise Density vs Output Configuration  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
100 mVpp  
1 Vpp  
100 mVpp  
1 Vpp  
-90  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-11. Adjacent Channel Crosstalk  
6-12. Non-Adjacent Channel Crosstalk  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH32404-Q1  
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted)  
.
.
6-13. Pulse Response vs Output Swing  
6-14. Overloaded Pulse Response  
.
.
6-15. Turn-On Time  
6-16. Turn-Off Time  
0 0.5V transition at VOUT (1% settling)  
6-17. Channel Turn-On Response  
.
6-18. Channel Turn-Off Response  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted)  
IDC_IN = 0 µA 100 µA, VOD = 0.5 V  
IDC_IN = 100 µA 0 µA, VOD = 0.5 V  
6-19. Ambient Loop Cancellation Settling Time (1)  
6-20. Ambient Loop Cancellation Settling Time (1)  
40  
40  
Gain Channel 1  
Gain Channel 2  
Gain Channel 3  
Gain Channel 4  
125 °C  
-40 °C  
25 °C  
30  
20  
30  
20  
10  
9
10  
9
8
8
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
-100 -80 -60 -40 -20  
0
20  
40  
60  
80 100  
Input Current (A)  
Input Current (A)  
.
.
6-21. Transimpedance Gain vs Input Current  
2.5  
6-22. Transimpedance Gain vs Ambient Temperature  
2.6  
2.25  
2
2.55  
2.5  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
2.45  
Unit 1  
Unit 2  
Unit 3  
Unit 1  
Unit 2  
Unit 3  
2.4  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Supply Voltage (V)  
3
3.3  
Temperature (°C)  
.
.
6-24. Input Bias Voltage vs Ambient Temperature (2)  
6-23. Input Bias Voltage vs Supply Voltage (2)  
1
2
Differential Output Voltage = (Vout+ - Vout-).  
Typical units from different lots.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH32404-Q1  
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted)  
30  
29  
28  
27  
26  
35  
30  
25  
20  
15  
10  
5
Unit 1  
Unit 2  
Unit 3  
125 °C  
-40 °C  
25 °C  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Temperature (°C)  
Supply Voltage (V)  
.
.
6-25. Quiescent Current (Per Channel) vs Ambient  
6-26. Quiescent Current (Per Channel) vs Supply Voltage  
Temperature (2)  
1.8  
1.7  
1.6  
1.2  
1.1  
1
1.5  
0.9  
Vout- (V)  
Vout+ (V)  
Vout- (V)  
Vout+ (V)  
1.4  
1.3  
1.2  
1.1  
1
0.8  
0.7  
0.6  
0.5  
0.4  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Input Current (A)  
Input Current (A)  
VOD = 0.75 V, VOCM = 1.4 V  
6-27. High-Side Swing vs Input Current  
VOD = 0.75 V, VOCM = 0.8 V  
6-28. Low-Side Swing vs Input Current  
500  
495  
490  
485  
480  
475  
470  
465  
460  
455  
450  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-40 °C  
25 °C  
125 °C  
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2
Input Current (mA)  
Differential Output Offset Set (V)  
VOD = open  
.
6-30. Ambient Light Cancellation Range vs Ambient  
6-29. Differential Output Offset Gain  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, VOCM = open, VOD = 0 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω(differential  
load between OUT+ and OUT), and TA = 25°C (unless otherwise noted)  
35  
30  
25  
20  
15  
10  
5
2250  
2000  
1750  
1500  
1250  
1000  
750  
125 °C  
-40 °C  
25 °C  
500  
250  
0
0
24  
25  
26  
27  
28  
29  
30  
31  
32  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
Enable Voltage (EN) (V)  
3
3.3  
Quiescent Current (mA)  
µ = 27.2 mA, σ= 0.27 mA  
6-32. Quiescent Current Distribution  
.
6-31. Logic Threshold vs Ambient Temperature  
1750  
1750  
1500  
1250  
1000  
750  
500  
250  
0
1500  
1250  
1000  
750  
500  
250  
0
1
1.05  
1.1  
1.15  
1.2  
1.25  
17  
18  
19  
20  
21  
22  
23  
Output Common-Mode Voltage (V)  
Gain (k)  
µ = 1.1 V, σ= 2 mV  
µ = 20.5 kΩ, σ= 0.2 kΩ  
6-33. Transimpedance Gain Distribution  
6-34. Output Common-Mode Voltage (VOCM) Distribution  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
2250  
2000  
1750  
1500  
1250  
1000  
750  
500  
500  
250  
250  
0
0
450 460 470 480 490 500 510 520 530 540 550  
Differential Output Voltage (mV)  
17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23  
Differential Output Impedance ()  
µ = 493 mV, σ= 2.8 mV  
µ = 19.9 Ω, σ= 0.14 Ω, Device Enabled  
6-35. Differential Output Offset Voltage (VOD) Distribution  
6-36. Differential Output Impedance (ZOUT) Distribution  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH32404-Q1  
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMH32404-Q1 is a quad-channel, differential output, high-speed transimpedance amplifier (TIA) geared  
towards light detection and ranging (LIDAR) and laser distance measurement systems. Each LMH32404-Q1  
channel has integrated switches on the output to disconnect the differential output amplifier from the output pins.  
This enables the LMH32404-Q1 to be highly configurable in a multi-channel LIDAR system. The LMH32404-Q1  
device is designed to work with photodiodes (PDs), for example avalanche photodiodes (APDs), connected in  
configurations that can source or sink the current. When the photodiode sinks the photocurrent (anode is biased  
to a negative voltage and cathode is tied to the amplifier input) the fast recovery clamp activates when the  
amplifier input is overloaded. When the photodiode sources the photocurrent (cathode is biased to a positive  
voltage and anode is tied to the amplifier input) a soft clamp activates when the amplifier input is overloaded.  
When the soft clamp activates the amplifier takes longer to recover. The recovery time depends on the level of  
input overload. The LMH32404-Q1 is offered in a space-saving 5-mm × 4-mm, 28-pin VQFN package and is  
rated over a temperature range from 40°C to +125°C.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
M1 M2  
VDD2  
VDD1  
100mA  
Clamp  
10 k  
Mid-scale  
Level Shift  
Buffer  
IDC + ISIG  
Differential Output ADC Driver  
IN1  
ISIG  
R
R
2.4R  
10  
OUT1  
TIA  
IDC  
+
Ambient Light  
Cancellation  
VBIAS  
2.4R  
10  
VREF  
OUT1+  
100mA  
Clamp  
Mid-scale  
Buffer  
10 k  
IDC + ISIG  
IN2  
ISIG  
R
R
2.4R  
2.4R  
10  
10  
OUT2  
TIA  
IDC  
+
Ambient Light  
Cancellation  
VBIAS  
VREF  
OUT2+  
100mA  
Clamp  
10 k  
IDC + ISIG  
IN3  
ISIG  
R
R
2.4R  
2.4R  
10  
10  
OUT3  
TIA  
IDC  
+
Ambient Light  
Cancellation  
VBIAS  
VREF  
OUT3+  
100mA  
Clamp  
10 k  
IDC + ISIG  
IN4  
ISIG  
R
R
2.4R  
2.4R  
10  
OUT4  
TIA  
IDC  
+
Ambient Light  
Cancellation  
VBIAS  
10  
VDD  
VREF  
OUT4+  
VOCM  
VDD  
Mid-scale  
Buffer  
Voltage to  
Current  
VOD  
M4 M3  
GND  
EN  
IDC EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Clamping and Input Protection  
The LMH32404-Q1 device is optimized to work with photodiodes (PD) configurations that can source or sink  
current; however, the LMH32404-Q1 is optimized for a sinking current configuration. It is assumed that the  
LMH32404-Q1 device is being used with a PD that is configured with its cathode tied to the amplifier input and  
the anode tied to a negative supply voltage, unless stated otherwise.  
The LMH32404-Q1 features two internal clamps, a fast recovery clamp and a soft clamp. The fast recovery  
clamp is the active clamp when the photodiode is sinking a photocurrent. The soft clamp is the active clamp  
when the photodiode is sourcing a photocurrent. Stray reflections from nearby objects with high reflectivity can  
produce large output current pulses from the PD. The linear input range of the LMH32404-Q1 is approximately  
65 µA. Input currents in excess of the linear current range will cause the internal nodes of the amplifier to  
saturate, which increases the amplifier recovery time. The end result broadens the output pulse, which leads to  
blind zones.  
To protect against this condition, the LMH32404-Q1 features an integrated fast recovery clamp that absorbs and  
diverts the excess current to the positive supply (VDD1) when the amplifier detects its nodes entering a saturated  
condition. The integrated clamp minimizes the pulse extension to less than a few nanoseconds for input pulses  
up to 100 mA. The power-supply pins (VDD1 and VDD2) must have their own bypass capacitors to prevent large  
input pulses from affecting the differential output stage. The clamp circuitry is active when the amplifier is in  
standby mode and low-power mode, thereby protecting the TIA input.  
7.3.2 ESD Protection  
All LMH32404-Q1 IO pins (excluding VDD1, VDD2, and GND) have an internal electrostatic discharge (ESD)  
protection diode to the positive and negative supply rails to protect the amplifier from ESD events.  
7.3.3 Differential Output Stage  
Each channel of the LMH32404-Q1 has a differential output stage that performs two functions that are common  
across all differential amplifiers. This stage does the following:  
1. Converts the single-ended output from the TIA stage to a differential output.  
2. Performs a common-mode output shift to match the specified ADC input common-mode voltage.  
The VOD pin is functional only when the LMH32404-Q1 device is used with a PD that sinks the photocurrent.  
Set VOD = 0 V when the LMH32404-Q1 device is interfaced with a PD that sources the photocurrent. The  
differential output stage has two 10-Ω series resistors on its output to isolate the amplifier output stage  
transistors from the package bond-wire inductance and printed circuit board (PCB) capacitance. The net gain of  
the LMH32404-Q1 (TIA plus the output stage) is 20 kΩ per channel when driving an external 100-Ω resistor.  
When the external load resistor is increased above 100 Ω, the effective gain from the IN pin to the differential  
output pin increases. Consequently, when the external load resistor is decreased to less than 100 Ω, the  
effective gain from the IN pin to the differential output pin decreases as a result of the larger voltage drop across  
the two internal 10-Ω resistors. The effective TIA gain is 24 kΩ when there is no load resistor between the  
OUT+ and OUTpins.  
The output common-mode voltage of the LMH32404-Q1 can be set externally through the VOCM pin. A resistor  
divider internal to the amplifier, between VDD2 and ground sets the default voltage to 1.1 V. The internal  
resistors generate common-mode noise that is typically rejected by the CMRR of the subsequent ADC stage. To  
maximize the amplifier SNR, place an external noise bypass capacitor to ground on the VOCM pin. In single-  
ended signal chains, such as ToF systems that use time-to-digital converters (TDCs), only a single output per  
channel of the LMH32404-Q1 is needed. In such situations, terminate the unused differential output in the same  
manner as the used output to maintain balance and symmetry. The signal swing of the single-ended output is  
half the available differential output swing. Additionally, the common-mode noise of the output stage, which is  
typically rejected by the differential input ADC, is now added to the total noise, further degrading SNR.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
The output stage of the LMH32404-Q1 has an additional VOD input that sets the differential output between  
OUTand OUT+. 7-1 shows how each output pin of the LMH32404-Q1 is at the voltage set by the VOCM  
pin (default = 1.1 V) when the photodiode output current is zero and the VOD input is set to 0 V. When the VOD  
pin is driven to a voltage of X volts, the two output pins are separated by X volts when the photodiode current is  
zero. The average voltage is still equal to VOCM. For example, 7-2 shows how if VOCM is set to 1.1 V and  
VOD is set to 0.4 V, then OUT= 1.1 V + 0.2 V = 1.3 V and OUT+ = 1.1 V 0.2 V = 0.9 V.  
The VOD output offset feature is included in the LMH32404-Q1 because the output current of a photodiode is  
unipolar. Depending on the reverse bias configuration, a photodiode can either sink or source current, but cannot  
do both at the same time. With the anode connected to a negative bias and the cathode connected to the TIA  
stage input, the photodiode can only sink current, which implies that the TIA stage output swings in a positive  
direction above its default input bias voltage. Subsequently, OUTonly swings below VOCM and OUT+ only  
swings above VOCM. 7-1 shows how the with VOD = 0 V, the LMH32404-Q1 only uses half its output swing  
range (VOUT = VOUT+ VOUT), because one output never swings below VOCM and the other output never  
goes above VOCM. The signal dynamic range in this case is 0.4 VPP 0 V = 0.4 VPP  
.
7-2 shows how the VOD pin voltage allows OUTto be level-shifted above VOCM, and OUT+ to be level-  
shifted below VOCM to maximize the output swing capabilities of the amplifier. The signal dynamic range in this  
case is 0.4 VPP (-0.4 VPP) = 0.8 VPP  
.
VOUT = 0.4 VPP  
APD Excited  
VOUT = 0.4 VPP  
APD Excited  
VOUTÞ  
VOUT+  
VOUTÞ  
VOUT+  
1.3 V  
1.3 V  
VOD = 0.4 V  
VOCM = 1.1 V  
VOD = 0 V  
VOCM = 1.1 V  
0.9 V  
0.9 V  
VOUT = Þ0.4 VPP  
No output from APD  
VOUT = 0 VPP  
No output from APD  
7-2. Single-Ended Outputs With VOD = 0.4 V  
7-1. Single-Ended Outputs With VOD = 0 V  
When the LMH32404-Q1 drives a 100-Ω load, the voltage set at the VOD pin is equal to the differential output  
offset (VOUT = VOUT+ VOUT) when the input signal current is zero. Use 方程式 1 to calculate the differential  
output offset under other load conditions.  
RL  
VOD = 1.2 × VOD ×  
R
(
+ 20  
)
L
(1)  
where  
VOD = Voltage applied at pin 10  
VOD = (VOUTVOUT+  
)
RL = External load resistance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMH32404-Q1  
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Ambient Light Cancellation (ALC) Mode  
The LMH32404-Q1 has an integrated DC cancellation loop that cancels and voltage offsets from incidental  
ambient light. The ALC mode only works when the PD is sinking the photocurrent. The DC cancellation loop is  
enabled by setting IDC_EN low. Incident ambient light on a photodiode produces a DC current resulting in an  
offset voltage at the output of the TIA stage.  
If the photodiode produces a DC output current resulting from ambient light, the output of the level-shift buffer  
stage is offset from the reference voltage VREF. The ALC loop detects this offset and produces an opposing DC  
current to compensate for the differential offset voltage at its input. The loop has a high-pass cutoff frequency of  
400 kHz. The ambient light cancellation loop is disabled when the amplifier is placed in low-power mode.  
The shot noise current introduced by the DC cancellation loop increases the overall amplifier noise; so, if the  
ambient light level is negligible, then disable the loop to improve SNR. The cancellation loop helps save PCB  
space and system costs by eliminating the need for external AC coupling passive components. Additionally, the  
extra trace inductance and PCB capacitance introduced by using external AC coupling components degrades  
the LMH32404-Q1 dynamic performance.  
The ambient light cancellation loop is active (depending on IDC_EN configuration) when a channel(s) is in  
standby mode. The ambient light cancellation loop is disabled when the amplifier is placed in low-power mode.  
When the LMH32404-Q1 is brought out of low-power operation the ambient light cancellation loop requires  
several time constants to settle. The time constant is based on the 400-kHz cutoff frequency of the loop. When in  
standby mode, the ALC loop is still active depending on IDC_EN configuration.  
7.4.2 Channel Multiplexer Mode  
The LMH32404-Q1 is a highly integrated transimpedance amplifier device with four independent channels. Each  
channel has its own single-ended input, differential output stage and multiplexing switch. The integrated switch  
can be used to disconnect the differential output amplifier from the output pin, thereby enabling high-impedance  
output for the respective channel.  
7-4 shows how this device feature can further save board space and cost by eliminating the need for discrete  
high-speed multiplexer in a system that consists of several amplifier channels multiplexed to a single ADC  
channel. When switching between different channels, the LMH32404-Q1 has a transition time of 10 ns (typical).  
The disabled channel outputs are high-impedance so multiple amplifier outputs can be directly shorted to each  
other. If one channel is enabled and other channels are disabled, the disabled channels will not load the enabled  
channel. This further makes the LMH32404-Q1 easy to use in photodiode array applications.  
Set Mx (M1, M2, M3, or M4) high for the corresponding channel to be enabled and output switches closed. Set  
Mx to logic low (default state) for the corresponding channel to be disabled (standby mode) and output switches  
open. When the channel is in its standby power mode, the clamp circuitry is still active thereby protecting the TIA  
input. Also, when in standby mode, the ALC loop is still active depending on IDC_EN configuration.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
M1 = 3.3V M1,M2,M3 = 0V  
RISO  
OUT1  
IN1  
Channel 1  
OUT1+  
Closed  
RISO  
VBIAS  
IN2  
Disabled  
RISO  
OUT2  
Channel 2  
Hi-Z  
OUT2+  
RADC_IN  
RISO  
High-Speed  
Differential Input  
ADC  
VOCM  
RADC_IN  
VBIAS  
IN3  
RISO  
OUT3  
Channel 3  
Hi-Z  
OUT3+  
RISO  
VBIAS  
IN4  
RISO  
OUT4  
Channel 4  
Hi-Z  
OUT4+  
RISO  
VBIAS  
7-3. Configuring LMH32404-Q1 in Channel Multiplexer Mode to Drive a Single ADC  
7.4.3 Low-Power Mode  
The LMH32404-Q1 can be placed in low-power mode by setting EN high, which helps in saving system power.  
Enabling low-power mode puts the outputs of the internal amplifiers in the LMH32404-Q1, including the  
differential outputs, in a high-impedance state.  
If a system consists of high number of amplifier channels multiplexed to a few ADC channels. 7-4 shows how  
this device feature can further save board space and cost by eliminating the need for a discrete high-speed  
multiplexer. The disabled LMH32404-Q1 outputs are high-impedance so multiple LMH32404-Q1 device outputs  
can be directly shorted to each other. If one LMH32404-Q1 device is enabled and others are disabled, the  
disabled devices will not load the enabled device. This further makes the LMH32404-Q1 easy to use in  
photodiode array applications.  
When the amplifier is in its low-power mode, the clamp circuitry is still active thereby protecting the TIA input.  
The ambient light cancellation loop is disabled when the amplifier is placed in low-power mode. When the  
LMH32404-Q1 is brought out of low-power operation the ambient light cancellation loop requires several time  
constants to settle. The time constant is based on the 400-kHz cutoff frequency of the loop.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMH32404-Q1  
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
EN = 0V  
LMH32404  
Enabled  
Photodiode Array  
Outputs are differential  
lines. Simplified here to  
show configuration.  
IN1  
IN2  
IN3  
IN4  
OUT1  
OUT2  
OUT3  
PD-1  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
PD-2  
PD-3  
PD-4  
OUT4  
High-Speed  
Differential Input  
ADC-1  
EN = 3.3V  
LMH32404  
Disabled  
Photodiode Array  
High-Speed  
Differential Input  
ADC-2  
IN1  
IN2  
IN3  
IN4  
OUT1  
OUT2  
OUT3  
PD-1  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
PD-2  
PD-3  
PD-4  
High-Speed  
Differential Input  
ADC-3  
OUT4  
High-Speed  
Differential Input  
ADC-4  
EN = 3.3V  
LMH32404  
Disabled  
Photodiode Array  
IN1  
IN2  
IN3  
IN4  
OUT1  
OUT2  
OUT3  
PD-1  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
PD-2  
PD-3  
PD-4  
OUT4  
7-4. Configuring Three LMH32404-Q1 Devices to Drive Four ADC Channels  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
Each differential output pair of the LMH32404-Q1 can directly drive a high-speed differential input ADC. 8-1  
shows how the effective signal the effective signal gain between the TIA input and the ADC input is 20 kΩwhen  
driving an ADC with a 100-Ω differential input impedance (RADC_IN = 50 Ω). 方程式 2 gives the effective signal  
gain between the TIA input and the ADC input when driving an ADC with any other value of differential input  
impedance (RADC_IN 50 Ω).  
VDD1  
VDD2 Mx  
100 mA  
Clamp  
10 k  
IN  
Differential Output  
ADC Driver  
OUT  
TIA  
10  
RADC_IN  
Ambient Light  
Cancellation  
VBIAS  
+
VOCM  
RADC_IN  
ADC12QJ1600  
IDC EN  
VOD  
10  
Output Offset  
GND  
OUT+  
EN  
8-1. LMH32404-Q1 (Single Channel) to ADC Interface  
2 ì R ADC _IN  
A V = 20 kì 1.2 ì  
2 ì R  
+ 20 ꢀ  
(
)
ADC _IN  
(2)  
where  
AV = Differential gain from the TIA input to the ADC input  
RADC_IN = Input resistance of the ADC  
8-2 shows that in some designs a matching resistor network can be inserted between the LMH32404-Q1  
output and the ADC inputs. 方程式 3 gives the effective gain from the TIA input to the ADC input when using a  
matching resistor network.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMH32404-Q1  
 
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
VDD1  
VDD2 Mx  
100 mA  
Clamp  
10 k  
IN  
Differential Output  
ADC Driver  
OUT  
TIA  
10  
RISO  
RADC_IN  
Ambient Light  
Cancellation  
VBIAS  
+
VOCM  
RADC_IN  
ADC12QJ1600  
IDC EN  
RISO  
VOD  
10  
Output Offset  
GND  
OUT+  
EN  
8-2. LMH32404-Q1 (Single Channel) to ADC Interface With a Matching Resistor Network  
2 ì R ADC _IN  
A V = 20 kì 1.2 ì  
2 ì R  
+ 2 ì RISO + 20ꢀ  
(
)
ADC _IN  
(3)  
where  
AV = Gain from the TIA input to the ADC input  
RADC_IN = Differential input resistance of the ADC  
RISO = Series resistance between the TIA and ADC  
方程式 4 gives the voltage to be applied at the VOD pin (pin 10) if a certain differential offset voltage (VOD) is  
needed at the ADC input for the circuit in 8-2.  
2 ì R  
+ 2ìRISO + 20 ꢀ  
(
ì
)
1
ADC _IN  
VOD = VOD  
ì
«
÷
1.2  
2ìR  
(
)
ADC _IN  
(4)  
where  
VOD = Voltage applied at pin 10  
VOD = Desired differential offset voltage at the ADC input  
RADC_IN = Differential input resistance of the ADC  
RISO = Series resistance between the TIA and ADC  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
8.2 Typical Application  
8.2.1 Standard TIA Application  
8-3 and 8-4 shows the circuit used to test the LMH32404-Q1 with a voltage source.  
Mx  
VDD1  
VDD2  
100mA  
Clamp  
10 k  
2k  
Differential Output ADC Driver  
2.4 × R 10  
IN  
50 measurement  
instrument  
ISIG  
R
OUT  
TIA  
25  
1 μF  
1 μF  
IDC  
+
+
CLOAD  
2.47 V  
Ambient Light  
Cancellation  
25  
IDC EN  
GND  
R
2.4 × R  
10  
VDD  
VREF  
OUT+  
VDD  
Voltage to Current  
17 k  
3 k  
50.4 k  
25 k  
VOD  
VOCM  
GND  
EN  
8-3. LMH32404-Q1 Single Channel Test Circuit for Single-Ended Measurement  
Mx  
VDD1  
VDD2  
100mA  
Clamp  
50 measurement  
instrument  
10 k  
2k  
Differential Output ADC Driver  
2.4 × R 10  
IN  
ISIG  
R
OUT  
TIA  
50  
50  
1 μF  
1 μF  
IDC  
+
+
2.47 V  
Ambient Light  
Cancellation  
IDC EN  
R
2.4 × R  
10  
VDD  
VREF  
OUT+  
VDD  
50 measurement  
instrument  
Voltage to Current  
17 k  
3 k  
50.4 k  
25 k  
VOD  
VOCM  
GND  
EN  
8-4. LMH32404-Q1 Single Channel Test Circuit for Differential Measurement  
8.2.1.1 Design Requirements  
The objective is to design a low-noise, wideband differential output transimpedance amplifier. The design  
requirements are:  
Amplifier supply voltage: 3.3 V  
Transimpedance gain: 20 kΩ  
Photodiode capacitance: CAPD = 1 pF  
Target bandwidth: > 300 MHz  
Multiple channels for array applications  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMH32404-Q1  
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
8.2.1.2 Detailed Design Procedure  
8-3 and 8-4 shows the LMH32404-Q1 test circuit used to measure its bandwidth, noise and transient  
response. The voltage source is DC biased close to the input bias voltage of the LMH32404-Q1. The  
LMH32404-Q1 internal design is optimized to only source current out of the input pin (INx). When testing the  
LMH32404-Q1 with a network analyzer or sinusoidal source, set the DC bias such that sum of the input AC and  
DC component does not result in a sourcing current into the amplifier input. Only use the LMH32404-Q1 with  
avalanche photodiodes (APDs) that sink current. An anode-biased APD satisfies this requirement.  
8-5 shows the measured results for bandwidth of LMH32404-Q1 for all four channels.  
8-6 shows the output noise spectral density of the LMH32404-Q1 with CAPD = 1 pF and no photodiode  
capacitance.  
8-7 shows the turn-on time of the LMH32404-Q1 channel when the Mx pin is toggled from logic low to high.  
When the amplifier is off, the output is in a high-impedance state. When the amplifier turns on, the output settles  
and starts tracking the input within a few nanoseconds.  
8-8 shows the turn-off time of the LMH32404-Q1 channel when the Mx pin is toggled from logic high to low.  
When the amplifier is off, the output is in a high-impedance state.  
8.2.1.3 Application Curves  
8-5. Transimpedance Bandwidth  
8-6. Output Noise Spectral Density  
3.5  
3
2.5  
2
MX  
1.5  
1
Differential Output  
0.5  
0
-0.5  
Time (10ns/div)  
8-8. Channel Turn-Off Response  
8-7. Channel Turn-On Response  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
8.2.2 Increase Channel Density for Optical Front-End Systems  
Modern LiDAR systems are moving towards solid state configurations with multi-channel photodiode arrays. For  
optical front-end designs it is impractical to have single transimpedance amplifiers (TIA) connected to each diode  
output along with additional multiplexers or other switching solutions to connect to the digitizer. This approach  
causes increased solution size, complexity and signal degradation.  
The LMH32404-Q1 resolves this problem in two ways, by providing higher integration within the device and by  
allowing user configured output multiplexing for independent output control.  
8-9 shows a comparison of a non-integrated front end using individual amplifiers, a multiplexer, and fully-  
differential amplifier (FDA) to connect to the differential input ADC. In comparison, the front end using the  
LMH32404-Q1 is able to connect four channels per amplifier to each ADC or set of ADC differential inputs. 图  
8-9 shows how the LMH32404-Q1 improves solution size and system complexity compared to a non-integrated  
solution. With the additional features like input current clamps and ambient light cancellation, LMH32404-Q1 also  
improves system design and eliminates need for additional circuitry.  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
TIA  
1
2
1
2
MUX  
MUX  
MUX  
MUX  
ADC 1  
ADC 2  
ADC 3  
ADC 4  
LMH32404  
LMH32404  
LMH32404  
LMH32404  
ADC 1  
ADC 2  
ADC 3  
ADC 4  
FDA  
FDA  
FDA  
FDA  
3
3
4
4
5
5
Reduced  
Area and  
Complexity  
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
Non-integrated Solution  
8-9. Solution Size Comparison  
LMH32404 Based Solution  
LMH32404-Q1 is a quad-channel device and each channel has an independent differential output stage and  
multiplexing switch. 8-10 shows two common output configurations. In a four-to-four configuration the  
LMH32404-Q1 operates with no output multiplexing with each input and corresponding differential output active.  
This configuration is useful when the user needs to be able to capture data from four optical sensors  
simultaneously. In a four-to-one configuration, the LMH32404-Q1 internally multiplexes all four differential  
outputs into a single differential output. The LMH32404-Q1 outputs can be configured in any permutation such  
as one channel operating in one-to-one mode with the other three channels multiplexed in a three-to-one  
configuration. This independent control and multiplexing feature significantly increases channel density for  
systems that do not need to record all inputs simultaneously.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMH32404-Q1  
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
Differential Output 1  
CH1  
CH2  
CH3  
CH4  
Differential Output 1  
IN1  
IN2  
IN3  
IN4  
IN1  
IN2  
IN3  
IN4  
Differential Output 2  
Differential Output 2  
Multi-Channel  
ADC  
Single-Channel  
ADC  
LMH32404  
LMH32404  
Differential Output 3  
Differential Output 3  
Differential Output 4  
Differential Output 4  
LMH32404 4-to-4 Configuration  
LMH32404 4-to-1 Configuration  
8-10. LMH32404 Multiplexing Configuration Examples  
To show the front-end design integration and multiplexing capability, the LMH32404-Q1 performance was  
measured with the ADC12QJ1600-Q1 quad channel analog to digital converter. 8-11 shows the data  
measured from the ADC12QJ1600-Q1 using a 10ns electrical input pulse on a single channel of the LMH32404-  
Q1. These pulses are similar to outputs seen in a typical LiDAR application. 8-12 shows the data from the  
ADC12QJ1600- Q1 when the LMH32404-Q1 outputs multiplex between different channels. The initial output  
shows a 10ns duration pulse train on channel 1, followed by a 20 MHz sinusoidal signal on channel 2 and then  
the output with all channels turned off but the input signals still present. Details on these measurements and  
application are discussed in the application brief, How to Increase the Channel Density of LiDAR Systems with  
the 4-Channel LMH32404 Transimpedance Amplifier.  
8.2.2.1 Application Curves  
0.8  
100  
75  
50  
25  
0
0.8  
0.6  
0.4  
0.2  
0
Input  
Output  
0.6  
0.4  
0.2  
Channel 2 Selected  
All Channels  
Disconnected  
Channel 1 Selected  
0.5  
0
0
1
1.5  
2
Time (5 ns/div)  
Time (us)  
8-11. 10 ns Pulse Electrical Input  
8-12. Multiplexed Channel Switching  
9 Power Supply Recommendations  
The LMH32404-Q1 operates on 3.3-V supplies. The VDD1 and VDD2 pins must always be driven from the same  
supply source and individually bypassed. Use multiple bypass capacitors in parallel, because a low power-  
supply source impedance must be maintained across frequency. Place the bypass capacitors as close to the  
supply pins as possible. Place the smallest capacitor on the same side of the PCB as the LMH32404-Q1.  
Placing the larger valued bypass capacitors on the same side of the PCB is preferable as well; if there are space  
constraints however, the capacitors can be moved to the opposite side of the PCB using multiple vias to reduce  
the series inductance resulting from the vias. The LMH32404-Q1 can be run on bipolar supplies by connecting  
pins 11 and 26 to the negative supply. The thermal pad must always be connected to the most negative supply.  
The digital pin threshold voltages must be appropriately level shifted as they are referred to voltages at pins 11  
and 26.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the LMH32404-Q1 requires careful  
attention to board layout parasitics and external component types. Recommendations that optimize performance  
include:  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the  
output pins can cause instability, whereas parasitic capacitance on the input pin reduces the amplifier  
bandwidth. Cut out the power and ground traces under the signal input and output pins to reduce unwanted  
capacitance. Otherwise, ground and power planes must be unbroken elsewhere on the board.  
Minimize the distance from the power-supply pins to high-frequency bypass capacitors. Use low  
inductance ceramic capacitors as decoupling capacitors with voltage ratings at least three times greater than  
the amplifiers maximum power supplies. Place a combination of 100 pf (or higher) and 33 nF (or higher)  
capacitors on the same side as the DUT. If space constraints force the larger value bypass capacitors to be  
placed on the opposite side of the PCB, use multiple vias on the supply and ground side of the capacitors.  
This configuration makes sure that there is a low-impedance path to the amplifiers power-supply pins across  
the amplifiers gain bandwidth specification. Avoid narrow power and ground traces to minimize inductance  
between the pins and the decoupling capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are  
effective at lower frequency must be used on the supply pins. Place these decoupling capacitors further from  
the device. Share the decoupling capacitors among several devices in the same area of the printed circuit  
board (PCB).  
For more information on board design and layout, see the evaluation module user guide, LMH32404  
Evaluation Module User's Guide.  
10.2 Layout Example  
Optional capacitor to reduce  
VOCM noise from internal  
resistors  
Place bypass capacitors close to VDD  
and GND pins on the same side as  
DUT. Use multiple vias to connect to  
power and GND planes  
GND  
28  
IDC_EN  
27  
VOCM  
26  
GND  
25  
M1  
24  
M2  
23  
VDD2  
OUT1–  
IN1  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
OUT1+  
VDD1  
IN2  
VBIAS  
OUT2–  
OUT2+  
VDD1  
VDD1  
IN3  
To subsequent gain stage/  
ADC/TDC  
VBIAS  
Thermal Pad  
OUT3–  
OUT3+  
OUT4–  
OUT4+  
VDD1  
IN4  
VBIAS  
GND  
11  
M4  
12  
M3  
13  
VDD2  
14  
EN  
9
VOD  
10  
VBIAS  
Not to scale  
Remove GND and Power plane  
between IN and APD to minimize  
parasitic capacitance  
Remove GND and Power  
plane near output pins to  
minimize parasitic PCB  
capacitance. Resistors to  
further isolate parasitics  
Optional capacitor to reduce  
VOD noise from internal  
resistors  
Optional isolation resistor to dampen  
resonance due to bond wire  
inductances and component  
capacitances  
10-1. Layout Recommendation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMH32404-Q1  
 
 
 
LMH32404-Q1  
ZHCSMW3A DECEMBER 2020 REVISED NOVEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
Texas Instruments, LIDAR-Pulsed Time-of-Flight Reference Design design guide  
Texas Instruments, LIDAR-Pulsed Time-of-Flight Reference Design: Using High-Speed Data Converters  
design guide  
Texas Instruments, Optical Front-End System Reference Design design guide  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, LMH32404 Evaluation Module user's guide  
Texas Instruments, Training Video: High speed TIAs for optical time of flight and LIDAR systems  
Texas Instruments, Training Video: Multi-channel optical front-end reference design overview  
Texas Instruments, Training Video: How to Convert a TINA-TI Model into a Generic SPICE Model  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 1 blog  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 2 blog  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMH32404-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH32404QWRHFRQ1  
ACTIVE  
VQFN  
RHF  
28  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
32404Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMH32404-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Sep-2022  
Catalog : LMH32404  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH32404QWRHFRQ1  
VQFN  
RHF  
28  
3000  
330.0  
12.4  
4.3  
5.3  
1.3  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RHF 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LMH32404QWRHFRQ1  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHF0028B  
VQFN - 1.0 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.13)  
A
-
A
4
0
.
0
0
0
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.55 0.1  
2X 2.5  
(0.2) TYP  
9
EXPOSED  
14  
THERMAL PAD  
24X 0.5  
15  
8
(0.16)  
TYP  
3.55 0.1  
A
SYMM  
A
2X  
29  
3.5  
1
22  
0.30  
28X  
0.18  
0.1  
C A B  
PIN 1 ID  
28  
23  
SYMM  
0.05  
0.5  
28X  
0.3  
4225972/A 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHF0028B  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.55)  
SYMM  
28  
23  
28X (0.6)  
22  
1
28X (0.24)  
(3.55)  
(1.525)  
24X (0.5)  
29  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
15  
(R0.05)  
TYP  
9
14  
(1.025)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225972/A 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHF0028B  
VQFN - 1.0 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (1.13)  
(0.665) TYP  
23  
28  
28X (0.6)  
1
22  
28X (0.24)  
(0.865)  
TYP  
24X (0.5)  
SYMM  
(4.8)  
29  
4X (1.53)  
(R0.05) TYP  
8
15  
METAL  
TYP  
14  
9
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 29  
76% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4225972/A 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH32404IRHFR

具有集成多路复用功能的四通道差分输出跨阻放大器 | RHF | 28 | -40 to 125
TI

LMH32404QWRHFRQ1

具有集成多路复用功能的汽车类四通道差分输出跨阻放大器 | RHF | 28 | -40 to 125
TI

LMH32404YR

具有集成多路复用功能的四通道差分输出跨阻放大器 | Y | 0 | -40 to 125
TI

LMH3401

7GHz、超宽带、全差动放大器
TI

LMH3401IRMSR

7GHz、超宽带、全差动放大器 | RMS | 14 | -40 to 85
TI

LMH3401IRMST

7GHz、超宽带、全差动放大器 | RMS | 14 | -40 to 85
TI

LMH34400

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器
TI

LMH34400IDRLR

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器 | DRL | 6 | -40 to 125
TI

LMH358

LOW POWER DUAL OPERATIONAL AMPLIFIERS
UTC

LMH358G-S08-R

LOW POWER DUAL OPERATIONAL AMPLIFIERS
UTC

LMH358G-S08-T

LOW POWER DUAL OPERATIONAL AMPLIFIERS
UTC

LMH358L-S08-R

LOW POWER DUAL OPERATIONAL AMPLIFIERS
UTC