LMH6639-MIL [TI]

具有禁能功能的 190MHz 轨到轨输出放大器;
LMH6639-MIL
型号: LMH6639-MIL
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有禁能功能的 190MHz 轨到轨输出放大器

放大器
文件: 总31页 (文件大小:1639K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
LMH6639 190MHz Rail-to-Rail Output Amplifier with Disable  
Check for Samples: LMH6639  
1
FEATURES  
DESCRIPTION  
The LMH6639 is a voltage feedback operational  
amplifier with a rail-to-rail output drive capability of  
110mA. Employing TI’s patented VIP10 process, the  
LMH6639 delivers a bandwidth of 190MHz at a  
current consumption of only 3.6mA. An input common  
mode voltage range extending to 0.2V below the V−  
and to within 1V of V+, makes the LMH6639 a true  
single supply op-amp. The output voltage range  
extends to within 30mV of either supply rail providing  
the user with a dynamic range that is especially  
desirable in low voltage applications.  
2
(VS = 5V, Typical Values Unless Specified)  
Supply Current (No Load) 3.6mA  
Supply Current (Off Mode) 400μA  
Output Resistance (Closed Loop 1MHz) 0.186Ω  
3dB BW (AV = 1) 190MHz  
Settling Time 33nsec  
Input Common Mode Voltage 0.2V to 4V  
Output Voltage Swing 40mV from Rails  
Linear Output Current 110mA  
The LMH6639 offers a slew rate of 172V/μs resulting  
in a full power bandwidth of approximately 28MHz.  
The LMH6639 also offers protection for the input  
transistors by using two anti-parallel diodes and a  
series resistor connected across the inputs. The TON  
value of 83nsec combined with a settling time of  
33nsec makes this device ideally suited for  
multiplexing applications (see application note for  
details). Careful attention has been paid to ensure  
device stability under all operating voltages and  
modes. The result is a very well behaved frequency  
response characteristic for any gain setting including  
+1, and excellent specifications for driving video  
cables including harmonic distortion of 60dBc,  
differential gain of 0.12% and differential phase of  
0.045°  
Total Harmonic Distortion 60dBc  
Fully Characterized for 3V, 5V and ±5V  
No Output Phase Reversal with CMVR  
Exceeded  
Excellent Overdrive Recovery  
Off Isolation 1MHz 70dB  
Differential Gain 0.12%  
Differential Phase 0.045°  
APPLICATIONS  
Active Filters  
CD/DVD ROM  
ADC Buffer Amplifier  
Portable Video  
Current Sense Buffer  
100n  
5V  
+
+
-
V
OUT  
INPUT  
1k  
75W  
SD  
-
V
75W  
75W  
V
REF  
1k  
10n  
SHUTDOWN INPUT  
Figure 1. Typical Single Supply Schematic  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2002–2013, Texas Instruments Incorporated  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)  
ESD Tolerance  
2KV(3)  
200V(4)  
VIN Differential  
±2.5V  
Input Current  
±10mA  
Supply Voltage (V+ – V)  
Voltage at Input/Output pins  
Storage Temperature Range  
Junction Temperature(5)(6)  
Soldering Information  
13.5V  
V+ +0.8V, V0.8V  
65°C to +150°C  
+150°C  
Infrared or Convection (20 sec)  
Wave Soldering (10 sec)  
235°C  
260°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) Human body model, 1.5kin series with 100pF.  
(4) Machine Model, 0in series with 200pF.  
(5) The maximum power dissipation is a function of TJ(MAX), θJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) - TA)/ θJA . All numbers apply for packages soldered directly onto a PC board.  
(6) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C.  
Operating Ratings(1)  
Supply Voltage (V+ to V)  
Operating Temperature Range(2)  
3V to 12V  
40°C to +85°C  
265°C/W  
(2)  
Package Thermal Resistance (θJA  
)
SOT-23-6  
SOIC-8  
190°C/W  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the Electrical Characteristics.  
(2) The maximum power dissipation is a function of TJ(MAX), θJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) - TA)/ θJA . All numbers apply for packages soldered directly onto a PC board.  
3V Electrical Characteristics  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 3V, V= 0V, VO = VCM = V+/2, and RL = 2kto V+/2.  
Boldface limits apply at the temperature extremes.  
Symbol  
BW  
Parameter  
Conditions  
Min(1)  
Typ(2)  
170  
63  
Max(1)  
Units  
3dB BW  
AV = +1  
120  
MHz  
AV = 1  
BW0.1dB  
FPBW  
0.1dB Gain Flatness  
Full Power Bandwidth  
RF = 2.65k, RL = 1k,  
16.4  
21  
MHz  
MHz  
AV = +1, VOUT = 2VPP, 1dB  
V+ = 1.8V, V= 1.2V  
GBW  
en  
Gain Bandwidth product  
AV = +1  
83  
19  
MHz  
Input-Referred Voltage Noise  
RF = 33kΩ  
f = 10kHz  
f = 1MHz  
f = 10kHz  
f = 1MHz  
nV/Hz  
16  
in  
Input-Referred Current Noise  
Total Harmonic Distortion  
RF = 1MΩ  
1.30  
0.36  
50  
pA/Hz  
THD  
f = 5MHz, VO = 2VPP, AV = +2,  
dBc  
RL = 1kto V+/2  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
2
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
 
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
3V Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 3V, V= 0V, VO = VCM = V+/2, and RL = 2kto V+/2.  
Boldface limits apply at the temperature extremes.  
Symbol  
TS  
Parameter  
Settling Time  
Conditions  
Min(1)  
Typ(2)  
Max(1)  
Units  
ns  
VO = 2VPP, ±0.1%  
37  
SR  
Slew Rate  
AV = 1(3)  
120  
167  
V/μs  
mV  
VOS  
Input Offset Voltage  
1.01  
5
7
TC VOS  
IB  
Input Offset Average Drift  
Input Bias Current  
See(4)  
See(5)  
8
μV/°C  
μA  
1.02  
2.6  
3.5  
IOS  
Input Offset Current  
20  
800  
nA  
1000  
RIN  
CIN  
Common Mode Input Resistance AV = +1, f = 1kHz, RS = 1MΩ  
6.1  
MΩ  
Common Mode Input  
Capacitance  
AV = +1, RS = 100kΩ  
1.35  
pF  
CMVR  
Input Common-Mode Voltage  
Range  
CMRR 50dB  
0.3  
0.2  
0.1  
V
1.8  
2
1.6  
CMRR  
AVOL  
Common Mode Rejection Ratio  
Large Signal Voltage Gain  
See(6)  
72  
93  
dB  
dB  
VO = 2VPP, RL = 2kto V+/2  
80  
76  
100  
VO = 2VPP, RL = 150to V+/2  
74  
78  
70  
VO  
Output Swing  
High  
RL = 2kto V+/2, VID = 200mV  
RL = 150to V+/2, VID = 200mV  
RL = 50to V+/2, VID = 200mV  
RL = 2kto V+/2, VID = 200mV  
RL = 150to V+/2, VID = 200mV  
RL = 50to V+/2, VID = 200mV  
Sourcing to V+/2(7)  
2.90  
2.75  
2.6  
2.98  
2.93  
2.85  
25  
V
Output Swing  
Low  
75  
75  
200  
300  
mV  
130  
120  
ISC  
Output Short Circuit Current  
50  
35  
mA  
Sinking to V+/2(7)  
67  
140  
40  
IOUT  
PSRR  
IS  
Output Current  
VO = 0.5V from either supply  
See(6)  
99  
96  
mA  
dB  
Power Supply Rejection Ratio  
Supply Current (Enabled)  
72  
No Load  
3.5  
5.6  
7.5  
mA  
V
Supply Current (Disabled)  
0.3  
0.5  
0.7  
TH_SD  
Threshold Voltage for Shutdown  
Mode  
V+1.59  
I_SD PIN Shutdown Pin Input Current  
SD Pin Connect to 0V(8)  
13  
83  
μA  
TON  
On Time After Shutdown  
Off Time to Shutdown  
nsec  
nsec  
TOFF  
ROUT  
160  
27  
Output Resistance Closed Loop RF = 10k, f = 1kHz, AV = 1  
RF = 10k, f = 1MHz, AV = 1  
mΩ  
266  
(3) Slew rate is the average of the rising and falling slew rates.  
(4) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
(6) f 1kHz (see typical performance Characteristics)  
(7) Short circuit test is a momentary test.  
(8) Positive current corresponds to current flowing into the device.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMH6639  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
5V Electrical Characteristics  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 5V, V= 0V, VO = VCM = V+/2, and RL = 2kto V+/2.  
Boldface limits apply at the temperature extremes.  
(2)  
Symbol  
BW  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1)  
Units  
3dB BW  
AV = +1  
130  
190  
MHz  
AV = 1  
64  
16.4  
28  
BW0.1dB  
FPBW  
GBW  
en  
0.1dB Gain Flatness  
RF = 2.51k, RL = 1k,  
AV = +1, VOUT = 2VPP, 1dB  
AV = +1  
MHz  
MHz  
MHz  
Full Power Bandwidth  
Gain Bandwidth Product  
Input-Referred Voltage Noise  
86  
RF = 33kΩ  
f = 10kHz  
f = 1MHz  
f = 10KHz  
f = 1MHz  
19  
nV/Hz  
16  
in  
Input-Referred Current Noise  
RF = 1MΩ  
1.35  
0.35  
60  
pA/Hz  
THD  
DG  
DP  
Total Harmonic Distortion  
Differential Gain  
f = 5MHz, VO = 2VPP, AV = +2  
dBc  
RL = 1kto V+/2  
NTSC, AV = +2  
0.12  
%
RL = 150to V+/2  
Differential Phase  
NTSC, AV = +2  
0.045  
deg  
RL = 150to V+/2  
TS  
Settling Time  
Slew Rate  
VO = 2VPP, ±0.1%  
AV = 1(3)  
33  
ns  
SR  
VOS  
130  
172  
1.02  
V/µs  
Input Offset Voltage  
5
7
mV  
TC VOS  
IB  
Input Offset Average Drift  
Input Bias Current  
See(4)  
See(5)  
8
µV/°C  
µA  
1.2  
2.6  
3.25  
IOS  
Input Offset Current  
20  
800  
nA  
1000  
RIN  
CIN  
Common Mode Input Resistance AV = +1, f = 1kHz, RS = 1MΩ  
6.88  
1.32  
MΩ  
Common Mode Input  
Capacitance  
AV = +1, RS = 100kΩ  
pF  
CMVR  
Common-Mode Input Voltage  
Range  
CMRR 50dB  
0.3  
0.2  
0.1  
V
4
3.8  
3.6  
CMRR  
AVOL  
Common Mode Rejection Ratio  
Large Signal Voltage Gain  
See(6)  
72  
95  
dB  
dB  
VO = 4VPP  
86  
82  
100  
RL = 2kto V+/2  
VO = 3.75VPP  
74  
70  
77  
RL = 150to V+/2  
VO  
Output Swing  
High  
RL = 2kto V+/2, VID = 200mV  
RL = 150to V+/2, VID = 200mV  
RL = 50to V+/2, VID = 200mV  
RL = 2kto V+/2, VID = 200mV  
RL = 150to V+/2, VID = 200mV  
RL = 50to V+/2, VID = 200mV  
4.90  
4.65  
4.40  
4.97  
4.90  
4.77  
25  
V
Output Swing  
Low  
100  
200  
400  
85  
mV  
190  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
(3) Slew rate is the average of the rising and falling slew rates.  
(4) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
(6) f 1kHz (see typical performance Characteristics)  
4
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
5V Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 5V, V= 0V, VO = VCM = V+/2, and RL = 2kto V+/2.  
Boldface limits apply at the temperature extremes.  
(2)  
Symbol  
ISC  
Parameter  
Conditions  
Sourcing to V+/2(7)  
Min(1)  
Typ  
Max(1)  
Units  
Output Short Circuit Current  
100  
160  
79  
mA  
Sinking from V+/2(7)  
120  
190  
85  
IOUT  
PSRR  
IS  
Output Current  
VO = 0.5V from either supply  
See(6)  
110  
96  
mA  
dB  
Power Supply Rejection Ratio  
Supply Current (Enabled)  
72  
No Load  
3.6  
5.8  
8.0  
mA  
V
Supply Current (Disabled)  
0.40  
0.8  
1.0  
TH_SD  
Threshold Voltage for Shutdown  
Mode  
V+ 1.65  
I_SD PIN Shutdown Pin Input Current  
SD Pin Connected to 0V(5)  
30  
83  
μA  
TON  
On Time after Shutdown  
Off Time to Shutdown  
nsec  
nsec  
TOFF  
ROUT  
160  
29  
Output Resistance Closed Loop RF = 10k, f = 1kHz, AV = 1  
RF = 10k, f = 1MHz, AV = 1  
mΩ  
253  
(7) Short circuit test is a momentary test.  
±5V Electrical Characteristics  
Unless otherwise specified, all limits ensured for at TJ = 25°C, VSUPPLY = ±5V, VO = VCM = GND, and RL = 2kto V+/2.  
Boldface limits apply at the temperature extremes.  
Symbol  
BW  
Parameter  
Conditions  
Min(1)  
Typ(2)  
228  
65  
Max(1)  
Units  
3dB BW  
AV = +1  
150  
MHz  
AV = 1  
BW0.1dB  
FPBW  
GBW  
en  
0.1dB Gain Flatness  
RF = 2.26k, RL = 1kΩ  
AV = +1, VOUT = 2VPP, 1dB  
AV = +1  
18  
MHz  
MHz  
MHz  
Full Power Bandwidth  
Gain Bandwidth Product  
Input-Referred Voltage Noise  
29  
90  
RF = 33kΩ  
f = 10kHz  
f = 1MHz  
f = 10kHz  
f = 1MHz  
19  
nV/Hz  
16  
in  
Input-Referred Current Noise  
RF = 1MΩ  
1.13  
0.34  
71.2  
pA/Hz  
THD  
DG  
DP  
Total Harmonic Distortion  
Differential Gain  
f = 5MHz, VO = 2VPP, AV = +2,  
RL = 1kΩ  
dBc  
NTSC, AV = +2  
RL = 150Ω  
0.11  
%
Differential Phase  
NTSC, AV = +2  
0.053  
deg  
RL = 150Ω  
TS  
Settling Time  
Slew Rate  
VO = 2VPP, ±0.1%  
AV = 1(3)  
33  
ns  
V/µs  
mV  
SR  
VOS  
140  
200  
1.03  
Input Offset Voltage  
5
7
TC VOS  
IB  
Input Offset Voltage Drift  
Input Bias Current  
See(4)  
See(5)  
8
µV/°C  
µA  
1.40  
2.6  
3.25  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
(3) Slew rate is the average of the rising and falling slew rates.  
(4) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
(5) Positive current corresponds to current flowing into the device.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMH6639  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
±5V Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for at TJ = 25°C, VSUPPLY = ±5V, VO = VCM = GND, and RL = 2kto V+/2.  
Boldface limits apply at the temperature extremes.  
Symbol  
IOS  
Parameter  
Conditions  
Min(1)  
Typ(2)  
Max(1)  
Units  
Input Offset Current  
20  
800  
nA  
1000  
RIN  
CIN  
Common Mode Input Resistance AV +1, f = 1kHz, RS = 1MΩ  
7.5  
MΩ  
Common Mode Input  
Capacitance  
AV = +1, RS = 100kΩ  
1.28  
pF  
CMVR  
Common Mode Input Voltage  
Range  
CMRR 50dB  
5.3  
5.2  
5.1  
V
3.8  
4.0  
3.6  
CMRR  
AVOL  
Common Mode Rejection Ratio  
Large Signal Voltage Gain  
See(6)  
72  
95  
dB  
dB  
VO = 9VPP, RL = 2kΩ  
88  
84  
100  
VO = 8VPP, RL = 150Ω  
74  
77  
70  
VO  
Output Swing  
High  
RL = 2k, VID = 200mV  
RL = 150, VID = 200mV  
RL = 50, VID = 200mV  
RL = 2k, VID = 200mV  
RL = 150, VID = 200mV  
RL = 50, VID = 200mV  
Sourcing to Ground(7)  
4.85  
4.55  
3.60  
4.96  
4.80  
V
V
4.55  
Output Swing  
Low  
4.97  
4.85  
4.65  
168  
4.90  
4.55  
4.30  
ISC  
Output Short Circuit Current  
100  
80  
mA  
Sinking to Ground(7)  
110  
190  
85  
IOUT  
PSRR  
IS  
Output Current  
VO = 0.5V from either supply  
See(8)  
112  
96  
mA  
dB  
Power Supply Rejection Ratio  
Supply Current (Enabled)  
72  
No Load  
4.18  
6.5  
8.5  
mA  
V
Supply Current (Disabled)  
0.758  
1.0  
1.3  
TH_SD  
Threshold Voltage for Shutdown  
Mode  
V+ 1.67  
I_SD PIN Shutdown Pin Input Current  
SD Pin Connected to 5V(9)  
84  
83  
μA  
TON  
On Time after Shutdown  
Off Time to Shutdown  
nsec  
nsec  
TOFF  
ROUT  
160  
32  
Output Resistance Closed Loop  
RF = 10k, f = 1kHz, AV = 1  
RF = 10k, f = 1MHz, AV = 1  
mΩ  
226  
(6) f 1kHz (see typical performance Characteristics)  
(7) Short circuit test is a momentary test.  
(8) f 1kHz (see typical performance Characteristics)  
(9) Positive current corresponds to current flowing into the device.  
6
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
Connection Diagram  
1
8
6
5
+
1
N/C  
SD  
V
OUTPUT  
7
2
3
+
-
-IN  
V
SD  
-
2
3
V
6
5
-
OUTPUT  
+
+IN  
+
4
4
-IN  
-
+IN  
N/C  
V
Figure 2. SOT-23-6  
Top View  
Figure 3. SOIC-8  
Top View  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMH6639  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
Output Sinking Saturation Voltage vs. IOUT  
for Various Temperature  
Output Sourcing Saturation Voltage vs. IOUT  
for Various Temperature  
1
1
85°C  
125°C  
0.9  
0.9  
0.8  
0.8  
25°C  
125°C  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.7  
85°C  
0.6  
25°C  
0.5  
0.4  
-40°C  
-40°C  
0.3  
0.2  
0.1  
V =±2.5V  
S
V =±2.5V  
S
0
20 40 60 80 100  
140 160  
0
120  
180  
200  
0
20 40 60 80 100 120 140 160 180 200  
I
(mA)  
SOURCING  
I
(mA)  
SINK  
Figure 4.  
Figure 5.  
Positive Output Saturation Voltage vs. VSUPPLY  
for Various Temperature  
Negative Output Saturation Voltage vs. VSUPPLY  
for Various Temperature  
0.2  
0.2  
125°C  
0.18  
0.18  
125°C  
0.16  
0.16  
85°C  
0.14  
85°C  
0.14  
0.12  
0.1  
0.12  
0.1  
-40°C  
0.08  
0.08  
25°C  
-40°C  
0.06  
0.04  
0.02  
0
0.06  
25°C  
0.04  
R =150W TIED TO V /2  
L
S
R
= 150W TIED TO V /  
L
S
0.02  
0
2
2
4
10  
12  
6
8
4
6
8
10  
12  
2
V
(V)  
S
V
(V)  
S
Figure 6.  
Figure 7.  
VOUT from V+ vs.  
ISOURCE  
VOUT from Vvs.  
ISINK  
10  
10  
V =±5V  
S
V =±5V  
S
1
1
125°C  
125°C  
-40°C  
-40°C  
0.1  
0.1  
25°C  
25°C  
85°C  
85°C  
0.01  
0.1  
0.01  
0.1  
1
10  
100  
1000  
1
10  
(mA)  
100  
1000  
I
(mA)  
I
SOURCE  
SINK  
Figure 8.  
Figure 9.  
8
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
IOS vs.  
VOS vs.  
VS for Various Temperature  
VS for 3 Representative Units  
1
0.5  
0
0.01  
0
T
J
= 125°C  
125°C  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
UNIT 1  
UNIT 2  
85°C  
25°C  
-0.5  
-1  
UNIT 3  
-40°C  
-1.5  
-2  
2
6
8
10  
6
4
12  
2
7
10  
10  
10  
3
5
4
8
9
V
(V)  
V (V)  
S
S
Figure 10.  
Figure 11.  
VOS vs.  
VOS vs.  
VS for 3 Representative Units  
VS for 3 Representative Units  
0.6  
0.4  
0.2  
0
1
0.5  
0
T
= 85°C  
J
UNIT 1  
UNIT 2  
T
= 25°C  
J
UNIT 1  
UNIT 2  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.5  
-1  
UNIT 3  
UNIT 3  
8
-1.2  
-1.5  
2
6
7
3
5
4
8
9
10  
2
3
4
5
6
7
9
V
(V)  
V
(V)  
S
S
Figure 12.  
Figure 13.  
VOS vs.  
ISUPPLY vs.  
VCM for Various Temperature  
VS for 3 Representative Units  
7
6.5  
6
0.6  
0.4  
V =10V  
S
UNIT 1  
UNIT 2  
125°C  
85°C  
0.2  
0
5.5  
5
4.5  
4
-0.2  
-0.4  
-0.6  
-0.8  
-1  
T = -40°C  
J
UNIT 3  
3.5  
3
25°C  
2.5  
2
-40°C  
5
6
7
-1  
0
1
2
3
4
8
9
2
6
7
10  
3
5
4
8
9
V
(V)  
V
S
(V)  
CM  
Figure 14.  
Figure 15.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMH6639  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
ISUPPLY vs.  
VS for Various Temperature  
IB vs.  
VS for Various Temperature  
-1  
-1.2  
-1.4  
-1.6  
7
6.5  
6
125°C  
-40°C  
85°C  
5.5  
5
4.5  
-1.8  
-2  
25°C  
25°C  
4
3.5  
3
-2.2  
-2.4  
-2.6  
-40°C  
85°C  
2.5  
2
125°C  
1
0
4
6
8
2
3
4
5
6
9
2
7
8
10 11  
V
(V)  
S
V
(V)  
S
Figure 16.  
Figure 17.  
Bandwidth for Various VS  
Bandwidth for Various VS  
6
6
0
3V  
V = 3V  
S
3
0
-6  
V
= 10V  
S
5V  
-3  
-6  
-9  
-12  
-18  
-24  
10V  
3V  
5V  
10V  
100M 300M  
A
= +1  
A
= -1  
V
-12  
V
-30  
-36  
R
= 500W  
R
= 500W  
L
L
-15  
1M  
10M  
100M 300M  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18.  
Figure 19.  
Gain vs.  
Frequency Normalized  
Gain vs.  
Frequency Normalized  
5
0
5
0
-5  
-5  
A
= -1  
V
A
= +1  
V
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-10  
A
= -2  
V
-15  
-20  
-25  
-30  
-35  
-40  
-45  
A
= +2  
V
A
= -5  
V
A
= +5  
V
A
= -10  
V
A
V
= +10  
R - 500W  
L
R
L
= 500W  
10k  
100k  
1M  
10M  
100M 300M  
10k  
100k  
1M  
10M  
100M 300M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20.  
Figure 21.  
10  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
Gain and phase vs.  
0.1dB Gain Flatness  
Frequency for Various Temperature  
0.20  
0.00  
70  
60  
50  
40  
30  
20  
10  
0
140  
PHASE  
85/25/ & -40°C  
120  
100  
10V  
3V  
80  
60  
40  
20  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
+
R
S
-
R
F
R
R
R
R
= 1k  
S
F
F
F
0
5V  
GAIN  
85/25/ & -40°C  
= 2.65k V = 3V  
S
-10  
-20  
-30  
-20  
= 2.51k V = 5V  
S
-40  
= 2.26k V = 10V  
S
-60  
1
M
100k  
1M  
10M  
100M 200M  
100k  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22.  
Figure 23.  
Frequency Response vs.  
Temperature  
Harmonic Distortion  
10  
5
-40  
-50  
-60  
85°C  
THD  
0
3rd  
-5  
2nd  
25°C  
-70  
-80  
3rd  
-10  
-15  
-20  
-25  
2nd  
-40°C  
f = 5MHz  
A = +2  
4th  
A
= +1  
V
-90  
R
= 1k  
= 5V  
L
R
= 500W  
L
V
S
-100  
10  
M
100k  
1M  
100M 300M  
1
1.5  
2
2.5  
3
3.5  
4
4.5 4.75  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V  
)
PP  
Figure 24.  
Figure 25.  
Differential Gain/Phase  
On-Off Switching DC Voltage  
0.14  
0.07  
0.06  
0.05  
0.04  
V
= 5V  
S
0.12  
R
= 150W  
L
0.1  
0.08  
0.06  
0.04  
0.02  
0
f = 3.58MHz  
SHUTDOWN PULSE  
GAIN  
0.03  
0.02  
0.01  
0.00  
-0.01  
PHASE  
0.8  
SWITCHED DC VOLTAGE  
-0.02  
-0.04  
A
= 2  
V
-0.02  
-0.03  
-0.04  
-0.05  
0.3  
0
-0.06  
-0.08  
-0.1  
-0.2  
80 ns/DIV  
0
-100 -75 -50 -25  
25 50 75 100  
IRE  
Figure 26.  
Figure 27.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMH6639  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
On-Off Switching 10MHz  
Slew Rate (Positive)  
1.50  
1.00  
OUTPUT  
SHUTDOWN PULSE  
0.50  
0.00  
0.6  
0.4  
0.2  
0
-0.50  
-1.00  
-1.50  
SWITCHED 10MHz SIGNAL  
-0.2  
-0.4  
-0.6  
INPUT  
A
V
= 2  
100 ns/DIV  
4 ns/DIV  
Figure 28.  
Figure 29.  
Slew Rate (Negative)  
On-Off Switching of Sinewave  
1.50  
1.00  
0.50  
SHUTDOWN PULSE  
INPUT  
1.00  
0.00  
0.00  
-0.50  
-1.00  
-1.50  
OUTPUT  
-1.00  
-2.00  
A
= +2  
V
25 ms/DIV  
4 ns/DIV  
Figure 30.  
Figure 31.  
CMRR vs.  
Frequency  
Power Sweep  
120  
100  
80  
20  
15  
1MHz  
10MHz  
A
V
= +1  
= 5V  
V
= 10V  
V
S
S
10  
5
25MHz  
50MHz  
V
5V  
=
S
60  
V
= 3V  
S
0
-5  
40  
100MHz  
20  
-10  
-15  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
-10 -8 -6 -4 -2  
0
4
12 14  
8 10 16  
2
6
INPUT (dBm)  
FREQUENCY (Hz)  
Figure 32.  
Figure 33.  
12  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
Typical Performance Characteristics (continued)  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
PSRR vs.  
Frequency  
Current Noise  
80  
70  
6
5
4
3
2
1
0
V
= 3V TO 10V  
= 1M  
S
NEGATIVE PSRR  
R
F
60  
50  
40  
30  
20  
10  
0
POSITIVE PSRR  
V
= 5V  
= +1  
S
A
V
10  
100  
1k  
10k  
100k  
1M 10M  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34.  
Figure 35.  
Closed Loop Output Resistance vs.  
Frequency  
Voltage Noise  
1000  
40  
3V  
R
A
= R = 10k  
S
V
= 3V TO 10V  
F
S
900  
= -1  
35  
30  
V
800  
700  
5V  
25  
20  
600  
500  
400  
15  
10  
5
300  
200  
100  
0
10V  
0
100k  
100  
1k  
10k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY  
(Hz)  
FREQUENCY (Hz)  
Figure 36.  
Figure 37.  
Off Isolation  
Small Signal Pulse Response (AV = +1, RL = 2k )  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
A
V
= +1  
A
= +2  
V
V
= 3 to 10V  
S
100k  
1M  
10M  
100M  
1k  
10k  
50 ns/DIV  
FREQUENCY (Hz)  
Figure 38.  
Figure 39.  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMH6639  
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
At TJ = 25°C, V+ = +2.5, V= 2.5V, RF = 330for AV = +2, RF = 1kfor AV = 1. Unless otherwise specified.  
Small Signal Pulse Response (AV = 1)  
Large Signal Pulse Response (RL = 2k)  
V
A
= 3V  
S
V
= +1  
R
L
= 100W  
C
L
= ~ 5pF  
V
= 3 to 10V  
= 10pF  
S
C
L
R
S
= 10W  
50 ns/DIV  
50 ns/DIV  
Figure 40.  
Figure 41.  
Large Signal Pulse Response  
Large Signal Pulse Response  
V
A
= 5V  
V
A
= 10V  
= +1  
S
V
S
V
= +1  
R
= 100W  
= ~5pF  
R
C
= 100W  
= ~ 5pF  
L
L
L
L
C
50 ns/DIV  
50 ns/DIV  
Figure 42.  
Figure 43.  
14  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
APPLICATION NOTES  
INPUT AND OUTPUT TOPOLOGY  
All input / output pins are protected against excessive voltages by ESD diodes connected to V+ and V- rails (see  
Figure 44). These diodes start conducting when the input / output pin voltage approaches 1Vbe beyond V+ or V-  
to protect against over voltage. These diodes are normally reverse biased. Further protection of the inputs is  
provided by the two resistors (R in Figure 44), in conjunction with the string of anti-parallel diodes connected  
between both bases of the input stage. The combination of these resistors and diodes reduces excessive  
differential input voltages approaching 2Vbe. The most common situation when this occurs is when the device is  
put in shutdown and the LMH6639’s inputs no longer follow each other. In such a case, the diodes may conduct.  
As a consequence, input current increases, and a portion of signal may appear at the Hi-Z output. Another  
possible situation for the conduction of these diodes is when the LMH6639 is used as a comparator (or with little  
or no feedback). In either case, it is important to make sure that the subsequent current flow through the device  
input pins does not violate the Absolute Maximum Ratings of the device. To limit the current through the  
protection circuit extra series resistors can be placed. Together with the build in series resistors of several  
hundred ohms this extra resistors can limit the input current to a safe number depending on the used application.  
Be aware of the effect that extra series resistors may impact the switching speed of the device. A special  
situation occurs when the part is configured for a gain of +1, which means the output is directly connected to the  
inverting input, see Figure 45. When the part is now placed in shutdown mode the output comes in a high  
impedance state and is unable to keep the inverting input at the same level as the non-inverting input. In many  
applications the output is connected to the ground via a low impedance resistor. When this situation occurs and  
there is a DC voltage offset of more than 2 volt between the non-inverting input and the output, current flows  
from the non-inverting input through the series resistors R via the bypass diodes to the output. Now the input  
current becomes much bigger than expected and in many cases the source at the input cannot deliver this  
current and will drop down. Be sure in this situation that no DC current path is available from the non-inverting  
input to the output pin, or from the output pin to the load resistor. This DC path is drawn by a curved line and can  
be broken by placing one of the capacitors CIN or COUT or both, depending on the used application.  
V+  
V+  
V+  
R
R
IN-  
IN+  
V-  
V-  
Figure 44.  
5V  
7
2
-
6
SD  
COUT  
+
8
4
CIN  
3
1k  
Figure 45. DC path while in shutdown  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMH6639  
 
 
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
MULTIPLEXING 5 AND 10MHz  
The LMH6639 may be used to implement a circuit which multiplexes two signals of different frequencies. Three  
LMH6639 high speed op-amps are used in the circuit of Figure 46 to accomplish the multiplexing function. Two  
LMH6639 are used to provide gain for the input signals, and the third device is used to provide output gain for  
the selected signal.  
330W  
330W  
1k  
5V  
5V  
2
3
7
-
1k  
2
3
6
IC1  
4
7
-
OUT  
6
IC3  
8
FREQ 1  
+
8
+
50  
2k  
4
5V  
330W  
330W  
5V  
V
REF  
7
-
6
IC2  
4
FREQ 2  
+
8
50  
SD  
SD  
Note: Pin numbers pertain to SOIC-8 package  
Figure 46. Multiplexer  
Multiplexing signals “FREQ 1” and “FREQ 2” exhibit closed loop non-inverting gain of +2 each based upon  
identical 330resistors in the gain setting positions of IC1 and IC2. The two multiplexing signals are combined  
at the input of IC3, which is the third LMH6639. This amplifier may be used as a unity gain buffer or may be used  
to set a particular gain for the circuit.  
1.5  
SHUTDOWN  
1
0.5  
0
-0.5  
-1  
TIME (400 ns/DIV)  
Figure 47. Switching between 5 and 10MHz  
1k resistors are used to set an inverting gain of 1 for IC3 in the circuit of Figure 46. Figure 47 illustrates the  
waveforms produced. The upper trace shows the switching waveform used to switch between the 5MHz and  
10MHz multiplex signals. The lower trace shows the output waveform consisting of 5MHz and 10MHz signals  
corresponding to the high or low state of the switching signal.  
16  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
 
 
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
In the circuit of Figure 46, the outputs of IC1 and IC2 are tied together such that their output impedances are  
placed in parallel at the input of IC3. The output impedance of the disabled amplifier is high compared both to the  
output impedance of the active amplifier and the 330gain setting resistors. The closed loop output resistance  
for the LMH6639 is around 0.2. Thus the active state amplifier output impedance dominates the input node to  
IC3, while the disabled amplifier is assured of a high level of suppression of unwanted signals which might be  
present at the output.  
SHUTDOWN OPERATION  
With SD pin left floating, the device enters normal operation. However, since the SD pin has high input  
impedance, it is best tied to V+ for normal operation. This will avoid inadvertent shutdown due to capacitive pick-  
up from nearby nodes. LMH6639 will typically go into shutdown when SD pin is more than 1.7V below V+,  
regardless of operating supplies.  
The SD pin can be driven by push-pull or open collector (open drain) output logic. Because the LMH6639's  
shutdown is referenced to V+, interfacing to the shutdown logic is rather simple, for both single and dual supply  
operation, with either form of logic used. Typical configurations are shown in Figure 48 and Figure 49 below for  
push-pull output:  
+
V
PUSH-PULL  
OUTPUT  
LOGIC GATE  
-
V
S
V
+
-
+
-
V
SD  
LMH6639  
V
Figure 48. Shutdown Interface (Single Supply)  
+
V
PUSH-PULL  
OUTPUT  
LOGIC GATE  
+
-
V
V
+
-
+
-
V
SD  
LMH6639  
V
-
V
Figure 49. Shutdown Interface (Dual Supplies)  
Common voltages for logic gates are +5V or +3V. To ensure proper power on/off with these supplies, the logic  
should be able to swing to 3.4V and 1.4V minimum, respectively.  
LMH6639’s shutdown pin can also be easily controlled in applications where the analog and digital sections are  
operated at different supplies. Figure 50 shows a configuration where a logic output, SD, can turn the LMH6639  
on and off, independent of what supplies are used for the analog and the digital sections:  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMH6639  
 
 
LMH6639  
SNOS989G JANUARY 2002REVISED MARCH 2013  
www.ti.com  
SD  
+
-
+
-
+
-
+
V
V
SD  
LMH6639  
V
Figure 50. Shutdown Interface (Single Supply, Open Collector Logic)  
The LMH6639 has an internal pull-up resistor on SD such that if left un-connected, the device will be in normal  
operation. Therefore, no pull-up resistor is needed on this pin. Another common application is where the  
transistor in Figure 50 above, would be internal to an open collector (open drain) logic gate; the basic  
connections will remain the same as shown.  
PCB LAYOUT CONSIDERATION AND COMPONENTS SELECTION  
Care should be taken while placing components on a PCB. All standard rules should be followed especially the  
ones for high frequency and/ or high gain designs. Input and output pins should be separated to reduce cross-  
talk, especially under high gain conditions. A groundplane will be helpful to avoid oscillations. In addition, a  
ground plane can be used to create micro-strip transmission lines for matching purposes. Power supply, as well  
as shutdown pin de-coupling will reduce cross-talk and chances of oscillations.  
Another important parameter in working with high speed amplifiers is the component values selection. Choosing  
high value resistances reduces the cut-off frequency because of the influence of parasitic capacitances. On the  
other hand choosing the resistor values too low could "load down" the nodes and will contribute to higher overall  
power dissipation. Keeping resistor values at several hundreds of ohms up to several kwill offer good  
performance.  
Texas Instruments suggests the following evaluation boards as a guide for high frequency layout and as an aid in  
device testing and characterization:  
Device  
Package  
8-Pin SOIC  
SOT-23-6  
Evaluation Board PN  
CLC730027  
LMH6639MA  
LMH6639MF  
CLC730116  
18  
Submit Documentation Feedback  
Copyright © 2002–2013, Texas Instruments Incorporated  
Product Folder Links: LMH6639  
 
LMH6639  
www.ti.com  
SNOS989G JANUARY 2002REVISED MARCH 2013  
REVISION HISTORY  
Changes from Revision F (March 2013) to Revision G  
Page  
Copyright © 2002–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMH6639  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6639 MDC  
LMH6639MA  
ACTIVE  
NRND  
DIESALE  
SOIC  
Y
D
0
8
400  
95  
RoHS & Green  
Call TI  
Level-1-NA-UNLIM  
-40 to 85  
-40 to 85  
Samples  
Non-RoHS  
& Green  
Call TI  
SN  
Level-1-235C-UNLIM  
LMH66  
39MA  
LMH6639MA/NOPB  
LMH6639MAX/NOPB  
LMH6639MF  
ACTIVE  
ACTIVE  
NRND  
SOIC  
SOIC  
D
D
8
8
6
95  
RoHS & Green  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
LMH66  
39MA  
Samples  
Samples  
2500 RoHS & Green  
SN  
LMH66  
39MA  
SOT-23  
DBV  
1000  
Non-RoHS  
& Green  
Call TI  
A81A  
LMH6639MF/NOPB  
LMH6639MFX/NOPB  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
1000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
A81A  
A81A  
Samples  
Samples  
3000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2022  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6639MAX/NOPB  
LMH6639MF  
SOIC  
D
8
6
6
6
2500  
1000  
1000  
3000  
330.0  
178.0  
178.0  
178.0  
12.4  
8.4  
8.4  
8.4  
6.5  
3.2  
3.2  
3.2  
5.4  
3.2  
3.2  
3.2  
2.0  
1.4  
1.4  
1.4  
8.0  
4.0  
4.0  
4.0  
12.0  
8.0  
8.0  
8.0  
Q1  
Q3  
Q3  
Q3  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
LMH6639MF/NOPB  
LMH6639MFX/NOPB  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6639MAX/NOPB  
LMH6639MF  
SOIC  
D
8
6
6
6
2500  
1000  
1000  
3000  
367.0  
208.0  
208.0  
208.0  
367.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
LMH6639MF/NOPB  
LMH6639MFX/NOPB  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6639MA  
LMH6639MA  
D
D
D
SOIC  
SOIC  
SOIC  
8
8
8
95  
95  
95  
495  
495  
495  
8
8
8
4064  
4064  
4064  
3.05  
3.05  
3.05  
LMH6639MA/NOPB  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMH6639MA

190MHz Rail-to-Rail Output Amplifier with Disable
NSC

LMH6639MA

具有禁能功能的 190MHz 轨到轨输出放大器 | D | 8 | -40 to 85
TI

LMH6639MA/NOPB

IC OP-AMP, 7000 uV OFFSET-MAX, 90 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
NSC

LMH6639MA/NOPB

具有禁能功能的 190MHz 轨到轨输出放大器 | D | 8 | -40 to 85
TI

LMH6639MAX

190MHz Rail-to-Rail Output Amplifier with Disable
NSC

LMH6639MAX/NOPB

IC OP-AMP, 7000 uV OFFSET-MAX, 90 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
NSC

LMH6639MAX/NOPB

具有禁能功能的 190MHz 轨到轨输出放大器 | D | 8 | -40 to 85
TI

LMH6639MF

190MHz Rail-to-Rail Output Amplifier with Disable
NSC

LMH6639MF

具有禁能功能的 190MHz 轨到轨输出放大器 | DBV | 6 | -40 to 85
TI

LMH6639MF/NOPB

具有禁能功能的 190MHz 轨到轨输出放大器 | DBV | 6 | -40 to 85
TI

LMH6639MFX

190MHz Rail-to-Rail Output Amplifier with Disable
NSC

LMH6639MFX/NOPB

具有禁能功能的 190MHz 轨到轨输出放大器 | DBV | 6 | -40 to 85
TI