LMH6321MR/NOPB [TI]

具有可调节电流限制的 300mA 高速缓冲器 | DDA | 8 | -40 to 125;
LMH6321MR/NOPB
型号: LMH6321MR/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有可调节电流限制的 300mA 高速缓冲器 | DDA | 8 | -40 to 125

放大器 光电二极管
文件: 总37页 (文件大小:1658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH6321  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
LMH6321 具有可调节电流限制300 mA 高速缓冲器  
1 特性  
3 描述  
• 高压摆1800V/μs  
• 高带110MHz  
LMH6321 是一种高速单位增益缓冲器其压摆率为  
1800V/µs在驱动 50负载时具有 110MHz 的低信号  
带宽。它可以连续驱动±300mA在驱动大容性负载时  
不会振荡。  
• 持续输出电±300mA  
• 输出电流限制容±5mA ±5%  
• 宽电源电压范5V ±15V  
• 宽温度范40°C +125°C  
• 可调节电流限制  
LMH6321 具有可调电流限制。电流限制可在 10mA 至  
300mA 范围内以 ±5mA ±5% 的精度连续调节。可使用  
电阻器调整外部基准电流从而设置电流限制。通过将  
电阻器连接到 DAC 以形成基准电流可以根据需要轻  
松、即时地调整电流。拉电流和灌电流具有共同的电流  
限制。  
• 高容性负载驱动  
• 热关断错误标志  
2 应用  
LMH6321 采用节省空间的 8 引脚 SO PowerPAD 7  
引脚 DDPAK 电源封装。SO PowerPAD封装在封装  
的底部具有裸焊盘以提高其散热能力。LMH6321 可用  
于运算放大器的反馈环路内以提高电流输出或用作独  
立缓冲器。  
• 线路驱动器  
引脚驱动器  
声纳驱动器  
电机控制  
3-1. 器件信息  
器件型号  
LMH6231  
封装(1)  
SO PowerPAD (8)  
DDPAK (7)  
封装尺寸标称值)  
1.7 mm × 1.27 mm  
4.65 mm × 1.27 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
1
8
7
6
5
EF  
NC  
G = 1  
2
+
V
CL  
G = 1  
1
2
3
4
5
6 7  
3
V
V
OUT  
IN  
4
-
V
GND  
A. V引脚连接到每个封装背面的凸片上。  
3-2. 连接图7 DDPAK(A)  
3-1. 连接图8 SO PowerPAD  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSAL8  
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
Table of Contents  
6.4 Source Inductance....................................................17  
6.5 Overvoltage Protection............................................. 17  
6.6 Bandwidth and Stability.............................................18  
6.7 Output Current and Short Circuit Protection............. 18  
6.8 Thermal Management...............................................19  
6.9 Error Flag Operation................................................. 23  
6.10 Single Supply Operation......................................... 24  
6.11 Slew Rate................................................................24  
7 Device and Documentation Support............................26  
7.1 接收文档更新通知..................................................... 26  
7.2 支持资源....................................................................26  
7.3 Trademarks...............................................................26  
7.4 Electrostatic Discharge Caution................................26  
7.5 术语表....................................................................... 26  
8 Mechanical, Packaging, and Orderable Information..26  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 描述................................................................................... 1  
4 Revision History.............................................................. 2  
5 Specifications.................................................................. 3  
5.1 Absolute Maximum Ratings........................................ 3  
5.2 Operating Ratings.......................................................3  
5.3 Thermal Information....................................................3  
5.4 ±15 V Electrical Characteristics.................................. 4  
5.5 ±5 V Electrical Characteristics.................................... 5  
5.6 Typical Characteristics................................................8  
6 Application Hints...........................................................16  
6.1 Buffers.......................................................................16  
6.2 Supply Bypassing..................................................... 16  
6.3 Load Impedence....................................................... 17  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (March 2013) to Revision D (September 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 添加了器件信..............................................................................................................................................1  
Removed the Thermal Resistance (θJA), (θJC), and SO PowerPAD Package details from the Operating  
Ratings table.......................................................................................................................................................3  
Added the Thermal Information section..............................................................................................................3  
Added the Device and Documentation Support sections................................................................................. 26  
Added the Mechanical, Packaging, and Orderable Information section...........................................................26  
Changes from Revision B (March 2013) to Revision C (March 2013)  
Page  
Changed layout of National Data Sheet to TI format........................................................................................24  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH6321  
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5 Specifications  
5.1 Absolute Maximum Ratings  
See (1) (2)  
ESD Tolerance (3)  
Human Body Model  
Machine Model  
2.5 kV  
250 V  
Supply Voltage  
36 V (±18 V)  
±5 V  
Input to Output Voltage (4)  
Input Voltage  
±VSUPPLY  
Output Short-Circuit to GND (5)  
Storage Temperature Range  
Continuous  
65°C to +150°C  
+150°C  
Junction Temperature (TJMAX  
)
Lead Temperature (Soldering, 10 seconds)  
Power Dissipation  
260°C  
(6)  
CL Pin to GND Voltage  
±1.2 V  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For specifications and the test conditions, see  
the Electrical Characteristics Table.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) Human Body Model is 1.5 kin series with 100 pF. Machine Model is 0 in series with 200 pF.  
(4) If the input-output voltage differential exceeds ±5 V, internal clamping diodes will turn on. The current through these diodes should be  
limited to 5 mA max. Thus for an input voltage of ±15 V and the output shorted to ground, a minimum of 2 kshould be placed in  
series with the input.  
(5) The maximum continuous current must be limited to 300 mA. See 6 for more details.  
(6) The maximum power dissipation is a function of TJ(MAX), θJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = TJ(MAX)TA)/θJA. See 6.8 of 6.  
5.2 Operating Ratings  
Operating Temperature Range  
Operating Supply Range  
40°C to +125°C  
5 V to ±16 V  
5.3 Thermal Information  
LMH6321  
DDA SO Power Pad DDAPAK  
THERMAL METRIC1  
8 Pins  
37.8  
51.6  
11.7  
2.5  
7 Pins  
21.5  
34.4  
6.7  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
R θJA  
Junction-to-ambient thermal resistance  
R θJC(top)  
R θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
3.2  
ψJT  
Junction-to-board characterization parameter 11.7  
Junction-to-case (bottom) thermal resistance 3.6  
6.3  
ψJB  
R θJC(bot)  
1.1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH6321  
 
 
 
 
 
 
 
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.4 ±15 V Electrical Characteristics  
The following specifications apply for Supply Voltage = ±15 V, VCM = 0, RL 100 kΩand RS = 50 Ω, CL open, unless  
otherwise noted. Italicized limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
AV  
Voltage Gain  
0.99  
0.98  
0.995  
RL = 1 kΩ, VIN = ±10 V  
V/V  
0.86  
0.84  
0.92  
±4  
RL = 50 Ω, VIN = ±10 V  
RL = 1 kΩ, RS = 0 V  
VIN = 0 V, RL = 1 kΩ, RS = 0 V  
R.L = 50 Ω  
V/V  
mV  
μA  
VOS  
IB  
Input Offset Voltage  
Input Bias Current  
±35  
±52  
±2  
±15  
±17  
R.IN  
CIN  
RO  
IS  
Input Resistance  
250  
3.5  
5
kΩ  
pF  
Ω
Input Capacitance  
Output Resistance  
Power Supply Current  
IO = ±10 mA  
11  
14.5  
RL = , VIN = 0  
16.5  
mA  
V
750 µA into  
CL Pin  
14.9  
11.9  
18.5  
20.5  
VO1  
VO2  
VO3  
Positive Output Swing  
Negative Output Swing  
IO = 300 mA, RS = 0 V, VIN = ±VS  
11.2  
10.8  
IO = 300 mA, RS = 0 V, VIN = ±VS  
11.3  
13.4  
10.3  
9.8  
Positive Output Swing  
Negative Output Swing  
13.1  
12.9  
RL = 1 k, RS = 0 V, VIN = ±VS  
RL = 1 k, RS = 0 V, VIN = ±VS  
V
13.4  
12.2  
12.9  
12.6  
Positive Output Swing  
Negative Output Swing  
11.6  
11.2  
RL = 50 , RS = 0 V, VIN = ±VS  
RL = 50 , RS = 0 V, VIN = ±VS  
V
11.9  
10.9  
10.6  
VEF  
Error Flag Output Voltage  
Normal  
5.00  
0.25  
RL = , VIN = 0,  
EF pulled up with 5 kΩ  
to +5 V  
During  
Thermal  
Shutdown  
V
TSH  
Thermal Shutdown Temperature  
Measure Quantity is Die (Junction)  
Temperature  
168  
°C  
Hysteresis  
10  
3
ISH  
Supply Current at Thermal  
Shutdown  
mA  
EF pulled up with 5 kto +5 V  
PSSR  
Power Supply Rejection Ratio  
Positive  
Negative  
58  
54  
66  
64  
RL = 1 k, VIN = 0 V,  
VS = ±5 V to ±15 V  
dB  
58  
54  
SR  
Slew Rate  
2900  
1800  
110  
VIN = ±11 V, RL = 1 kΩ  
VIN = ±11 V, RL = 50 Ω  
VIN = ±20 mVPP, RL = 50 Ω  
VIN = 2 VPP, RL = 50 Ω  
V/μs  
BW  
MHz  
MHz  
3 dB Bandwidth  
LSBW  
Large Signal Bandwidth  
48  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMH6321  
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.4 ±15 V Electrical Characteristics (continued)  
The following specifications apply for Supply Voltage = ±15 V, VCM = 0, RL 100 kΩand RS = 50 Ω, CL open, unless  
otherwise noted. Italicized limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
59  
70  
57  
68  
59  
70  
62  
73  
2.8  
Max  
Units  
HD2  
2nd Harmonic Distortion  
VO = 2 VPP, f = 100 kHz  
RL = 50 Ω  
RL = 100 Ω  
RL = 50 Ω  
RL = 100 Ω  
RL = 50 Ω  
RL = 100 Ω  
RL = 50 Ω  
RL = 100 Ω  
dBc  
VO = 2 VPP, f = 1 MHz  
VO = 2 VPP, f = 100 kHz  
VO = 2 VPP, f = 1 MHz  
HD3  
3rd Harmonic Distortion  
dBc  
en  
in  
Input Voltage Noise  
Input Current Noise  
f 10 kHz  
f 10 kHz  
nV/Hz  
pA/Hz  
2.4  
ISC1  
Output Short Circuit Current  
Source (1)  
VO = 0 V,  
Program Current  
into CL = 25 µA  
Sourcing  
VIN = +3 V  
4.5  
4.5  
10  
15.5  
15.5  
mA  
mA  
mA  
Sinking  
4.5  
10  
15.5  
4.5  
15.5  
VIN = 3 V  
VO = 0 V  
Program Current  
into CL = 750 µA  
Sourcing  
VIN = +3 V  
280  
273  
295  
295  
570  
515  
308  
325  
Sinking  
VIN = 3 V  
280  
275  
310  
325  
ISC2  
Output Short Circuit Current  
Source  
RS = 0 V, VIN = +3 V(1) (2)  
320  
300  
750  
920  
RS = 0 V, VIN = 3 V(1) (2)  
Output Short Circuit Current Sink  
300  
305  
750  
910  
V/I Section  
CLVOS  
Current Limit Input Offset Voltage  
Current Limit Input Bias Current  
±0.5  
0.2  
69  
±4.0  
±8.0  
RL = 1 k, GND = 0 V  
RL = 1 kΩ  
mV  
μA  
dB  
CLIB  
0.5  
0.8  
CL  
CMRR  
Current Limit Common Mode  
Rejection Ratio  
60  
56  
RL = 1 k, GND = 13 to +14 V  
(1) VIN = + or 4 V at TJ = 40°C.  
(2) For the condition where the CL pin is left open the output current should not be continuous, but instead, should be limited to low duty  
cycle pulse mode such that the RMS output current is less than or equal to 300 mA.  
5.5 ±5 V Electrical Characteristics  
The following specifications apply for Supply Voltage = ±5 V, VCM = 0, RL 100 kΩand RS = 50 Ω, CL Open, unless  
otherwise noted. Italicized limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
AV  
Voltage Gain  
0.99  
0.994  
RL = 1 kΩ, VIN = ±3 V  
0.98  
V/V  
0.86  
0.84  
0.92  
±2.5  
±2  
RL = 50 Ω, VIN = ±3 V  
RL = 1 kΩ, RS = 0 V  
VIN = 0 V, RL = 1 kΩ, RS = 0 V  
RL = 50 Ω  
VOS  
IB  
Offset Voltage  
±35  
±50  
mV  
Input Bias Current  
±15  
±17  
μA  
RIN  
CIN  
Input Resistance  
Input Capacitance  
250  
3.5  
kΩ  
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH6321  
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.5 ±5 V Electrical Characteristics (continued)  
The following specifications apply for Supply Voltage = ±5 V, VCM = 0, RL 100 kΩand RS = 50 Ω, CL Open, unless  
otherwise noted. Italicized limits apply for TA = TJ = TMIN to TMAX; all other limits TA = TJ = 25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
RO  
Output Resistance  
IOUT = ±10 mA  
5
Ω
IS  
Power Supply Current  
10  
13.5  
mA  
RL = , VIN = 0 V  
14.7  
14  
1.9  
1.3  
3.5  
3.5  
3.1  
3.0  
66  
17.5  
19.5  
750 μA into CL Pin  
VO1  
Positive Output Swing  
Negative Output Swing  
IO = 300 mA, RS = 0 V, VIN = ±VS  
IO = 300 mA, RS = 0 V, VIN = ±VS  
1.3  
0.9  
V
V
0.5  
0.1  
VO2  
Positive Output Swing  
Negative Output Swing  
3.2  
2.9  
RL = 1 kΩ, RS = 0 V, VIN = ±VS  
RL = 1 kΩ, RS = 0 V, VIN = ±VS  
3.1  
2.9  
V
V
VO3  
Positive Output Swing  
Negative Output Swing  
2.8  
2.5  
RL = 50 Ω, RS = 0 V, VIN = ±VS  
RL = 50 Ω, RS = 0 V, VIN = ±VS  
2.6  
2.4  
V
PSSR  
Power Supply Rejection Ratio  
Positive  
Negative  
VO = 0 V, Program Current Sourcing  
58  
54  
RL = 1 k, VIN = 0,  
VS = ±5 V to ±15 V  
dB  
58  
54  
64  
ISC1  
Output Short Circuit Current  
4.5  
9
14.0  
VIN = +3 V  
4.5  
15.5  
into CL = 25 μA  
Sinking  
4.5  
9
14.0  
4.5  
15.5  
VIN = 3 V  
mA  
VO = 0 V, Program Current Sourcing  
275  
270  
290  
290  
470  
305  
320  
VIN = +3 V  
into CL = 750 μA  
Sinking  
VIN = 3 V  
275  
270  
310  
320  
ISC2  
Output Short Circuit Current  
Source  
RS = 0 V, VIN = +3 V1 2  
300  
mA  
Output Short Circuit Current Sink  
Slew Rate  
300  
400  
450  
210  
90  
RS = 0 V, VIN = 3 V1 2  
VIN = ±2 VPP, RL = 1 kΩ  
VIN = ±2 VPP, RL = 50 Ω  
VIN = ±20 mVPP, RL = 50 Ω  
VIN = 2 VPP, RL = 50 Ω  
Temperature  
SR  
V/μs  
BW  
MHz  
MHz  
3 dB Bandwidth  
LSBW  
TSD  
Large Signal Bandwidth  
Thermal Shutdown  
39  
170  
10  
°C  
Hysteresis  
V/I Section  
CLVOS  
Current Limit Input Offset Voltage  
Current Limit Input Bias Current  
2.7  
0.2  
65  
+5  
±5.0  
RL = 1 k, GND = 0 V  
RL = 1 k, CL = 0 V  
mV  
μA  
dB  
CLIB  
0.5  
0.6  
CL  
CMRR  
Current Limit Common Mode  
Rejection Ratio  
60  
56  
RL = 1 k, GND = 3 V to +4 V  
1. VIN = + or 4 V at TJ = 40°C.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMH6321  
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
2. For the condition where the CL pin is left open the output current should not be continuous, but instead,  
should be limited to low duty cycle pulse mode such that the RMS output current is less than or equal to 300  
mA.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH6321  
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics  
60  
3000  
2600  
2200  
1800  
1400  
1000  
600  
UNDERSHOOT  
R
= 1 kW  
L
50  
40  
OVERSHOOT  
30  
R
= 50W  
L
20  
V
= 100 mV  
= OPEN  
IN  
PP  
10  
0
R
L
V
= 15V  
S
200  
0
4
8
12  
16  
20  
10  
100  
1k  
10k  
SUPPLY VOLTAGE ( V)  
C
(pF)  
L
5-2. Slew Rate  
5-1. Overshoot vs. Capacitive Load  
3000  
V
= 15V  
S
2600  
2200  
1800  
1400  
1000  
600  
R
= 1 kW  
L
V
= 200 mV  
IN  
PP  
R
= 1 kW  
L
V
S
= 5V  
R
L
= 50W  
200  
TIME (10 ns/DIV)  
0
4
8
12  
16  
20  
24  
5-4. Small Signal Step Response  
INPUT AMPLITUDE (V  
)
PP  
5-3. Slew Rate  
10  
25°C  
85°C  
9
V
IN  
= 200 mV  
PP  
R
= 1 kW  
L
V
S
=
15V  
8
125°C  
-40°C  
7
6
TIME (10 ns/DIV)  
5
7
9
11  
13  
15  
3
SUPPLY VOLTAGE ( V)  
5-5. Small Signal Step Response  
5-6. Input Offset Voltage of Amplifier vs. Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
V
IN  
= 200 mV  
V
IN  
= 200 mV  
PP  
PP  
R
= 50W  
R
= 50W  
L
L
V
S
=
5V  
V
S
=
15V  
TIME (10 ns/DIV)  
TIME (10 ns/DIV)  
5-7. Small Signal Step Response  
5-8. Small Signal Step Response  
V
= 20 V  
V
= 20 V  
IN  
PP  
IN  
PP  
R
V
= 1 kW  
R
V
= 50W  
L
L
=
15V  
=
15V  
S
S
TIME (5 ns/DIV)  
TIME (5 ns/DIV)  
5-9. Large Signal Step ResponseLeading Edge  
5-10. Large Signal Step Response Leading Edge  
V
IN  
= 20 V  
V
IN  
= 20 V  
PP  
PP  
R
L
= 1 kW  
R
L
= 50W  
V
S
=
15V  
V
S
=
15V  
TIME (5 ns/DIV)  
TIME (5 ns/DIV)  
5-11. Large Signal Step Response Trailing Edge  
5-12. Large Signal Step Response Trailing Edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
R
V
= 1 kW  
R
V
= 50W  
L
L
=
5V  
=
15V  
S
S
TIME (20 ns/DIV)  
TIME (20 ns/DIV)  
5-13. Large Signal Step Response  
5-14. Large Signal Step Response  
R
= 50W  
R
= 1 kW  
L
L
V
=
5V  
V
=
15V  
S
S
TIME (20 ns/DIV)  
TIME (20 ns/DIV)  
5-15. Large Signal Step Response  
5-16. Large Signal Step Response  
-20  
-20  
V
=
15V  
V
=
15V  
S
S
f = 1 MHz  
f = 1 MHz  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-50  
-60  
-70  
-80  
HD2  
HD2  
HD3  
HD3  
0
5
10  
20  
25  
)
30  
15  
0
5
10  
20  
25  
)
30  
15  
OUTPUT AMPLITUDE (V  
OUTPUT AMPLITUDE (V  
PP  
PP  
5-17. Harmonic Distortion with 50 Load  
5-18. Harmonic Distortion with 100 Load  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
-30  
10000  
V
=
15V  
S
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
R
= 50W  
f = 100 kHz  
L
1000  
HD2  
100  
10  
VOLTAGE nV/  
Hz)  
CURRENT pA/  
Hz)  
HD3  
1.0  
0.1  
1.0  
0
5
10  
15  
20  
25  
1k  
FREQUENCY (Hz)  
100k  
10  
100  
10k  
OUTPUT VOLTAGE (V)  
5-19. Harmonic Distortion with 50 Load  
5-20. Noise vs. Frequency  
5
5
0
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
-25  
V
=
5V  
V
=
15V  
R = 50W  
L
S
S
R
= 50W  
L
-25  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
5-21. Gain vs. Frequency  
5-22. Gain vs. Frequency  
5
0
5
0
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
V
=
5V  
V
=
15V  
S
S
R
= 1 kW  
R
= 1 kW  
L
L
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
1G  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
5-23. Gain vs. Frequency  
5-24. Gain vs. Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
14  
5.2  
5
125°C  
V
S
= 5V  
-40°C  
12  
85°C  
25°C  
10  
8
-40°C  
4.8  
125°C  
6
4.6  
4.4  
4.2  
4
2
0
85°C  
25°C  
1
3
5
7
9
11 13 15 17 19  
5
7
9
11 13 15 17 19  
SUPPLY VOLTAGE ( V)  
SOURCING CURRENT (mA)  
5-25. Supply Current vs. Supply Voltage  
5-26. Output Impedance vs. Sourcing Current  
5.6  
5
V
= 15V  
S
V
= 5V  
S
-40°C  
5.4  
5.2  
4.8  
4.6  
-40°C  
125°C  
25°C  
5
4.8  
4.6  
4.4  
4.2  
4
125°C  
85°C  
85°C  
25°C  
5
7
9
11 13 15 17 19  
5
7
9
11 13 15 17 19  
SINKING CURRENT (mA)  
SOURCING CURRENT (mA)  
5-27. Output Impedance vs. Sinking Current  
5-28. Output Impedance vs. Sourcing Current  
5.2  
400  
V
= 15V  
V
= 15V  
S
S
5
-40°C  
300  
200  
100  
0
125°C  
25°C  
4.8  
85°C  
-40°C  
25°C  
4.6  
4.4  
4.2  
85°C  
125°C  
25 125 225 325 425 525 625 725 825  
5
7
9
11 13 15 17 19  
PROGRAM CURRENT (mA)  
SINKING CURRENT (mA)  
5-29. Output Impedance vs. Sinking Current  
5-30. Output Short Circuit Current Sourcing vs. Program  
Current  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
400  
400  
V
= 5V  
S
V
= 15V  
S
300  
200  
300  
200  
100  
0
125°C  
25°C  
125°C  
25°C  
-40°C  
-40°C  
85°C  
85°C  
100  
0
25 125 225 325 425 525 625 725 825  
25 125 225 325 425 525 625 725 825  
PROGRAM CURRENT (mA)  
PROGRAM CURRENT (mA)  
5-31. Output Short Circuit Current Sinking vs. Program  
5-32. Output Short Circuit Current Sourcing vs. Program  
Current  
Current  
400  
4
V
= 5V  
125°C  
S
3.5  
85°C  
3
300  
200  
100  
0
125°C  
25°C  
2.5  
25°C  
-40°C  
85°C  
2
-40°C  
1.5  
1
V
V
= 5V  
+
IN  
S
= V  
0.5  
0
C
= OPEN  
L
25 125 225 325 425 525 625 725 825  
0
100  
200  
300  
400  
500  
PROGRAM CURRENT (mA)  
SOURCING CURRENT (mA)  
5-33. Output Short Circuit Current Sinking vs. Program  
5-34. Positive Output Swing vs. Sourcing Current  
Current  
0
-0.5  
-1  
14  
125°C  
85°C  
V
V
= 15V  
+
IN  
S
= V  
13  
C
= OPEN  
L
25°C  
-1.5  
12  
11  
10  
9
-40°C  
-40°C  
-2  
25°C  
-2.5  
-3  
85°C  
125°C  
V
V
= 5V  
-
IN  
S
= V  
-3.5  
-4  
C
= OPEN  
L
0
100  
200  
300  
400  
500  
-500  
-400  
-300  
-200  
-100  
0
SOURCING CURRENT (mA)  
SINKING CURRENT (mA)  
5-36. Positive Output Swing vs. Sourcing Current  
5-35. Negative Output Swing vs. Sinking Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
-9  
1000  
800  
V
V
= 15V  
-
IN  
S
-40°C  
25°C  
= V  
-10  
C
= OPEN  
L
-11  
-12  
-13  
-14  
600  
25°C  
-40°C  
85°C  
400  
200  
125°C  
125°C  
V
= +3  
IN  
85°C  
C
= OPEN  
L
0
-500  
-400  
-300  
-200  
-100  
0
2
4
6
8
10 12 14 16 18  
SINKING CURRENT (mA)  
SUPPLY VOLTAGE ( V)  
5-37. Negative Output Swing vs. Sinking Current  
5-38. Output Short Circuit Current Sourcing vs. Supply  
Voltage  
800  
15  
-40°C  
R
= 50W  
L
25°C  
13  
600  
11  
9
85°C  
125°C  
125°C  
25°C  
400  
85°C  
-40°C  
7
-40°C  
200  
5
3
V
= -3V  
IN  
C
= OPEN  
L
0
2
4
6
8
10 12 14 16 18  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE ( V)  
SUPPLY VOLTAGE ( V)  
5-39. Output Short Circuit Current Sinking vs. Supply  
5-40. Positive Output Swing vs. Supply Voltage  
Voltage  
15  
-3  
R
L
= 50W  
R
= 1 kW  
L
13  
-5  
-40°C  
125°C  
11  
9
-7  
-9  
25°C  
125°C  
25°C  
85°C  
85°C  
-40°C  
7
-11  
5
3
-13  
-15  
5
7
9
11  
13  
15  
5
7
9
11  
13  
15  
SUPPLY VOLTAGE ( V)  
SUPPLY VOLTAGE ( V)  
5-41. Positive Output Swing vs. Supply Voltage  
5-42. Negative Output Swing vs. Supply Voltage  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
5.6 Typical Characteristics (continued)  
-3  
15  
10  
V
=
5V  
S
R
L
= 1 kW  
-5  
-40°C  
125°C  
-40°C  
-7  
-9  
25°C  
85°C  
5
0
25°C  
-11  
-13  
-15  
125°C  
85°C  
-5  
5
7
9
11  
13  
15  
0
-2  
-1  
1
2
3
-3  
SUPPLY VOLTAGE ( V)  
COMMON MODE VOLTAGE (V)  
5-43. Negative Output Swing vs. Supply Voltage  
5-44. Input Offset Voltage of Amplifier vs. Common Mode  
Voltage  
25  
0
V
= 15V  
125°C  
25°C  
S
125°C  
15  
-2  
85°C  
-40°C  
5
-5  
-4  
-40°C  
125°C  
25°C  
-40°C  
-6  
85°C  
-15  
-8  
-25  
-10  
-12  
-8  
-4  
0
4
8
12  
3
5
7
9
11  
13  
15  
SUPPLY VOLTAGE ( V)  
COMMON MODE VOLTAGE (V)  
5-46. Input Bias Current of Amplifier vs. Supply Voltage  
5-45. Input Offset Voltage of Amplifier vs. Common Mode  
Voltage  
5
4
V
=
5V  
V
=
S
15V  
S
4
3
2
0
25°C  
25°C  
-40°C  
-40°C  
2
-2  
125°C  
-40°C  
1
0
-4  
-6  
85°C  
85°C  
-1  
-2  
-8  
-10  
-12  
-8  
-4  
0
4
8
12  
-3  
-2  
-1  
0
1
2
3
COMMON MODE VOLTAGE (V)  
COMMON MODE VOLTAGE (V)  
5-47. Input Offset Voltage of V/I Section vs. Common Mode  
5-48. Input Offset Voltage of V/I Section vs. Common Mode  
Voltage  
Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
6 Application Hints  
6.1 Buffers  
Buffers are often called voltage followers because they have largely unity voltage gain, thus the name has  
generally come to mean a device that supplies current gain but no voltage gain. Buffers serve in applications  
requiring isolation of source and load, for example, high input impedance and low output impedance (high output  
current drive). In addition, they offer gain flatness and wide bandwidth.  
Most operational amplifiers that meet the other given requirements in a particular application can be configured  
as buffers, though they are generally more complex and are, for the most part, not optimized for unity gain  
operation. The commercial buffer is a cost effective substitute for an op amp. Buffers serve several useful  
functions, either in tandem with op amps or in standalone applications. As mentioned, their primary function is to  
isolate a high impedance source from a low impedance load, since a high Z source cannott supply the needed  
current to the load. For example, in the case where the signal source to an analog to digital converter is a  
sensor, it is recommended that the sensor be isolated from the A/D converter. The use of a buffer ensures a low  
output impedance and delivery of a stable output to the converter. In A/D converter applications buffers need to  
drive varying and complex reactive loads.  
Buffers come in two flavors: Open Loop and Closed Loop. While sacrificing the precision of some DC  
characteristics, and generally displaying poorer gain linearity, open loop buffers offer lower cost and increased  
bandwidth, along with less phase shift and propagation delay than do closed loop buffers. The LMH6321 is of  
the open loop variety.  
6-1 shows a simplified diagram of the LMH6321 topology, revealing the open loop complementary follower  
design approach. 6-2 shows the LMH6321 in a typical application, in this case, a 50 coaxial cable driver.  
+
V
Q5  
Q7  
Q3  
R
R
3
1
D1 D3 D5 D7 D9 D11  
2W  
Q1  
V
OUT  
V
IN  
D4  
D8D10 D12  
D6  
D2  
R
4
Q2  
2W  
R
2
Q4  
Q8  
Q6  
-
V
6-1. Simplified Schematic  
6.2 Supply Bypassing  
The method of supply bypassing is not critical for frequency stability of the buffer, and, for light loads, capacitor  
values in the neighborhood of 1 nF to 10 nF are adequate. However, under fast slewing and large loads, large  
transient currents are demanded of the power supplies, and when combined with any significant wiring  
inductance, these currents can produce voltage transients. For example, the LMH6321 can slew typically at  
1000 V/μs. Therefore, under a 50 load condition the load can demand current at a rate, di/dt, of 20 A/μs.  
This current flowing in an inductance of 50 nH (approximately 1.5of 22 gauge wire) will produce a 1 V  
transient. Thus, it is recommended that solid tantalum capacitors of 5 μF to 10 μF, in parallel with a ceramic 0.1  
μF capacitor be added as close as possible to the device supply pins.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
TP1  
EF  
+
V
V
CL  
C
2
0.1 mF  
R
3
R
2
10 kW 1%  
10 kW 1%  
+
V
R
1
EF  
50W COAXIAL  
CABLE  
10 kW  
C
L
V
IN  
V
OUT  
INPUT  
LMH6321  
OUTPUT  
R
4
GND  
C
IN  
R
6
-
V
50W  
50W  
C
1
1 nF  
C
3
0.1 mF  
-
V
6-2. 50 Coaxial Cable Driver with Dual Supplies  
For values of capacitors in the 10 μF to 100 μF range, ceramics are usually larger and more costly than  
tantalums but give superior AC performance for bypassing high frequency noise because of their very low ESR  
(typically less than 10 M) and low ESL.  
6.3 Load Impedence  
The LMH6321 is stable under any capacitive load when driven by a 50 source. As shown by 5-1 in 5.6,  
worst case overshoot is for a purely capacitive load of about 1 nF. Shunting the load capacitance with a resistor  
will reduce the overshoot.  
6.4 Source Inductance  
Like any high frequency buffer, the LMH6321 can oscillate with high values of source inductance. The worst  
case condition occurs with no input resistor, and a purely capacitive load of 50 pF, where up to 100 nH of source  
inductance can be tolerated. With a 50 load, this goes up to 200 nH. However, a 100 resistor placed in  
series with the buffer input will ensure stability with a source inductances up to 400 nH with any load.  
6.5 Overvoltage Protection  
(Refer to the simplified schematic in 6-1).  
If the input-to-output differential voltage were allowed to exceed the Absolute Maximum Rating of 5 V, an internal  
diode clamp would turn on and divert the current around the compound emitter followers of Q1/Q3 (D1 D11  
for positive input), or around Q2/Q4 (D2 D12 for negative inputs). Without this clamp, the input transistors Q1  
Q4 would zener, thereby damaging the buffer.  
To limit the current through this clamp, a series resistor should be added to the buffer input (see R1 in 6-2).  
Although the allowed current in the clamp can be as high as 5 mA, which would suggest a 2 kresistor from a  
15 V source, it is recommended that the current be limited to about 1 mA, hence the 10 kshown.  
The reason for this larger resistor is explained in the following: One way that the input or output voltage  
differential can exceed the Absolute Maximum value is under a short circuit condition to ground while driving the  
input with up to ±15 V. However, in the LMH6321 the maximum output current is set by the programmable  
Current Limit pin (CL). The value set by this pin is specified to be accurate to 5 mA ±5%. If the input/output  
differential exceeds 5 V while the output is trying to supply the maximum set current to a shorted condition or to  
a very low resistance load, a portion of that current will flow through the clamp diodes, thus creating an error in  
the total load current. If the input resistor is too low, the error current can exceed the 5 mA ±5% budget.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMH6321  
 
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
6.6 Bandwidth and Stability  
As can be seen in the schematic of 6-2, a small capacitor is inserted in parallel with the series input resistors.  
The reason for this is to compensate for the natural band-limiting effect of the 1st order filter formed by this  
resistor and the input capacitance of the buffer. With a typical CIN of 3.5 pF (6-2), a pole is created at  
fp2 = 1/(2πR1CIN) = 4.5 MHz  
(1)  
This will band-limit the buffer and produce further phase lag. If used in an op amp-loop application with an  
amplifier that has the same order of magnitude of unity gain crossing as fp2, this additional phase lag will  
produce oscillation.  
The solution is to add a small feed-forward capacitor (phase lead) around the input resistor, as shown in 6-2.  
The value of this capacitor is not critical but should be such that the time constant formed by it and the input  
resistor that it is in parallel with (RIN) be at least five times the time constant of RINCIN. Therefore,  
C1 = (5RIN/R1)(CIN)  
(2)  
from 5.4, RIN is 250 k.  
In the case of the example in 6-2, RINCIN produces a time-constant of 870 ns, so C1 should be chosen to be a  
minimum of 4.4 μs, or 438 pF. The value of C1 (1000 pF) shown in 6-2 gives 10 μs.  
6.7 Output Current and Short Circuit Protection  
The LMH6321 is designed to deliver a maximum continuous output current of 300 mA. However, the maximum  
available current, set by internal circuitry, is about 700 mA at room temperature. The output current is  
programmable up to 300 mA by a single external resistor and voltage source.  
The LMH6321 is not designed to safely output 700 mA continuously and should not be used this way. However,  
the available maximum continuous current will likely be limited by the particular application and by the package  
type chosen, which together set the thermal conditions for the buffer (see 6.8) and could require less than 300  
mA.  
The programming of both the sourcing and sinking currents into the load is accomplished with a single resistor.  
Figure 6-3 shows a simplified diagram of the V to I converter and ISC protection circuitry that, together, perform  
this task.  
Referring to Figure 6-3, the two simplified functional blocks, labeled V/I Converter and Short Circuit Protection,  
comprise the circuitry of the Current Limit Control.  
The V/I converter consists of error amplifier A1 driving two PNP transistors in a Darlington configuration. The two  
input connections to this amplifier are VCL (inverting input) and GND (non-inverting input). If GND is connected to  
zero volts, then the high open loop gain of A1, as well as the feedback through the Darlington, will force CL, and  
thus one end REXT to be at zero volts also. Therefore, as shown in 方程式 3 a voltage applied to the other end of  
REXT will force a current into this pin.  
IEXT = VPROG/REXT  
(3)  
Through the VCL pin, IOUT is programmable from 10 mA to 300 mA by setting IEXT from 25 μA to 750 µA by  
means of a fixed REXT of 10 kand making VPROG variable from 0.25 V to 7.5 V. Thus, an input voltage VPROG is  
converted to a current IEXT. This current is the output from the V/I converter. It is gained up by a factor of two and  
sent to the Short Circuit Protection block as IPROG. IPROG sets a voltage drop across RSC which is applied to the  
non-inverting input of error amp A2. The other input is across RSENSE. The current through RSENSE, and hence  
the voltage drop across it, is proportional to the load current, through the current sense transistor QSENSE. The  
output of A2 controls the drive (IDRIVE) to the base of the NPN output transistor, Q3 which is, proportional to the  
amount and polarity of the voltage differential (VDIFF) between AMP2 inputs, that is, how much the voltage  
across RSENSE is greater than or less than the voltage across RSC. This loop gains IEXT up by another 200, thus  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
ISC = 2 x 200 (IEXT) = 400 IEXT  
(4)  
Therefore, combining 方程3 and 方程4, and solving for REXT, we get  
REXT = 400 VPROG/ISC  
(5)  
If the VCL pin is left open, the output short circuit current will default to about 700 mA. At elevated temperatures  
this current will decrease.  
I
25 mA to 750 mA  
EXT  
R
EXTERNAL  
V
CL  
V
PROG  
V/I CONVERTER  
-
A1  
CONNECT TO GROUND  
(FOR DUAL SUPPLIES)  
OR MID RAIL FOR  
GND  
+
SINGLE SUPPLY  
ö
+
V
+
V
NPN OUTPUT  
XTR  
I
SENSE  
OUT  
XTR  
I
DRIVE  
AMP2  
Q
SENSE  
V
DIFF  
I
PROG  
R
SENSE  
TO INPUT  
STAGE  
R
3
R
SC  
400W  
50 mA to 1.5 mA  
200W  
2W  
I
I
OUTPUT  
LOAD  
SENSE  
SHORT CIRCUIT  
PROTECTION  
TO LOWER OUTPUT STAGE  
Only the NPN output ISC protection is shown. Depending on the polarity of VDIFF, AMP2 will turn IDRIVE either on or off.  
6-3. Simplified Diagram of Current Limit Control  
6.8 Thermal Management  
6.8.1 Heatsinking  
For some applications, a heat sink may be required with the LMH6321. This depends on the maximum power  
dissipation and maximum ambient temperature of the application. To accomplish heat sinking, the tabs on  
DDPAK and SO PowerPAD package may be soldered to the copper plane of a PCB for heatsinking (note that  
these tabs are electrically connected to the most negative point in the circuit, for example,V).  
Heat escapes from the device in all directions, mainly through the mechanisms of convection to the air above it  
and conduction to the circuit board below it and then from the board to the air. Natural convection depends on  
the amount of surface area that is in contact with the air. If a conductive plate serving as a heatsink is thick  
enough to ensure perfect thermal conduction (heat spreading) into the far recesses of the plate, the temperature  
rise would be simply inversely proportional to the total exposed area. PCB copper planes are, in that sense, an  
aid to convection, the difference being that they are not thick enough to ensure perfect conduction. Therefore,  
eventually we will reach a point of diminishing returns (as seen in 6-5). Very large increases in the copper  
area will produce smaller and smaller improvement in thermal resistance. This occurs, roughly, for a 1 inch  
square of 1 oz copper board. Some improvement continues until about 3 square inches, especially for 2 oz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMH6321  
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
boards and better, but beyond that, external heatsinks are required. Ultimately, a reasonable practical value  
attainable for the junction to ambient thermal resistance is about 30 °C/W under zero air flow.  
A copper plane of appropriate size may be placed directly beneath the tab or on the other side of the board. If  
the conductive plane is placed on the back side of the PCB, it is recommended that thermal vias be used per  
JEDEC Standard JESD51-5.  
6.8.2 Determining Copper Area  
One can determine the required copper area by following a few basic guidelines:  
1. Determine the value of the circuits power dissipation, PD  
2. Specify a maximum operating ambient temperature, TA(MAX). Note that when specifying this parameter, it  
must be kept in mind that, because of internal temperature rise due to power dissipation, the die  
temperature, TJ, will be higher than TA by an amount that is dependent on the thermal resistance from  
junction to ambient, θJA. Therefore, TA must be specified such that TJ does not exceed the absolute  
maximum die temperature of 150°C.  
3. Specify a maximum allowable junction temperature, TJ(MAX), which is the temperature of the chip at  
maximum operating current. Although no strict rules exist, typically one should design for a maximum  
continuous junction temperature of 100°C to 130°C, but no higher than 150°C which is the absolute  
maximum rating for the part.  
4. Calculate the value of junction to ambient thermal resistance, θJA  
5. Choose a copper area that will ensure the specified TJ(MAX) for the calculated θJA. θJA as a function of  
copper area in square inches is shown in 6-4.  
The maximum value of thermal resistance, junction to ambient θJA, is defined as:  
θJA = (TJ(MAX) - TA(MAX) )/ PD(MAX)  
(6)  
where  
TJ(MAX) = the maximum recommended junction temperature  
TA(MAX) = the maximum ambient temperature in the users environment  
PD(MAX) = the maximum recommended power dissipation  
Note  
The allowable thermal resistance is determined by the maximum allowable heat rise , TRISE = TJ(MAX)  
-
TA(MAX) = (θJA) (PD(MAX)). Thus, if ambient temperature extremes force TRISE to exceed the design  
maximum, the part must be de-rated by either decreasing PD to a safe level, reducing θJA, further, or,  
if available, using a larger copper area.  
6.8.3 Procedure  
1. First determine the maximum power dissipated by the buffer, PD(MAX). For the simple case of the buffer  
driving a resistive load, and assuming equal supplies, PD(MAX) is given by:  
PD(MAX) = IS (2V+) + V+2/4RL  
(7)  
where  
IS = quiescent supply current  
2. Determine the maximum allowable die temperature rise,  
TR(MAX) = TJ(MAX)-TA(MAX) = PD(MAX)θJA  
(8)  
(9)  
3. Using the calculated value of TR(MAX) and PD(MAX) the required value for junction to ambient thermal  
resistance can be found:  
θJA = TR(MAX)/PD(MAX)  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
4. Finally, using this value for θJA choose the minimum value of copper area from 6-4.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMH6321  
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
6.8.4 Example  
Assume the following conditions:  
V+ = V= 15 V, RL = 50 , IS = 15 mA TJ(MAX) = 125°C, TA(MAX) = 85°C.  
1. From 方程7  
PD(MAX) = IS (2 V+) + V+2/4RL = (15 mA)(30 V) + 15 V2/200 = 1.58 W  
2. From 方程8  
TR(MAX) = 125°C - 85°C = 40°C  
3. From 方程9  
• θJA = 40°C/1.58 W = 25.3°C/W  
Examining 6-4, we see that we cannot attain this low of a thermal resistance for one layer of 1 oz copper. It  
will be necessary to derate the part by decreasing either the ambient temperature or the power dissipation. Other  
solutions are to use two layers of 1 oz foil, or use 2 oz copper (see 6-1), or to provide forced air flow. One  
should allow about an extra 15% heat sinking capability for safety margin.  
80  
70  
60  
50  
40  
30  
20  
0
1
2
3
COPPER FOIL AREA (SQ. IN.)  
6-4. Thermal Resistance (Typical) for 7-L DDPAK Package Mounted on 1 oz. (0.036 mm) PC Board Foil  
5
4
3
2
1
TO-263 PACKAGE  
PCB MOUNT  
1 SQ. IN. COPPER  
0
75  
AMBIENT TEMPERATURE (°C)  
125  
-40 -25  
25  
6-5. Derating Curve for DDPAK package. No Air Flow  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
6-1. θJA vs. Copper Area and PD for DDPAK. 1.0 oz cu Board. No Air Flow. Ambient Temperature =  
24°C  
Copper Area  
θJA at 1.0W  
θJA at 2.0W  
(°C/W)  
(°C/W)  
62.4  
36.4  
23.5  
19.8  
54.7  
32.1  
22.0  
17.2  
1 Layer = 1x2cu Bottom  
2 Layer = 1x2cu Top and Bottom  
2 Layer = 2x2cu Top and Bottom  
2 Layer = 2x4cu Top and Bottom  
As seen in the previous example, buffer dissipation in DC circuit applications is easily computed. However, in AC  
circuits, signal wave shapes and the nature of the load (reactive, non-reactive) determine dissipation. Peak  
dissipation can be several times the average with reactive loads. It is particularly important to determine  
dissipation when driving large load capacitance.  
A selection of thermal data for the SO PowerPAD package is shown in 6-2. The table summarizes θJA for  
both 0.5 watts and 0.75 watts. Note that the thermal resistance, for both the DDPAK and the SO PowerPAD  
package is lower for the higher power dissipation levels. This phenomenon is a result of the principle of Newtons  
Law of Cooling. Restated in term of heatsink cooling, this principle says that the rate of cooling and hence the  
thermal conduction, is proportional to the temperature difference between the junction and the outside  
environment (ambient). This difference increases with increasing power levels, thereby producing higher die  
temperatures with more rapid cooling.  
6-2. θJA vs. Copper Area and PD for SO PowerPAD. 1.0 oz cu Board. No Airflow. Ambient Temperature  
= 22°C  
Copper Area/Vias  
θJA at 0.5W  
θJA at 0.75W  
(°C/W)  
(°C/W)  
1 Layer = 0.05 sq. in. (Bottom) + 3 Via Pads  
1 Layer = 0.1 sq. in. (Bottom) + 3 Via Pads  
1 Layer = 0.25 sq. in. (Bottom) + 3 Via Pads  
1 Layer = 0.5 sq. in. (Bottom) + 3 Via Pads  
1 Layer = 1.0 sq. in. (Bottom) + 3 Via Pads  
141.4  
134.4  
115.4  
105.4  
100.5  
93.7  
138.2  
131.2  
113.9  
104.7  
100.2  
92.5  
2 Layer = 0.5 sq. in. (Top)/ 0.5 sq. in. (Bottom) + 33 Via  
Pads  
2 Layer = 1.0 sq. in. (Top)/ 1.0 sq. in. (Bottom) + 53 Via  
Pads  
82.7  
82.2  
6.9 Error Flag Operation  
The LMH6321 provides an open collector output at the EF pin that produces a low voltage when the Thermal  
Shutdown Protection is engaged, due to a fault condition. Under normal operation, the Error Flag pin is pulled up  
to V+ by an external resistor. When a fault occurs, the EF pin drops to a low voltage and then returns to V+ when  
the fault disappears. This voltage change can be used as a diagnostic signal to alert a microprocessor of a  
system fault condition. If the function is not used, the EF pin can be either tied to ground or left open. If this  
function is used, a 10 k, or larger, pull-up resistor (R2 in 6-2) is recommended. The larger the resistor the  
lower the voltage will be at this pin under thermal shutdown. 6-3 shows some typical values of VEF for 10 kΩ  
and 100 k.  
6-3. VEF vs. R2  
At V+ = 5 V  
At V+ = 15 V  
R2 (in 6-2)  
0.24 V  
0.55 V  
10 kΩ  
0.036 V  
0.072 V  
100 KΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMH6321  
 
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
6.10 Single Supply Operation  
If dual supplies are used, then the GND pin can be connected to a hard ground (0 V) (as shown in 6-2).  
However, if only a single supply is used, this pin must be set to a voltage of one VBE (0.7 V) or greater, or more  
commonly, mid rail, by a stiff, low impedance source. This precludes applying a resistive voltage divider to the  
GND pin for this purpose. 6-6 shows one way that this can be done.  
+
V
LMH6321  
+
V
GND  
-
V
-
R
R
1
OP AMP  
+
2
6-6. Using an Op Amp to Bias the GND Pin to ½ V+ for Single Supply Operation  
In 6-6, the op amp circuit pre-biases the GND pin of the buffer for single supply operation.  
The GND pin can be driven by an op amp configured as a constant voltage source, with the output voltage set  
by the resistor voltage divider, R1 and R2. It is recommended that These resistors be chosen so as to set the  
GND pin to V+/2, for maximum common mode range.  
6.11 Slew Rate  
Slew rate is the rate of change of output voltage for large-signal step input changes. For resistive load, slew rate  
is limited by internal circuit capacitance and operating current (in general, the higher the operating current for a  
given internal capacitance, the faster is the slew rate). 6-7 shows the slew capabilities of the LMH6321 under  
large signal input conditions, using a resistive load.  
3000  
V
= 15V  
S
2600  
2200  
1800  
1400  
1000  
600  
R
= 1 kW  
L
R
L
= 50W  
200  
0
4
8
12  
16  
20  
24  
INPUT AMPLITUDE (V  
)
PP  
6-7. Slew Rate vs. Peak-to-Peak Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
 
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
However, when driving capacitive loads, the slew rate may be limited by the available peak output current  
according to the following expression.  
dv/dt = IPK/CL  
(10)  
and rapidly changing output voltages will require large output load currents. For example if the part is required to  
slew at 1000 V/μs with a load capacitance of 1 nF the current demand from the LMH6321 would be 1A.  
Therefore, fast slew rate is incompatible with large CL. Also, since CL is in parallel with the load, the peak current  
available to the load decreases as CL increases.  
6-8 illustrates the effect of the load capacitance on slew rate. Slew rate tests are specified for resistive loads  
and/or very small capacitive loads, otherwise the slew rate test would be a measure of the available output  
current. For the highest slew rate, it is obvious that stray load capacitance should be minimized. Peak output  
current should be kept below 500 mA. This translates to a maximum stray capacitance of 500 pF for a slew rate  
of 1000 V/μs.  
10000  
1000  
100  
10  
1
0.1  
0.1  
1
10  
100  
1000  
CAPACITANCE (nF)  
6-8. Slew Rate vs. Load Capacitance  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMH6321  
 
LMH6321  
www.ti.com.cn  
ZHCSOM5D APRIL 2006 REVISED SEPTEMBER 2021  
7 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
7.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
7.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
7.3 Trademarks  
PowerPADis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
7.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
7.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
8 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMH6321  
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6321MR/NOPB  
LMH6321MRX/NOPB  
LMH6321TS/NOPB  
LMH6321TSX/NOPB  
ACTIVE SO PowerPAD  
DDA  
8
8
7
7
95  
RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-245C-168 HR  
Level-3-245C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LMH63  
21MR  
ACTIVE SO PowerPAD  
DDA  
2500 RoHS & Green  
SN  
SN  
SN  
LMH63  
21MR  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
KTW  
45  
RoHS-Exempt  
& Green  
LMH6321TS  
DDPAK/  
TO-263  
KTW  
500  
RoHS-Exempt  
& Green  
LMH6321TS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6321MRX/NOPB  
LMH6321TSX/NOPB  
SO  
PowerPAD  
DDA  
KTW  
8
7
2500  
500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
DDPAK/  
TO-263  
330.0  
24.4  
10.75 14.85  
5.0  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6321MRX/NOPB  
LMH6321TSX/NOPB  
SO PowerPAD  
DDPAK/TO-263  
DDA  
KTW  
8
7
2500  
500  
356.0  
367.0  
356.0  
367.0  
35.0  
45.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6321MR/NOPB  
LMH6321TS/NOPB  
DDA  
KTW  
HSOIC  
TO-263  
8
7
95  
45  
495  
502  
8
4064  
3.05  
9.19  
25  
8204.2  
Pack Materials-Page 3  
MECHANICAL DATA  
KTW0007B  
TS7B (Rev E)  
BOTTOM SIDE OF PACKAGE  
www.ti.com  
PACKAGE OUTLINE  
DDA0008B  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
A
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.25  
C A B  
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
3.4  
2.8  
9
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.71  
2.11  
4214849/A 08/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008B  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.71)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(3.4)  
SOLDER MASK  
OPENING  
TYP  
9
SYMM  
(1.3)  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(
0.2) TYP  
VIA  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-8  
4214849/A 08/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008B  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.71)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
(R0.05) TYP  
8
1
8X (0.6)  
(3.4)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
9
6X (1.27)  
5
4
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.03 X 3.80  
2.71 X 3.40 (SHOWN)  
2.47 X 3.10  
0.125  
0.150  
0.175  
2.29 X 2.87  
4214849/A 08/2016  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY