LMH6619MAE/NOPB [TI]

双路 130 MHz、1.25 mA RRIO 运算放大器 | D | 8 | -40 to 125;
LMH6619MAE/NOPB
型号: LMH6619MAE/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路 130 MHz、1.25 mA RRIO 运算放大器 | D | 8 | -40 to 125

放大器 光电二极管 运算放大器
文件: 总42页 (文件大小:2699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
LMH6618 Single/LMH6619 Dual 130 MHz, 1.25 mA RRIO Operational Amplifiers  
Check for Samples: LMH6618, LMH6619  
1
FEATURES  
Industrial Temperature Grade 40°C to +125°C  
Rail-to-Rail Input and Output  
23  
VS = 5V, RL = 1 k, TA = 25°C and AV = +1,  
Unless Otherwise Specified.  
APPLICATIONS  
Operating Voltage Range 2.7V to 11V  
Supply Current per Channel 1.25 mA  
Small Signal Bandwidth 130 MHz  
Input Offset Voltage (Limit at 25°C) ±0.75 mV  
Slew Rate 55 V/µs  
ADC Driver  
DAC Buffer  
Active Filters  
High Speed Sensor Amplifier  
Current Sense Amplifier  
Portable Video  
Settling Time to 0.1% 90 ns  
Settling Time to 0.01% 120 ns  
STB, TV Video Amplifier  
SFDR (f = 100 kHz, AV = +1, VOUT = 2 VPP) 100  
dBc  
0.1 dB Bandwidth (AV = +2) 15 MHz  
Low Voltage Noise 10 nV/Hz  
DESCRIPTION  
The LMH6618 (single, with shutdown) and LMH6619 (dual) are 130 MHz rail-to-rail input and output amplifiers  
designed for ease of use in a wide range of applications requiring high speed, low supply current, low noise, and  
the ability to drive complex ADC and video loads. The operating voltage range extends from 2.7V to 11V and the  
supply current is typically 1.25 mA per channel at 5V. The LMH6618 and LMH6619 are members of the  
PowerWise® family and have an exceptional power-to-performance ratio.  
The amplifier’s voltage feedback design topology provides balanced inputs and high open loop gain for ease of  
use and accuracy in applications such as active filter design. Offset voltage is typically 0.1 mV and settling time  
to 0.01% is 120 ns which combined with an 100 dBc SFDR at 100 kHz makes the part suitable for use as an  
input buffer for popular 8-bit, 10-bit, 12-bit and 14-bit mega-sample ADCs.  
The input common mode range extends 200 mV beyond the supply rails. On a single 5V supply with a ground  
terminated 150load the output swings to within 37 mV of the ground rail, while a mid-rail terminated 1 kload  
will swing to 77 mV of either rail, providing true single supply operation and maximum signal dynamic range on  
low power rails. The amplifier output will source and sink 35 mA and drive up to 30 pF loads without the need for  
external compensation.  
The LMH6618 has an active low disable pin which reduces the supply current to 72 µA and is offered in the  
space saving 6-Pin SOT package. The LMH6619 is offered in the 8-Pin SOIC package. The LMH6618 and  
LMH6619 are available with a 40°C to +125°C extended industrial temperature grade.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerWise, WEBENCH are registered trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2012, Texas Instruments Incorporated  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
Typical Application  
IN  
1 mF  
549W  
549W  
1.24 kW  
150 pF  
+
V
+
V
1 nF  
+
0.1 mF  
10 mF  
V
0.1 mF 10 mF  
5V  
C
C
5
6
C
13  
C
11  
0.1 mF  
1 mF  
0.01 mF  
14.3 kW  
14.3 kW  
-
22W  
LMH6618  
ADC121S101  
GND  
+
390 pF  
0.1 mF  
5.6 mF  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)  
ABSOLUTE MAXIMUM RATINGS  
ESD Tolerance  
(2)  
Human Body Model  
For input pins only  
For all other pins  
2000V  
2000V  
Machine Model  
200V  
Supply Voltage (VS = V+ – V)  
12V  
(3)  
Junction Temperature  
150°C max  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test  
conditions, see the Electrical Characteristics.  
(2) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of  
JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).  
(3) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA)/ θJA. All numbers apply for packages soldered directly onto a PC Board.  
(1)  
OPERATING RATINGS  
Supply Voltage (VS = V+ – V)  
2.7V to 11V  
(2)  
Ambient Temperature Range  
Package Thermal Resistance (θJA  
6-Pin SOT (DDC0006A)  
40°C to +125°C  
)
231°C/W  
160°C/W  
8-Pin SOIC (D0008A)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test  
conditions, see the Electrical Characteristics.  
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA)/ θJA. All numbers apply for packages soldered directly onto a PC Board.  
2
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
+3V ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, all limits are guaranteed for TJ = +25°C, V+ = 3V, V= 0V, DISABLE = 3V, VCM = VO = V+/2, AV =  
(1)  
+1 (RF = 0), otherwise RF = 2 kfor AV +1, RL = 1 k|| 5 pF. Boldface Limits apply at temperature extremes.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
(2)  
(3)  
(2)  
Frequency Domain Response  
SSBW  
–3 dB Bandwidth Small Signal  
AV = 1, RL = 1 k, VOUT = 0.2 VPP  
120  
56  
MHz  
MHz  
AV = 2, 1, RL = 1 k, VOUT = 0.2 VPP  
GBW  
GBW  
LSBW  
Gain Bandwidth (LMH6618)  
Gain Bandwidth (LMH6619)  
3 dB Bandwidth Large Signal  
AV = 10, RF = 2 k, RG = 221,  
RL = 1 k, VOUT = 0.2 VPP  
55  
55  
71  
AV = 10, RF = 2 k, RG = 221,  
RL = 1 k, VOUT = 0.2 VPP  
63  
MHz  
MHz  
AV = 1, RL = 1 k, VOUT = 2 VPP  
AV = 2, RL = 150, VOUT = 2 VPP  
AV = 1, CL = 5 pF  
13  
13  
1.5  
15  
Peak  
Peaking  
dB  
0.1  
0.1 dB Bandwidth  
AV = 2, VOUT = 0.5 VPP  
,
MHz  
dBBW  
RF = RG = 825Ω  
DG  
Differential Gain  
AV = +2, 4.43 MHz, 0.6V < VOUT < 2V,  
0.1  
0.1  
%
RL = 150to V+/2  
DP  
Differential Phase  
AV = +2, 4.43 MHz, 0.6V < VOUT < 2V,  
deg  
RL = 150to V+/2  
Time Domain Response  
tr/tf  
Rise & Fall Time  
Slew Rate  
2V Step, AV = 1  
2V Step, AV = 1  
2V Step, AV = 1  
2V Step, AV = 1  
36  
46  
ns  
SR  
36  
V/μs  
ts_0.1  
ts_0.01  
0.1% Settling Time  
0.01% Settling Time  
90  
ns  
120  
Noise and Distortion Performance  
SFDR  
Spurious Free Dynamic Range  
fC = 100 kHz, VOUT= 2 VPP, RL = 1 kΩ  
fC = 1 MHz, VOUT = 2 VPP, RL = 1 kΩ  
fC = 5 MHz, VOUT = 2 VPP, RL = 1 kΩ  
f = 100 kHz  
100  
61  
47  
10  
1
dBc  
en  
in  
Input Voltage Noise Density  
Input Current Noise Density  
Crosstalk (LMH6619)  
nV//Hz  
pA//Hz  
dB  
f = 100 kHz  
CT  
f = 5 MHz, VIN = 2 VPP  
80  
Input, DC Performance  
VOS  
Input Offset Voltage  
VCM = 0.5V (pnp active)  
VCM = 2.5V (npn active)  
(4)  
0.1  
±0.75  
±1.3  
mV  
TCVOS Input Offset Voltage Temperature Drift  
0.8  
1.4  
+1.0  
0.01  
1.5  
μV/°C  
IB  
Input Bias Current  
VCM = 0.5V (pnp active)  
VCM = 2.5V (npn active)  
2.6  
+1.8  
μA  
IOS  
Input Offset Current  
±0.27  
μA  
pF  
MΩ  
V
CIN  
Input Capacitance  
RIN  
Input Resistance  
8
CMVR  
CMRR  
Common Mode Voltage Range  
Common Mode Rejection Ratio  
DC, CMRR 65 dB  
0.2  
78  
3.2  
VCM Stepped from 0.1V to 1.4V  
VCM Stepped from 2.0V to 3.1V  
RL = 1 kto +2.7V or +0.3V  
RL = 150to +2.6V or +0.4V  
96  
107  
98  
dB  
dB  
81  
AOL  
Open Loop Voltage Gain  
85  
76  
82  
(1) Boldface limits apply to temperature range of 40°C to 125°C  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the  
Statistical Quality Control (SQC) method.  
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(4) Voltage average drift is determined by dividing the change in VOS by temperature change.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
+3V ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise specified, all limits are guaranteed for TJ = +25°C, V+ = 3V, V= 0V, DISABLE = 3V, VCM = VO = V+/2, AV =  
+1 (RF = 0), otherwise RF = 2 kfor AV +1, RL = 1 k|| 5 pF. Boldface Limits apply at temperature extremes. (1)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
(2)  
(3)  
(2)  
Output DC Characteristics  
VOUT  
Output Voltage Swing High (LMH6618)  
RL = 1 kto V+/2  
50  
160  
60  
56  
62  
(Voltage from V+ Supply Rail)  
RL =150to V+/2  
RL = 1 kto V+/2  
RL = 150to V+/2  
RL = 150to V−  
RL = 1 kto V+/2  
RL =150to V+/2  
RL = 1 kto V+/2  
RL =150to V+/2  
RL = 150to V−  
172  
198  
Output Voltage Swing Low (LMH6618)  
(Voltage from VSupply Rail)  
66  
74  
mV from  
either rail  
170  
29  
184  
217  
39  
43  
Output Voltage Swing High (LMH6619)  
(Voltage from V+ Supply Rail)  
50  
56  
62  
160  
62  
172  
198  
Output Voltage Swing Low (LMH6619)  
(Voltage from VSupply Rail)  
68  
76  
mV from  
either rail  
175  
34  
189  
222  
44  
48  
(5)  
IOUT  
Linear Output Current  
Output Resistance  
VOUT = V+/2  
±25  
2.0  
±35  
mA  
ROUT  
f = 1 MHz  
0.17  
Enable Pin Operation  
Enable High Voltage Threshold  
Enabled  
V
µA  
V
Enable Pin High Current  
Enable Low Voltage Threshold  
Enable Pin Low Current  
Turn-On Time  
VDISABLE = 3V  
Disabled  
0.04  
1.0  
VDISABLE = 0V  
1
µA  
ns  
ns  
ton  
toff  
25  
90  
Turn-Off Time  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
DC, VCM = 0.5V, VS = 2.7V to 11V  
84  
104  
1.2  
dB  
mA  
μA  
Supply Current (LMH6618)  
RL = ∞  
1.5  
1.7  
Supply Current (LMH6619)  
(per channel)  
RL = ∞  
1.2  
59  
1.5  
1.75  
ISD  
Disable Shutdown Current  
DISABLE = 0V  
85  
(5) Do not short circuit the output. Continuous source or sink currents larger than the IOUT typical are not recommended as it may damage  
the part.  
4
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
+5V ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, all limits are guaranteed for TJ = +25°C, V+ = 5V, V= 0V, DISABLE = 5V, VCM = VO = V+/2, AV =  
+1 (RF = 0), otherwise RF = 2 kfor AV +1, RL = 1 k|| 5 pF. Boldface Limits apply at temperature extremes.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
Frequency Domain Response  
SSBW  
–3 dB Bandwidth Small Signal  
AV = 1, RL = 1 k, VOUT = 0.2 VPP  
130  
53  
MHz  
MHz  
AV = 2, 1, RL = 1 k, VOUT = 0.2 VPP  
GBW  
GBW  
LSBW  
Gain Bandwidth (LMH6618)  
Gain Bandwidth (LMH6619)  
3 dB Bandwidth Large Signal  
AV = 10, RF = 2 k, RG = 221,  
RL = 1 k, VOUT = 0.2 VPP  
54  
54  
64  
AV = 10, RF = 2 k, RG = 221,  
RL = 1 k, VOUT = 0.2 VPP  
57  
MHz  
MHz  
AV = 1, RL = 1 k, VOUT = 2 VPP  
AV = 2, RL = 150, VOUT = 2 VPP  
AV = 1, CL = 5 pF  
15  
15  
0.5  
15  
Peak  
Peaking  
dB  
0.1  
0.1 dB Bandwidth  
AV = 2, VOUT = 0.5 VPP  
,
MHz  
dBBW  
RF = RG = 1 kΩ  
DG  
Differential Gain  
AV = +2, 4.43 MHz, 0.6V < VOUT < 2V,  
0.1  
0.1  
%
RL = 150to V+/2  
DP  
Differential Phase  
AV = +2, 4.43 MHz, 0.6V < VOUT < 2V,  
deg  
RL = 150to V+/2  
Time Domain Response  
tr/tf  
Rise & Fall Time  
Slew Rate  
2V Step, AV = 1  
2V Step, AV = 1  
2V Step, AV = 1  
2V Step, AV = 1  
30  
55  
ns  
SR  
44  
V/μs  
ts_0.1  
ts_0.01  
0.1% Settling Time  
0.01% Settling Time  
90  
ns  
120  
Distortion and Noise Performance  
SFDR  
Spurious Free Dynamic Range  
fC = 100 kHz, VOUT = 2 VPP, RL = 1 kΩ  
fC = 1 MHz, VOUT = 2 VPP, RL = 1 kΩ  
fC = 5 MHz, VO = 2 VPP, RL = 1 kΩ  
f = 100 kHz  
100  
88  
61  
10  
1
dBc  
en  
in  
Input Voltage Noise Density  
Input Current Noise Density  
Crosstalk (LMH6619)  
nV//Hz  
pA//Hz  
dB  
f = 100 kHz  
CT  
f = 5 MHz, VIN = 2 VPP  
80  
Input, DC Performance  
VOS  
Input Offset Voltage  
VCM = 0.5V (pnp active)  
VCM = 4.5V (npn active)  
(3)  
0.1  
±0.75  
±1.3  
mV  
TCVOS Input Offset Voltage Temperature Drift  
0.8  
1.5  
+1.0  
0.01  
1.5  
µV/°C  
IB  
Input Bias Current  
VCM = 0.5V (pnp active)  
VCM = 4.5V (npn active)  
2.4  
+1.9  
μA  
IOS  
Input Offset Current  
±0.26  
μA  
pF  
MΩ  
V
CIN  
Input Capacitance  
RIN  
Input Resistance  
8
CMVR  
CMRR  
Common Mode Voltage Range  
Common Mode Rejection Ratio  
DC, CMRR 65 dB  
0.2  
81  
5.2  
VCM Stepped from 0.1V to 3.4V  
VCM Stepped from 4.0V to 5.1V  
RL = 1 kto +4.6V or +0.4V  
RL = 150to +4.5V or +0.5V  
98  
108  
100  
83  
dB  
dB  
84  
AOL  
Open Loop Voltage Gain  
84  
78  
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the  
Statistical Quality Control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(3) Voltage average drift is determined by dividing the change in VOS by temperature change.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
+5V ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise specified, all limits are guaranteed for TJ = +25°C, V+ = 5V, V= 0V, DISABLE = 5V, VCM = VO = V+/2, AV =  
+1 (RF = 0), otherwise RF = 2 kfor AV +1, RL = 1 k|| 5 pF. Boldface Limits apply at temperature extremes.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
Output DC Characteristics  
VOUT  
Output Voltage Swing High (LMH6618)  
RL = 1 kto V+/2  
60  
230  
75  
73  
82  
(Voltage from V+ Supply Rail)  
RL = 150to V+/2  
RL = 1 kto V+/2  
RL = 150to V+/2  
RL = 150to V−  
RL = 1 kto V+/2  
RL = 150to V+/2  
RL = 1 kto V+/2  
RL = 150to V+/2  
RL = 150to V−  
255  
295  
Output Voltage Swing Low (LMH6618)  
(Voltage from VSupply Rail)  
83  
96  
mV from  
either rail  
250  
32  
270  
321  
43  
45  
Output Voltage Swing High (LMH6619)  
(Voltage from V+ Supply Rail)  
60  
73  
82  
230  
77  
255  
295  
Output Voltage Swing Low (LMH6619)  
(Voltage from VSupply Rail)  
85  
98  
mV from  
either rail  
255  
37  
275  
326  
48  
50  
(4)  
IOUT  
Linear Output Current  
Output Resistance  
VOUT = V+/2  
±25  
3.0  
±35  
mA  
ROUT  
f = 1 MHz  
0.17  
Enable Pin Operation  
Enable High Voltage Threshold  
Enabled  
V
µA  
V
Enable Pin High Current  
Enable Low Voltage Threshold  
Enable Pin Low Current  
Turn-On Time  
VDISABLE = 5V  
Disabled  
1.2  
2.0  
VDISABLE = 0V  
2.5  
25  
90  
µA  
ns  
ns  
ton  
toff  
Turn-Off Time  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
DC, VCM = 0.5V, VS = 2.7V to 11V  
84  
104  
dB  
mA  
μA  
Supply Current (LMH6618)  
RL = ∞  
1.25  
1.5  
1.7  
Supply Current (LMH6619)  
(per channel)  
RL = ∞  
1.3  
72  
1.5  
1.75  
ISD  
Disable Shutdown Current  
DISABLE = 0V  
105  
(4) Do not short circuit the output. Continuous source or sink currents larger than the IOUT typical are not recommended as it may damage  
the part.  
6
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
±5V ELECTRICAL CHARACTERISTICS  
Unless otherwise specified, all limits are guaranteed for TJ = +25°C, V+ = 5V, V= 5V, DISABLE = 5V, VCM = VO = 0V, AV =  
+1 (RF = 0), otherwise RF = 2 kfor AV +1, RL = 1 k|| 5 pF. Boldface Limits apply at temperature extremes.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
Frequency Domain Response  
SSBW  
–3 dB Bandwidth Small Signal  
AV = 1, RL = 1 k, VOUT = 0.2 VPP  
140  
53  
MHz  
MHz  
AV = 2, 1, RL = 1 k, VOUT = 0.2 VPP  
GBW  
GBW  
LSBW  
Gain Bandwidth (LMH6618)  
Gain Bandwidth (LMH6619)  
3 dB Bandwidth Large Signal  
AV = 10, RF = 2 k, RG = 221,  
RL = 1 k, VOUT = 0.2 VPP  
54  
54  
65  
AV = 10, RF = 2 k, RG = 221,  
RL = 1 k, VOUT = 0.2 VPP  
58  
MHz  
MHz  
AV = 1, RL = 1 k, VOUT = 2 VPP  
AV = 2, RL = 150, VOUT = 2 VPP  
AV = 1, CL = 5 pF  
16  
15  
Peak  
Peaking  
0.05  
15  
dB  
0.1  
0.1 dB Bandwidth  
AV = 2, VOUT = 0.5 VPP  
,
MHz  
dBBW  
RF = RG = 1.21 kΩ  
DG  
Differential Gain  
AV = +2, 4.43 MHz, 0.6V < VOUT < 2V,  
0.1  
0.1  
%
RL = 150to V+/2  
DP  
Differential Phase  
AV = +2, 4.43 MHz, 0.6V < VOUT < 2V,  
deg  
RL = 150to V+/2  
Time Domain Response  
tr/tf  
Rise & Fall Time  
Slew Rate  
2V Step, AV = 1  
2V Step, AV = 1  
2V Step, AV = 1  
2V Step, AV = 1  
30  
57  
ns  
SR  
45  
V/μs  
ts_0.1  
ts_0.01  
0.1% Settling Time  
0.01% Settling Time  
90  
ns  
120  
Noise and Distortion Performance  
SFDR  
Spurious Free Dynamic Range  
fC = 100 kHz, VOUT = 2 VPP, RL = 1 kΩ  
fC = 1 MHz, VOUT = 2 VPP, RL = 1 kΩ  
fC = 5 MHz, VOUT = 2 VPP, RL = 1 kΩ  
f = 100 kHz  
100  
88  
70  
10  
1
dBc  
en  
in  
Input Voltage Noise Density  
Input Current Noise Density  
Crosstalk (LMH6619)  
nV/Hz  
pA/Hz  
dB  
f = 100 kHz  
CT  
f = 5 MHz, VIN = 2 VPP  
80  
Input DC Performance  
VOS  
Input Offset Voltage  
VCM = 4.5V (pnp active)  
VCM = 4.5V (npn active)  
(3)  
0.1  
±0.75  
±1.3  
mV  
TCVOS Input Offset Voltage Temperature Drift  
0.9  
1.5  
+1.0  
0.01  
1.5  
µV/°C  
IB  
Input Bias Current  
VCM = 4.5V (pnp active)  
2.4  
+1.9  
μA  
VCM = 4.5V (npn active)  
IOS  
Input Offset Current  
±0.26  
μA  
pF  
MΩ  
V
CIN  
Input Capacitance  
RIN  
Input Resistance  
8
CMVR  
CMRR  
Common Mode Voltage Range  
Common Mode Rejection Ratio  
DC, CMRR 65 dB  
5.2  
84  
5.2  
VCM Stepped from 5.1V to 3.4V  
VCM Stepped from 4.0V to 5.1V  
RL = 1 kto +4.6V or 4.6V  
RL = 150to +4.3V or 4.3V  
100  
108  
95  
dB  
dB  
83  
AOL  
Open Loop Voltage Gain  
86  
79  
84  
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the  
Statistical Quality Control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(3) Voltage average drift is determined by dividing the change in VOS by temperature change.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
±5V ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise specified, all limits are guaranteed for TJ = +25°C, V+ = 5V, V= 5V, DISABLE = 5V, VCM = VO = 0V, AV =  
+1 (RF = 0), otherwise RF = 2 kfor AV +1, RL = 1 k|| 5 pF. Boldface Limits apply at temperature extremes.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
Output DC Characteristics  
VOUT  
Output Voltage Swing High (LMH6618)  
RL = 1 kto GND  
100  
430  
110  
440  
35  
111  
126  
(Voltage from V+ Supply Rail)  
RL = 150to GND  
RL = 1 kto GND  
RL = 150to GND  
RL = 150to V−  
457  
526  
Output Voltage Swing Low (LMH6618)  
(Voltage from VSupply Rail)  
121  
136  
mV from  
either rail  
474  
559  
51  
52  
Output Voltage Swing High (LMH6619)  
(Voltage from V+ Supply Rail)  
RL = 1 kto GND  
RL = 150to GND  
RL = 1 kto GND  
RL = 150to GND  
RL = 150to V−  
100  
430  
115  
450  
45  
111  
126  
457  
526  
Output Voltage Swing Low (LMH6619)  
(Voltage from VSupply Rail)  
126  
141  
mV from  
either rail  
484  
569  
61  
62  
(4)  
IOUT  
Linear Output Current  
Output Resistance  
VOUT = V+/2  
±25  
0.5  
±35  
mA  
ROUT  
f = 1 MHz  
0.17  
Enable Pin Operation  
Enable High Voltage Threshold  
Enabled  
V
µA  
V
Enable Pin High Current  
Enable Low Voltage Threshold  
Enable Pin Low Current  
Turn-On Time  
VDISABLE = +5V  
Disabled  
16  
0.5  
VDISABLE = 5V  
17  
25  
90  
µA  
ns  
ns  
ton  
toff  
Turn-Off Time  
Power Supply Performance  
PSRR  
IS  
Power Supply Rejection Ratio  
DC, VCM = 4.5V, VS = 2.7V to 11V  
RL = ∞  
84  
104  
dB  
mA  
μA  
Supply Current (LMH6618)  
1.35  
1.6  
1.9  
Supply Current (LMH6619)  
(per channel)  
RL = ∞  
1.45  
103  
1.65  
2.0  
ISD  
Disable Shutdown Current  
DISABLE = 5V  
140  
(4) Do not short circuit the output. Continuous source or sink currents larger than the IOUT typical are not recommended as it may damage  
the part.  
8
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
Connection Diagram  
1
6
+
V
V
OUT  
5
4
2
3
-
DISABLE  
-IN  
V
-
+
+IN  
Figure 1. 6-Pin SOT – Top View  
(See Package Number DDC0006A)  
1
8
+
OUT A  
V
A
-
+
2
3
4
7
6
5
-IN A  
OUT B  
-IN B  
+IN A  
B
+
-
-
+IN B  
V
Figure 2. 8-Pin SOIC – Top View  
(See Package Number D0008A)  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
Closed Loop Frequency Response for Various Supplies  
Closed Loop Frequency Response for Various Supplies  
3
3
+
V
V
= +1.5V  
= -1.5V  
+
-
V
V
= +2.5V  
= -2.5V  
-
0
-3  
0
-3  
-6  
-9  
±5V  
±1.5V  
±2.5V  
+
V
V
= +5V  
= -5V  
-6  
-9  
-
-12  
-15  
-18  
-21  
A = +1  
= 0.2V  
V
OUT  
A = +1  
V
R
= 1 kW  
L
L
R
L
= 150W||3 pF  
C
= 5 pF  
V
= 0.2V  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 3.  
Figure 4.  
Closed Loop Frequency Response for Various Supplies  
Closed Loop Frequency Response for Various Supplies  
3
3
+
+
V
= +1.5V  
= -1.5V  
V
= +1.5V  
= -1.5V  
+
-
-
0
-3  
0
-3  
V
V
+
V
= +5V  
= -5V  
+
V
= +5V  
= -5V  
-
V
= +2.5V  
= -2.5V  
V
-
-
V
V
+
V
= +2.5V  
= -2.5V  
-6  
-6  
-
V
-9  
-9  
A
= +2  
V
-12  
-15  
-18  
-12  
-15  
-18  
A
= +2  
R
= R = 2 kW  
G
V
F
L
R
V
= 1 kW  
R
V
= 150W  
L
= 0.2V  
= 0.4V  
OUT  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5.  
Figure 6.  
Closed Loop Frequency Response for  
Closed Loop Frequency Response for Various  
Various Temperatures  
Temperatures  
3
3
-40°C  
-40°C  
0
0
-3  
-3  
25°C  
85°C  
25°C  
85°C  
-6  
-9  
-6  
-9  
A
V
V
V
= +1  
A
V
V
V
= +1  
V
+
V
+
125°C  
125°C  
= +2.5V  
= -2.5V  
= +2.5V  
= -2.5V  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
-
-
= 0.2 V  
PP  
= 0.2 V  
OUT PP  
OUT  
R
= 1 kW  
R
C
= 150W  
L
L
L
L
C
= 10 pF  
= 10 pF  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 7.  
Figure 8.  
10  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
Closed Loop Gain vs. Frequency for Various Gains  
Large Signal Frequency Response  
3
3
+
V
= +5V  
= -5V  
0
-
0
V
A = 1  
A = 2  
-3  
+
-3  
V
= +2.5V  
A = 5  
+
-
-6  
-9  
V
= +1.5V  
= -1.5V  
V
= -2.5V  
-
-6  
A = 10  
V
-9  
+
V
V
= +2.5V  
= -2.5V  
= 1 kW  
= 5 pF  
-12  
-15  
-18  
-21  
-
A
= +2  
V
-12  
-15  
-18  
R
C
R
R
= R = 2 kW  
L
L
F
G
= 1 kW  
L
V
= 0.2V  
V
= 2V  
OUT  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9.  
Figure 10.  
Small Signal Frequency Response with  
±0.1 dB Gain Flatness for Various Supplies  
Various Capacitive Load  
5
0.3  
C
= 30 pF  
L
4
3
2
1
0
0.2  
C = 20 pF  
L
C
L
= 10 pF  
±1.5V  
0.1  
±2.5V  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
C
= 5 pF  
L
0
C
= 0 pF  
L
±5V  
+
-
-0.1  
-0.2  
-0.3  
V
V
= +5V  
= -5V  
R
L
= 1 kW  
V
= 0.2V  
OUT  
1
10  
100  
1000  
0.01  
0.10  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11.  
Figure 12.  
HD2  
vs.  
Small Signal Frequency Response with  
Capacitive Load and Various RISO  
Frequency and Supply Voltage  
-20  
-30  
11  
+
V
= 2 V  
PP  
+
-
OUT  
V
V
V
= +5V  
= -5V  
V
V
= +1.5V  
= -1.5V  
9
7
-
R
= 1 kW  
L
F
R
= 0W  
-40  
= 0.2 V  
OUT  
PP  
A = +1  
5
C
L
= 100 pF  
-50  
+
-
R
= 0  
ISO  
V
V
= +2.5V  
= -2.5V  
3
-60  
1
-70  
-1  
-3  
-5  
-7  
-9  
R
= 25  
= 50  
ISO  
-80  
R
R
= 100  
ISO  
ISO  
-90  
+
V
V
= +5V  
R
= 75  
ISO  
-
-100  
= -5V  
-110  
0.1  
1
10  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13.  
Figure 14.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
HD3  
HD2 and HD3  
vs.  
vs.  
Frequency and Supply Voltage  
Frequency and Load  
-20  
-30  
-20  
-30  
+
V
V
V
= 2 V  
PP  
V
= 2 V  
PP  
OUT  
+
OUT  
V
V
= +1.5V  
= -1.5V  
-
= +2.5V  
R
= 1 kW  
L
HD3, R = 150W  
L
-
= -2.5V  
R
= 0W  
-40  
-40  
F
A = +1  
R
= 0W  
F
-50  
-50  
A = +1  
HD2, R = 150W  
L
-60  
-60  
+
-
V
V
= +2.5V  
= -2.5V  
-70  
-70  
-80  
-80  
-90  
-90  
HD2, R = 1 kW  
L
+
-
V
V
= +5V  
= -5V  
-100  
-100  
HD3, R = 1 kW  
L
-110  
-110  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15.  
Figure 16.  
HD2 and HD3  
vs.  
Common Mode Voltage  
HD2 and HD3  
vs.  
Common Mode Voltage  
-50  
-60  
-70  
-80  
-90  
-50  
-60  
-70  
-80  
-90  
HD2  
f
= 1 MHz  
f
= 100 kHz  
IN  
IN  
HD2  
+
+
V
V
= +2.5V  
= -2.5V  
V
= 1 V  
V
= 1 V  
OUT PP  
OUT  
PP  
V
V
= +2.5V  
-
-
R
= 1 kW  
R
= 1 kW  
L
F
L
= -2.5V  
R
= 0  
R
= 0  
F
A = +1  
A = +1  
-100  
-110  
-120  
-100  
-110  
-120  
HD3  
HD3  
+
HD3  
HD2  
HD2  
HD3  
+
+
+
+
+
V
V
= +2.5V  
= -2.5V  
V
V
= +2.5V  
V
V
= +5V  
V
V
= +5V  
V
V
= +5V  
V
V
= +5V  
-
-
-
-
-
-
= -2.5V  
= -5V  
= -5V  
= -5V  
2
= -5V  
2
0
1
3
4
5
6
7
8
9
10  
0
1
3
4
5
6
7
8
9
10  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
Figure 17.  
Figure 18.  
HD2  
vs.  
HD3  
vs.  
Frequency and Gain  
Frequency and Gain  
-30  
-40  
-30  
-40  
V
V
V
= 2 V  
PP  
V
V
V
= 2 V  
PP  
OUT  
+
OUT  
+
= +2.5V  
= -2.5V  
= 1 kW  
= 2 kW  
= +2.5V  
= -2.5V  
= 1 kW  
= 2 kW  
-
-
-50  
-60  
-50  
-60  
R
R
R
R
L
G = +10, HD2  
L
F
F
G = +2, HD3  
-70  
-70  
G = +10, HD3  
-80  
-80  
G = +1, HD2  
-90  
-90  
G = +1, HD3  
-100  
-110  
-100  
G = +2, HD2  
1
-110  
10  
1
10  
0.1  
0.1  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 19.  
Figure 20.  
12  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
HD2  
vs.  
Output Swing  
Open Loop Gain/Phase  
120  
100  
80  
120  
100  
-30  
-40  
+
-
V
V
= +2.5V  
= -2.5V  
10 MHz  
PHASE  
AV = -1  
80  
60  
40  
20  
-50  
-60  
-70  
-80  
R
L
= 1 kW  
GAIN  
+
5 MHz  
60  
40  
20  
0
1 MHz  
V
= +2.5V  
-
0
V
= -2.5V  
500 kHz  
R
= 1 kW  
L
L
-90  
-20  
-40  
100 kHz  
C
= 5 pF  
-20  
1k  
-100  
1M  
100M  
10k 100k  
10M  
1G  
0
1
2
3
4
5
FREQUENCY (Hz)  
V (V )  
OUT PP  
Figure 21.  
Figure 22.  
HD3  
vs.  
Output Swing  
HD2  
vs.  
Output Swing  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
+
-
10 MHz  
V
V
A
= +2.5V  
= -2.5V  
= -1  
10 MHz  
V
+
-
5 MHz  
V
V
A
= +2.5V  
R
= 1 kW  
L
= -2.5V  
= +2  
5 MHz  
-60  
-70  
-80  
-90  
-60  
-70  
V
R
L
= 1 kW  
1 MHz  
-80  
1 MHz  
500 kHz  
-90  
500 kHz  
1
-100  
-110  
-100  
-110  
100 kHz  
100 kHz  
0
2
3
4
5
0
1
2
3
4
5
V (V )  
OUT PP  
V
(V )  
OUT PP  
Figure 23.  
Figure 24.  
HD2  
vs.  
Output Swing  
HD3  
vs.  
Output Swing  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
10 MHz  
10 MHz  
+
V
V
A
= +2.5V  
5 MHz  
-
+
-
= -2.5V  
= +2  
V
V
A
= +2.5V  
= -2.5V  
= +2  
5 MHz  
V
-60  
-70  
-60  
-70  
1 MHz  
R
L
= 150W  
V
R
= 1 kW  
L
500 kHz  
-80  
-80  
1 MHz  
-90  
-90  
100 kHz  
500 kHz  
-100  
-110  
-100  
-110  
100 kHz  
0
1
2
3
4
5
0
1
2
3
4
5
V
(V  
)
V
(V )  
OUT PP  
OUT PP  
Figure 25.  
Figure 26.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
HD3  
THD  
vs.  
Output Swing  
vs.  
Output Swing  
-30  
-40  
-20  
-30  
-40  
-50  
10 MHz  
10 MHz  
+
-
V
V
A
= +2.5V  
= -2.5V  
= +2  
5 MHz  
-50  
-60  
-70  
-80  
+
-
5 MHz  
V
= +2.5V  
= -2.5V  
= -1  
V
V
A
-60  
-70  
R
L
= 150W  
V
1 MHz  
R
= 1 kW  
L
1 MHz  
-80  
500 kHz  
500 kHz  
-90  
-90  
-100  
-110  
100 kHz  
100 kHz  
2
-100  
0
1
2
3
4
5
0
1
3
4
5
OUTPUT SWING (V  
)
PP  
V
(V )  
OUT PP  
Figure 27.  
Figure 28.  
Settling Time  
vs.  
Input Noise  
vs.  
Input Step Amplitude  
(Output Slew and Settle Time)  
Frequency  
1000  
1000  
100  
10  
140  
120  
100  
80  
+
V
= +2.5V  
-
V
= -2.5V  
FALLING, 0.1%  
RISING, 0.1%  
100  
10  
1
60  
VOLTAGE NOISE  
40  
20  
0
A
V
V
= -1  
V
+
= +2.5V  
= -2.5V  
-
CURRENT NOISE  
1
10M  
10k 100k  
1M  
10  
100  
1k  
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5  
FREQUENCY (Hz)  
OUTPUT SWING (V  
)
PP  
Figure 29.  
Figure 30.  
VOS  
vs.  
VOUT  
VOS  
vs.  
VOUT  
6.0  
4.0  
6.0  
+
+
V
V
= +2.5V  
= -2.5V  
= 150W  
V
V
= +2.5V  
-
-
= -2.5V  
4.0  
2.0  
R
L
R
L
= 1 kW  
2.0  
-40°C  
25°C  
-40°C  
25°C  
0
0
125°C  
125°C  
-2.0  
-2.0  
-4.0  
-6.0  
-4.0  
-6.0  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
(V)  
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
(V)  
V
V
OUT  
OUT  
Figure 31.  
Figure 32.  
14  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
VOS  
VOS  
vs.  
VS (pnp)  
vs.  
VCM  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-40°C  
-40°C  
25°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
25°C  
-
V
V
V
= -0.5V  
-0.1  
+
-
= V - V  
S
125°C  
= 0V  
-0.2  
-0.3  
-0.4  
CM  
+
V
V
= +2.5V  
= -2.5V  
-
125°C  
2
3
4
5
6
7
8
9
10 11 12  
-0.5  
0.5  
1.5  
2.5  
(V)  
3.5  
4.5  
5.5  
V
S
(V)  
V
CM  
Figure 33.  
Figure 34.  
VOS  
vs.  
VOS  
vs.  
IOUT  
VS (npn)  
0.6  
0.3  
0.2  
0.1  
0
+
-
V
V
= +2.5V  
= -2.5V  
-40°C  
-40°C  
0.4  
0.2  
25°C  
0
-0.2  
-0.4  
-0.6  
-0.8  
25°C  
125°C  
-0.1  
-0.2  
-0.3  
-0.4  
+
V
V
V
= +0.5V  
125°C  
+
-
= V - V  
S
= 0V  
CM  
2
3
4
5
6
7
8
9
10 11 12  
-40 -30 -20 -10  
0
10 20 30 40  
V
S
(V)  
I
(mA)  
OUT  
Figure 35.  
Figure 36.  
IB  
vs.  
VS (pnp)  
VOS Distribution (pnp and npn)  
9
8
7
-1.0  
-1.5  
-2.0  
-
V
V
V
= -0.5V  
+
-
= V - V  
S
= 0V  
CM  
6
5
4
3
25°C  
-40°C  
125°C  
2
1
0
0
2
4
8
10  
12  
6
V
S
(V)  
V
OS  
(mV)  
Figure 37.  
Figure 38.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
IB  
IS  
vs.  
VS  
vs.  
VS (npn)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.5  
1.0  
0.5  
+
V
V
V
= +0.5V  
= V+ - V  
= 0V  
125°C  
-
S
CM  
25°C  
125°C  
25°C  
-40°C  
-
V
V
V
= -0.5V  
-40°C  
+
-
= V - V  
S
= 0.5V  
CM  
8
2
4
8
10  
12  
0
0
2
4
6
10  
12  
6
V
(V)  
S
V
(V)  
S
Figure 39.  
Figure 40.  
VOUT  
vs.  
VS  
VOUT  
vs.  
VS  
150  
100  
600  
400  
VOLTAGE V  
+
IS  
VOLTAGE V  
IS  
OUT  
OUT  
+
BELOW V SUPPLY  
BELOW V SUPPLY  
R
= 1 kW to  
L
50  
0
200  
0
MID-RAIL  
R
= 150W to  
L
MID-RAIL  
-40°C  
25°C 125°C  
-40°C  
25°C  
125°C  
50  
200  
100  
150  
400  
600  
VOLTAGE V  
-
IS  
VOLTAGE V  
IS  
OUT  
OUT  
-
ABOVE V SUPPLY  
ABOVE V SUPPLY  
2
4
6
8
10  
12  
2
4
6
8
10  
12  
V
S
(V)  
V
(V)  
S
Figure 41.  
Figure 42.  
VOUT  
vs.  
VS  
Closed Loop Output Impedance  
vs.  
Frequency AV = +1  
1000  
100  
20  
25  
30  
35  
40  
+
VOLTAGE V  
IS  
ABOVE V SUPPLY  
V
V
= +2.5V  
= -2.5V  
OUT  
-
-
-
V
R
= 0V  
= 150W to GND  
L
-40°C  
10  
1
25°C  
0.1  
125°C  
0.01  
0.001  
0
2
4
8
10  
12  
6
0.01  
0.1  
1
10  
100  
+
FREQUENCY (MHz)  
V
(V)  
Figure 43.  
Figure 44.  
16  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
PSRR  
PSRR  
vs.  
Frequency  
vs.  
Frequency  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
-PSRR  
+PSRR  
-PSRR  
+PSRR  
+
-
+
-
V
V
= +2.5V  
= -2.5V  
V
V
= +1.5V  
= -1.5V  
100M  
100M  
10 100 1k 10k 100k 1M 10M  
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 45.  
Figure 46.  
CMRR  
vs.  
Frequency  
Crosstalk Rejection vs. Frequency (Output to Output)  
100  
110  
100  
90  
+
+
-
V
V
V
A
= +2.5V  
= -2.5V  
V
V
= +2.5V  
= -2.5V  
-
= 2 V  
OUTCHA  
PP  
90  
80  
= 2V/V  
VCHB  
80  
70  
60  
70  
60  
50  
40  
30  
100k  
1M  
10M  
100M  
0.0001 0.001 0.01  
1
10  
100  
0.1  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 47.  
Figure 48.  
Small Signal Step Response  
Small Signal Step Response  
+
+
V =+1.5V  
V = +2.5V  
-
-
V =-1.5V  
V = -2.5V  
A=+1  
A = +1  
V
OUT  
=0.2V  
V
OUT  
= 0.2V  
R =1kW  
L
R = 1 kW  
L
25 ns/DIV  
Figure 49.  
25 ns/DIV  
Figure 50.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
Small Signal Step Response  
Small Signal Step Response  
+
+
V = +5V  
V =+2.5V  
-
-
V = -5V  
V =-2.5V  
A = +1  
A=-1  
V
= 0.2V  
V
OUT  
=0.2V  
OUT  
R = 1 kW  
L
R =1kW  
L
25 ns/DIV  
25 ns/DIV  
Figure 51.  
Figure 52.  
Small Signal Step Response  
Small Signal Step Response  
+
+
V = +5V  
V = +1.5V  
-
-
V = -5V  
V = -1.5V  
A = -1  
A = -1  
V
OUT  
= 0.2V  
V
OUT  
= 0.2V  
R = 1 kW  
L
R = 1 kW  
L
25 ns/DIV  
25 ns/DIV  
Figure 54.  
Figure 53.  
18  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
Small Signal Step Response  
Small Signal Step Response  
+
+
V = +2.5V  
V = +1.5V  
-
-
V = -2.5V  
V = -1.5V  
A = +2  
A = +2  
V
OUT  
= 0.2V  
V
OUT  
= 0.2V  
R = 150W  
L
R = 150W  
L
25 ns/DIV  
25 ns/DIV  
Figure 55.  
Figure 56.  
Small Signal Step Response  
Large Signal Step Response  
+
+
V = +5V  
V = +2.5V  
-
-
V = -5V  
V = -2.5V  
A = +2  
A = +1  
V
= 0.2V  
V
= 2V  
OUT  
OUT  
R = 150W  
L
R = 1 kW  
L
25 ns/DIV  
50 ns/DIV  
Figure 57.  
Figure 58.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = 25°C, AV = +1 (RF = 0), otherwise RF = 2 kfor AV +1, unless otherwise specified.  
Large Signal Step Response  
Overload Recovery Waveform  
6
4
+
V
OUT  
V = +5V  
-
V = -5V  
A = +5  
2
0
+
V = +2.5V  
-
-2  
V = -2.5V  
A = +2  
V
= 2V  
OUT  
-4  
-6  
V
R = 150W  
IN  
L
50 ns/DIV  
100 ns/DIV  
Figure 59.  
Figure 60.  
IS  
vs.  
VDISABLE  
1600  
1400  
1200  
1000  
800  
125°C  
25°C  
+
-
V
= +2.5V  
V = -2.5V  
-40°C  
600  
400  
200  
0
-2.5 -2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0 2.5  
(V)  
V
DISABLE  
Figure 61.  
20  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
APPLICATION INFORMATION  
The LMH6618 and LMH6619 are based on TI’s proprietary VIP10 dielectrically isolated bipolar process. This  
device family architecture features the following:  
Complimentary bipolar devices with exceptionally high ft (8 GHz) even under low supply voltage (2.7V) and  
low bias current.  
Common emitter push-push output stage. This architecture allows the output to reach within millivolts of either  
supply rail.  
Consistent performance from any supply voltage  
important specifications (e.g. BW, SR, IOUT.)  
with little variation with supply voltage for the most  
(2.7V - 11V)  
Significant power saving compared to competitive devices on the market with similar performance.  
With 3V supplies and a common mode input voltage range that extends beyond either supply rail, the LMH6618  
and LMH6619 are well suited to many low voltage/low power applications. Even with 3V supplies, the 3 dB BW  
(at AV = +1) is typically 120 MHz.  
The LMH6618 and LMH6619 are designed to avoid output phase reversal. With input over-drive, the output is  
kept near the supply rail (or as close to it as mandated by the closed loop gain setting and the input voltage).  
Figure 62 shows the input and output voltage when the input voltage significantly exceeds the supply voltages.  
4
+
V
IN  
V
3
2
1
0
V
OUT  
-1  
-2  
-3  
-4  
-
V
2 ms/DIV  
Figure 62. Input and Output Shown with CMVR Exceeded  
If the input voltage range is exceeded by more than a diode drop beyond either rail, the internal ESD protection  
diodes will start to conduct. The current flow in these ESD diodes should be externally limited.  
The LMH6618 can be shutdown by connecting the DISABLE pin to a voltage 0.5V below the supply midpoint  
which will reduce the supply current to typically less than 100 µA. The DISABLE pin is “active low” and should be  
connected through a resistor to V+ for normal operation. Shutdown is guaranteed when the DISABLE pin is 0.5V  
below the supply midpoint at any operating supply voltage and temperature.  
In the shutdown mode, essentially all internal device biasing is turned off in order to minimize supply current flow  
and the output goes into high impedance mode. During shutdown, the input stage has an equivalent circuit as  
shown in Figure 63.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMH6618 LMH6619  
 
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
R
S
50W  
INVERTING  
INPUT  
D4  
D3  
D1  
D2  
NON-INVERTING  
INPUT  
Figure 63. Input Equivalent Circuit During Shutdown  
When the LMH6618 is shutdown, there may be current flow through the internal diodes shown, caused by input  
potential, if present. This current may flow through the external feedback resistor and result in an apparent output  
signal. In most shutdown applications the presence of this output is inconsequential. However, if the output is  
“forced” by another device, the other device will need to conduct the current described in order to maintain the  
output potential.  
To keep the output at or near ground during shutdown when there is no other device to hold the output low, a  
switch using a transistor can be used to shunt the output to ground.  
SINGLE CHANNEL ADC DRIVER  
The low noise and wide bandwidth make the LMH6618 an excellent choice for driving a 12-bit ADC. Figure 64  
shows the schematic of the LMH6618 driving an ADC121S101. The ADC121S101 is a single channel 12-bit  
ADC. The LMH6618 is set up in a 2nd order multiple-feedback configuration with a gain of 1. The 3 dB point is  
at 500 kHz and the 0.01 dB point is at 100 kHz. The 22resistor and 390 pF capacitor form an antialiasing  
filter for the ADC121S101. The capacitor also stores and delivers charge to the switched capacitor input of the  
ADC. The capacitive load on the LMH6618 created by the 390 pF capacitor is decreased by the 22resistor.  
Table 1 shows the performance data of the LMH6618 and the ADC121S101.  
IN  
1 mF  
549W  
549W  
150 pF  
1.24 kW  
+
V
+
V
1 nF  
+
0.1 mF  
10 mF  
V
0.1 mF 10 mF  
5V  
C
C
5
6
C
13  
C
11  
0.1 mF  
1 mF  
0.01 mF  
14.3 kW  
14.3 kW  
-
22W  
LMH6618  
ADC121S101  
GND  
+
390 pF  
0.1 mF  
5.6 mF  
Figure 64. LMH6618 Driving an ADC121S101  
22  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
 
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
Table 1. Performance Data for the LMH6618 Driving an ADC121S101  
Parameter  
Measured Value  
Signal Frequency  
Signal Amplitude  
SINAD  
100 kHz  
4.5V  
71.5 dB  
71.87 dB  
82.4 dB  
90.97 dB  
11.6 bits  
SNR  
THD  
SFDR  
ENOB  
When the op amp and the ADC are using the same supply, it is important that both devices are well bypassed. A  
0.1 µF ceramic capacitor and a 10 µF tantalum capacitor should be located as close as possible to each supply  
pin. A sample layout is shown in Figure 65. The 0.1 µF capacitors (C13 and C6) and the 10 µF capacitors (C11  
and C5) are located very close to the supply pins of the LMH6618 and the ADC121S101.  
Figure 65. LMH6618 and ADC121S101 Layout  
SINGLE TO DIFFERENTIAL ADC DRIVER  
Figure 66 shows the LMH6619 used to drive a differential ADC with a single-ended input. The ADC121S625 is a  
fully differential 12-bit ADC. Table 2 shows the performance data of the LMH6619 and the ADC121S625.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMH6618 LMH6619  
 
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
+
V
+
V
0.1 mF  
10 mF  
33W  
-
+
560W  
10 mF  
V
LMH6619  
INPUT  
+
220 pF  
0.1 mF  
10 mF  
560W  
560W  
560W  
+
V
ADC121S625  
-
33W  
560W  
LMH6619  
+
220 pF  
560W  
Figure 66. LMH6619 Driving an ADC121S625  
Table 2. Performance Data for the LMH6619 Driving an ADC121S625  
Parameter  
Signal Frequency  
Signal Amplitude  
SINAD  
Measured Value  
10 kHz  
2.5V  
67.9 dB  
SNR  
68.29 dB  
78.6 dB  
75.0 dB  
THD  
SFDR  
ENOB  
11.0 bits  
DIFFERENTIAL ADC DRIVER  
The circuit in Figure 64 can be used to drive both inputs of a differential ADC. Figure 67 shows the LMH6619  
driving an ADC121S705. The ADC121S705 is a fully differential 12-bit ADC. Performance with this circuit is  
similar to the circuit in Figure 64.  
24  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
549W  
1 mF 549W  
+IN  
150 pF  
1.24 kW  
+
V
1 nF  
+
V
0.1 mF 10 mF  
+
V
14.3 kW  
-
22W  
LMH6619  
0.1 mF 10 mF  
+
390 pF  
0.1 mF  
5.6 mF  
14.3 kW  
ADC121S705  
549W  
1 mF 549W  
22W  
-IN  
390 pF  
1.24 kW  
150 pF  
+
V
1 nF  
+
V
0.1 mF  
10 mF  
14.3 kW  
-
LMH6619  
+
0.1 mF  
5.6 mF  
14.3 kW  
Figure 67. LMH6619 Driving an ADC121S705  
DC LEVEL SHIFTING  
Often a signal must be both amplified and level shifted while using a single supply for the op amp. The circuit in  
Figure 68 can do both of these tasks. The procedure for specifying the resistor values is as follows.  
1. Determine the input voltage.  
2. Calculate the input voltage midpoint, VINMID = VINMIN + (VINMAX – VINMIN)/2.  
3. Determine the output voltage needed.  
4. Calculate the output voltage midpoint, VOUTMID = VOUTMIN + (VOUTMAX – VOUTMIN)/2.  
5. Calculate the gain needed, gain = (VOUTMAX – VOUTMIN)/(VINMAX – VINMIN  
)
6. Calculate the amount the voltage needs to be shifted from input to output, ΔVOUT = VOUTMID – gain x VINMID  
.
7. Set the supply voltage to be used.  
8. Calculate the noise gain, noise gain = gain + ΔVOUT/VS.  
9. Set RF.  
10. Calculate R1, R1 = RF/gain.  
11. Calculate R2, R2 = RF/(noise gain-gain).  
12. Calculate RG, RG= RF/(noise gain – 1).  
Check that both the VIN and VOUT are within the voltage ranges of the LMH6618.  
The following example is for a VIN of 0V to 1V with a VOUT of 2V to 4V.  
1. VIN = 0V to 1V  
2. VINMID = 0V + (1V – 0V)/2 = 0.5V  
3. VOUT = 2V to 4V  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMH6618 LMH6619  
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
4. VOUTMID = 2V + (4V – 2V)/2 = 3V  
5. Gain = (4V – 2V)/(1V – 0V) = 2  
6. ΔVOUT = 3V – 2 x 0.5V = 2  
7. For the example the supply voltage will be +5V.  
8. Noise gain = 2 + 2/5V = 2.4  
9. RF = 2 kΩ  
10. R1 = 2 k/2 = 1 kΩ  
11. R2 = 2 k/(2.4-2) = 5 kΩ  
12. RG = 2 k/(2.4 – 1) = 1.43 kΩ  
+
+
V
V
R
2
R
1
V
IN  
+
LMH6618  
V
OUT  
-
R
R
F
G
Figure 68. DC Level Shifting  
4th ORDER MULTIPLE FEEDBACK LOW-PASS FILTER  
Figure 69 shows the LMH6619 used as the amplifier in a multiple feedback low pass filter. This filter is set up to  
have a gain of +1 and a 3 dB point of 1 MHz. Values can be determined by using the WEBENCH® Active Filter  
Designer found at webench.ti.com.  
1.05 kW  
1.02 kW  
150 pF  
62 pF  
+
V
+
V
0.1 mF  
1 mF  
523W  
1.05 kW  
1 mF  
0.1 mF  
INPUT  
-
1.02 kW  
510W  
LMH6619  
-
330 pF  
LMH6619  
+
OUTPUT  
820 pF  
+
0.1 mF  
1 mF  
0.1 mF  
1 mF  
-
V
-
V
Figure 69. 4th Order Multiple Feedback Low-Pass Filter  
CURRENT SENSE AMPLIFIER  
With it’s rail-to-rail input and output capability, low VOS, and low IB the LMH6618 is an ideal choice for a current  
sense amplifier application. Figure 70 shows the schematic of the LMH6618 set up in a low-side sense  
configuration which provides a conversion gain of 2V/A. Voltage error due to VOS can be calculated to be VOS  
x
(1 + RF/RG) or 0.75 mV x 20.6 = 15.5 mV. Voltage error due to IO is IO x RF or 0.26 µA x 1 k= 0.26 mV. Hence  
total voltage error is 15.5 mV + 0.26 mV or 15.7 mV which translates into a current error of 15.7 mV/(2 V/A) = 7.9  
mA.  
26  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
 
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
+5V  
0A to 1A  
51W  
51W  
+
-
1 kW  
LMH6618  
0.1W  
1 kW  
Figure 70. Current Sense Amplifier  
TRANSIMPEDANCE AMPLIFIER  
By definition, a photodiode produces either a current or voltage output from exposure to a light source. A  
Transimpedance Amplifier (TIA) is utilized to convert this low-level current to a usable voltage signal. The TIA  
often will need to be compensated to insure proper operation.  
C
F
R
F
V
S
-
LMH6618  
C
C
PD  
IN  
+
Figure 71. Photodiode Modeled with Capacitance Elements  
Figure 71 shows the LMH6618 modeled with photodiode and the internal op amp capacitances. The LMH6618  
allows circuit operation of a low intensity light due to its low input bias current by using larger values of gain (RF).  
The total capacitance (CT) on the inverting terminal of the op amp includes the photodiode capacitance (CPD) and  
the input capacitance of the op amp (CIN). This total capacitance (CT) plays an important role in the stability of  
the circuit. The noise gain of this circuit determines the stability and is defined by:  
1 + sRF (CT + CF)  
NG =  
1 + sCFRF  
(1)  
1
1
Where, fZ @  
and fP =  
2pRFCT  
2pRFCF  
(2)  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMH6618 LMH6619  
 
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
OP AMP OPEN  
LOOP GAIN  
I-V GAIN (W)  
NOISE GAIN (NG)  
1 + sR (C + C )  
F
T
F
1 + sR C  
F
F
C
IN  
1 +  
C
F
0 dB  
1
GBWP  
1
FREQUENCY  
f
@
f
=
z
P
2pR C  
F F  
2pR C  
F
T
Figure 72. Bode Plot of Noise Gain Intersecting with Op Amp Open-Loop Gain  
Figure 72 shows the bode plot of the noise gain intersecting the op amp open loop gain. With larger values of  
gain, CT and RF create a zero in the transfer function. At higher frequencies the circuit can become unstable due  
to excess phase shift around the loop.  
A pole at fP in the noise gain function is created by placing a feedback capacitor (CF) across RF. The noise gain  
slope is flattened by choosing an appropriate value of CF for optimum performance.  
Theoretical expressions for calculating the optimum value of CF and the expected 3 dB bandwidth are:  
CT  
CF =  
2pRF(GBWP)  
(3)  
GBWP  
2pRFCT  
f-3 dB  
=
(4)  
Equation 4 indicates that the 3 dB bandwidth of the TIA is inversely proportional to the feedback resistor.  
Therefore, if the bandwidth is important then the best approach would be to have a moderate transimpedance  
gain stage followed by a broadband voltage gain stage.  
Table 3 shows the measurement results of the LMH6618 with different photodiodes having various capacitances  
(CPD) and a feedback resistance (RF) of 1 k.  
Table 3. TIA (Figure 1) Compensation and Performance Results  
CPD  
(pF)  
22  
CT  
(pF)  
24  
CF CAL  
(pF)  
7.7  
CF USED  
(pF)  
5.6  
f 3 dB CAL  
(MHz)  
23.7  
f 3 dB MEAS  
Peaking  
(dB)  
0.9  
(MHz)  
20  
47  
49  
10.9  
15.8  
23.4  
10  
16.6  
15.2  
10.8  
8
0.8  
100  
222  
102  
224  
15  
11.5  
0.9  
18  
7.81  
2.9  
28  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
 
 
 
LMH6618, LMH6619  
www.ti.com  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
Figure 73 shows the frequency response for the various photodiodes in Table 3.  
6
3
0
C
C
= 22 pF,  
PD  
= 5.6 pF  
F
-3  
-6  
C
C
= 47 pF,  
PD  
= 10 pF  
F
-9  
C
C
= 100 pF,  
PD  
= 15 pF  
F
-12  
-15  
-18  
C
C
= 222 pF,  
PD  
= 18 pF  
F
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 73. Frequency Response for Various Photodiode and Feedback Capacitors  
When analyzing the noise at the output of the TIA, it is important to note that the various noise sources (i.e. op  
amp noise voltage, feedback resistor thermal noise, input noise current, photodiode noise current) do not all  
operate over the same frequency band. Therefore, when the noise at the output is calculated, this should be  
taken into account. The op amp noise voltage will be gained up in the region between the noise gain’s zero and  
pole (fZ and fP in Figure 72). The higher the values of RF and CT, the sooner the noise gain peaking starts and  
therefore its contribution to the total output noise will be larger. It is obvious to note that it is advantageous to  
minimize CIN by proper choice of op amp or by applying a reverse bias across the diode at the expense of  
excess dark current and noise.  
DIFFERENTIAL CABLE DRIVER FOR NTSC VIDEO  
The LMH6618 and LMH6619 can be used to drive an NTSC video signal on a twisted-pair cable. Figure 74  
shows the schematic of a differential cable driver for NTSC video. This circuit can be used to transmit the signal  
from a camera over a twisted pair to a monitor or display located a distance. C1 and C2 are used to AC couple  
the video signal into the LMH6619. The two amplifiers of the LMH6619 are set to a gain of 2 to compensate for  
the 75back termination resistors on the outputs. The LMH6618 is set to a gain of 1. Because of the DC bias  
the output of the LMH6618 is AC coupled. Most monitors and displays will accept AC coupled inputs.  
Copyright © 2007–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LMH6618 LMH6619  
 
LMH6618, LMH6619  
SNOSAV7E AUGUST 2007REVISED OCTOBER 2012  
www.ti.com  
+10V  
+
C5  
0.1 mF  
C6  
10 mF  
+10V  
+10V  
GND  
GND  
U1A  
R
10 kW  
4
C
47 mF  
2
+
C8  
0.1 mF  
C9  
10 mF  
8
J1  
3
2
VIDEO  
INPUT  
+
+
V
1
R
16  
LMH6619  
R
5
3.01 kW  
GND  
GND  
V
OUT  
R
10  
10 kW  
-
GND  
75W  
C
47 mF  
R
7
13  
3.01 kW  
R
9
GND  
U2  
3.01 kW  
5
+
C
10  
47 mF  
4
TWISTED-PAIR  
J2  
-
R
1
75W  
V
1
R
R
12  
150W  
VIDEO  
OUTPUT  
7
R
14  
3.01 kW  
LMH6618  
3
3.01 kW  
-
R
8
3 kW  
C
1
V
+
+
C3  
47 mF  
2
20 mF  
GND  
GND  
R
15  
3.01 kW  
GND  
GND  
R
75W  
U1B  
11  
6
5
-
7
R
LMH6619  
3
-
V
V
1.50 kW  
OUT  
GND  
+
4
R
2
C4  
3.3 kW  
0.1 mF  
GND  
+10V  
R
10 kW  
6
GND  
GND  
Figure 74. Differential Cable Driver  
30  
Submit Documentation Feedback  
Copyright © 2007–2012, Texas Instruments Incorporated  
Product Folder Links: LMH6618 LMH6619  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6618MK/NOPB  
LMH6618MKE/NOPB  
LMH6618MKX/NOPB  
LMH6619MA/NOPB  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
D
6
6
6
8
1000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
AE4A  
AE4A  
AE4A  
SN  
SN  
SN  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
95  
RoHS & Green  
RoHS & Green  
LMH66  
19MA  
LMH6619MAE/NOPB  
LMH6619MAX/NOPB  
D
D
8
8
250  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LMH66  
19MA  
2500 RoHS & Green  
LMH66  
19MA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMH6619 :  
Automotive: LMH6619-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6618MK/NOPB  
LMH6618MKE/NOPB  
LMH6618MKX/NOPB  
SOT-  
23-THIN  
DDC  
DDC  
DDC  
6
6
6
1000  
250  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
SOT-  
23-THIN  
SOT-  
3000  
23-THIN  
LMH6619MAE/NOPB  
LMH6619MAX/NOPB  
SOIC  
SOIC  
D
D
8
8
250  
178.0  
330.0  
12.4  
12.4  
6.5  
6.5  
5.4  
5.4  
2.0  
2.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6618MK/NOPB  
LMH6618MKE/NOPB  
LMH6618MKX/NOPB  
LMH6619MAE/NOPB  
LMH6619MAX/NOPB  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOIC  
DDC  
DDC  
DDC  
D
6
6
6
8
8
1000  
250  
208.0  
208.0  
208.0  
208.0  
367.0  
191.0  
191.0  
191.0  
191.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
SOIC  
D
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
SOIC  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6619MA/NOPB  
D
8
95  
495  
8
4064  
3.05  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMH6619MAX

PowerWise㈢ 130 MHz, 1.25 mA RRIO Operational Amplifiers
NSC

LMH6619MAX/NOPB

双路 130 MHz、1.25 mA RRIO 运算放大器 | D | 8 | -40 to 125
TI

LMH6619QMAK/NOPB

汽车双路 130MHz、1.25mA RRIO 运算放大器 | D | 8 | -40 to 105
TI

LMH6619QMAKE/NOPB

汽车双路 130MHz、1.25mA RRIO 运算放大器 | D | 8 | -40 to 105
TI

LMH6619QMAKX/NOPB

汽车双路 130MHz、1.25mA RRIO 运算放大器 | D | 8 | -40 to 105
TI

LMH6622

Dual Wideband, Low Noise, 160MHz, Operational Amplifiers
NSC

LMH6622

LMH6622 Dual Wideband, Low Noise, 160 MHz, Operational Amplifiers
TI

LMH6622MA

Dual Wideband, Low Noise, 160MHz, Operational Amplifiers
NSC

LMH6622MA

LMH6622 Dual Wideband, Low Noise, 160 MHz, Operational Amplifiers
TI

LMH6622MA/NOPB

IC DUAL OP-AMP, 1500 uV OFFSET-MAX, PDSO8, SOIC-8, Operational Amplifier
NSC

LMH6622MA/NOPB

LMH6622 Dual Wideband, Low Noise, 160 MHz, Operational Amplifiers
TI

LMH6622MAX

Dual Wideband, Low Noise, 160MHz, Operational Amplifiers
NSC