LMK00804BPWR [TI]

低偏斜、1 至 4、多路复用差动/LVCMOS 至 LVCMOS/TTl 扇出缓冲器 | PW | 16 | -40 to 85;
LMK00804BPWR
型号: LMK00804BPWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低偏斜、1 至 4、多路复用差动/LVCMOS 至 LVCMOS/TTl 扇出缓冲器 | PW | 16 | -40 to 85

文件: 总35页 (文件大小:2903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
LMK00804B 低偏移 1 4 多路复用  
差动/LVCMOS LVCMOS/TTL 扇出缓冲器  
1 特性  
2 应用  
1
4 个具有 7Ω 输出阻抗的 LVCMOS/LVTTL 输出  
无线和有线基础设施  
网络和数据通信  
服务器和计算  
医疗成像  
附加抖动:125MHz 时为 0.04ps RMS(典型  
值)  
噪底:125MHz 时为 –166dBc/Hz(典型值)  
输出频率:350MHz(最大值)  
输出偏移:35ps(最大值)  
便携式测试和测量  
高端 A/V  
部件间偏移:700ps(最大值)  
3 说明  
两个可选输入  
LMK00804B 是一款低偏移、高性能时钟扇出缓冲器,  
可通过两个可选输入(可接受差分输入或单端输入)之  
一分配至多 4 LVCMOS/LVTTL 输  
CLKnCLK 对接受  
LVPECLLVDSHCSLSSTLLVHSTL 或  
LVCMOS/LVTTL  
LVCMOS_CLK 接受 LVCMOS/LVTTL  
出(3.3V2.5V1.8V 1.5V 四种电平)。 时钟使  
能输入在内部同步,以便在时钟使能端子被置为有效或  
置为无效时消除输出上的欠幅脉冲或毛刺脉冲。 禁用  
时钟后,输出将保持逻辑低电平状态。 单独的输出使  
能端子可控制输出处于激活状态或高阻态。  
同步时钟启用  
内核/输出电源:  
3.3V/3.3V  
3.3V/2.5V  
3.3V/1.8V  
3.3V/1.5V  
LMK00804B 具有低附加抖动和相位噪底,且兼具可靠  
的输出和部件间偏移特性,因此非常适合对高性能和可  
重复性有严格要求的应用。  
封装:16 引线薄型小尺寸封装 (TSSOP)  
工业温度范围:-40ºC +85ºC  
有关 CDCLVC1310 LMK00725 部件的介绍,另请  
参见Device Comparison Table。  
器件信息  
部件号  
封装  
封装尺寸(标称值)  
LMK00804B  
TSSOP (16)  
5.00mm x 4.40mm  
1. 如需了解所有可用封装,请见数据表末尾的可订购  
产品附录。  
附加抖动与 VDDO 电源和温度间的关系  
4 简化电路原理图  
0.10  
±40ƒC  
25°C  
85°C  
fCLK = 125 MHz  
Input Slew Rate = 3 V/ns  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
RPU  
CLK_EN  
D
Q
RPD  
RPD  
LVCMOS  
_CLK  
0
1
Q0  
Q1  
Q2  
Q3  
CLK  
RPU  
/
nCLK  
RPD  
RPU  
CLK_SEL  
RPU = Pullup  
RPD = Pulldown  
1.5  
1.8  
2.5  
3.3  
VDDO Supply (V)  
C002  
RPU  
OE  
(1) RPU = 51kΩ(上拉电阻),RPD  
=
51kΩ(下拉电阻)。 请参见Figure 10  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNAS642  
 
 
 
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Pin Characteristics .................................................... 4  
8.2 Absolute Maximum Ratings ...................................... 4  
8.3 Handling Ratings....................................................... 4  
8.4 Recommended Operating Conditions....................... 4  
8.5 Thermal Information.................................................. 5  
8.6 Power Supply Characteristics ................................... 5  
8.7 LVCMOS / LVTTL DC Characteristics...................... 5  
8.8 Differential Input DC Characteristics......................... 6  
8.9 Electrical Characteristics (VDDO = 3.3 V ± 5%)....... 6  
8.10 Electrical Characteristics (VDDO = 2.5 V ± 5%)..... 7  
8.11 Electrical Characteristics (VDDO = 1.8 V ± 0.15 V) 8  
8.12 Electrical Characteristics (VDDO = 1.5 V ± 5%)..... 9  
8.13 Typical Characteristics.......................................... 10  
Parameter Measurement Information ................ 11  
10 Detailed Description ........................................... 12  
10.1 Overview ............................................................... 12  
10.2 Functional Block Diagram ..................................... 12  
10.3 Feature Description............................................... 13  
10.4 Device Functional Modes...................................... 13  
11 Applications and Implementation...................... 14  
11.1 Application Information.......................................... 14  
11.2 Output Clock Interface Circuit............................... 14  
11.3 Input Detail............................................................ 14  
11.4 Input Clock Interface Circuits................................ 15  
11.5 Typical Applications .............................................. 18  
11.6 Do's and Don'ts..................................................... 21  
12 Power Supply Recommendations ..................... 23  
12.1 Power Supply Considerations............................... 23  
13 Layout................................................................... 24  
13.1 Layout Guidelines ................................................. 24  
13.2 Layout Example .................................................... 25  
14 器件和文档支持 ..................................................... 26  
14.1 器件支持................................................................ 26  
14.2 ....................................................................... 26  
14.3 静电放电警告......................................................... 26  
14.4 术语表 ................................................................... 26  
15 机械封装和可订购信息 .......................................... 26  
9
5 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (June 2014) to Revision A  
Page  
Added Device Comparison Table .......................................................................................................................................... 3  
Changed Human Body Model (HBM) value from 2000 to 1000 ............................................................................................ 4  
Changed Charged Device Model (CDM) value from 750 to 250 .......................................................................................... 4  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
6 Device Comparison Table  
PART NUMBER  
CDCLVC1310  
LMK00725  
DESCRIPTION  
10 outputs LVCMOS fanout buffer with Diff, Single-Ended, or Crystal Input  
5 output LVPECL fanout buffer with Differential or Single-Ended Input  
7 Pin Configuration and Functions  
16 Pin  
PW Package  
Top View  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Q0  
OE  
VDD  
VDDO  
Q1  
CLK_EN  
CLK  
GND  
Q2  
nCLK  
VDDO  
Q3  
CLK_SEL  
LVCMOS_CLK  
GND  
Pin Functions  
TERMINAL  
NUMBER  
TYPE(1)  
DESCRIPTION  
NAME  
GND  
OE  
1, 9, 13  
G
Power supply ground  
Output enable input.  
2
3
4
I, RPU  
P
0 = Outputs in Hi-Z state  
1 = Outputs in active state  
VDD  
Power supply terminal  
Synchronous clock enable input.  
CLK_EN  
I, RPU  
0 = Outputs are forced to logic low state  
1 = Outputs are enabled with LVCMOS/LVTT levels  
CLK  
5
6
I, RPD  
Non-inverting differential clock input 0.  
nCLK  
I, RPD/RPU  
Inverting differential clock input 0. Internally biased to VDD/2 when left floating  
Clock select input.  
CLK_SEL  
7
I, RPU  
0 = Select LVCMOS_CLK  
1 = Select CLK, nCLK  
LVCMOS_CLK  
Q3, Q2, Q1, Q0  
VDDO  
8
I, RPD  
Single-ended clock input. Accepts LVCMOS/LVTTL levels.  
Single-ended clock outputs with LVCMOS/LVTTL levels, 7Ω output impedance  
Output supply terminals  
10, 12, 14, 16  
11, 15  
O
P
(1) G = Ground, I = Input, O = Output, P = Power, RPU = 51 kΩ pullup, RPD = 51 kΩ pulldown.  
Copyright © 2014, Texas Instruments Incorporated  
3
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
8 Specifications  
8.1 Pin Characteristics  
MIN  
TYP  
1
MAX  
UNIT  
pF  
CIN  
Input Capacitance  
RPU  
RPD  
CPD  
ROUT  
Input Pullup Resistance  
51  
51  
2
kΩ  
kΩ  
pF  
Input Pulldown Resistance  
Power Dissipation Capacitance (per output)  
Output impedance  
7
Ω
8.2 Absolute Maximum Ratings(1)(2)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
TYP  
MAX  
3.6  
UNIT  
V
VDD  
Core Supply Voltage  
Output Supply Voltage  
VDDO  
3.6  
V
VDD  
+0.3  
VIN  
TJ  
Input Voltage Range  
Junction Temperature  
–0.3  
V
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
8.3 Handling Ratings  
MIN  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
–65  
°C  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001, all  
pins(2)  
1000  
V(ESD)  
Electrostatic discharge(1)  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101,  
all pins(3)  
250  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.4 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
3.135  
2.375  
1.65  
TYP  
3.3  
3.3  
2.5  
1.8  
1.5  
MAX  
3.465  
3.465  
2.625  
1.95  
1.575  
85  
UNIT  
VDD  
Core Supply Voltage  
Output Supply Voltage  
V
VDDO  
V
1.425  
-40  
TA  
TJ  
Ambient Temperature  
Junction Temperature  
°C  
°C  
125  
4
Copyright © 2014, Texas Instruments Incorporated  
 
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
8.5 Thermal Information  
Over operating free-air temperature range (unless otherwise noted)  
THERMAL METRIC(1)  
MIN  
TYP  
MAX  
UNIT  
R θJA  
Package Thermal Impedance, Junction to Air (0 LFPM)  
116  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
8.6 Power Supply Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Power Supply Current through VDD  
Power Supply Current through VDDO  
MIN  
TYP  
MAX  
21  
UNIT  
mA  
IDD  
IDDO  
5
mA  
8.7 LVCMOS / LVTTL DC Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
CLK_EN,  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD +  
0.3  
2
2
V
CLK_SEL, OE  
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
Input High Current  
VDD +  
0.3  
LVCMOS_CLK  
V
V
CLK_EN,  
–0.3  
–0.3  
0.8  
1.3  
5
CLK_SEL, OE  
LVCMOS_CLK  
CLK_EN,  
VDD = 3.465 V,  
VIN = 3.465 V  
CLK_SEL, OE  
µA  
µA  
VDD = 3.465 V,  
VIN = 3.465 V  
LVCMOS_CLK  
150  
CLK_EN,  
VDD = 3.465 V,  
VIN = 0 V  
–150  
–5  
CLK_SEL, OE  
IIL  
Input Low Current  
VDD = 3.465 V,  
VIN = 0 V  
LVCMOS_CLK  
VDDO = 3.3 V ± 5%  
VDDO = 2.5 V ± 5%  
VDDO = 1.8 V ± 0.15 V  
2.6  
1.8  
1.5  
VOH  
Output High Voltage(1)  
V
VDDO –  
0.3  
VDDO = 1.5 V ± 5%  
VDDO = 3.3 V ± 5%  
VDDO = 2.5 V ± 5%  
VDDO = 1.8 V ± 0.15 V  
VDDO = 1.5 V ± 5%  
0.5  
0.5  
VOL  
Output Low Voltage(1)  
V
0.4  
0.35  
IOZL  
IOZH  
Output Hi-Z Current Low  
Output Hi-Z Current High  
–5  
µA  
5
(1) Outputs terminated with 50 Ω to VDDO/2.  
Copyright © 2014, Texas Instruments Incorporated  
5
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
8.8 Differential Input DC Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential Input Voltage Swing,  
(VIH-VIL)(1)  
VID  
0.15  
1.3  
V
VDD –  
0.85  
VICM  
Input Common Mode Voltage(1)(2)  
0.5  
V
VDD = 3.465 V,  
VIN = 3.465 V  
nCLK  
Input High Current(3)  
CLK  
150  
150  
IIH  
µA  
VDD = 3.465 V,  
VIN = 3.465 V  
VDD = 3.465 V ,  
VIN = 0 V  
nCLK  
Input Low Current(3)  
CLK  
-150  
-5  
IIL  
µA  
VDD = 3.465 V,  
VIN = 0 V  
(1) VIL should not be less than -0.3 V.  
(2) Input common mode voltage is defined as VIH  
.
(3) For IIH and IIL measurements on CLK or nCLK, one must comply with VID and VICM specifications by using the appropriate bias on nCLK  
or CLK.  
8.9 Electrical Characteristics (VDDO = 3.3 V ± 5%)  
Over recommended operating free-air temperature range (unless otherwise noted), VDD = VDDO = 3.3V ± 5%,  
All AC parameters measured at 350 MHz unless otherwise noted.  
PARAMETER  
Maximum Output Frequency(1)(2)  
Propagation Delay,  
TEST CONDITIONS  
MIN  
TYP  
MAX  
350  
2.1  
UNIT  
MHz  
ns  
fOUT  
LVCMOS_CLK(4)  
,
0°C to 70°C  
1.1  
tPDLH  
CLK/nCLK(5)  
Low to High(3)  
–40°C to 85°C  
0.95  
2.2  
ns  
tSK(O)  
tSK(PP)  
tR/tF  
Output Skew(2)(6)(7)  
Part-to-Part Skew(3)(7)(8)  
Output Rise/Fall Time(3)  
Measured on rising edge  
35  
ps  
700  
700  
ps  
20% to 80%  
50  
ps  
f=125 MHz,  
Input slew rate 3 V/ns,  
12 kHz to 20 MHz  
integration band  
JADD  
Additive Jitter(9)  
0.04  
ps RMS  
(1) There is no minimum input / output frequency provided the input slew rate is sufficiently fast. Refer to Input Slew Rate Considerations.  
(2) These AC parameters are specified by characterization. Not tested in production.  
(3) These AC parameters are specified by design. Not tested in production  
(4) Measured from the VDD/2 of the input to the VDDO/2 of the output.  
(5) Measured from the differential input crossing point to VDDO/2 of the output.  
(6) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at VDDO/2 of the output.  
(7) Parameter is defined in accordance with JEDEC Standard 65.  
(8) Calculation for part-to-part skew is the difference between the fastest and slowest tPD across multiple devices, operating at the same  
supply voltage, same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device.  
(9) Buffer Additive Jitter: JADD = SQRT(JSYSTEM 2 - JSOURCE2), where JSYSTEM is the RMS jitter of the system output (source+buffer) and  
JSOURCE is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter should  
be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the case for  
high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and  
measurement details.  
6
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
Electrical Characteristics (VDDO = 3.3 V ± 5%) (continued)  
Over recommended operating free-air temperature range (unless otherwise noted), VDD = VDDO = 3.3V ± 5%,  
All AC parameters measured at 350 MHz unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f = 125 MHz,  
Input slew rate 3 V/ns  
10 kHz offset  
100 kHz offset  
1 MHz offset  
-155  
-162  
-166  
-166  
-166  
Phase Noise Floor(10)  
dBc/Hz  
PNFLOOR  
10 MHz offset  
20 MHz offset  
REF = CLK/nCLK  
45%  
45%  
55%  
55%  
ODC  
Output Duty Cycle(3)(11)  
REF = LVCMOS_CLK,  
f 300 MHz  
tEN  
Output Enable Time  
Output Disable Time  
5
5
ns  
ns  
tDIS  
(10) Buffer Phase Noise Floor: PNFLOOR (dBc/Hz) = 10 x log10[10^(PNSYSTEM/10) – 10^(PNSOURCE/10)], where PNSYSTEM is the phase noise  
floor of the system output (source+buffer) and PNSOURCE is the phase noise floor of the input source. Buffer Phase Noise Floor should  
be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the case for  
high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and  
measurement details.  
(11) 50% Input duty cycle  
8.10 Electrical Characteristics (VDDO = 2.5 V ± 5%)  
Over recommended operating free-air temperature range (unless otherwise noted), VDD = 3.3V ± 5%, VDDO = 2.5V ± 5%,  
All AC parameters measured at 350 MHz unless otherwise noted.  
PARAMETER  
Maximum Output Frequency(1) (2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
350  
2.1  
UNIT  
MHz  
ns  
fOUT  
tPDLH  
Propagation Delay,  
Low to High(3)  
LVCMOS_CLK(4)  
,
0°C to 70°C  
1.1  
CLK/nCLK(5)  
–40°C to 85°C  
0.95  
2.2  
tSK(O)  
tSK(PP)  
tR/tF  
Output Skew(2)(6)(7)  
Part-to-Part Skew(3)(7)(8)  
Output Rise/Fall Time(3)  
Additive Jitter(9)  
Measured on rising edge  
35  
ps  
ps  
700  
700  
20% to 80%  
50  
ps  
JADD  
f=125 MHz,  
0.04  
ps RMS  
Input slew rate 3 V/ns,  
12 kHz to 20 MHz  
integration band  
ODC  
Output Duty Cycle(3)(10)  
REF = CLK/nCLK  
45%  
45%  
55%  
55%  
REF = LVCMOS_CLK,  
f 300 MHz  
tEN  
Output Enable Time  
Output Disable Time  
5
5
ns  
ns  
tDIS  
(1) There is no minimum input / output frequency provided the input slew rate is sufficiently fast. Refer to Input Slew Rate Considerations.  
(2) These AC parameters are specified by characterization. Not tested in production.  
(3) These AC parameters are specified by design. Not tested in production.  
(4) Measured from the VDD/2 of the input to the VDDO/2 of the output.  
(5) Measured from the differential input crossing point to VDDO/2 of the output.  
(6) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at VDDO/2 of the output.  
(7) Parameter is defined in accordance with JEDEC Standard 65.  
(8) Calculation for part-to-part skew is the difference between the fastest and slowest tPD across multiple devices, operating at the same  
supply voltage, same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device.  
(9) Buffer Additive Jitter: JADD = SQRT(JSYSTEM2 - JSOURCE2), where JSYSTEM is the RMS jitter of the system output (source+buffer) and  
JSOURCE is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter should  
be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the case for  
high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and  
measurement details.  
(10) 50% Input Duty Cycle  
Copyright © 2014, Texas Instruments Incorporated  
7
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
8.11 Electrical Characteristics (VDDO = 1.8 V ± 0.15 V)  
Over recommended operating free-air temperature range (unless otherwise noted), VDD = 3.3 V ± 5%,  
VDDO = 1.8 V ± 0.15 V. All AC parameters measured at 350 MHz unless otherwise noted.  
PARAMETER  
Maximum Output Frequency(1)(2)  
Propagation Delay,  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
fOUT  
350  
2.2  
2.3  
35  
LVCMOS_CLK(4)  
,
0°C to 70°C  
1.1  
tPDLH  
CLK/nCLK(5)  
Low to High(3)  
–40°C to 85°C  
0.95  
ns  
tSK(O)  
tSK(PP)  
tR/tF  
Output Skew(2)(6)(7)  
Part-to-Part Skew(3)(7)(8)  
Output Rise/Fall Time(3)  
Measured on rising edge  
ps  
700  
700  
ps  
20% to 80%  
100  
ps  
f=125 MHz,  
Input slew rate 3 V/ns,  
12 kHz to 20 MHz  
integration band  
JADD  
ODC  
Additive Jitter(9)  
0.04  
ps RMS  
REF = CLK/nCLK  
45%  
45%  
55%  
55%  
Output Duty Cycle(3)(10)  
REF = LVCMOS_CLK,  
f 300 MHz  
tEN  
Output Enable Time  
Output Disable Time  
5
5
ns  
ns  
tDIS  
(1) There is no minimum input / output frequency provided the input slew rate is sufficiently fast. Refer to Input Slew Rate Considerations.  
(2) These AC parameters are specified by characterization. Not tested in production.  
(3) These AC parameters are specified by design. Not tested in production.  
(4) Measured from the VDD/2 of the input to the VDDO/2 of the output.  
(5) Measured from the differential input crossing point to VDDO/2 of the output.  
(6) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at VDDO/2 of the output.  
(7) Parameter is defined in accordance with JEDEC Standard 65.  
(8) Calculation for part-to-part skew is the difference between the fastest and slowest tPD across multiple devices, operating at the same  
supply voltage, same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device.  
(9) Buffer Additive Jitter: JADD = SQRT(JSYSTEM2 - JSOURCE 2), where JSYSTEM is the RMS jitter of the system output (source+buffer) and  
JSOURCE is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter should  
be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the case for  
high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and  
measurement details.  
(10) 50% Input Duty Cycle  
8
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
8.12 Electrical Characteristics (VDDO = 1.5 V ± 5%)  
Over recommended operating free-air temperature range (unless otherwise noted), VDD = 3.3V ± 5%, VDDO = 1.5V ± 5%,  
All AC parameters measured at 350 MHz unless otherwise noted.  
PARAMETER  
Maximum Output Frequency(1)(2)  
Propagation Delay,  
TEST CONDITIONS  
MIN  
TYP  
MAX  
350  
2.2  
2.3  
35  
UNIT  
MHz  
ns  
fOUT  
LVCMOS_CLK(4)  
,
0°C to 70°C  
1.1  
tPDLH  
CLK/nCLK(5)  
Low to High(3)  
–40°C to 85°C  
0.95  
ns  
tSK(O)  
tSK(PP)  
tR/tF  
Output Skew(2)(6)(7)  
Part-to-Part Skew(2)(7)(8)  
Output Rise/Fall Time(3)  
Measured on rising edge  
ps  
1
ns  
20% to 80%  
100  
900  
ps  
f=125 MHz,  
Input slew rate 3 V/ns,  
12 kHz to 20 MHz  
integration band  
JADD  
ODC  
Additive Jitter(9)  
0.04  
ps RMS  
f 166 MHz  
45%  
42%  
55%  
58%  
Output Duty Cycle(3)(10)  
f > 166 MHz  
tEN  
Output Enable Time  
Output Disable Time  
5
5
ns  
ns  
tDIS  
(1) There is no minimum input / output frequency provided the input slew rate is sufficiently fast. Refer to Input Slew Rate Considerations.  
(2) These AC parameters are specified by characterization. Not tested in production.  
(3) These AC parameters are specified by design. Not tested in production.  
(4) Measured from the VDD/2 of the input to the VDDO/2 of the output.  
(5) Measured from the differential input crossing point to VDDO/2 of the output.  
(6) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at VDDO/2 of the output.  
(7) Parameter is defined in accordance with JEDEC Standard 65.  
(8) Calculation for part-to-part skew is the difference between the fastest and slowest tPD across multiple devices, operating at the same  
supply voltage, same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device.  
(9) Buffer Additive Jitter: JADD = SQRT(JSYSTEM2 - J SOURCE2), where JSYSTEM is the RMS jitter of the system output (source+buffer) and  
JSOURCE is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter should  
be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the case for  
high-quality ultra-low-noise oscillators. Please refer to System-Level Phase Noise and Additive Jitter Measurement for input source and  
measurement details.  
(10) 50% Input Duty Cycle  
Copyright © 2014, Texas Instruments Incorporated  
9
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
8.13 Typical Characteristics  
Unless otherwise noted: VDD = 3.3 V, VDDO = 3.3 V, TA = 25°C  
0.30  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
100 MHz  
125 MHz  
250 MHz  
350 MHz  
±40ƒC  
25°C  
85°C  
fCLK = 125 MHz  
Input Slew Rate = 3 V/ns  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
0
1
2
3
4
5
6
1.5  
1.8  
2.5  
3.3  
Input Slew Rate (V/ns)  
VDDO Supply (V)  
C001  
C002  
Figure 1. Additive Jitter vs Input Slew Rate  
Figure 2. Additive Jitter vs VDDO Supply and Temperature  
±158  
±148  
±150  
±152  
±154  
±156  
±158  
±160  
±162  
±164  
±166  
±168  
100 MHz  
±40ƒC  
25°C  
85°C  
fCLK = 125 MHz  
Input Slew Rate = 3 V/ns  
125 MHz  
250 MHz  
350 MHz  
±159  
±160  
±161  
±162  
±163  
±164  
±165  
±166  
±167  
±168  
0
1
2
3
4
5
6
1.5  
1.8  
2.5  
3.3  
Input Slew Rate (V/ns)  
VDDO Supply (V)  
C003  
C004  
Figure 3. Phase Noise Floor vs Input Slew Rate  
Figure 4. Phase Noise Floor vs VDDO Supply and  
Temperature  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
9 Parameter Measurement Information  
VCC  
VIH = VICM  
VID = |VIH ± VIL|  
VIL  
nCLK  
CLK  
VCM  
GND  
NOTE: VCM = VICM - VID/2 = (V IH + VIL)/2  
Figure 5. Differential Input Level  
space  
VOH  
VOUT  
VOL  
80%  
20%  
Q
tR  
tF  
Figure 6. Output Voltage, and Rise and Fall Times  
space  
LVCMOS  
Input  
LVCMOS_CLK  
nCLK  
CLK  
Differential  
Input  
tPD  
LVCMOS  
Outputx  
Qx  
Qy  
tSK  
LVCMOS  
Outputy  
Figure 7. Output Skew and Propagation Delay  
Copyright © 2014, Texas Instruments Incorporated  
11  
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
The LMK00804B is a low skew, high performance clock fanout buffer which can distribute up to four  
LVCMOS/LVTTL outputs (3.3-V, 2.5-V, 1.8-V, or 1.5-V levels) from one of two selectable inputs, which can  
accept differential or single-ended inputs. The clock enable input is synchronized internally to eliminate runt or  
glitch pulses on the outputs when the clock enable terminal is asserted or de-asserted. The outputs are held in  
logic low state when the clock is disabled. A separate output enable terminal controls whether the outputs are  
active state or high-impedance state. The low additive jitter and phase noise floor, and guaranteed output and  
part-to-part skew characteristics make the LMK00804B ideal for applications demanding high performance and  
repeatability.  
10.2 Functional Block Diagram  
RPU  
CLK_EN  
D
Q
RPD  
RPD  
LVCMOS  
_CLK  
0
1
Q0  
Q1  
Q2  
Q3  
CLK  
RPU/  
RPD  
nCLK  
RPU  
CLK_SEL  
RPU = Pullup  
RPD = Pulldown  
RPU  
OE  
12  
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
10.3 Feature Description  
10.3.1 Clock Enable Timing  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in  
Figure 8. In the enabled mode, the output states are a function of the CLK/nCLK or LVCMOS_CLK inputs as described in  
Clock Input Function.  
LVCMOS_CLK  
nCLK  
CLK  
Disabled  
Enabled  
CLK_EN  
Qx  
Figure 8. Clock Enable Timing Diagram  
10.4 Device Functional Modes  
The device can provide fan-out and level translation from differential or single-ended input to LVCMOS/LVTTL  
output, where the output VOH and VOL levels are determined by the VDDO output supply voltage and output  
load condition. Refer to the Clock Input Function.  
10.4.1 Clock Input Function  
Table 1.  
INPUTS  
CLK (or LVCMOS_CLK)  
OUTPUTS  
Qx  
INPUT to OUTPUT  
MODE  
POLARITY  
nCLK  
0
1
LOW  
Differential (or Single-  
Ended) to Single-Ended  
Non-inverting  
1
0
0
HIGH  
LOW  
HIGH  
HIGH  
LOW  
Differential (or Single-  
Ended) to Single-Ended  
Non-inverting  
Non-inverting  
Non-inverting  
Inverting  
Floating or Biased  
Single-Ended to Single-  
Ended  
1
Floating or Biased  
Single-Ended to Single-  
Ended  
Biased  
Biased  
0
1
Single-Ended to Single-  
Ended  
Single-Ended to Single-  
Ended  
Inverting  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
 
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
11 Applications and Implementation  
11.1 Application Information  
Refer to the following sections for output clock and input clock interface circuits.  
11.2 Output Clock Interface Circuit  
VDDO  
RS= 43Ÿꢀ  
LVCMOS  
Input  
Zo = 50Ÿꢀ  
LMK00804  
Parasitic Input Capacitance  
Figure 9. LVCMOS Output Configuration  
11.3 Input Detail  
LMK00804  
LVCMOS_CLK  
51k  
CLK  
51k  
VDD  
51k  
nCLK  
51k  
Figure 10. Clock Input Components  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
11.4 Input Clock Interface Circuits  
3.3V  
3.3 V  
LMK00804B  
R
s
LVMOS  
_CLK  
Z
= 50Ω  
Z
o
o
Clock generator:  
+ R = 50Ω  
Z
o
s
Figure 11. LVCMOS_CLK Input Configuration  
3.3V  
3.3V  
3.3V  
3.3V  
LMK00804B  
R = 100Ω  
R = 1kΩ  
R
s
CLK  
DUT  
nCLK  
Z
= 50Ω  
Z
o
o
R = 100Ω  
R = 1kΩ  
C = 0.1µF  
Clock generator:  
+ R = 50Ω  
Z
o
s
(1) The Thevenin/split termination values (R = 100 Ω) at the CLK input may be adjusted to provide a small differential  
offset voltage (50 mV, for example) between the CLK and nCLK inputs to prevent input chatter if the LVCMOS driver  
is tri-stated. For example, using 105 Ω 1% to 3.3 V rail and 97.6 Ω 1% to GND will provide a –60 mV offset voltage  
(VnCLK-VCLK) and ensure a logic low state if the LVCMOS driver is tri-stated.  
Figure 12. Single-Ended/LVCMOS Input DC Configuration  
3.3V  
LMK00804B  
3.3V  
3.3V  
R = 125Ÿ  
R = 125Ÿ  
Z
Z
= 50Ÿ  
= 50Ÿ  
o
CLK  
LVPECL  
output  
DUT  
nCLK  
o
R = 84Ÿ  
R = 84Ÿ  
Figure 13. LVPECL Input Configuration  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
Input Clock Interface Circuits (continued)  
3.3V  
3.3V  
LMK00804B  
Z
Z
= 50Ÿ  
= 50Ÿ  
o
CLK  
DUT  
nCLK  
LVPECL  
output  
o
R = 50Ÿ  
R = 50Ÿ  
R = 50Ÿ  
Figure 14. Alternative LVPECL Input Configuration  
3.3V  
3.3V  
LMK00804B  
R = 33Ÿ  
R = 33Ÿ  
Z
Z
= 50Ÿ  
= 50Ÿ  
o
CLK  
HCSL  
output  
DUT  
nCLK  
o
R = 50Ÿ  
R = 50Ÿ  
Figure 15. HCSL Input Configuration  
3.3V  
3.3V  
LMK00804B  
Z
Z
= 50Ÿ  
= 50Ÿ  
o
CLK  
LVDS  
output  
R = 100Ÿ  
DUT  
nCLK  
o
Figure 16. LVDS Input Configuration  
16  
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
Input Clock Interface Circuits (continued)  
3.3V  
LMK00804B  
3.3V  
2.5V  
R = 120Ÿ  
R = 120Ÿ  
Z
Z
= 60Ÿ  
= 60Ÿ  
o
CLK  
SSTL  
output  
DUT  
nCLK  
o
R = 120Ÿ  
R = 120Ÿ  
Figure 17. SSTL Input Configuration  
Copyright © 2014, Texas Instruments Incorporated  
17  
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
11.5 Typical Applications  
11.5.1 Design Requirements  
For high-performance devices, limitations of the equipment influence phase-noise measurements. The noise floor  
of the equipment is often higher than the noise floor of the device. The real noise floor of the device is probably  
lower. It is important to understand that system-level phase noise measured at the DUT output is influenced by  
the input source and the measurement equipment.  
For Figure 18 and Figure 19 system-level phase noise plots, a Rohde & Schwarz SMA100A low-noise signal  
generator was cascaded with an Agilent 70429A K95 single-ended to differential converter block with ultra-low  
phase noise and fast edge slew rate (>3 V/ns) to provide a very low-noise clock input source to the LMK00804B.  
An Agilent E5052 source signal analyzer with ultra-low measurement noise floor was used to measure the phase  
noise of the input source (SMA100A + 70429A K95) and system output (input source + LMK00804B). The input  
source phase noise is shown by the light yellow trace, and the system output phase noise is shown by the dark  
yellow trace.  
11.5.2 Detailed Design Procedure  
The additive phase noise or noise floor of the buffer (PNFLOOR) can be computed as follows:  
PNFLOOR (dBc/Hz) = 10 x log10[10^(PNSYSTEM/10) – 10^(PNSOURCE/10)]  
where  
PNSYSTEM is the phase noise of the system output (source+buffer)  
PNSOURCE is the phase noise of the input source  
(1)  
(2)  
The additive jitter of the buffer (JADD) can be computed as follows:  
JADD = SQRT(JSYSTEM2– JSOURCE  
)
2
where:  
JSYSTEM is the RMS jitter of the system output (source+buffer), integrated from 10 kHz to 20 MHz  
JSOURCE is the RMS jitter of the input source, integrated from 10 kHz to 20 MHz  
18  
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
Typical Applications (continued)  
11.5.3 Application Curves  
11.5.3.1 System-Level Phase Noise and Additive Jitter Measurement  
Figure 18.  
125 MHz Input Phase Noise (57 fs rms, Light Blue),  
and Output Phase Noise (71 fs rms, Dark Blue),  
Additive Jitter = 42 fs rms  
Copyright © 2014, Texas Instruments Incorporated  
19  
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
Typical Applications (continued)  
Figure 19.  
156.25 MHz Input Phase Noise (57 fs rms, Light Blue),  
and Output Phase Noise (72 fs rms, Dark Blue),  
Additive Jitter = 44 fs rms  
20  
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
11.6 Do's and Don'ts  
11.6.1 Power Considerations  
The following power consideration refers to the device-consumed power consumption only. The device power  
consumption is the sum of static power and dynamic power. The dynamic power usage consists of two  
components:  
Power used by the device as it switches states  
Power required to charge any output load  
The output load can be capacitive-only or capacitive and resistive. Use the following formula to calculate the  
power consumption of the device:  
PDev = Pstat + Pdyn + PCload  
(3)  
(4)  
Pstat = (IDD × VDD) + (IDDO × VDDO  
)
Pdyn + PCload = (IDDO,dyn + IDDO,Cload) × VDDO  
where:  
IDDO,dyn = CPD × VDDO × f × n [mA]  
IDDO,Cload = Cload × VDDO × f × n [mA]  
(5)  
Example for power consumption of the LMK00804B: 4 outputs are switching, f = 100 MHz,  
VDD = VDDO = 3.465 V and assuming Cload = 5 pF per output:  
PDev = 90 mW + 34 mW = 124 mW  
(6)  
(7)  
Pstat = (21 mA × 3.465 V) + (5 mA × 3.465 V)= 90 mW  
Pdyn + PCload = (2.8 mA + 6.9 mA) x 3.465 V = 34 mW  
IDD,dyn = 2 pF × 3.465 V × 100 MHz × 4 = 2.8 mA  
IDD,Cload = 5 pF × 3.465 V x 100 MHz × 4 = 6.9 mA  
(8)  
(9)  
(10)  
NOTE  
For dimensioning the power supply, consider the total power consumption. The total  
power consumption is the sum of device power consumption and the power consumption  
of the load.  
Copyright © 2014, Texas Instruments Incorporated  
21  
 
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
Do's and Don'ts (continued)  
11.6.2 Recommendations for Unused Input and Output Pins  
CLK_SEL, CLK_EN, and OE: These inputs all have internal pull-up (RPU) according to Table 2 and can be  
left floating if unused. Table 2 shows the default floating state of these inputs:  
Table 2. Input Floating Default States  
INPUT  
CLK_SEL  
CLK_EN  
OE  
FLOATING STATE SELECTION  
CLK/nCLK selected  
Synchronous outputs enable  
Outputs enabled  
CLK/nCLK Inputs: See Figure 10 for the internal connections. When using single ended input, take note of  
the internal pull-up and pull-down to make sure the unused input is properly biased. To interface a single-  
ended input to the CLK/nCLK input, the configuration shown in Figure 12 is recommended.  
LVCMOS_CLK Input: See Figure 10 for the internal connection. The internal pull-down (RPD) resistor  
ensures a low state when this input is left floating.  
Outputs: Any unused output can be left floating with no trace connected.  
11.6.3 Input Slew Rate Considerations  
LMK00804B employs high-speed and low-latency circuit topology, allowing the device to achieve ultra-low  
additive jitter/phase noise and high-frequency operation. To take advantage of these benefits in the system  
application, it is optimal for the input signal to have a high slew rate of 3 V/ns or greater. Driving the input with a  
slower slew rate can degrade the additive jitter and noise floor performance. For this reason, a differential signal  
input is recommended over single-ended because it typically provides higher slew rate and common-mode-  
rejection. Refer to the “Additive Jitter vs. Input Slew Rate” plots in Typical Characteristics. Also, using an input  
signal with very slow input slew rate, such as less than 0.05 V/ns, has the tendency to cause output switching  
noise to feed-back to the input stage and cause the output to chatter. This is especially true when driving either  
input in single-ended fashion with a very slow slew rate, such as a sine-wave input signal.  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
12 Power Supply Recommendations  
12.1 Power Supply Considerations  
While there is no strict power supply sequencing requirement, it is generally best practice to sequence the core  
supply voltage (VDD) before the output supply voltage (VDDO).  
12.1.1 Power-Supply Filtering  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
jitter or phase noise is critical to applications.  
Use of filter capacitors eliminates the low-frequency noise from power supply, where the bypass capacitors  
provide the very low-impedance path for high-frequency noise and guard the power-supply system against  
induced fluctuations. The bypass capacitors also provide instantaneous current surges as required by the device,  
and should have low ESR. To use the bypass capacitors properly, place them very close to the power supply  
terminals and lay out traces with short loops to minimize inductance. TI recommends to adding as many high-  
frequency (for example, 0.1 µF) bypass capacitors as there are supply terminals in the package. It is  
recommended, but not required, to insert a ferrite bead between the board power supply and the chip power  
supply to isolate the high-frequency switching noises generated by the clock driver, preventing them from leaking  
into the board supply. Choosing an appropriate ferrite bead with very low DC resistance is important, because it  
is imperative to provide adequate isolation between the board supply and the chip supply. It is also imperative to  
maintain a voltage at the supply terminals that is greater than the minimum voltage required for proper operation.  
Vcc  
Board  
Supply  
Chip  
Supply  
Ferrite Bead  
C
1 µF  
0.1 µF (3  
places, one  
per Vcc pin)  
C
10 µF  
Figure 20. Power-Supply Decoupling  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
Power Supply Considerations (continued)  
12.1.2 Thermal Management  
For reliability and performance reasons, limit the die temperature to a maximum of 125°C. That is, as an  
estimate, TA (ambient temperature) plus device power consumption times θJA should not exceed 125°C.  
Assuming the conditions in the Power Considerations section and operating at an ambient temperature of 70°C  
with all outputs loaded, here is an estimate of the LMK00804B junction temperature:  
TJ= TA+ PTotal x θJA= 70 °C + (124 mW x 116 °C/W) = 70 °C + 14.4 °C = 84.4 °C  
(11)  
Here are some recommendations for improving heat flow away from the die:  
Use multi-layer boards  
Specify a higher copper thickness for the board  
Increase the number of vias from the top level ground plane under and around the device to internal layers  
and to the bottom layer with as much copper area flow on each level as possible  
Apply air flow  
Leave unused outputs floating  
13 Layout  
13.1 Layout Guidelines  
13.1.1 Ground Planes  
Solid ground planes are recommended as they provide a low-impedance return paths between the device and its  
bypass capacitors and its clock source and destination devices.  
Avoid return paths of other system circuitry (for example, high-speed/digital logic, switching power supplies, and  
so forth) from passing through the local ground of the device to minimize noise coupling, which could induce  
added jitter and spurious noise.  
13.1.2 Power Supply Pins  
Follow the power supply schematic and layout example described in Power-Supply Filtering.  
13.1.3 Differential Input Termination  
Place input termination or biasing resistors as close as possible to the CLK/nCLK pins.  
Avoid or minimize vias in the 50 Ω input traces to minimize impedance discontinuities. Intra-pair skew should  
be also be minimized on the differential input traces.  
If not used, CLK/nCLK inputs may be left floating.  
13.1.4 LVCMOS Input Termination  
When the LVCMOS_CLK input is driven from a LVCMOS driver that is series terminated to match the  
characteristic impedance of the trace, then input termination is not necessary; otherwise, place the input  
termination resistor as close as possible to the LVCMOS_CLK input.  
Avoid or minimize vias in the 50 Ω input trace to minimize impedance discontinuities.  
If not used, LVCMOS_CLK input may be left floating.  
13.1.5 Output Termination  
Place 43 Ω series termination resistors as close as possible to the Qx outputs at the launch of the 50 Ω  
traces.  
Avoid or minimize vias in the 50 Ω input traces to minimize impedance discontinuities.  
If not used, any Qx output should be left floating and not routed.  
24  
Copyright © 2014, Texas Instruments Incorporated  
LMK00804B  
www.ti.com.cn  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
13.2 Layout Example  
Please refer to the LMK00804BEVM for a layout example. A sample PCB layer is shown below.  
Figure 21. Sample PCB Layout, Layer 1 (Top View)  
版权 © 2014, Texas Instruments Incorporated  
25  
LMK00804B  
ZHCSCY6A JUNE 2014REVISED JULY 2014  
www.ti.com.cn  
14 器件和文档支持  
14.1 器件支持  
有关器件和文档支持,请直接访问 TI E2E 支持论坛查询时钟产品。  
14.2 商标  
All trademarks are the property of their respective owners.  
14.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
15 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK00804BPW  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
92  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
K00804B  
K00804B  
LMK00804BPWR  
2500 RoHS & Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK00804BPWR  
TSSOP  
PW  
16  
2500  
330.0  
12.4  
6.95  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP PW 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
LMK00804BPWR  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
PW TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMK00804BPW  
16  
92  
495  
8
2514.6  
4.06  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMK00804BQWRGTRQ1

汽车类、1.5V 至 3.3V、1 至 4 高性能 LVCMOS 扇出缓冲器和电平转换器 | RGT | 16 | -40 to 125
TI

LMK00804BQWRGTTQ1

汽车类、1.5V 至 3.3V、1 至 4 高性能 LVCMOS 扇出缓冲器和电平转换器 | RGT | 16 | -40 to 125
TI

LMK01000

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01000

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器
TI

LMK01000ISQ

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01000ISQ/NOPB

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器 | RHS | 48 | -40 to 85
TI

LMK01000ISQE/NOPB

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器 | RHS | 48 | -40 to 85
TI

LMK01000ISQX

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01000ISQX/NOPB

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器 | RHS | 48 | -40 to 85
TI

LMK01010

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01010

具有 8 个 LVDS 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器
TI

LMK01010ISQ

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC