LMH9135IRRLR [TI]

具有集成平衡-非平衡变压器的 3.2GHz 至 4.2GHz 差分至单端放大器 | RRL | 12 | -40 to 105;
LMH9135IRRLR
型号: LMH9135IRRLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成平衡-非平衡变压器的 3.2GHz 至 4.2GHz 差分至单端放大器 | RRL | 12 | -40 to 105

变压器 放大器
文件: 总21页 (文件大小:1184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSLR5 AUGUST 2020  
LMH9135  
具有集成平衡-非平衡变压器的 LMH9135 3.2GHz 4.2GHz 差分至单端放大器  
1 特性  
3 说明  
单通道、窄带差分输入至单端输出射频增益块放大  
LMH9135 是一款高性能、单通道、差分输入至单端输  
出传输射频增益块放大器支持 3.2GHz 4.2GHz 频  
段。该器件可满足下一代 5G 有源天线系统 (AAS) 或  
小型蜂窝应用的要求同时可驱动功率放大器 (PA) 输  
入端。该射频放大器可提供 18dB 的典型增益并具有  
+31.5dBm 输出 IP3 的出色线性性能同时在整个 1dB  
带宽内保持小于 4dB 的噪声系数。该器件内部匹配  
100Ω 差分输入阻抗可轻松与输入端的射频采样或零  
中频模拟前端 (AFE) 相连。此外该器件内部匹配  
50Ω 端输出阻抗与后置放大器、表面声波  
(SAW) 滤波器或功率放大器 (PA) 轻松交互。  
支持 3.2GHz 4.2GHz 1dB BW 典型值  
在整个频带内具有 18dB 的典型增益  
3.8dB 噪声系数  
31.5dBm OIP3  
18dBm 输出 P1dB  
+3.3V 单电源供电具有 395mW 功耗  
工作温度高达 105°C TC  
2 应用  
该器件使用 3.3V 单电源供电其典型有功功率约为  
395mW因此适用于高密度 5G 大规模 (MIMO) 应  
用。此外该器件采用节省空间的 2mm x 2mm12  
引脚 QFN 封装。该器件的额定工作温度高达 105°C,  
可提供稳健的系统设计。该器件具有符合 JEDEC 标准  
1.8V 断电引脚可为该器件快速断电和上电适用  
于时分双工 (TDD) 系统。  
适用于 GSPS DAC 的差分 DAC 输出驱动器  
差分至单端放转换  
平衡-非平衡变压器替代产品  
小型蜂窝m-MIMO 基站  
5G 有源天线系统 (AAS)  
无线蜂窝基站  
器件信息 (1)  
封装尺寸标称值)  
器件型号  
封装  
LMH9135  
WQFN (12)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
f = 3.2 œ 4.2 GHz  
Analog Front-End  
LMH9135  
DAC  
PA  
ZIN = 100Ω  
ZOUT = 50Ω  
LMH9135差分至单端放大器  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS997  
 
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................10  
8 Application and Implementation..................................10  
8.1 Application Information............................................. 10  
8.2 Typical Application.................................................... 10  
9 Power Supply Recommendations................................13  
10 Layout...........................................................................14  
10.1 Layout Guidelines................................................... 14  
10.2 Layout Example...................................................... 14  
11 Device and Documentation Support..........................15  
11.1 Documentation Support.......................................... 15  
11.2 Receiving Notification of Documentation Updates..15  
11.3 Support Resources................................................. 15  
11.4 Trademarks............................................................. 15  
11.5 Electrostatic Discharge Caution..............................15  
11.6 Glossary..................................................................15  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
Information.................................................................... 15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
August 2020  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH9135  
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC VDD  
11  
12  
VSS  
1
2
3
10 VSS  
OUTP  
INP  
INM  
VSS  
9
8
7
Thermal Pad  
VSS  
VSS  
4
5
6
VSS  
PD  
5-1. RRL Package 12-Pin WQFN Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
VSS  
INP  
1
Power  
Input  
Ground  
2
RF differential positive input into amplifier  
3
INM  
VSS  
VSS  
PD  
Power  
Power  
Power  
Input  
RF differential negative input into amplifier  
4
Ground  
Ground  
5
6
Power down connection. PD = 0 V = normal operation; PD = 1.8 V = power off mode  
7
VSS  
VSS  
OUTP  
VSS  
VDD  
NC  
Power  
Output  
Output  
Power  
Power  
Ground  
8
Ground  
9
RF single-ended output from amplifier  
Ground  
10  
11  
Positive supply voltage (3.3 V)  
Do not connect this pin  
Connect the thermal pad to Ground  
12  
Thermal Pad  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH9135  
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
MAX  
3.6  
UNIT  
Supply voltage VDD  
V
V
V
RF Pins  
INP, INM, OUTP  
VDD  
VDD  
Digital Input PIN PD  
Continuous  
wave (CW)  
input  
T = 25 °C  
18  
dBm  
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, allpins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.15  
40  
40  
NOM  
MAX  
3.45  
105  
UNIT  
V
VDD  
TC  
Supply voltage  
3.3  
Case (bottom) temperature  
Junction temperature  
°C  
TJ  
125  
°C  
6.4 Thermal Information  
DEVICE  
THERMAL METRIC(1)  
PKG DES (PKG FAM)  
UNIT  
PINS  
74.8  
72.4  
37.1  
3.2  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
37.1  
14.2  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMH9135  
 
 
 
 
 
 
 
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = +25°C, VDD = 3.3V, Frequency (fin) = 3.5 GHz, Differential Input Impedance (ZIN) = 100 Ω, Output Load (ZLOAD) = 50  
Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RF PERFORMANCE - LMH9135  
FRF  
RF frequency range  
1dB Bandwidth  
Gain  
3200  
4200  
MHz  
MHz  
dB  
BW1dB  
S21  
1000  
18  
NF  
Noise Figure  
Output P1dB  
3.8  
18  
dB  
RS = 100 differential  
OP1dB  
dBm  
ZLOAD = 50 Ω  
fin = 3.5 GHz ± 5 MHz Spacing, POUT/  
TONE = 2 dBm  
OIP3  
Output IP3  
31.5  
dBm  
Differential Input Gain Imbalance  
Differential Input Phase Imbalance  
±0.5  
±4  
dB  
degree  
dB  
fin = 3.3 - 3.8 GHz  
fin = 3.3 - 4.2 GHz  
fin = 3.3 - 3.8 GHz  
fin = 3.3 - 4.2 GHz  
-10  
-10  
-10  
-10  
35  
S11  
S22  
Input return loss (1)  
Output return loss (1)  
dB  
dB  
dB  
S12  
Reverse isolation  
dB  
CMRR  
Common Mode Rejection Ratio (2)  
30  
dB  
Switching and Digital input characteristics  
tON  
tOFF  
VIH  
VIL  
Turn-ON time  
50% VPD to 90% RF  
50% VPD to 10% RF  
PD pin  
0.2  
0.2  
µs  
µs  
V
Tun-OFF time  
High-Level Input Voltage  
Low-Level Input Voltage  
1.4  
PD pin  
0.5  
V
DC current and Power Consumption  
IVDD_ON Supply Current  
120  
10  
mA  
mA  
mW  
IVDD_PD Power Down Current  
Pdis  
Power Dissipation  
395  
(1) Reference impedance: Input = 100 differential, Output = 50 single-ended  
(2) CMRR is calculated using (S12 - S13)/(S12 + S13) for Transmit (1 is output port, 2 & 3 are differential input ports)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH9135  
 
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
6.6 Typical Characteristics  
At TA = 25°C, VDD = 3.3 V, differential input impedance (ZIN) = 100 Ω, single-ended output impedance (ZLOAD  
)
= 50 Ω (unless otherwise noted).  
20  
18  
16  
14  
12  
10  
20  
19  
18  
17  
16  
15  
14  
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
VDD = 3.15V  
VDD = 3.3V  
VDD = 3.45V  
TA = 105 o  
C
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
POUT = 2 dBm  
POUT = 2 dBm  
6-1. Gain vs Frequency and Temperature  
6-2. Gain vs Frequency and Supply Voltage  
0
0
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
-2  
-4  
-5  
TA = 105 o  
C
-10  
-15  
-20  
-25  
-30  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
-35  
-40  
TA = 105 o  
C
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
6-3. Input Return Loss vs Frequency  
6-4. Output Return Loss vs Frequency  
-20  
40  
38  
36  
34  
32  
30  
28  
26  
-25  
-30  
-35  
-40  
TA = -40 o  
C
TA = -40 o  
C
24  
22  
20  
TA = 25 o  
TA = 85 o  
C
C
TA = 25 o  
TA = 85 o  
C
C
-45  
TA = 105 o  
C
TA = 105 o  
C
-50  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
POUT/TONE = 2 dBm, 10-MHz tone spacing  
6-5. Reverse Isolation vs Frequency  
6-6. Output IP3 vs Frequency and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMH9135  
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
40  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
TA = -40 o  
C
VDD = 3.15V  
VDD = 3.3V  
VDD = 3.45V  
TA = 25 o  
TA = 85 o  
C
C
TA = 105 o  
C
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
0
2
4
Output power / tone (dBm)  
6
8
10  
12  
POUT/TONE = 2 dBm, 10-MHz tone spacing  
f = 3.5 GHz, 10-MHz tone spacing  
6-7. Output IP3 vs Frequency and Supply  
6-8. Output IP3 vs Output Power per Tone  
Voltage  
40  
38  
36  
34  
32  
30  
28  
26  
22  
20  
18  
16  
TA = -40 o  
C
24  
14  
Tone Spacing = 1MHz  
Tone Spacing = 10MHz  
TA = 25 o  
TA = 85 o  
C
C
22  
Tone Spacing = 100MHz  
20  
TA = 105 o  
C
12  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
POUT/TONE = 2 dBm  
6-10. Output P1dB vs Frequency and  
Temperature  
6-9. Output IP3 vs Frequency and Tone Spacing  
22  
6
5
4
3
2
20  
18  
16  
TA = -40 o  
C
14  
VDD = 3.15V  
TA = 25 o  
TA = 85 o  
C
C
1
VDD = 3.3V  
VDD = 3.45V  
12  
TA = 105 o  
C
0
3000  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
6-11. Output P1dB vs Frequency and Supply  
ZSOURCE = 100-Ω differential  
Voltage  
6-12. Noise Figure vs Frequency and  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH9135  
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
70  
1
0.5  
0
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
TA = 105 o  
C
TA = -40 o  
C
-0.5  
TA = 25 o  
TA = 85 o  
C
C
TA = 105 o  
C
-1  
3000  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
6-13. Common-mode Rejection Ratio vs  
6-14. Gain Imbalance vs Frequency and  
Frequency  
Temperature  
4
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
3
2
TA = 105 o  
C
1
0
-1  
-2  
-3  
-4  
3000  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
6-15. Phase Imbalance vs Frequency and Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMH9135  
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMH9135 device is a differential input to single-ended output narrow-band RF amplifier used in transmitter  
applications. The device provides 18 dB fixed power gain with excellent linearity and noise performance across  
the frequency band 3.2 4.2 GHz. The device is internally matched for 100-Ω impedance at the differential  
input and 50-Ω impedance at the single-ended output, as shown in 7-1.  
LMH9135 have on-chip active bias circuitry to maintain device performance over a wide temperature and supply  
voltage range. The included power down function allows the amplifier to shut down saving power when the  
amplifier is not needed. Fast shut down and start up enable the amplifier to be used in a host of time division  
duplex applications.  
Operating on a single 3.3 V supply and 120 mA of typical supply current, the devices are available in a 2 mm x 2  
mm 12-pin QFN package.  
7.2 Functional Block Diagram  
VDD  
Active Bias and  
Temperature  
Compensation  
Power Down (PD)  
Balanced RF INP (0)  
Single-Ended RF Output (OUTP)  
Balanced RF INM (180)  
LMH9135  
Zout = 50  
VSS (GND)  
Zin (diff) = 100 Ω  
7-1. Functional Block Diagram  
7.3 Feature Description  
The LMH9135 device is a differential input to single-ended output RF amplifier for narrow band active balun  
implementation. The device integrates the functionality of a single-ended RF amplifier and passive balun in  
traditional transmitter applications achieving small form factor with comparable linearity and noise performance,  
as shown in 7-2.  
The active balun implementation coupled with higher operating temperature of 105°C allows for more robust  
receiver system implementation compared to passive balun that is prone to reliability failures at high  
temperatures. The robust operation is achieved by the on-chip active bias circuitry which maintains device  
performance over a wide temperature and supply voltage range.  
LMH9135  
RF INP  
RF OUT  
RF INM  
GND  
7-2. Differential Input to Single-Ended Output, Active Balun Implementation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH9135  
 
 
 
 
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
LMH9135 features a PD pin which should be connected to GND for normal operation. To power down the  
device, connect the PD pin to a logic high voltage of 1.8 V.  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
LMH9135 is a differential to single-ended RF gain block amplifier, which works as an active balun in the transmit  
path of a 3.3-GHz to 3.8-GHz 5G, TDD m-MIMO or small cell base station. The device replaces the traditional  
passive balun and single-ended RF amplifier offering a smaller footprint solution to the customer. TI  
recommends following good RF layout and grounding techniques to maximize the device performance.  
8.2 Typical Application  
LMH9135 is typically used in a four transmit and four receive (4T/4R) array of active antenna system for 5G,  
TDD, wireless base station applications. Such a system is shown in 8-1, where the LMH9135 is used in the  
transmit path as an active balun that converts differential DAC output from Tx AFE to single-ended signal. Also  
shown in the figure is the application of LMH9235 chip, which is the counter-part of LMH9135 in the Receive  
path.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH9135  
 
 
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
Transceiver Board  
LMH9235  
LNA  
DC-DC Converter  
LDO  
+3.3 V  
LMH9235  
LNA  
+3.3 V  
LMH9135  
Tx AFE  
Tx AFE  
PA  
f = 3.3 GHz œ 3.8 GHz  
LMH9135  
PA  
PA  
Analog Front End  
LMH9135  
LMH9135  
fO  
Tx AFE  
Tx AFE  
+3.3 V  
PA  
LNA  
LMH9235  
DC-DC Converter  
LDO  
+3.3 V  
LNA  
LMH9235  
8-1. LMH9135 in a 4T/4R 5G Active Antenna System  
The 4T/4R system can be scaled to 16T/16R, 64T/64R, or higher antenna arrays that result in proportional  
scaling of the overall system power dissipation. As a result of the proportional scaling factor for multiple channels  
in a system, the individual device power consumption must be reduced to dissipate less overall heat in the  
system. Operating on a single 3.3-V supply, the LMH9135 consumes only about 400 mW and therefore provides  
power saving to the customer. Multiple LMH9135 devices can be powered from a single DC/DC converter or a  
low-dropout regulator (LDO) operating on a 3.3-V supply. A DC/DC converter provides the most power efficient  
way of generating the 3.3-V supply. However, care must be taken when using the DC/DC converter to minimize  
the switching noise using inductor chokes and adequate isolation must be provided between the analog and  
digital power domains.  
8.2.1 Design Requirements  
Input of LMH9135 is matched to 100 Ω and therefore can be directly driven by a DAC that has 100 Ω source  
impedance without any external matching network. If a DAC with different impedance is used, then it should be  
appropriately matched to get the best RF performance.  
The example in 8-2 shows how LMH9135 can be matched to a DAC that has 200-Ω differential termination.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH9135  
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
Vdd  
C1  
C2  
INP  
100  
100 Ω  
OUTP  
L1  
LMH9135  
DAC  
C2  
INM  
C1  
Z = 100 Ω  
Z = 200 Ω  
8-2. LMH9135 Driven by a DAC with 200-Ω Termination  
8.2.2 Detailed Design Procedure  
A simple differential LC network is used here as the matching network. In 8-2, shunt inductor L1 and series  
capacitors C2 form the matching network. The series capacitors C1 act as the DC-blocking capacitors. 8-1  
shows the matching network component values.  
8-1. Matching Network Component Values for 200-Ω Termination  
COMPONENT  
VALUE  
5.6 pF  
6.8 nH  
0.8 pF  
C1  
L1  
C2  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMH9135  
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
8.2.3 Application Curves  
The graphs given below show the gain, input return loss, and output return loss of the design with different DAC  
terminations.  
20  
19  
18  
17  
16  
15  
14  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
100-ohm without matching components  
200-ohm with matching components  
100-ohm without matching components  
200-ohm with matching components  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
8-3. Gain vs Frequency for Different DAC  
8-4. Input Return Loss vs Frequency for  
Terminations  
Different DAC Terminations  
0
-5  
100-ohm without matching components  
200-ohm with matching components  
-10  
-15  
-20  
3200  
3400  
3600 3800  
Frequency (MHz)  
4000  
4200  
8-5. Output Return Loss vs Frequency for Different DAC Terminations  
9 Power Supply Recommendations  
The LMH9135 device operates on a common nominal 3.3 V supply voltage. It is recommended to isolate the  
supply voltage through decoupling capacitors placed close to the device. Select capacitors with self resonant  
frequency above the application frequency. When multiple capacitors are used in parallel to create a broadband  
decoupling network, place the capacitor with the higher self-resonant frequency closer to the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH9135  
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
When designing with an RF amplifier operating in the frequency range 3 GHz to 4.2 GHz with relatively high  
gain, certain board layout precautions must be taken to ensure stability and optimum performance. TI  
recommends that the LMH9135 board be multi-layered to improve thermal performance, grounding, and power-  
supply decoupling. 10-1 shows a good layout example. In this figure, only the top signal layer is shown.  
Excellent electrical connection from the thermal pad to the board ground is essential. Use the recommended  
footprint, solder the pad to the board, and do not include a solder mask under the pad.  
Connect the pad ground to the device terminal ground on the top board layer.  
Ensure that ground planes on the top and any internal layers are well stitched with vias.  
Design the two input and one output RF traces for 50-Ω impedance. TI recommends grounded coplanar  
waveguide (GCPW) type transmission lines for the RF traces. Use a PCB trace width calculator tool to design  
the transmission lines.  
Avoid routing clocks and digital control lines near RF signal lines.  
Do not route RF or DC signal lines over noisy power planes.  
Place supply decoupling close to the device.  
The differential output traces must be symmetrical in order to achieve the best differential balance and  
linearity performance.  
See the LMH9135 Evaluation Module user's guide for more details on board layout and design.  
10.2 Layout Example  
Supply bypass caps  
close to the device  
Device  
Matched differential  
input lines  
Stitched  
vias  
10-1. Layout Showing Matched Differential Traces and Supply Decoupling  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH9135  
 
 
 
 
LMH9135  
ZHCSLR5 AUGUST 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, LMH9135 Evaluation Module User's Guide  
Texas Instruments, LMH9135 S-parameter Models  
Texas Instruments, LMH9135RRLEVM EU Declaration of Conformity (DoC)  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH9135  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将独自承担以下全部责任(1) 针对您的应用选择合适的 TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于开发本资源所述的使用 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三  
方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 () TI.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方  
式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020德州仪器 (TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH9135IRRLR  
ACTIVE  
WQFN  
RRL  
12  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 105  
35AO  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RRL0012A  
WQFN - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 0.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
(0.3) TYP  
7
5
6
4
2X 1.5  
SYMM  
13  
0.8 0.1  
8X 0.5  
10  
1
0.3  
0.2  
12X  
12  
11  
PIN 1 ID  
0.1  
C A B  
0.35  
0.25  
12X  
0.05  
4224942/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRL0012A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
12  
SEE SOLDER MASK  
DETAIL  
12X (0.5)  
11  
10  
12X (0.25)  
1
SYMM  
(1.9)  
13  
8X (0.5)  
(R0.05) TYP  
4
7
(
0.2) TYP  
VIA  
6
5
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224942/A 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRL0012A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
11  
12X (0.5)  
12  
12X (0.25)  
10  
1
SYMM  
(1.9)  
13  
8X (0.5)  
4
7
(R0.05) TYP  
5
6
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 13  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224942/A 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMH9226

具有集成平衡-非平衡变压器的单端至差分 2.3GHz 至 2.9GHz 低功耗射频增益块
TI

LMH9226IRRLR

具有集成平衡-非平衡变压器的单端至差分 2.3GHz 至 2.9GHz 低功耗射频增益块 | RRL | 12 | -40 to 105
TI

LMH9235

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器
TI

LMH9235IRRLR

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器 | RRL | 12 | -40 to 105
TI

LMI201210A-2R2M

Moiding power lnducto rs
LEIDITECH

LMI201608A-1R0M

Moiding power lnducto rs
LEIDITECH

LMI201608A-1R5M

Moiding power lnducto rs
LEIDITECH

LMI201608A-R47M

Moiding power lnducto rs
LEIDITECH

LMI201610A-1R0M

Moiding power lnducto rs
LEIDITECH

LMI201610A-1R5M

Moiding power lnducto rs
LEIDITECH

LMI201610A-2R2M

Moiding power lnducto rs
LEIDITECH

LMI201610A-R24M

Moiding power lnducto rs
LEIDITECH