LMH34400 [TI]

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器;
LMH34400
型号: LMH34400
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成钳位和环境光消除功能的 240MHz 单端跨阻放大器

放大器
文件: 总29页 (文件大小:1702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH34400  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
LMH34400 具有集成钳位240MHz 单端跨阻放大器  
1 特性  
3 说明  
• 积分增益40kΩ  
• 性能CPD = 1pF:  
LMH34400 业内超小型固定增益、单端跨阻放大  
适用于光探测和测距 (LIDAR) 应用和激光测距系  
统。LMH34400 可产生 1.0VPP 的输出摆幅并具有  
50nARMS 的输入参考噪声。  
– 带宽240MHz  
– 输入参考噪声50nARMS  
– 上升、下降时间1.5ns  
• 集成式环境光消除  
• 集成100mA 保护钳位  
• 静态电流20mA  
• 低功耗模式电流1.5mA  
• 温度范围40°C +125°C  
LMH34400 具有集成的 100mA 电流钳位可保护放大  
使其在出现过载输入时能迅速恢复正常。  
LMH34400 还有一个集成式环境光消除 (ALC) 电路,  
可取代光电二极管与放大器之间的交流耦合从而节省  
布板空间和系统成本。在需要测量低于 400kHz 的频率  
信号分量时应禁ALC 环路。  
2 应用  
当不使用放大器时可以使用 EN 引脚将 LMH34400  
置于低功耗模式节省能源。此功能允许将多个  
LMH34400 放大器多路复用至接收信号链下一级的输  
同时 EN 控制引脚提供多路复用器选择功能。  
LMH34400 提供单端输出并经过优化可与基于时数  
转换(TDC) LIDAR 系统一同使用。  
机械扫描激光雷达  
固态扫描激光雷达  
激光测距仪  
ToF 位置传感器  
无人机视觉  
工业机器人激光雷达  
移动机器人激光雷达  
扫地机器人激光雷达  
封装信息(1)  
封装尺寸标称值)  
器件型号  
LMH34400  
封装  
DRLSOT56361.60mm × 1.20mm  
.
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
.
.
.
.
VDD  
EN  
95  
100-mA  
Clamp  
92  
89  
86  
83  
80  
12.2 k  
IN  
10  
3.6x  
TIA  
OUT  
Ambient Light  
Cancellation  
VBIAS  
IDC EN  
CIN = 1.0 pF  
77  
1M  
10M  
100M  
1G  
Frequency (Hz)  
GND  
跨阻带宽与频率间的关系  
简化版方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA56  
 
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
Table of Contents  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................15  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 16  
8.3 Typical Application.................................................... 18  
8.4 Power Supply Recommendations.............................19  
8.5 Layout....................................................................... 20  
9 Device and Documentation Support............................21  
9.1 Device Support......................................................... 21  
9.2 Documentation Support............................................ 21  
9.3 Receiving Notification of Documentation Updates....21  
9.4 支持资源....................................................................21  
9.5 Trademarks...............................................................21  
9.6 静电放电警告............................................................ 21  
9.7 术语表....................................................................... 21  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Electrical Characteristics: Logic Threshold and  
Switching Characteristics.............................................. 6  
6.7 Typical Characteristics................................................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (August 2022) to Revision B (March 2023)  
Page  
Added the Typical Application, Design Requirements, and Detailed Design Procedure sections....................18  
Changes from Revision * (March 2022) to Revision A (August 2022)  
Page  
• 将数据表的状态从预告信息 更改为量产数据 .....................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
2
Submit Document Feedback  
Product Folder Links: LMH34400  
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
5 Pin Configuration and Functions  
1
IN  
VDD  
EN  
6
IDC_EN  
2
3
GND  
OUT  
5
4
5-1. DRL Package,  
6-Pin SOT563  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
EN  
NO.  
3
I
I
Device enable pin. EN = logic low = normal operation (default)(1); EN = logic high = low-power mode.  
Amplifier ground.  
GND  
5
Ambient light cancellation loop enable. IDC_EN = logic low = enable DC cancellation (default)(1)  
IDC_EN = logic high = disable DC cancellation.  
;
IDC_EN  
6
I
IN  
1
4
2
I
O
I
Transimpedance amplifier input.  
Amplifier output.  
OUT  
VDD  
Positive power supply.  
(1) TI recommends driving a digital pin with a low-impedance source rather than leaving the pin floating because fast-moving transients  
can couple into the pin and inadvertently change the logic level.  
(2) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.65  
VDD  
VDD  
25  
UNIT  
V
VDD  
Total supply voltage  
Voltage at output pin  
0
V
Voltage at logic pins  
V
0.25  
IIN  
Continuous current into IN  
Continuous output current  
Junction temperature  
Operating free-air temperature  
Storage temperature  
mA  
mA  
°C  
°C  
°C  
IOUT  
TJ  
35  
150  
125  
150  
TA  
40  
65  
Tstg  
(1) If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins((2))  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.45  
125  
UNIT  
V
VDD  
TA  
Total supply voltage  
3.3  
Operating free-air temperature  
°C  
40  
6.4 Thermal Information  
LMH34400  
THERMAL METRIC(1)  
DRL (SOT-563)  
6 PINS  
201.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
101.5  
83.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.4  
ΨJT  
82.4  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
4
Submit Document Feedback  
Product Folder Links: LMH34400  
 
 
 
 
 
 
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.5 Electrical Characteristics  
VDD = 3.3 V, CPD (1) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(Output is AC-coupled for AC performance parameters;  
for DC performance parameters load is referenced to 1V), and TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
SSBW  
LSBW  
tR, tF  
Small-signal bandwidth  
Large-signal bandwidth  
Rise and fall time  
VOUT = 100 mVPP  
240  
240  
1.5  
470  
18  
MHz  
MHz  
ns  
VOUT = 1 VPP  
VOUT = 100 mVPP, pulse width = 10 ns  
VOUT = 1 VPP, pulse width = 10 ns  
IIN = 10 mA, pulse width = 10 ns  
IIN = 10 mA, pulse width = 10 ns  
f = 10 MHz  
Slew rate (2)  
V/µs  
ns  
Overload recovery time (1% settling)  
Overload pulse extension (3)  
Output noise density  
3
ns  
eN  
94  
nV/Hz  
nARMS  
Ω
iN  
Integrated input-referred noise  
Closed-loop output impedance  
f = DC to 250 MHz  
50  
ZOUT  
f = 50 MHz  
10  
DC PERFORMANCE  
Z21  
VO  
Small-signal transimpedance gain (4)  
33  
40  
1
46  
kΩ  
Default output voltage  
Output voltage drift  
IIN = 0 µA  
0.93  
1.07  
V
ΔVO/  
ΔTA  
±20  
µV/°C  
INPUT PERFORMANCE  
RIN  
VIN  
Input Resistance  
50  
100  
2.5  
150  
Ω
Default input bias voltage  
Input pin floating  
Input pin floating  
2.44  
2.55  
V
ΔVIN/  
ΔTA  
Default input bias voltage drift  
DC input current range  
1.1  
34  
mV/°C  
µA  
Z21 < 3-dB degradation from  
IIN = 5 µA  
IIN  
27  
OUTPUT PERFORMANCE  
VOH  
Output voltage swing (high) (5)  
2.05  
2.3  
2.3  
0.4  
0.45  
19  
V
V
V
V
TA = 40°C to 125°C  
0.6  
22  
VOL  
Output voltage swing (low) (6)  
Linear output drive (source)  
TA = 40°C to 125°C  
16  
7
IIN = 15 µA, RL = 25 Ω  
IOUT  
19  
mA  
TA = 40°C, IIN = 15 µA, RL = 25 Ω  
TA = 125°C, IIN = 15 µA, RL = 25 Ω  
19  
ISC  
Output short-circuit current (7)  
85  
mA  
ZOUT  
DC output impedance (amplifier enabled)  
10  
13  
Ω
AMBIENT LIGHT CANCELLATION PERFORMANCE (IDC_EN = 0 V) (8)  
6
35  
3
µs  
µs  
IIN = 0 µA 100 µA  
Settling time  
IIN = 100 µA 0 µA  
Ambient light current cancellation range  
POWER SUPPLY  
Output offset shift from IDC = 5 µA < ±10 mV  
2
mA  
16  
20  
22.5  
18  
24  
TA = 125°C  
IQ  
Quiescent current  
mA  
TA = 40°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.5 Electrical Characteristics (continued)  
VDD = 3.3 V, CPD (1) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(Output is AC-coupled for AC performance parameters;  
for DC performance parameters load is referenced to 1V), and TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SHUTDOWN  
1.2  
1.5  
1.4  
1.6  
65  
1.7  
IQ  
Disabled quiescent current (EN = VDD  
)
mA  
µA  
TA = 40°C  
TA = 125°C  
EN and IDC_EN pins input bias current  
90  
(1) Input capacitance of photodiode.  
(2) Average of rising and falling slew rate.  
(3) Pulse width extension measured at 50% of pulse height of square wave.  
(4) Gain measured at the amplifier output pin when driving a 100-resistive load. At higher resistor loads the gain increases.  
(5) Photodiode anode biased to a negative voltage  
(6) Photodiode cathode biased to a positive voltage  
(7) Device cannot withstand continuous short-circuit.  
(8) Enabling the ambient light cancellation loop adds noise to the system.  
6.6 Electrical Characteristics: Logic Threshold and Switching Characteristics  
VDD = 3.3 V, CPD ((1)) = 1 pF, EN = 0 V, IDC_EN = 3.3 V, RL = 100 Ω(Output is AC-coupled for AC performance parameters;  
for DC performance parameters load is referenced to 1V), and TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC THRESHOLD PERFORMANCE  
Amplifier disabled above this voltage  
Amplifier enabled below this voltage  
1.6  
1.2  
2
V
V
EN control threshold voltage  
0.8  
Ambient light cancellation loop disabled  
above this voltage  
1.6  
1.2  
2
V
V
IDC_EN control threshold voltage  
Ambient light cancellation loop enabled  
below this voltage  
0.8  
EN CONTROL TRANSIENT PERFORMANCE  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA  
Enable transition-time (1% settling)  
200  
3.5  
10  
ns  
ns  
µs  
ns  
Ambient loop disabled, fIN = 25 MHz, VOUT  
= 1 VPP, IDC = 0 µA  
Disable transition-time (1% settling)  
Enable transition-time (1% settling)  
Disable transition-time (1% settling)  
(1) Input capacitance of photodiode.  
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA  
=
=
Ambient loop enabled, fIN = 25 MHz, VOUT  
1 VPP, IDC = 100 µA  
3.5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
6
Submit Document Feedback  
Product Folder Links: LMH34400  
 
 
 
 
 
 
 
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.7 Typical Characteristics  
At VDD = 3.3 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω, and TA = 25°C (unless otherwise  
noted)  
95  
92  
89  
86  
83  
80  
77  
95  
92  
89  
86  
83  
80  
77  
CIN = PCB Only  
CIN = 0.5 pF  
CIN = 1.0 pF  
CIN = 2.2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
CIN = PCB Only  
CIN = 0.5 pF  
CIN = 1.0 pF  
CIN = 2.2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 100 mVPP  
VOUT = 1 VPP  
6-1. Small-Signal Response vs Input Capacitance  
6-2. Large-Signal Response vs Input Capacitance  
95  
92  
89  
86  
83  
80  
77  
TA = -40 C  
TA = 25 C  
TA = 85 C  
TA = 125 C  
1M  
10M  
100M  
1G  
Frequency (Hz)  
VOUT = 100 mVPP  
VOUT = 1 VPP  
6-3. Small-Signal Response vs Ambient Temperature  
6-4. Large-Signal Response vs Ambient Temperature  
1
Amplifier Enabled  
Amplifier Disabled  
0
-1  
-2  
-3  
-4  
10k  
1k  
100  
10  
-5  
ALC Disabled  
ALC Enabled  
-6  
1M  
10M  
Frequency (Hz)  
100M  
1M  
10M  
Frequency (Hz)  
.
IDC_IN = 100 μA  
6-6. Closed-Loop Output Impedance vs Frequency  
6-5. Low-side Frequency Response vs Ambient Light  
Cancellation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω, and TA = 25°C (unless otherwise  
noted)  
10  
10  
CPD = none  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 4.7 pF  
CPD = 10 pF  
TA = -40 C  
TA = 25 C  
TA = 85 C  
TA = 125 C  
1
10k  
1
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
.
.
6-7. Input Noise Density vs Ambient Temperature  
IDC = 0 A  
6-8. Input Noise Density vs Input Capacitance  
2.5  
0.1 VPP  
IDC = 10 A  
IDC = 100 A  
IDC = 1 mA  
1.0 VPP  
1.2Vpp  
2.25  
2
10  
1.75  
1.5  
1.25  
1
0.75  
1
Time (5 ns/div)  
.
10k  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
IDC_EN = 0 V  
6-10. Pulse Response vs Output Swing  
6-9. Input Noise Density vs Ambient Light DC Current  
2.5  
3.5  
3
IIN = 25 A  
IIN = 1 mA  
EN  
Output  
2.25  
2
2.5  
2
1.75  
1.5  
1.25  
1
1.5  
1
0.5  
0
0.75  
0.5  
-0.5  
Time (5 ns/div)  
.
Time (50 ns/div)  
.
6-11. Overloaded Pulse Response  
6-12. Turn-On Time  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
8
Submit Document Feedback  
Product Folder Links: LMH34400  
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω, and TA = 25°C (unless otherwise  
noted)  
3.5  
3
2.5  
2.25  
2
2.5  
2
1.75  
1.5  
1.25  
1
EN  
Output  
1.5  
1
0.5  
0
0.75  
0.5  
-0.5  
Time (1 s/div)  
Time (50 ns/div)  
.
IDC_IN = 0 µA 100 µA  
6-14. Ambient Loop Cancellation Settling Time  
6-13. Turn-Off Time  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
Time (1 s/div)  
IDC_IN = 100 µA 0 µA  
positive current is sinking current into the photodiode's  
cathode  
6-15. Ambient Loop Cancellation Settling Time  
6-16. Transimpedance Gain vs Input Current  
2.7  
2.65  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
2.6  
2.55  
2.5  
2.45  
Unit 1  
Unit 2  
Unit 3  
2.4  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Temperature (C)  
Supply Voltage (V)  
.
.
6-18. Input Bias Voltage vs Ambient Temperature  
6-17. Input Bias Voltage vs Supply Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω, and TA = 25°C (unless otherwise  
noted)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
30  
25  
20  
15  
10  
5
Unit 1  
Unit 2  
Unit 3  
TA = -40 C  
TA = 25 C  
TA = 125 C  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Temperature (C)  
Supply Voltage (V)  
.
.
6-19. Quiescent Current vs Ambient Temperature  
6-20. Quiescent Current vs Supply Voltage  
2.5  
25  
20  
15  
10  
5
TA = -40 C  
TA = 25 C  
2.25  
TA = 125 C  
2
1.75  
1.5  
1.25  
1
0
0
10  
20  
30  
40  
50  
60  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
3.3  
Input Current (A)  
Enable Voltage (EN) (V)  
.
.
6-21. Output Voltage vs Input Current  
6-22. Logic Threshold vs Ambient Temperature  
1750  
1500  
1250  
1000  
750  
500  
250  
0
16  
17  
18  
19  
20  
21  
22  
23  
24  
Quiescent Current (mA)  
μ= 21.1 mA, σ= 0.38 mA  
6-23. Quiescent Current Distribution  
μ= 38.5 kΩ, σ= 1.2 kΩ  
6-24. Transimpedance Gain Distribution  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
6.7 Typical Characteristics (continued)  
At VDD = 3.3 V, CPD = 1 pF, EN = 0 V (enabled), IDC_EN = 3.3 V (disabled), RL = 100 Ω, and TA = 25°C (unless otherwise  
noted)  
1500  
1250  
1000  
750  
500  
250  
0
1250  
1000  
750  
500  
250  
0
0.93  
0.95  
0.97  
0.99  
1.01  
1.03  
1.05  
1.07  
9
9.5  
10  
10.5  
11  
11.5  
12  
12.5  
13  
Default Output Voltage (V)  
Output Impedance ()  
μ= 0.99 V, σ= 0.0073 V  
μ= 11 Ω, σ= 0.38 Ω, Device Enabled  
6-26. Output Impedance (ZOUT) Distribution  
6-25. Default Output Voltage Distribution  
μ= 1.6 kΩ, σ= 0.013 kΩ, Device Disabled  
6-27. Output Impedance (ZOUT) Distribution  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
7 Detailed Description  
7.1 Overview  
The LMH34400 is a single-channel, single-ended output, high-speed transimpedance amplifier (TIA) and  
features several integrated functions geared towards light detection and ranging (LIDAR) and pulsed time-of-  
flight (ToF) systems. The LMH34400 is designed to work with photodiodes (PDs) whose anodes are biased to a  
negative voltage and cathodes tied to the amplifier input so that the amplifier sources the photocurrent. The  
LMH34400 is offered in a space-saving 1.60 mm × 1.20 mm, 6-pin SOT563 package and is rated over a  
temperature range from 40°C to +125°C.  
7.2 Functional Block Diagram  
VDD  
100-mA  
Clamp  
RT  
Difference Amplifier (3.6x)  
Mid-scale  
buffer  
RG  
RF  
VDC = 1.0 V  
IN  
TIA  
Photodiode  
+
-
Ambient Light  
Cancella on  
OUT  
10  
IDC EN  
-VBIAS  
RG  
TIA  
RF  
Mid-scale  
buffer  
RT  
GND  
EN  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
12  
Submit Document Feedback  
Product Folder Links: LMH34400  
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
7.3 Feature Description  
7.3.1 Clamping and Input Protection  
The LMH34400 is designed to work with photodiode (PD) configurations that can source or sink current; the  
LMH34400, however, is optimized for a sinking current configuration. It is assumed that the LMH34400 device is  
being used with a PD that is configured with its cathode tied to the amplifier input and the anode tied to a  
negative supply voltage, unless stated otherwise.  
The LMH34400 features two internal clamps, a fast recovery clamp and a soft clamp. The fast recovery clamp is  
the active clamp when the photodiode is sinking a photocurrent. The soft clamp is the active clamp when the  
photodiode is sourcing a photocurrent.  
Stray reflections from nearby objects with high reflectivity can produce large output current pulses from the PD.  
The linear input range of the LMH34400 is approximately 30 µA. Input currents in excess of the linear current  
range cause the internal nodes of the amplifier to saturate, which increases the amplifier recovery time. The end  
result is a broadening of the output pulse leading to blind zones in the system. To protect against this condition,  
the LMH34400 features an integrated clamp that absorbs and diverts the excess current to the positive supply  
(VDD) when the amplifier detects its nodes entering a saturated condition. The integrated clamp minimizes the  
pulse extension to less than a few nanoseconds for input pulses up to 100 mA. When the amplifier is in low-  
power mode, the clamp circuitry is still active, thereby protecting the TIA input.  
7.3.2 ESD Protection  
All LMH34400 IO pins excluding (VDD and GND) have an internal electrostatic discharge (ESD) protection diode  
to the positive and negative supply rails to protect the amplifier from ESD events.  
7.3.3 Single-Ended Output Stage  
The output stage of the LMH34400 has a 10-Ω series resistor on its output to isolate the amplifier output stage  
transistors from the package bond-wire inductance and printed circuit board (PCB) capacitance. The net gain of  
the LMH34400 (TIA + output stage) is 40 kΩ when driving an external 100-Ω resistor. When the external load  
resistor is increased above 100 Ω, the effective gain from the IN pin to the output pin increases. Consequently,  
when the external load resistor is decreased to less than 100 Ω, the effective gain from the IN pin to the output  
pin decreases as a result of the larger voltage drop across the internal 10-Ω resistor. When there is no load  
resistor connected to the output pin, the effective TIA gain is 44 kΩ. The output voltage of the LMH34400 is set  
to a fixed value of 1.0 V when there is no current flowing into the amplifier. The output swings above and below  
1.0 V when the photodiode sinks and sources current, respectively.  
7.4 Device Functional Modes  
7.4.1 Ambient Light Cancellation Mode  
The LMH34400 has an integrated DC cancellation loop that can used to cancel any voltage offsets resulting from  
ambient light. The DC cancellation loop is enabled by setting IDC_EN low. Incident ambient light on a  
photodiode produces a DC current resulting in an offset voltage at the output of the TIA stage. If the photodiode  
produces a DC output current resulting from ambient light, then the output of the level-shift buffer stage is offset  
from the reference voltage VREF. The ALC loop detects this offset and produces an opposing DC current to  
compensate for the differential offset voltage at its input. The loop has a high-pass cutoff frequency of 400 kHz.  
The ambient light cancellation loop is disabled when the amplifier is placed in low-power mode.  
The shot noise current introduced by the DC cancellation loop increases the overall amplifier noise. So, if the  
ambient light level is negligible, then disable the loop to improve SNR. The cancellation loop helps save PCB  
space and system costs by eliminating the need for external AC coupling passive components. Additionally, the  
extra trace inductance and PCB capacitance introduced by using external AC coupling components degrades  
the LMH34400 dynamic performance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
7.4.2 Power-Down Mode (Multiplexer Mode)  
The LMH34400 can be placed in low-power mode by setting EN high, which helps in saving system power.  
Enabling low-power mode puts the outputs of the internal amplifiers in the LMH34400 in a high-impedance state.  
7-1 shows how this device feature can further save board space and cost by eliminating the need for a  
discrete high-speed multiplexer, if a system consists of several photodiode and amplifier channels multiplexed to  
single time-of-flight detector circuit. The disabled channel outputs are not an ideal open circuit so as the number  
of multiplexed channels increases, the disabled channels begin to load the enabled channel. An additional  
isolation resistor can help reduce the impact of reflections from disabled channels. Multiplexing more than four  
channels in parallel will degrade the performance of the enabled channel.  
When the amplifier is in its low-power mode, the clamp circuitry is still active thereby protecting the TIA input.  
The ambient light cancellation loop is disabled when the amplifier is placed in power-down mode. When the  
LMH34400 device is brought out of power-down operation, the ambient light cancellation loop requires several  
time constants to settle. The time constant is based on the 400-kHz cutoff frequency of the loop.  
EN = 3.3 V  
DISABLED AMPLIFIER  
100-mA  
Clamp  
12.2 k  
IN  
10  
RISO  
3.6x  
TIA  
Ambient Light  
Cancellation  
VBIAS  
TDC  
or  
+
FPGA  
EN = 0V  
TLV3801  
VREF  
ENABLED AMPLIFER  
100-mA  
Clamp  
12.2 k  
IN  
10  
RISO  
3.6x  
TIA  
Ambient Light  
Cancellation  
VBIAS  
7-1. Configuring Two LMH34400 Devices in Multiplexer Mode  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The high gain and single-ended output of the LMH34400 is well suited to be used in connection with a time-to-  
digital converter (TDC) for a time-of-flight (ToF) based receiver in a LIDAR system. The TDC function can be  
implemented using a stand-alone TDC or using a FPGA. ToF receive circuits that use TDC are significantly less  
expensive and consume considerably less power when compared to an Analog-to-Digital Converter (ADC)  
based solution. The output of the LMH34400 presents an analog representation of the returned light pulse. It is  
common practice to use a time-discriminator circuit before the TDC to precisely use a deterministic part of the  
returned waveform to stop the TDC. The most straightforward method to accomplish this action is called leading-  
edge discrimination. This method uses a high-speed comparator with a low propagation delay to stop the TDC  
when the waveform crosses a chosen incoming light amplitude value.  
In many applications, the amplitude of the returned pulse can vary considerably due to the difference in target  
reflectivity or simply the light source spreading out to a target moving to longer distances. For this reason, it is it  
is also important to choose a compartor with low dispersion. If the dispersion is high, then the amplitude variation  
in the returned signal will be converted to a variation in the timing signal presented to the TDC. This behavior is  
known as a walk error. 8-1 shows the LMH34400 connected to the TLV3801 high speed comparator. In this  
configuration, an incoming optical pulse will source current out of the amplifiers input pin and deliver a  
proportional voltage pulse to the comparator input. As the amplifiers output has 1.0 V DC with no input current,  
the reference voltage of the comparator should be set to a level above 1.0 V. For example, if the desire is to  
have the comparator to change states when the input rises above 10 μA of current, then the VREF voltage  
should be set to 1.0 V + (40 kΩ×10 μA) = 1.4 V.  
VDD  
EN  
100-mA  
Clamp  
12.2 k  
TIA  
IN  
10  
OUT  
TDC  
or  
3.6x  
+
FPGA  
Ambient Light  
Cancellation  
VBIAS  
TLV3801  
VREF  
GND  
8-1. LMH34400 to Interface to Comparator and TDC  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
8.2 Typical Application  
8-2 shows the circuit used to test the LMH34400 with a voltage source.  
VDD  
EN  
100-mA  
Clamp  
4 k  
12.2 k  
TIA  
50  
10  
50  
OUT  
50  
3.6x  
Instrument  
1 μF  
Ambient Light  
Cancellation  
Bias-T  
VBIAS  
Source  
+
GND  
8-2. LMH34400 Test Circuit  
8.2.1 Design Requirements  
The objective is to design a low-noise, wideband output transimpedance amplifier. The design requirements are  
as follows:  
Amplifier supply voltage: 3.3 V  
Transimpedance gain: 40 kΩ  
Photodiode capacitance: CPD = 1 pF  
Target bandwidth: 240 MHz  
Integrated input-referred noise: 50 nARMS (noise bandwidth = 250 MHz)  
8.2.2 Detailed Design Procedure  
8-2 shows the LMH34400 test circuit used to evaluate various bandwidth without using an optical input signal.  
The voltage source is DC biased close to the input bias voltage of the LMH34400 (approximately 2.5 V). The  
LMH34400 internal design is optimized to only source current out of the input pin (pin 1). When testing the  
LMH34400 with a network analyzer or other AC source, the DC bias should be controlled such that the sum of  
the input AC and DC components does not result in a sourcing current into the amplifier input.  
In the configuration shown in 8-2, there is a 50 Ω series resistor that helps with any reflection into the  
observing instrument. The instrument could be any 50 Ω impedance input device such as vector network  
analyzer (VNA) or oscilloscope. This setup creates a voltage divider on the output and reduces the TIA's  
amplitude by a factor of two. This factor must be considered when interpreting the measured results.  
The bandwidth of a transimpedance amplifier strongly depends on the capacitance of the photodiode (CPD) that  
is connected to the input pin of the amplifier. The larger the capacitance, the lower the closed loop bandwidth. 图  
8-3 shows when the CPD connected to the LMH34400 is between 0 pF 10 pF.  
While bandwidth is inversely proportional to the photodiode capacitance, the input-referred current noise and  
photodiode capacitance are directly proportional. To measure the output noise, the same circuit in 8-2 can be  
used with a simple modification. In this case, all components on the input pin should be removed except CPD. 图  
8-4 shows the impact of the input-referred noise density as the CPD is varied from 0 pF to 10 pF. As the  
capacitance increases, the amplitude and breadth of the high frequency noise increases significantly.  
8-5 shows the impact of an increasing photodiode capacitance on these two parameters in one plot. In this  
plot, the integrated input-referred noise is calcuated over a fixed range of DC to 250 MHz. Both the small-signal  
bandwidth and integrated input-referred noise trend toward poorer performance as the capacitance increases.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
16  
Submit Document Feedback  
Product Folder Links: LMH34400  
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
For the highest level of performance, the photodiode capacitance should be minimized. As the photodiode  
capacitance is proportional to its light capturing area, the optimum value chosen will be a compromise of several  
system variables and will differ between applications.  
8.2.3 Application Curves  
95  
92  
89  
86  
83  
80  
77  
10  
CIN = PCB Only  
CIN = 0.5 pF  
CIN = 1.0 pF  
CIN = 2.2 pF  
CIN = 4.7 pF  
CIN = 10 pF  
CPD = none  
CPD = 0.5 pF  
CPD = 1 pF  
CPD = 2 pF  
CPD = 4.7 pF  
CPD = 10 pF  
1
10k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
Frequency (Hz)  
8-3. Small-Signal Response vs Input  
8-4. Input Noise Density vs Input Capacitance  
Capacitance  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
165  
Bandwidth  
Noise (DC to 250 MHz)  
150  
135  
120  
105  
90  
75  
60  
45  
30  
0
1
2
3
4
5
6
7
8
9
10  
Photodiode Capacitance (pF)  
8-5. Bandwidth and Noise vs Input Capacitance  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
8.3 Typical Application  
A common application for the LMH34400 is as a transimpedance front-end driving a comparator, which can then  
connect to a time-to-digital converter to calculate distances from pulse-based time-of-flight measurements. 图  
8-6 shows the test circuit with a HamamatsuGN8195-12 photodiode input connected to the LMH34400, which  
is then driving TIs TLV3601 comparator.  
TLV3601  
G8195  
Oscilloscope  
Optical Pulse  
Generator  
LMH34400  
-12 V  
Vref = 1.65 V  
8-6. LMH34400 Signal Chain With Comparator  
8.3.1 Design Requirements  
The objective is to design a transimpedance front-end that can receive a 10 ns wide pulse, amplify the pulse  
through the LMH34400, and then drive the output through a comparator. The design requirements are as  
follows:  
Supply voltage 3.3 V  
Photodiode capacitance 1 pF  
Pulse width 10 ns  
Input current pulse edge rate 1 ns  
Input peak current 25 µA  
8.3.2 Detailed Design Procedure  
The circuit in 8-6 shows a photodiode anode connected to the LMH34400 which is followed by a comparator.  
To create the 10 ns, 25 µA input current pulses, the GN8195 photodiode is chosen because it provides low input  
capacitance with minimal biasing requirements and allows for easy optical coupling through fiber. Given the 40  
kgain from the LMH34400, the expected output voltage with 25 µA input current would be a 1 V peak signal.  
With input pulse edge rates of 1 ns, it was expected that the LMH34400 would produce slower pulse edges  
because the input slew rate is higher than the capabilities of the device. To increase the edge rates of the  
LMH34400 output signal, the TLV3601 comparator is added after the LMH34400 because it has a rise and fall  
time of 750 ps.  
For a simple time-of-flight application, the output of the comparator could be connected to a time-to-digital  
converter (TDC) to perform a simple distance calculation. Using this method, the distance is calculated by  
measuring the time between outgoing and incoming pulse edges and multiplying by two. In the signal chain, the  
LMH34400 provides the initial signal amplification and conversion to a voltage, then the TLV3601 further  
increases the output amplitude as well as provides a clean, fast edge to a following time-to-digital converter.  
In the circuit design, the interface between the LMH34400 and the TLV3601 does not require any additional  
biasing or level shifting, because the LMH34400 default output bias interfaces easily with the comparator.  
Additionally, this 1 V bias level allows for a setting the threshold voltage of half the supply voltage which keeps it  
close to the center of the comparators bias range as possible. However, this threshold can be set at any value  
above 1 V to adjust for the applications dynamic range requirements. In this realization, the output of the  
TLV3601 was connected to a 50 series output resistance to properly interface with 50 terminated test  
equipment.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
18  
Submit Document Feedback  
Product Folder Links: LMH34400  
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
8.3.3 Application Curves  
8-7 through 8-9 show the control signal input, LMH34400 output, and TLV3601 output, respectively, with a  
10 ns wide, 1 ns edge rate input current pulse. The figures show the ability of the LMH34400 to convert a small  
25 µA input signal to a 1-V output and then use the TLV3601 to increase the edge rate and amplitude of the  
received pulse. Also, the shape of this output pulse stays approximately constant over a large range of optical  
input power levels. In this specific case, note the output swing of the TLV3601 is limited because it is driving a  
matched 100 load to interface with the test equipment.  
30  
27  
24  
21  
18  
15  
12  
9
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
6
3
0.8  
0.6  
0
-3  
0
5
10  
15  
20  
25  
Time (ns)  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
Time (ns)  
30  
35  
40  
45  
50  
8-8. LMH34400 Output Voltage  
8-7. Equivalent Input Current Signal to  
LMH34400  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
-0.25  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Time (ns)  
8-9. TLV3601 Output Voltage Driving 100 Load  
8.4 Power Supply Recommendations  
The LMH34400 operates on a single 3.3-V power supply. As a low power-supply source impedance must be  
maintained across frequency, use multiple bypass capacitors in parallel. Place the bypass capacitors as close to  
the supply pin as possible and place the smallest capacitor on the same side of the PCB as the LMH34400.  
Preferably, the larger valued bypass capacitors should be places on the same side of the PCB as well. However,  
the capacitors can be positioned on the opposite side of the PCB using multiple vias if layout space is overly  
constrained.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
 
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
8.5 Layout  
8.5.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier such as the LMH34400 requires careful  
attention to board layout parasitics and external component types. Recommendations that optimize performance  
include:  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the  
output pins can cause instability whereas parasitic capacitance on the input pin reduces the amplifier  
bandwidth. To reduce unwanted capacitance, cut out the power and ground traces under the signal input and  
output pins. Otherwise, ground and power planes must be unbroken elsewhere on the board.  
Minimize the distance from the power-supply pins to high-frequency bypass capacitors. Use high  
quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage ratings at least three times  
greater than the amplifiers maximum power supplies. Place the smallest value capacitors on the same side  
as the DUT. If possible, use low equivalent series impedance capacitors to further reduce the parasitic  
impedance. If space constraints force the larger value bypass capacitors to be placed on the opposite side of  
the PCB, then use multiple vias on the supply and ground side of the capacitors. This configuration ensures  
that there is a low-impedance path to the amplifiers power-supply pins across the amplifiers gain bandwidth  
specification. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective at lower frequency  
must be used on the supply pins. Place these decoupling capacitors further from the device.  
8.5.2 Layout Example  
Optional isolation resistor to  
Remove GND and power plane  
between IN and APD to minimize  
parasitic capacitance  
dampen resonance due to bond  
wire inductances and component  
capacitances.  
IN  
1
IDC_EN  
6
VBIAS  
VDD  
2
GND  
5
Route ground plane as  
close as possible to GND  
pin with multiple VIAs to  
reduce inductance.  
EN  
3
OUT  
4
Place multiple bypass capacitors in low  
ESR packages close to VDD pin as  
possible. Use multiple VIAs to connect to  
power plane.  
Remove GND and power plane  
near output pin to minimize  
parasitic PCB capacitance.  
Optional isolation resistor can be  
used to further isolate parasitics.  
8-10. Layout Recommendation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSA56  
20  
Submit Document Feedback  
Product Folder Links: LMH34400  
 
LMH34400  
www.ti.com.cn  
ZHCSMM2B MARCH 2022 REVISED MARCH 2023  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
Texas Instruments, LIDAR-Pulsed Time-of-Flight Reference Design Using High-Speed Data Converters  
design guide  
Texas Instruments, LIDAR Pulsed Time of Flight Reference Design design guide  
Texas Instruments, Optical Front-End System Reference Design design guide  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, LMH34400DRL Evaluation Module user's guide  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 1 blog  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 2 blog  
Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits  
Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow  
Texas Instruments, Training Video: How to Convert a TINA-TI Model into a Generic SPICE Model  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report  
9.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
Hamamatsuis a trademark of Hamamatsu Photonics K.K.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMH34400  
English Data Sheet: SBOSA56  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH34400IDRLR  
XLMH34400IDRLR  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
6
6
4000 RoHS & Green  
4000 TBD  
NIPDAUAG  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
1M5  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Feb-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH34400IDRLR  
SOT-5X3  
DRL  
6
4000  
180.0  
8.4  
1.98  
1.78  
0.69  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-5X3 DRL  
SPQ  
Length (mm) Width (mm) Height (mm)  
202.0 201.0 28.0  
LMH34400IDRLR  
6
4000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY