LMH6647MF/NOPB [TI]

具有关断功能的单通道 2.7V、650µA、55MHz、轨到轨输入和输出放大器 | DBV | 6 | -40 to 85;
LMH6647MF/NOPB
型号: LMH6647MF/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有关断功能的单通道 2.7V、650µA、55MHz、轨到轨输入和输出放大器 | DBV | 6 | -40 to 85

放大器
文件: 总42页 (文件大小:2193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
LMH664x 2.7 V, 650 μA, 55 MHz, Rail-to-Rail Input and Output Amplifiers  
with Shutdown Option  
1 Features  
3 Description  
(VS = 2.7V, TA = 25°C, RL = 1kto V+/2, AV = +1.  
The LMH6645 (single) and LMH6646 (dual), rail-to-  
rail input and output voltage feedback amplifiers, offer  
high speed (55 MHz), and low voltage operation (2.7  
V) in addition to micro-power shutdown capability  
(LMH6647, single).  
1
Typical Values Unless Specified.  
3dB BW 55 MHz  
Supply Voltage Range 2.5 V to 12 V  
Slew Rate 22 V/μs  
Input common mode voltage range exceeds either  
supply by 0.3 V, enhancing ease of use in multitude  
of applications where previously only inferior devices  
could be used. Output voltage range extends to  
within 20 mV of either supply rails, allowing wide  
dynamic range especially in low voltage applications.  
Even with low supply current of 650 μA/amplifier,  
output current capability is kept at a respectable ±20  
mA for driving heavier loads. Important device  
parameters such as BW, Slew Rate and output  
current are kept relatively independent of the  
operating supply voltage by a combination of process  
enhancements and design architecture.  
Supply Current 650 μA/channel  
Output Short Circuit Current 42 mA  
Linear Output Current ±20 mA  
Input Common Mode Voltage 0.3 V Beyond Rails  
Output Voltage Swing 20 mV from Rails  
Input Voltage Noise 17 nV/Hz  
Input Current Noise 0.75 pA/Hz  
2 Applications  
Active Filters  
Device Information(1)  
High Speed Portable Devices  
Multiplexing Applications (LMH6647)  
Current Sense Buffer  
PART NUMBER  
PACKAGE  
SOT-23 (5)  
SOIC (8)  
BODY SIZE (NOM)  
2.90 mm × 1.60 mm  
4.90 mm × 3.91 mm  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
2.92 mm × 1.60 mm  
4.90 mm × 3.91 mm  
LMH6645  
High Speed Transducer Amp  
SOIC (8)  
LMH6646  
LMH6647  
VSSOP (8)  
SOT-23 (6)  
SOIC (8)  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Closed Loop Frequency Response  
for Various Temperature  
Frequency Response for Various AV  
A
= +2  
V
GAIN  
A
= +1  
V
0
-2  
-4  
GAIN  
85°C  
0
-2  
-4  
25°C  
A
= +10  
V
0
0
PHASE  
50  
PHASE  
50  
100  
100  
A
= +5  
V
-40°C  
1M  
10M  
Frequency (Hz)  
200M  
100k  
100M 200M  
100k  
1M  
10M  
Frequency (Hz)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Table of Contents  
8.2 Functional Block Diagram ....................................... 18  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application .................................................. 22  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (continued)......................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics 2.7 V ................................. 5  
7.6 Electrical Characteristics 5V .................................... 7  
7.7 Electrical Characteristics ±5V .................................. 9  
7.8 Typical Performance Characteristics ...................... 11  
Detailed Description ............................................ 18  
8.1 Overview ................................................................. 18  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 Device and Documentation Support ................. 25  
12.1 Documentation Support ........................................ 25  
12.2 Related Links ........................................................ 25  
12.3 Trademarks........................................................... 25  
12.4 Electrostatic Discharge Caution............................ 25  
12.5 Glossary................................................................ 25  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (April 2013) to Revision D  
Page  
Added, updated, or renamed the following sections: Device Information Table, Pin Configuration and Functions,  
Application and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support;  
Mechanical, Packaging, and Ordering Information................................................................................................................. 1  
Changes from Revision B (April 2013) to Revision C  
Page  
Changed layout of National Data Sheet to TI format ............................................................................................................. 1  
2
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
5 Description (continued)  
In portable applications, the LMH6647 provides shutdown capability while keeping the turn-off current to less  
than 50 μA. Both turn-on and turn-off characteristics are well behaved with minimal output fluctuations during  
transitions. This allows the part to be used in power saving mode, as well as multiplexing applications. Miniature  
packages (SOT-23, VSSOP-8, and SOIC-8) are further means to ease the adoption of these low power high  
speed devices in applications where board area is at a premium.  
6 Pin Configuration and Functions  
SOT-23-5 (LMH6645)  
Package DBV05A  
Top View  
SOIC-8 (LMH6645)  
Package D08A  
Top View  
SOIC-8 and VSSOP-8 (LMH6646)  
Packages D08A and DGK08A  
Top View  
1
8
1
2
8
+
+
5
1
OUT A  
V
V
N/C  
N/C  
OUTPUT  
A
+
7
6
5
-
V
-
+
-IN  
2
3
4
7
6
5
-IN A  
+IN A  
OUT B  
-IN B  
-
2
V
3
4
OUTPUT  
N/C  
+
+IN  
-
+
B
4
3
-IN  
-
+IN  
+
-
V
-
+IN B  
V
SOT-23-6 (LMH6647)  
Package DBV06A  
Top View  
SOIC-8 (LMH6647)  
Package D08A  
Top View  
1
8
6
5
+
1
SD  
N/C  
V
OUTPUT  
+
2
3
4
7
6
5
V
-IN  
-
SD  
-
2
V
-
OUTPUT  
N/C  
+IN  
+
+
3
4
-IN  
-
+IN  
V
Pin Functions  
PIN  
NUMBER  
I/O  
DESCRIPTION  
NAME  
LMH6645  
LMH6646  
DGK08A  
LMH6647  
DBV05A  
D08A  
DBV06A  
D08A  
-IN  
4
3
2
3
4
3
2
3
I
I
Inverting input  
+IN  
Non-inverting input  
-IN A  
+IN A  
-IN B  
+IN B  
N/C  
2
3
6
5
I
Inverting Input Channel A  
Non-inverting input Channel A  
Inverting input Channel B  
Non-inverting input Channel B  
No Connection  
I
I
I
1,5,8  
6
1,5  
6
––  
O
O
O
I
OUTPUT  
OUT A  
OUT B  
SD  
1
1
Output  
1
7
Output Channel A  
Output Channel B  
Shutdown  
5
2
6
8
4
7
V-  
2
5
4
7
4
8
I
Negative Supply  
V+  
I
Positive Supply  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
7 Specifications  
(1)(2)  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
See (3) and  
±2.5  
UNIT  
(4)  
Output short circuit duration  
VIN differential  
V
V
V
V+ +0.8,  
Voltage at input/output pins  
V0.8  
Supply voltage (V+ - V)  
Junction temperature(5)  
12.6  
+150  
235  
Infrared or Convection (20 sec)  
Soldering Information  
°C  
Wave Soldering (10 sec)  
260  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
(3) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in  
exceeding the maximum allowed junction temperature of 150°C.  
(4) Output short circuit duration is infinite for VS < 6 V at room temperature and below. For VS > 6 V, allowable short circuit duration is 1.5  
ms.  
(5) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) - TA)/ RθJA. All numbers apply for packages soldered directly onto a PC board.  
7.2 Handling Ratings  
MIN  
MAX  
+150  
2000  
UNIT  
Tstg  
Storage temperature range  
65  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
Machine model (MM)(2)  
V(ESD)  
Electrostatic discharge  
V
200  
(1) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process. Human body  
model, 1.5 kin series with 100pF.  
(2) JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process. Machine model, 0 Ω  
in series with 200 pF.  
7.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
MAX  
12  
UNIT  
V
Supply Voltage (V+ – V)  
Temperature Range(2)  
40  
+85  
°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the Electrical Characteristics.  
(2) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) - TA)/ RθJA . All numbers apply for packages soldered directly onto a PC board.  
7.4 Thermal Information  
LMH6645  
SOT-23  
LMH6646  
LMH6647  
THERMAL METRIC(1)  
SOIC-8  
VSSOP-8  
8 PINS  
235  
SOT-23  
SOIC-8  
8 PINS  
190  
UNIT  
5 PINS  
265  
8 PINS  
8 PINS  
6 PINS  
RθJA  
Junction-to-ambient thermal resistance  
190  
190  
265  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
7.5 Electrical Characteristics 2.7 V  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 2.7V, V= 0V, VCM = VO = V+/2, and Rf = 2k, and RL =  
1kto V+/2.  
PARAMETER  
3dB BW  
TEST CONDITIONS  
AV = +1, VOUT = 200 mVPP  
VCM = 0.7 V  
f = 100 kHz  
f = 1 kHz  
MIN(1)  
TYP(2) MAX(1) UNIT  
,
BW  
en  
40  
55  
MHz  
17  
25  
Input-referred voltage noise  
Input-referred current noise  
nV/Hz  
f = 100 kHz  
f = 1 kHz  
0.75  
1.20  
in  
pA/Hz  
Cross-talk rejection  
(LMH6646 only)  
f = 5MHz, Receiver:  
Rf = Rg = 510 , AV = +2  
CT Rej.  
SR  
47  
22  
dB  
V/μs  
ns  
AV = 1, VO = 2 VPP  
Slew rate  
15  
(3) (4)  
See  
,
Turn-on time  
(LMH6647 only)  
TON  
250  
560  
1.95  
Turn-off time  
(LMH6647 only)  
TOFF  
THSD  
ISD  
ns  
Shutdown threshold  
(LMH6647 only)  
IS 50μA  
2.30  
V
Shutdown pin input current  
(LMH6647 only)  
(5)  
See  
20  
μA  
3  
4  
±1  
3
4
VOS  
Input offset voltage  
0V VCM 2.7 V  
mV  
-40°C TJ 85°C  
(6)  
TC VOS Input offset average drift  
See  
±5  
μV/°C  
0.40  
2
2.2  
(5)  
VCM = 2.5 V  
-40°C TJ 85°C  
-40°C TJ 85°C  
IB  
Input bias current  
Input offset current  
μA  
0.68  
2  
(5)  
VCM = 0.5 V  
2.2  
500  
IOS  
RIN  
0 V VCM 2.7 V  
1
3
nA  
Common mode input  
resistance  
MΩ  
Common mode input  
capacitance  
CIN  
2
pF  
0.5  
0.3  
0.1  
-40°C TJ 85°C  
-40°C TJ 85°C  
Input common-mode  
voltage range  
CMVR  
CMRR 50dB  
V
3.0  
2.8  
46  
3.2  
VCM Stepped from 0 V to 2.7 V  
VCM Stepped from 0 V to 1.55 V  
77  
76  
87  
Common mode rejection  
ratio  
CMRR  
AVOL  
dB  
dB  
V
58  
76  
Large signal voltage gain  
Output swing high  
VO = 0.35 V to 2.35 V  
-40°C TJ 85°C  
74  
RL = 1k to V+/2  
RL = 10k to V+/2  
RL = 1k to V+/2  
RL = 10k to V+/2  
2.55  
2.66  
2.68  
40  
VO  
150  
Output swing low  
mV  
20  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
(3) Slew rate is the average of the rising and falling slew rates.  
(4) ensured based on characterization only.  
(5) Positive current corresponds to current flowing into the device.  
(6) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Electrical Characteristics 2.7 V (continued)  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 2.7V, V= 0V, VCM = VO = V+/2, and Rf = 2k, and RL =  
1kto V+/2.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1) UNIT  
Sourcing to V−  
VID = 200mV  
43  
(7)(8)  
ISC  
Output short circuit current  
mA  
Sinking to V+  
VID = 200mV  
42  
(7)(8)  
IOUT  
Output current  
VOUT = 0.5V from rails  
±20  
83  
mA  
dB  
V+ = 2.7V to 3.7V or  
PSRR  
Power supply rejection ratio  
75  
V= 0V to 1V  
Normal Operation  
650  
15  
1250  
50  
Supply current  
(per channel)  
IS  
μA  
Shutdown Mode (LMH6647 only)  
(7) Short circuit test is a momentary test.  
(8) Output short circuit duration is infinite for VS < 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5ms.  
6
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
7.6 Electrical Characteristics 5V  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 5V, V= 0V, VCM = VO = V+/2, and Rf = 2k, and RL =  
1kto V+/2.  
PARAMETER  
3dB BW  
TEST CONDITIONS  
AV = +1, VOUT = 200 mVPP  
MIN(1)  
TYP(2) MAX(1) UNIT  
BW  
en  
40  
55  
17  
MHz  
f = 100kHz  
f = 1kHz  
Input-referred voltage noise  
Input-referred current noise  
nV/Hz  
25  
f = 100kHz  
f = 1kHz  
0.75  
1.20  
in  
pA/Hz  
Cross-talk rejection  
(LMH6646 only)  
f = 5MHz, Receiver:  
Rf = Rg = 510, AV = +2  
CT Rej.  
SR  
47  
22  
dB  
V/μs  
ns  
AV = 1, VO = 2 VPP  
Slew rate  
15  
(3) (4)  
See  
,
Turn-on time  
(LMH6647 only)  
TON  
210  
500  
4.25  
Turn-off time  
(LMH6647 only)  
TOFF  
THSD  
ISD  
ns  
Shutdown threshold  
(LMH6647 only)  
IS 50μA  
4.60  
V
(5)  
Shutdown pin input current See  
(LMH6647 only)  
20  
μA  
0V VCM 5V  
3  
4  
±1  
3
4
VOS  
Input offset voltage  
mV  
-40°C TJ 85°C  
(6)  
TC VOS Input offset average drift  
See  
±5  
μV/C  
VCM = 4.8V(5)  
VCM = 0.5V(5)  
0V VCM 5V  
+0.36  
+2  
2.2  
2  
-40°C TJ 85°C  
-40°C TJ 85°C  
IB  
Input bias current  
Input offset current  
μA  
0.68  
2.2  
500  
IOS  
RIN  
1
3
nA  
Common mode input  
resistance  
MΩ  
Common mode input  
capacitance  
CIN  
2
pF  
0.5  
0.3  
0.1  
-40°C TJ 85°C  
-40°C TJ 85°C  
Input common-mode  
voltage range  
CMVR  
CMRR 50dB  
V
5.3  
5.1  
56  
66  
76  
74  
5.5  
VCM Stepped from 0V to 5V  
VCM Stepped from 0V to 3.8V  
82  
85  
85  
Common mode rejection  
ratio  
CMRR  
AVOL  
dB  
dB  
Large signal voltage gain  
VO = 1.5V to 3.5V  
-40°C TJ 85°C  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
(3) Slew rate is the average of the rising and falling slew rates.  
(4) ensured based on characterization only.  
(5) Positive current corresponds to current flowing into the device.  
(6) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Electrical Characteristics 5V (continued)  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 5V, V= 0V, VCM = VO = V+/2, and Rf = 2k, and RL =  
1kto V+/2.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1) UNIT  
RL = 1k to V+/2  
RL = 10k to V+/2  
RL = 1k to V+/2  
RL = 10k to V+/2  
Sourcing to V−  
4.80  
4.95  
Output swing high  
V
4.98  
VO  
50  
20  
200  
Output swing low  
mV  
mA  
55  
53  
(7)(8)  
VID = 200mV  
ISC  
Output short circuit current  
Output current  
Sinking to V+  
VID = 200mV  
(7)(8)  
IOUT  
VOUT = 0.5V From rails  
Power supply rejection ratio V+ = 5V to 6V or V= 0V to 1V  
±20  
95  
mA  
dB  
PSRR  
75  
Normal Operation  
700  
10  
1400  
50  
Supply current (per  
channel)  
IS  
μA  
Shutdown Mode (LMH6647 only)  
(7) Short circuit test is a momentary test.  
(8) Output short circuit duration is infinite for VS < 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5ms.  
8
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
7.7 Electrical Characteristics ±5V  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 5V, V= 5V, VCM = VO = 0V, Rf = 2k, and RL = 1kto  
GND.  
PARAMETER  
3dB BW  
TEST CONDITIONS  
AV = +1, VOUT = 200 mVPP  
MIN(1)  
TYP(2) MAX(1) UNIT  
BW  
en  
40  
55  
17  
MHz  
f = 100 kHz  
f = 1 kHz  
Input-referred voltage noise  
Input-referred current noise  
nV/Hz  
25  
f = 100 kHz  
f = 1 kHz  
0.75  
1.20  
in  
pA/Hz  
Cross-talk rejection  
(LMH6646 only)  
f = 5MHz, Receiver:  
Rf = Rg = 510 Ω, AV = +2  
CT Rej.  
SR  
47  
22  
dB  
V/μs  
ns  
(3)  
Slew rate  
AV = 1, VO = 2 VPP  
15  
Turn-on time  
(LMH6647 only)  
TON  
200  
Turn-off time  
(LMH6647 only)  
TOFF  
THSD  
ISD  
700  
ns  
V
Shutdown threshold  
(LMH6647 only)  
I
S 50 μA  
4.25  
4.60  
Shutdown pin input current  
(LMH6647 only)  
(4)  
See  
20  
μA  
3  
4  
±1  
3
4
VOS  
Input offset voltage  
5V VCM 5 V  
mV  
-40°C TJ 85°C  
(5)  
TC VOS Input offset average drift  
See  
±5  
μV/°C  
+0.40  
+2  
+2.2  
2  
(4)  
VCM = 4.8 V  
-40°C TJ 85°C  
-40°C TJ 85°C  
IB  
Input bias current  
Input offset current  
μA  
0.65  
(4)  
VCM = 4.5 V  
2.2  
500  
IOS  
RIN  
5V VCM 5 V  
3
3
nA  
Common mode input  
resistance  
MΩ  
Common mode input  
capacitance  
CIN  
2
pF  
5.5  
5.3  
5.1  
-40°C TJ 85°C  
-40°C TJ 85°C  
Input common-mode  
voltage range  
CMVR  
CMRR 50dB  
V
5.3  
5.1  
60  
66  
76  
74  
5.5  
VCM Stepped from 5 V to 5 V  
VCM Stepped from 5 V to 3.5 V  
84  
104  
85  
Common mode rejection  
ratio  
CMRR  
AVOL  
dB  
dB  
Large signal voltage gain  
VO = 2 V to 2 V  
-40°C TJ 85°C  
(1) All limits are ensured by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
(3) Slew rate is the average of the rising and falling slew rates.  
(4) Positive current corresponds to current flowing into the device.  
(5) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Electrical Characteristics ±5V (continued)  
Unless otherwise specified, all limits ensured for at TJ = 25°C, V+ = 5V, V= 5V, VCM = VO = 0V, Rf = 2k, and RL = 1kto  
GND.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1) UNIT  
RL = 1 kΩ  
RL = 10 kΩ  
RL = 1 kΩ  
RL = 10 kΩ  
4.70  
4.92  
Output swing high  
V
4.97  
VO  
4.93  
4.98  
4.70  
Output swing low  
V
Sourcing to V−  
66  
61  
VID = 200 mV(6)(7)  
ISC  
Output short circuit current  
Output current  
mA  
Sinking to V+  
VID = 200 mV(6)(7)  
IOUT  
VOUT = 0.5V from rails  
±20  
95  
mA  
dB  
PSRR  
Power supply rejection ratio V+ = 5 V to 6 V or V= 5 V to 6 V  
76  
Normal Operation  
725  
10  
1600  
50  
Supply current (per  
channel)  
IS  
μA  
Shutdown Mode (LMH6647 only)  
(6) Short circuit test is a momentary test.  
(7) Output short circuit duration is infinite for VS < 6V at room temperature and below. For VS > 6V, allowable short circuit duration is 1.5ms.  
10  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
7.8 Typical Performance Characteristics  
At TJ = 25°C. Unless otherwise specified.  
A
= +2  
V
GAIN  
GAIN  
85°C  
A
= +1  
V
0
-2  
-4  
0
-2  
-4  
25°C  
A
= +10  
V
0
0
PHASE  
PHASE  
50  
50  
100  
100  
-40°C  
A
= +5  
V
100k  
1M  
10M  
Frequency (Hz)  
200M  
100M 200M  
100k  
1M  
10M  
Frequency (Hz)  
VS = ±5 V  
RL = 1 kΩ  
AV = + 1  
VS = ±2.5 V  
RL = 1k  
VOUT = 200 mVpp  
Figure 2. Frequency Response for Various AV  
Figure 1. Closed Loop Frequency Response  
for Various Temperature  
70  
-50  
-55  
-60  
-65  
60  
PHASE  
50  
40  
30  
100  
80  
85°C  
85°C  
60  
40  
20  
GAIN  
-40°C  
20  
10  
0
V
= ±2.5 V  
S
V
S
= ±5 V  
-70  
-75  
-80  
0
-40°C  
10M  
-20  
100k  
1M  
100M  
1
2
3
4
5
6
7
8
V
(V )  
OUT PP  
Frequency (Hz)  
RL = 500 Ω  
f = 100 KHz  
AV = +2  
VS = ±2.5 V  
RL = 2k  
Figure 4. THD vs. Output Swing  
Figure 3. Open Loop Gain/Phase vs. Frequency  
for Various Temperature  
-30  
10  
-35  
-40  
-45  
-50  
1
V
= ±5 V  
S
-55  
-60  
V
= ±2.5 V  
S
-65  
-70  
0.1  
100k  
3
6
1
2
4
5
1M  
10M  
V
(V )  
OUT PP  
Frequency (Hz)  
RL = 500 Ω  
f = 1 MHz  
AV = +2  
RL = 500 Ω  
AV = +2  
VS = ±5 V  
Rf = Rg = 2K  
Figure 5. THD vs. Output Swing  
Figure 6. Output Swing vs. Frequency  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
At TJ = 25°C. Unless otherwise specified.  
250  
1000  
10.00  
1.00  
0.10  
±0.1%  
200  
150  
100  
CURRENT  
VOLTAGE  
100  
50  
±1%  
0
10  
10  
0
1
2
3
)
4
100  
1k  
10k  
100k  
Step Amplitude (V  
PP  
FREQUENCY (Hz)  
VS = ±2.5 V  
AV = -1  
RL = 500 Ω  
CL = 13 pF  
Figure 7. Settling Time vs. Step Size  
Figure 8. Noise vs. Frequency  
-40°C  
-40°C  
10  
10  
85°C  
85°C  
1.0  
0.1  
1.0  
0.1  
85°C  
85°C  
25°C  
-40°C  
-40°C  
0.01  
.01  
0.01  
.01  
.1  
1
10  
100  
.1  
1
10  
100  
I
(mA)  
I
(mA)  
SOURCE  
SINK  
VS = 10 V  
VS = 10 V  
Figure 9. VOUT from V+ vs. ISOURCE  
Figure 10. VOUT from Vvs. ISINK  
10k  
10k  
1k  
1k  
10 V  
10 V  
5 V  
5 V  
100  
10  
100  
10  
2.7 V  
500  
2.7 V  
2.5k  
1.5k  
(:)  
0
1k  
R
0
500  
2k  
1.5k  
(:)  
2k  
2.5k  
1k  
R
L
L
T = 25°C  
AV = +1  
T = -40°C  
AV = +1  
Figure 11. Output Swing from V+ vs. RL (tied to VS/2)  
Figure 12. Output Swing from V+ vs. RL (Tied to VS/2)  
12  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
Typical Performance Characteristics (continued)  
At TJ = 25°C. Unless otherwise specified.  
10k  
10k  
1k  
1k  
10 V  
10 V  
5 V  
5 V  
100  
10  
100  
2.7 V  
2.7 V  
10  
2.5k  
500  
0
1k  
1.5k  
(:)  
2k  
1k  
1.5k  
(:)  
0
500  
2.5k  
2k  
R
R
L
L
T = 25°C  
AV = +1  
T = 85°C  
AV = +1  
Figure 14. Output Swing from Vvs. RL (Tied to VS/2)  
Figure 13. Output Swing from V+ vs. RL (Tied to VS/2)  
10k  
10k  
1k  
1k  
10 V  
10 V  
5 V  
5 V  
100  
100  
2.7 V  
10  
2.7 V  
10  
2.5k  
500  
1k  
1.5k  
(:)  
2k  
0
25k  
2k  
0
500  
1k  
1.5k  
(:)  
R
L
R
L
T = 85°C  
AV = +1  
T = 40°C  
AV = +1  
Figure 16. Output Swing from Vvs. RL (Tied to VS/2)  
Figure 15. Output Swing from Vvs. RL (Tied to VS/2)  
500  
10k  
10k  
100  
10  
1k  
1k  
ts  
100  
100  
1.0  
C
L
10  
1
10  
1
0.1  
0.02  
10k  
1M  
10M  
200M  
100k  
5
2
3
Closed Loop Gain  
4
1
Frequency (Hz)  
VS = ±2.5 V  
AV = +1  
VS = +5 V  
200 mVpp STEP  
30% OVERSHOOT  
Figure 18. ZOUT vs. Frequency  
Figure 17. Cap Load Tolerance and Setting Time  
vs. Closed Loop Gain  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
At TJ = 25°C. Unless otherwise specified.  
110  
90  
80  
70  
60  
+PSRR  
100  
90  
80  
70  
-PSRR  
60  
50  
40  
30  
50  
40  
30  
20  
10  
20  
10  
100  
1k  
10k  
100k  
1M  
10M  
1k  
100k  
10M  
10k  
1M  
Frequency (Hz)  
Frequency (Hz)  
VS = ±2.5V  
RF = 10 kΩ  
RG = 1 kΩ  
VS = 5 V  
Figure 19. PSRR vs. Frequency  
Figure 20. CMRR vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Receive CH.: AV = +2  
Rf = Rg = 510  
VS = ±5 V  
N = 19k UNITS  
σ = 4.6 mV  
Figure 21. Crosstalk Rejection vs. Frequency  
(Output to Output, LMH6646)  
Figure 22. VOS Distribution  
0.25  
0.2  
0.2  
-40°C  
0.15  
-40°C  
0.15  
0.1  
0.1  
0.05  
25°C  
0
0.05  
25°C  
85°C  
-0.05  
0
-0.05  
-0.1  
-0.1  
-0.15  
85°C  
-0.15  
-0.2  
-0.2  
-0.25  
-0.3  
-0.25  
12  
-2  
0
2
4
6
8
10  
2
3
4
6
7
8
9
10 11 12  
1
5
V
(V)  
OUT  
V
(V)  
S
VS = 10 V  
RL = 10 kΩ to VS/2  
VCM = 0.5 V  
Figure 24. VOS vs. VOUT (a Typical Unit)  
Figure 23. VOS vs. VS (a Typical Unit)  
14  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
Typical Performance Characteristics (continued)  
At TJ = 25°C. Unless otherwise specified.  
0.4  
0.6  
0.5  
0.4  
V
= 2.7V  
S
-
0.3  
40°C  
-40°C  
0.2  
0.1  
0
25°C  
25°C  
85°C  
0.  
3
-0.1  
-0.2  
-0.3  
-0.4  
0.2  
0.1  
0
85°C  
-2  
0
2
4
6
8
10  
12  
1.5  
(V)  
2
2.5  
3
-0.5  
0
0.5  
1
V
OUT  
(V)  
V
CM  
VS = 10 V  
RL = 1 kΩ to VS/2  
VS = 2.7 V  
Figure 25. VOS vs. VOUT (a Typical Unit)  
Figure 26. VOS vs. VCM (a Typical Unit)  
0.6  
0.5  
0.4  
0.6  
0.5  
0.4  
-40°C  
25°C  
0.3  
0.2  
0.1  
0.3  
-40°C  
0.2  
0.1  
25°C  
0
85°C  
-0.1  
0
85°C  
0
-0.1  
-1  
-2  
0
2
4
6
8
1
2
3
4
5
6
10  
12  
V
CM  
(V)  
V
CM  
(V)  
VS = 5 V  
VS = 10 V  
Figure 27. VOS vs. VCM (a Typical Unit)  
Figure 28. VOS vs. VCM (a Typical Unit)  
0.6  
0.6  
85°C  
85°C  
0.4  
0.4  
25°C  
25°C  
0.2  
0.2  
-40°C  
-40°C  
0
0
-0.2  
-0.2  
-0.4  
-0.6  
-40°C  
25°C  
25°C  
-40°C  
-0.4  
-0.6  
85°C  
-0.8  
-1  
-0.8  
-1  
85°C  
1
-5  
-3  
5
0
0.5  
1.5  
(V)  
2
3
-1  
1
3
-0.5  
2.5  
V
CM  
(V)  
V
CM  
VS = ±5 V  
VS = 2.7 V  
Figure 30. IB vs. VCM  
Figure 29. IB vs. VCM  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
At TJ = 25°C. Unless otherwise specified.  
-0.50  
0.95  
0.9  
-0.52  
-0.54  
-0.56  
-0.58  
-0.60  
-0.62  
-0.64  
-0.66  
-0.68  
-0.7  
85°C  
25°C  
85°C  
25°C  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
0.5  
-40°C  
3
-40°C  
-1  
0.45  
4
6
7
8
9
10  
1
2
5
11  
12  
-7  
-5  
-3  
1
3
5
7
V
(V)  
S
V
(V)  
CM  
VCM = 0.2 V  
VS = ±5 V  
Figure 31. IB vs. VS  
Figure 32. IS vs. VCM  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.9  
0.85  
0.8  
85°C  
25°C  
85°C  
0.75  
0.7  
-40°C  
0.65  
0.6  
25°C  
0.3  
0.2  
0.1  
0.55  
0.5  
-40°C  
0
0.45  
-0.1  
0.4  
1
2
3
4
5
6
7
8
9
10 11 12  
2.35 2.85  
-0.15 0.35 0.85 1.35 1.85  
(V)  
V
V
S
(V)  
SHUTDOWN  
VS = 2.7 V  
VS = ±5 V  
VCM = 0.2 V  
Figure 34. IS vs. VSHUTDOWN (LMH6647)  
Figure 33. IS (mA) vs. Vs(V)  
0.9  
0.9  
0.8  
0.7  
85°C  
V
= 5V  
S
0.8  
85°C  
0.7  
0.6  
0.6  
0.  
5
25°C  
25°C  
0.5  
-40°C  
0.4  
0.4  
0.3  
0.2  
0.1  
0
-40°C  
0.3  
0.2  
0.1  
0
-0.1  
-0.1  
-0.5  
-6  
-4  
-2  
V
0
2
4
6
3.5  
(V)  
4.5  
5.5  
0.5  
1.5  
V
2.5  
(V)  
SHUTDOWN  
SHUTDOWN  
VS = ±5 V  
VS = 5 V  
Figure 36. IS vs. VSHUTDOWN (LMH6647)  
Figure 35. IS vs. VSHUTDOWN (LMH6647)  
16  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
Typical Performance Characteristics (continued)  
At TJ = 25°C. Unless otherwise specified.  
1000  
-100  
85°C  
25°C  
-40°C  
100  
-10  
I
VCC  
SHUTDOWN  
PIN CURRENT  
-1  
10  
1
85°C  
-40°C  
25°C  
-0.1  
40 mV/DIV  
20 ns/DIV  
-3.5  
-2.5 -1.5 -0.5 0.5  
1.5  
(V)  
2.5 3.5  
V
VS = ±5 V  
RL = 1kΩ  
AV = +1  
SHUTDOWN  
VS = ±2.5 V  
VOUT = 0.2 Vpp  
Figure 38. Small Signal Step Response  
Figure 37. Shutdown Pin and Supply Current  
vs. Shutdown Voltage (LMH6647)  
0.2 V/DIV  
VS = 5 V  
AV = -1  
40 ns/DIV  
0.2 V/DIV  
40 ns/DIV  
RL = 1 kΩ  
VOUT = 1 Vpp  
VS = 2.7 V  
AV = +1  
RL = 1 kΩ  
VOUT = 1 Vpp  
Figure 40. Large Signal Step Response  
Figure 39. Large Signal Step Response  
INPUT  
OUTPUT  
1 V/DIV  
400 ns/DIV  
AV = +2  
VS = ±2.5 V  
RL = 1 kΩ  
Rf= Rg = 2 kΩ  
Figure 41. Output Overload Recovery  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LMH664x family is based on proprietary VIP10 dielectrically isolated bipolar process.  
This device family architecture features the following:  
Complimentary bipolar devices with exceptionally high ft (8 GHz) even under low supply voltage (2.7 V) and  
low Collector bias current.  
Rail-to-Rail input which allows the input common mode voltage to go beyond either rail by about 0.5 V  
typically.  
A class A-B “turn-around” stage with improved noise, offset, and reduced power dissipation compared to  
similar speed devices (patent pending).  
Common Emitter push-pull output stage capable of 20 mA output current (at 0.5 V from the supply rails) while  
consuming only 700 μA of total supply current per channel. This architecture allows output to reach within  
mV of either supply rail at light loads.  
Consistent performance from any supply voltage (2.7 V to 10 V) with little variation with supply voltage for the  
most important specifications (BW, SR, IOUT, for example)  
8.2 Functional Block Diagram  
R
S
200-400:  
INVERTING  
INPUT  
D4  
D3  
D1  
D2  
NON-INVERTING  
INPUT  
Figure 42. LMH6647 Equivalent Input in Shutdown Mode  
During shutdown, the input stage has an equivalent circuit as shown below in Figure 42.  
18  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
8.3 Feature Description  
8.3.1 LMH6647 Micro-power Shutdown  
To keep the output at or near ground during shutdown when there is no other device to hold the output low, a  
switch (transistor) could be used to shunt the output to ground. Figure 43 shows a circuit where a NPN bipolar is  
used to keep the output near ground (80 mV):  
5V  
-
V
OUT  
LMH6647  
V
IN  
+
SD  
-
V
SHUTDOWN  
INPUT  
Q1  
R
S
10k  
Figure 43. Active Pull-Down Schematic  
Figure 44 shows the output waveform.  
V
OUT  
SD  
2.00 µs/DIV  
2 V/DIV  
Figure 44. Output Held Low by Active Pull-Down Circuit  
NOTE  
For normal operation, tie the SD pin to V.  
If bipolar transistor power dissipation is not tolerable, the switch could be by a N-channel enhancement mode  
MOSFET.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
 
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
8.4 Device Functional Modes  
The LMH6647 can be shutdown to save power and reduce its supply current to less than 50 μA ensured, by  
applying a voltage to the SD pin. The SD pin is “active high” and needs to be tied to Vfor normal operation. This  
input is low current (< 20 μA, 4 pF equivalent capacitance) and a resistor to V(20 k) will result in normal  
operation. Shutdown is ensured when SD pin is 0.4V or less from V+ at any operating supply voltage and  
temperature.  
In the shutdown mode, essentially all internal device biasing is turned off in order to minimize supply current flow  
and the output goes into Hi-Z (high impedance) mode. Complete device Turn-on and Turn-off times vary  
considerably relative to the output loading conditions, output voltage, and input impedance, but is generally  
limited to less than 1μs (see tables for actual data).  
As seen in Figure 42 in shutdown, there may be current flow through the internal diodes shown, caused by input  
potential, if present. This current may flow through the external feedback resistor and result in an apparent output  
signal. In most shutdown applications the presence of this output is inconsequential. However, if the output is  
“forced” by another device such as in a multiplexer, the other device will need to conduct the current described in  
order to maintain the output potential.  
The total input common mode voltage range, which extends from below Vto beyond V+, is covered by both an  
NPN and a PNP stage. The NPN stage is switched on whenever the input is less than 1.2 V from V+ and the  
PNP stage covers the rest of the range. In terms of the input voltage, there is an overlapping region where both  
stages are processing the input signal. This region is about 0.5 V from beginning to the end. As far as the device  
application is concerned, this transition is a transparent operation. However, keep in mind that the input bias  
current value and direction will depend on which input stage is operating (see Figure 29). For low distortion  
applications, it is best to keep the input common mode voltage from crossing this transition point. Low gain  
settling applications, which generally encounter larger peak-to-peak input voltages, could be configured as  
inverting stages to eliminate common mode voltage fluctuations.  
In terms of the output, when the output swing approaches either supply rail, the output transistor will enter a  
quasi-saturated state. A subtle effect of this operational region is that there is an increase in supply current in this  
state (up to 1 mA). The onset of Quasi-saturation region is a function of output loading (current) and varies from  
100 mV at no load to about 1 V when output is delivering 20 mA, as measured from supplies. Both input  
common mode voltage and output voltage level affect the supply current (see Figure 32).  
With 2.7V supplies and a common mode input voltage range that extends beyond either supply rail, the  
LMH664x family is well suited to many low voltage/low power applications. Even with 2.7 V supplies, the -3dB  
BW (@ AV = +1) is typically 55 MHz with a tested limit of 45 MHz. Production testing guarantees that process  
variations will not compromise speed.  
This device family is designed to avoid output phase reversal. With input over-drive, the output is kept near the  
supply rail (or as close to it as mandated by the closed loop gain setting and the input voltage). Figure 45, below,  
shows the input and output voltage when the input voltage significantly exceeds the supply voltages.  
The output does not exhibit any phase reversal as some op amps do. However, if the input voltage range is  
exceeded by more than a diode drop beyond either rail, the internal ESD protection diodes will start to conduct.  
The current flow in these ESD diodes should be externally limited.  
20  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
Device Functional Modes (continued)  
Figure 45 demonstrates that the output is well behaved and there are no spikes or glitches due to the switching.  
Switching times are approximately around 500 ns based on the time when the output is considered “valid”.  
INPUT  
OUTPUT  
2 V/DIV  
10.0 µs/DIV  
Figure 45. Input/Output Shown with Exceeded Input CMVR  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMH664x family is well suited to many low voltage/low power applications and is designed to avoid output  
phase reversal. Figure 45, for example, depicts the Input/Output Shown with Exceeded Input CMVR and  
functions as a 2:1 MUX operating on a single 2.7-V power supply by utilizing the shutdown feature of the  
LMH6647.  
9.2 Typical Application  
1/5  
1/5  
74HC04  
74HC04  
SELECT  
INPUT  
2k  
2k  
2.7V  
SHUTDOWN  
-
LMH6647  
+
INPUT A  
R
L
2.7V  
SHUTDOWN  
+
INPUT B  
LMH664  
7
-
2k  
2k  
Figure 46. 2:1 MUX Operating off a 2.7V Single Supply  
9.2.1 Design Requirements  
This application requires fast, glitch-less transition between selected channels. The LMH6647 turn on and turn off  
times are 250 ns and 560 ns respectively. Transition between channels is devoid of any excessive glitches.  
9.2.2 Detailed Design Procedure  
In this application, the LMH6647 output pins are directly tied to each other. The shutdown pin of each LMH6647  
is driven in-opposite sense of the other (that is, “Low” on 1st LMH6647 with “High” on the 2nd LMH6647, and  
vice versa). When shutdown is invoked, the device output enters Hi-Z state, while the alternate LMH6647 is  
being powered on simultaneously. This way, the shutdown function serves the dual purpose of allowing only the  
input associated with device which is not in shutdown to be selected and to appear at the output.  
22  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
Typical Application (continued)  
9.2.3 Application Curve  
Figure 47 shows the MUX output when selecting between a 1 MHz sine and a 250 KHz triangular waveform.  
V
OUT  
SELECT  
1 V/DIV  
1 µs/DIV  
Figure 47. 2:1 MUX Output  
10 Power Supply Recommendations  
The LMH664x device family can operate off a single supply or with dual supplies. The input CM capability of the  
parts (CMVR) extends covers the entire supply voltage range for maximum flexibility. Supplies should be  
decoupled with low inductance, often ceramic, capacitors to ground less than 0.5 inches from the device pins.  
The use of ground plane is recommended, and as in most high speed devices, it is advisable to remove ground  
plane close to device sensitive pins such as the inputs.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMH6645 LMH6646 LMH6647  
 
LMH6645, LMH6646, LMH6647  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Generally, a good high-frequency layout will keep power supply and ground traces away from the inverting input  
and output pins. Parasitic capacitances on these nodes to ground will cause frequency response peaking and  
possible circuit oscillations. For more information, see Application Note OA-15, Frequent Faux Pas in Applying  
Wideband Current Feedback Amplifiers (SNOA367).  
Another important parameter in working with high speed/high performance amplifiers is the component values  
selection. Choosing large valued external resistors will affect the closed loop behavior of the stage because of  
the interaction of these resistors with parasitic capacitances. These capacitors could be inherent to the device or  
a by-product of the board layout and component placement. Either way, keeping the resistor values lower will  
diminish this interaction. On the other hand, choosing very low value resistors could load down nodes and will  
contribute to higher overall power dissipation.  
11.2 Layout Example  
Figure 48. Layer2 Silk (SOT-23 Board Layout)  
Figure 49. Layer1 Silk (SOT-23 Board Layout)  
24  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6645 LMH6646 LMH6647  
LMH6645, LMH6646, LMH6647  
www.ti.com  
SNOS970D JUNE 2001REVISED NOVEMBER 2014  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Absolute Maximum Ratings for Soldering (SNOA549)  
Frequent Faux Pas in Applying Wideband Current Feedback Amplifiers, Application Note OA-15 (SNOA367)  
Semiconductor and IC Package Thermal Metrics (SPRA953)  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LMH6645  
LMH6646  
LMH6647  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Trademarks  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMH6645 LMH6646 LMH6647  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6645MA/NOPB  
LMH6645MAX/NOPB  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
95  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
LMH66  
45MA  
ACTIVE  
2500 RoHS & Green  
SN  
LMH66  
45MA  
LMH6645MF/NOPB  
LMH6645MFX/NOPB  
LMH6646MA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
1000 RoHS & Green  
3000 RoHS & Green  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
A68A  
A68A  
95  
RoHS & Green  
LMH66  
46MA  
LMH6646MAX/NOPB  
LMH6646MM  
ACTIVE  
NRND  
SOIC  
D
8
8
2500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
LMH66  
46MA  
VSSOP  
DGK  
1000  
Non-RoHS  
& Green  
Call TI  
A70A  
LMH6646MM/NOPB  
LMH6646MMX/NOPB  
LMH6647MA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
1000 RoHS & Green  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
A70A  
A70A  
3500 RoHS & Green  
95  
RoHS & Green  
LMH66  
47MA  
LMH6647MAX/NOPB  
LMH6647MF  
ACTIVE  
NRND  
SOIC  
D
8
6
2500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
LMH66  
47MA  
SOT-23  
DBV  
1000  
Non-RoHS  
& Green  
Call TI  
A69A  
LMH6647MF/NOPB  
LMH6647MFX/NOPB  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
6
6
1000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
A69A  
A69A  
3000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6645MAX/NOPB  
LMH6645MF/NOPB  
LMH6645MFX/NOPB  
LMH6646MAX/NOPB  
LMH6646MM  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
8
8
8
8
8
6
6
6
2500  
1000  
3000  
2500  
1000  
1000  
3500  
2500  
1000  
1000  
3000  
330.0  
178.0  
178.0  
330.0  
178.0  
178.0  
330.0  
330.0  
178.0  
178.0  
178.0  
12.4  
8.4  
6.5  
3.2  
3.2  
6.5  
5.3  
5.3  
5.3  
6.5  
3.2  
3.2  
3.2  
5.4  
3.2  
3.2  
5.4  
3.4  
3.4  
3.4  
5.4  
3.2  
3.2  
3.2  
2.0  
1.4  
1.4  
2.0  
1.4  
1.4  
1.4  
2.0  
1.4  
1.4  
1.4  
8.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
12.0  
8.0  
Q1  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
DBV  
DBV  
D
8.4  
8.0  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
LMH6646MM/NOPB  
LMH6646MMX/NOPB  
LMH6647MAX/NOPB  
LMH6647MF  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
LMH6647MF/NOPB  
LMH6647MFX/NOPB  
8.4  
8.0  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6645MAX/NOPB  
LMH6645MF/NOPB  
LMH6645MFX/NOPB  
LMH6646MAX/NOPB  
LMH6646MM  
SOIC  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
8
8
8
8
8
6
6
6
2500  
1000  
3000  
2500  
1000  
1000  
3500  
2500  
1000  
1000  
3000  
367.0  
208.0  
208.0  
367.0  
208.0  
208.0  
367.0  
367.0  
208.0  
208.0  
208.0  
367.0  
191.0  
191.0  
367.0  
191.0  
191.0  
367.0  
367.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
DBV  
DBV  
D
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
LMH6646MM/NOPB  
LMH6646MMX/NOPB  
LMH6647MAX/NOPB  
LMH6647MF  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
LMH6647MF/NOPB  
LMH6647MFX/NOPB  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6645MA/NOPB  
LMH6646MA/NOPB  
LMH6647MA/NOPB  
D
D
D
SOIC  
SOIC  
SOIC  
8
8
8
95  
95  
95  
495  
495  
495  
8
8
8
4064  
4064  
4064  
3.05  
3.05  
3.05  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY