LMK04002BISQ/NOPB [TI]

具有 1600MHz 至 1750MHz VCO 的低噪声抖动消除器:3 路输出用于 2VPEC/LVPEC+4 路输出用于 LVCMOS | RHS | 48 | -40 to 85;
LMK04002BISQ/NOPB
型号: LMK04002BISQ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1600MHz 至 1750MHz VCO 的低噪声抖动消除器:3 路输出用于 2VPEC/LVPEC+4 路输出用于 LVCMOS | RHS | 48 | -40 to 85

文件: 总66页 (文件大小:1150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
LMK04000 Family Low-Noise Clock Jitter Cleaner with Cascaded PLLs  
Check for Samples: LMK04000, LMK04001, LMK04002, LMK04010, LMK04011, LMK04031, LMK04033  
1
FEATURES  
23  
Cascaded PLLatinum™ PLL Architecture  
Support Clock Rates up to 1080 MHz  
PLL1  
Default Clock Output (CLKout2) at power up  
Phase Detector Rate of up to 40 MHz  
Five Dedicated Channel Divider and Delay  
Blocks  
Integrated Low-Noise Crystal Oscillator  
Circuit  
Pin Compatible Family of Clocking Devices  
Industrial Temperature Range: -40 to 85 °C  
3.15 V to 3.45 V Operation  
Dual Redundant Input Reference Clock  
with LOS  
PLL2  
Package: 48 Pin WQFN (7.0 x 7.0 x 0.8 mm)  
Normalized [1 Hz] PLL Noise Floor of -  
224 dBc/Hz  
APPLICATIONS  
Phase Detector Rate up to 100 MHz  
Input Frequency-Doubler  
Integrated Low-Noise VCO  
Data Converter Clocking  
Wireless Infrastructure  
Networking, SONET/SDH, DSLAM  
Medical  
Ultra-Low RMS Jitter Performance  
150 fs RMS Jitter (12 kHz – 20 MHz)  
200 fs RMS Jitter (100 Hz – 20 MHz)  
Military / Aerospace  
Test and Measurement  
Video  
LVPECL/2VPECL, LVDS, and LVCMOS outputs  
DESCRIPTION  
The LMK04000 family of precision clock conditioners provides low-noise jitter cleaning, clock multiplication and  
distribution without the need for high-performance voltage controlled crystal oscillators (VCXO) module. Using a  
cascaded PLLatinum™ architecture combined with an external crystal and varactor diode, the LMK04000 family  
provides sub-200 femtosecond (fs) root mean square (RMS) jitter performance.  
The cascaded architecture consists of two high-performance phase-locked loops (PLL), a low-noise crystal  
oscillator circuit, and a high-performance voltage controlled oscillator (VCO). The first PLL (PLL1) provides a low-  
noise jitter cleaner function while the second PLL (PLL2) performs the clock generation. PLL1 can be configured  
to either work with an external VCXO module or use the integrated crystal oscillator with an external crystal and  
a varactor diode. When used with a very narrow loop bandwidth, PLL1 uses the superior close-in phase noise  
(offsets below 50 kHz) of the VCXO module or the crystal to clean the input clock. The output of PLL1 is used as  
the clean input reference to PLL2 where it locks the integrated VCO. The loop bandwidth of PLL2 can be  
optimized to clean the far-out phase noise (offsets above 50 kHz) where the integrated VCO outperforms the  
VCXO module or crystal used in PLL1.  
The LMK04000 family features dual redundant inputs, five differential outputs, and an optional default-clock upon  
power up. The input block is equipped with loss of signal detection and automatic or manual selection of the  
reference clock. Each clock output consists of a programmable divider, a phase synchronization circuit, a  
programmable delay, and an LVDS, LVPECL, or LVCMOS output buffer. The default startup clock is available on  
CLKout2 and it can be used to provide an initial clock for the field-programmable gate array (FPGA) or  
microcontroller that programs the jitter cleaner during the system power up sequence.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PLLatinum is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2011, Texas Instruments Incorporated  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Crystal or  
VCXO  
CLKout0  
CLKout1  
CLKout2A  
CLKout4  
Recovered  
—dirty“ clock or  
clean clock  
Serializer/  
Deserializer  
LMK040xx  
Precision Clock  
Conditioner  
CLKin0  
CLKin1  
LMX2531  
PLL+VCO  
FPGA  
Fout  
> 1 Gsps  
Backup  
Reference  
Clock  
Multiple —clean“ clocks at  
different frequencies  
DAC  
ADC  
Table 1. Device Configuration Information  
2VPECL / LVPECL  
NSID  
PROCESS  
LVDS OUTPUTS  
LVCMOS OUTPUTS  
VCO  
OUTPUTS  
LMK04000BISQ  
LMK04001BISQ  
LMK04002BISQ  
LMK04010BISQ  
LMK04011BISQ  
LMK04031BISQ  
LMK04033BISQ  
BiCMOS  
BiCMOS  
BiCMOS  
BiCMOS  
BiCMOS  
BiCMOS  
BiCMOS  
3
3
3
5
5
2
2
4
4
4
1185 to 1296 MHz  
1430 to 1570 MHz  
1600 to 1750 MHz  
1185 to 1296 MHz  
1430 to 1570 MHz  
1430 to 1570 MHz  
1840 to 2160 MHz  
2
2
2
2
NSID  
CLKout0  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
LVDS  
CLKout1  
CLKout2  
LVCMOS x 2  
CLKout3  
CLKout4  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
LVDS  
LMK04000BISQ  
LMK04001BISQ  
LMK04002BISQ  
LMK04010BISQ  
LMK04011BISQ  
LMK04031BISQ  
LMK04033BISQ  
LVCMOS x 2  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
LVCMOS x 2  
LVCMOS x 2  
LVCMOS x 2  
LVCMOS x 2  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
2VPECL / LVPECL  
LVCMOS x 2  
LVDS  
LVCMOS x 2  
LVDS  
2
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Functional Block Diagram  
LOS  
LOS0  
CLKin0  
CLKin0*  
Mux  
R1 Divider  
N1 Divider  
Phase  
Detector  
PLL1  
CLKin1  
CLKin1*  
LOS  
LOS1  
2X  
Partially  
Integrated  
Mux  
Loop Filter  
Internal VCO  
OSCin  
OSCin*  
R2 Divider  
Phase  
Detector  
PLL2  
Fout  
N2 Divider  
VCO  
Divider  
Distribution  
Path  
CLKout4  
CLKout4*  
Divider  
Divider  
Divider  
Divider  
Divider  
Mux  
Mux  
Mux  
Mux  
Mux  
Delay  
Delay  
Delay  
Delay  
Delay  
GOE  
LD  
Device  
Control  
CLKout3B  
CLKout3A  
SYNC*  
CLK  
CLKout2B  
CLKout2A  
mWire  
Port  
Control  
Registers  
DATA  
LE  
CLKout1  
CLKout1*  
CLKout0  
CLKout0*  
Clock Buffers  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Connection Diagram  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
GND  
Fout  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
Bias  
CLKin1_LOS  
CLKin0_LOS  
Vcc10  
Vcc1  
3
CLKuWire  
DATAuWire  
LEuWire  
NC  
4
5
CPout2  
Vcc9  
6
7
Vcc8  
Vcc2  
8
OSCin*  
OSCin  
LDObyp1  
LDObyp2  
GOE  
9
10  
11  
12  
SYNC*  
CLKin1*  
CLKin1  
DAP  
LD  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Figure 1. 48-Pin WQFN Package  
Top View  
PIN DESCRIPTIONS  
Pin Number  
Name(s)  
GND  
I/O  
Type  
Description  
1
2
GND  
Ground (For Fout Buffer)  
VCO Frequency Output Port  
Power Supply for VCO Output Buffer  
Microwire Clock Input  
Fout  
O
ANLG  
PWR  
3
VCC1  
4
CLKuWire  
DATAuWire  
LEuWire  
NC  
I
I
I
CMOS  
CMOS  
CMOS  
5
Microwire Data Input  
6
Microwire Latch Enable Input  
No Connection  
7
8
VCC  
2
PWR  
ANLG  
ANLG  
Power Supply for VCO  
9
LDObyp1  
LDObyp2  
LDO Bypass, bypassed to ground with a 10 µF capacitor  
10  
LDO Bypass, bypassed to ground with a 0.1 µF  
capacitor  
11  
12  
13  
14  
15  
16  
GOE  
LD  
I
CMOS  
CMOS  
Global Output Enable  
O
Lock Detect and PLL multiplexer Output  
Power Supply for CLKout0  
Clock Channel 0 Output  
VCC3  
PWR  
CLKout0  
CLKout0*  
DLD_BYP  
O
O
LVDS/LVPECL  
LVDS/LVPECL  
ANLG  
Clock Channel 0* Output  
DLD Bypass, bypassed to ground with a 0.47 µF  
capacitor  
17  
18  
GND  
GND  
PWR  
Ground (Digital)  
VCC4  
Power Supply for Digital  
4
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
PIN DESCRIPTIONS (continued)  
Pin Number  
Name(s)  
VCC  
I/O  
Type  
PWR  
ANLG  
Description  
19  
20  
5
Power Supply for CLKin buffers and PLL1 R-divider  
Reference Clock Input Port for PLL1 - AC or DC  
CLKin0  
I
I
(1)  
Coupled  
21  
22  
CLKin0*  
ANLG  
PWR  
Reference Clock Input Port for PLL1 (complimentary) -  
AC or DC Coupled  
(1)  
VCC6  
Power Supply for PLL1 Phase Detector and Charge  
Pump  
23  
24  
25  
CPout1  
VCC  
O
ANLG  
PWR  
Charge Pump1 Output  
7
Power Supply for PLL1 N-Divider  
Reference Clock Input Port for PLL1 - AC or DC  
CLKin1  
I
I
ANLG  
(1)  
Coupled  
26  
CLKin1*  
ANLG  
Reference Clock Input Port for PLL1 (complimentary) -  
(1)  
AC or DC Coupled  
27  
28  
29  
30  
31  
SYNC*  
OSCin  
OSCin*  
I
I
I
CMOS  
ANLG  
ANLG  
PWR  
Global Clock Output Synchronization  
Reference oscillator Input for PLL2 - AC Coupled  
Reference oscillator Input for PLL2 - AC Coupled  
Power Supply for OSCin Buffer and PLL2 R-Divider  
VCC8  
9
VCC  
PWR  
Power Supply for PLL2 Phase Detector and Charge  
Pump  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
DAP  
CPout2  
VCC10  
O
ANLG  
PWR  
Charge Pump2 Output  
Power Supply for VCO Divider and PLL2 N-Divider  
Status of CLKin0 reference clock input  
Status of CLKin1 reference clock input  
Bias Bypass. AC coupled with 1 µF capacitor to Vcc1  
Power Supply for CLKout1  
CLKin0_LOS  
CLKin1_LOS  
Bias  
O
O
I
LVCMOS  
LVCMOS  
ANLG  
VCC11  
PWR  
CLKout1  
CLKout1*  
VCC12  
O
O
LVPECL/LVCMOS  
LVPECL/LVCMOS  
PWR  
Clock Channel 1 Output  
Clock Channel 1* Output  
Power Supply for CLKout2  
CLKout2  
CLKout2*  
VCC13  
O
O
LVPECL/LVCMOS  
LVPECL/LVCMOS  
PWR  
Clock Channel 2 Output  
Clock Channel 2* Output  
Power Supply for CLKout3  
CLKout3  
CLKout3*  
VCC14  
O
O
LVPECL  
Clock Channel 3 Output  
LVPECL  
Clock Channel 3* Output  
PWR  
Power Supply for CLKout4  
CLKout4  
CLKout4*  
DAP  
O
O
LVDS/LVPECL  
LVDS/LVPECL  
Clock Channel 4 Output  
Clock Channel 4* Output  
DIE ATTACH PAD, connect to GND  
(1) The reference clock inputs may be either AC or DC coupled.  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Absolute Maximum Ratings(1)(2)(3)(4)  
Parameter  
Symbol  
Ratings  
-0.3 to 3.6  
Units  
(5)  
Supply Voltage  
Input Voltage  
VCC  
VIN  
V
V
-0.3 to (VCC + 0.3)  
-65 to 150  
Storage Temperature Range  
TSTG  
TL  
°C  
°C  
Lead Temperature (solder 4 sec)  
+260  
Differential Input Current (CLKinX/X*,  
OSCin/OSCin*)  
IIN  
± 5  
mA  
(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test  
conditions, see the Electrical Characteristics. The guaranteed specifications apply only to the test conditions listed.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
(3) This device is a high performance RF integrated circuit with an ESD rating up to 8 KV Human Body Model, up to 300 V Machine Model  
and up to 1,250 V Charged Device Model and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free  
workstations.  
(4) Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress  
ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation  
sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.  
(5) Never to exceed 3.6 V.  
Package Thermal Resistance  
Package  
θJA  
θJ-PAD (Thermal Pad)  
(1)  
48-Lead WQFN  
27.4° C/W  
5.8° C/W  
(1) Specification assumes 16 thermal vias connect the die attach pad to the embedded copper plane on the 4-layer JEDEC board. These  
vias play a key role in improving the thermal performance of the WQFN. It is recommended that the maximum number of vias be used in  
the board layout.  
Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Min  
-40  
Typical  
25  
Max  
85  
Unit  
°C  
Ambient  
Temperature  
TA  
VCC = 3.3 V  
Supply Voltage  
VCC  
3.15  
3.3  
3.45  
V
Electrical Characteristics  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Current Consumption  
Min  
Typ  
Max  
Units  
ICC_PD  
Power Down Supply Current  
1
mA  
LMK04000, LMK04001,  
LMK04002  
380  
435  
(2)  
Supply Current with all clocks  
enabled, all delay bypassed,  
Fout disabled.  
ICC_CLKS  
LMK04010, LMK04011  
mA  
378  
335  
435  
385  
(1)  
(2)  
LMK04031, LMK04033  
(2)  
CLKin0/0* and CLKin1/1* Input Clock Specifications  
Manual Select mode  
Auto-Switching mode  
0.001  
1
400  
400  
Clock Input Frequency  
fCLKin  
MHz  
(3)  
(1) Load conditions for output clocks: LVPECL: 50 Ω to VCC-2 V. 2VPECL: 50 Ω to VCC-2.36 V. LVDS: 100 Ω differential. LVCMOS: 10 pF.  
(2) Additional test conditions for ICC limits: All clock delays disabled, CLKoutX_DIV = 510, PLL1 and PLL2 locked. (See Table 33 for more  
information)  
(3) CLKin0 and CLKin1 maximum of 400 MHz is guaranteed by characterization, production tested at 200 MHz.  
6
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Slew Rate on CLKin  
SLEWCLKin  
20% to 80%  
0.15  
0.5  
V/ns  
(4)  
AC coupled to CLKinX;  
CLKinX* AC coupled to Ground  
(CLKinX_TYPE=0)  
Input Voltage Swing,  
single-ended input  
0.25  
0.5  
2.0  
3.1  
Vpp  
Vpp  
mV  
Vpp  
Vpp  
V
VCLKin (Bipolar input buffer  
mode)  
CLKinX and CLKinX* are both  
driven, AC coupled.  
(CLKinX_TYPE=0)  
Input Voltage Swing,  
differential input  
DC offset voltage between  
CLKinX/CLKinX*  
|CLKinX-CLKinX*|  
VCLKin-offset (Bipolar input  
buffer mode)  
Each pin AC coupled  
(CLKinX_TYPE=0)  
44  
AC coupled to CLKinX;  
CLKinX* AC coupled to Ground  
(CLKinX_TYPE=1)  
Input Voltage Swing, single-  
ended input  
0.25  
0.5  
2.0  
0.0  
2.0  
3.1  
VCC  
0.4  
VCLKin (MOS input buffer  
mode)  
CLKinX and CLKinX* are both  
driven, AC coupled.  
(CLKinX_TYPE=1)  
Input Voltage Swing,  
differential input  
DC coupled to CLKinX;  
CLKinX* AC coupled to Ground  
(CLKinX_TYPE=1)  
VCLKin-VIH (MOS input buffer  
mode)  
Maximum input voltage  
DC coupled to CLKinX;  
CLKinX* AC coupled to Ground  
(CLKinX_TYPE=1)  
VCLKin-VIL (MOS input buffer  
mode)  
V
DC offset voltage between  
CLKinX/CLKinX*  
|CLKinX-CLKinX*|  
VCLKin-offset (MOS input  
buffer mode)  
Each pin AC coupled  
(CLKinX_TYPE=1)  
294  
mV  
PLL1 Specifications  
PLL1 Phase Detector  
Frequency  
fPD  
40  
MHz  
VCPout1 = VCC/2,  
PLL1_CP_GAIN = 100b  
25  
50  
VCPout1 = VCC/2,  
PLL1_CP_GAIN = 101b  
VCPout1 = VCC/2,  
PLL1_CP_GAIN = 110b  
100  
400  
VCPout1 = VCC/2,  
PLL1_CP_GAIN = 111b  
PLL1 Charge Pump Source  
Current  
ICPout1 SOURCE  
µA  
(5)  
PLL1_CP_GAIN = 000b  
PLL1_CP_GAIN = 001b  
NA  
NA  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 010b  
20  
80  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 011b  
(4) In order to meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all  
input clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input  
slew rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended  
clocks, differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to  
their common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to  
achieve optimal phase noise performance at the device outputs.  
(5) This parameter is programmable  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 100b  
-25  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 101b  
-50  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 110b  
-100  
-400  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 111b  
PLL1 Charge Pump Sink  
Current  
ICPout1 SINK  
µA  
(5)  
PLL1_CP_GAIN = 000b  
PLL1_CP_GAIN = 001b  
NA  
NA  
VCPout1=VCC/2, PLL1_CP_GAIN  
= 010b  
-20  
-80  
3
VCPout1=VCC/2, PLL1_CP_GAIN  
= 011b  
Charge Pump Sink / Source  
Mismatch  
ICPout1 %MIS  
VCPout1 = VCC/2, T = 25 °C  
10  
%
%
Magnitude of Charge Pump  
Current vs. Charge Pump  
Voltage Variation  
0.5 V < VCPout1 < VCC - 0.5 V  
TA = 25 °C  
ICPout1VTUNE  
4
4
Charge Pump Current vs.  
Temperature Variation  
ICPout1 %TEMP  
PLL1 ICPout1 TRI  
%
Charge Pump TRI-STATE  
Leakage Current  
0.5 V < VCPout < VCC - 0.5 V  
5
nA  
PLL2 Reference Input (OSCin) Specifications  
EN_PLL2_REF 2X = 0  
250  
50  
(7)  
PLL2 Reference Input  
fOSCin  
MHz  
V/ns  
(6)  
EN_PLL2_REF 2X = 1  
20% to 80%  
PLL2 Reference Clock  
minimum slew rate on OSCin  
SLEWOSCin  
0.15  
0.5  
AC coupled; Single-ended  
(Unused pin AC coupled to  
GND)  
Input Voltage for OSCin or  
OSCin*  
VOSCin (Single-ended)  
VOSCin (Differential)  
0.2  
0.4  
2.0  
3.1  
Vpp  
Vpp  
Differential voltage swing  
AC coupled  
Crystal Oscillator Mode Specifications  
Crystal Frequency Range  
fXTAL  
ESR  
6
20  
MHz  
Crystal Effective Series  
Resistance  
6 MHz < FXTAL < 20 MHz  
100  
Ohms  
Vectron VXB1 crystal, 12.288  
MHz, RESR < 40 Ω  
(8)  
PXTAL  
CIN  
Crystal Power Dissipation  
200  
6
µW  
pF  
Input Capacitance of  
LMK040xx OSCin port  
-40 to +85 °C  
PLL2 Phase Detector and Charge Pump Specifications  
Phase Detector Frequency  
fPD  
100  
MHz  
(6) FOSCin maximum frequency guaranteed by characterization. Production tested at 200 MHz.  
(7) The EN_PLL2_REF2X bit (Register 13) enables/disables a frequency doubler mode for the PLL2 OSCin path.  
(8) See Application Section discussion of Crystal Power Dissipation.  
8
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 00b  
100  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 01b  
400  
1600  
3200  
-100  
-400  
-1600  
-3200  
3
PLL2 Charge Pump Source  
Current  
ICPoutSOURCE  
µA  
(9)  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 10b  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 11b  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 00b  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 01b  
PLL2 Charge Pump Sink  
ICPoutSINK  
µA  
(9)  
Current  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 10b  
VCPout2=VCC/2, PLL2_CP_GAIN  
= 11b  
Charge Pump Sink/Source  
Mismatch  
ICPout2%MIS  
VCPout2=VCC/2, TA = 25 °C  
10  
10  
%
%
Magnitude of Charge Pump  
Current vs. Charge Pump  
Voltage Variation  
0.5 V < VCPout2 < VCC - 0.5 V  
TA = 25 °C  
ICPout2VTUNE  
4
4
Charge Pump Current vs.  
Temperature Variation  
ICPout2%TEMP  
ICPout2TRI  
%
Charge Pump Leakage  
0.5 V < VCPout2 < VCC - 0.5 V  
nA  
PLL 1/f Noise at 10 kHz offset PLL2_CP_GAIN = 400 µA  
(10). Normalized to  
-117  
-122  
PN10kHz  
PN1Hz  
dBc/Hz  
dBc/Hz  
PLL2_CP_GAIN = 3200 µA  
1 GHz Output Frequency  
PLL2_CP_GAIN = 400 µA  
PLL2_CP_GAIN = 3200 µA  
Internal VCO Specifications  
LMK040x0  
-219  
-224  
Normalized Phase Noise  
Contribution  
(11)  
1185  
1430  
1600  
1840  
1296  
1570  
1750  
2160  
LMK040x1  
fVCO  
VCO Tuning Range  
MHz  
LMK040x2  
LMK040x3  
LMK040x0, TA = 25 °C, single-  
ended  
3
3
LMK040x1, TA = 25 °C, single-  
ended  
VCO Output power to a  
50 Ω load driven by Fout  
LMK040x2, TA = 25 °C, single-  
ended  
PVCO  
2
dBm  
LMK040x3, TA = 25 °C, single-  
ended 1840 MHz  
0
LMK040x3, TA = 25 °C, single-  
ended 2160 MHz  
-5  
(9) This parameter is programmable  
(10) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10 dB/decade slope. PN10kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10kHz = LPLL_flicker(10  
kHz) - 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise,  
L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean  
crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low power or noisy source is used. The total PLL inband phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
(11) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, LPLL_flat(f), is defined as:  
PN1HZ=LPLL_flat(f)-20log(N)-10log(fCOMP). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz  
bandwidth and fCOMP is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f).  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
LMK040x0  
Min  
Typ  
Max  
Units  
Fine Tuning Sensitivity  
(The range displayed in the  
typical column indicates the  
lower sensitivity is typical at  
the lower end of the tuning  
range, and the higher tuning  
sensitivity is typical at the  
higher end of the tuning  
range).  
7 to 9  
8 to 11  
9 to 14  
LMK040x1  
LMK040x2  
KVCO  
MHz/V  
LMK040x3  
14 to 26  
After programming R15 for  
lock, no changes to output  
configuration are permitted to  
guarantee continuous lock  
Allowable Temperature Drift  
|ΔTCL  
|
for Continuous Lock  
125  
°C  
(12)  
Internal VCO Open Loop Phase Noise and Jitter  
Offset = 1 kHz  
-66  
-94  
Offset = 10 kHz  
LMK040x0  
fVCO = 1185 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 1 kHz  
-119  
-139  
-158  
-163  
-64  
dBc/Hz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 1 kHz  
-91  
LMK040x0  
fVCO = 1296 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-117  
-138  
-157  
-161  
-61  
dBc/Hz  
dBc/Hz  
dBc/Hz  
L(f)Fout  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 1 kHz  
-91  
LMK040x1  
fVCO = 1440 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-117  
-138  
-158  
-160  
-58  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
-89  
LMK040x1  
fVCO = 1560 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-115  
-137  
-157  
-162  
(12) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the R0 register was last programmed, and still have the part stay in lock. The action of programming the R0 register,  
even to the same value, activates a frequency calibration routine. This implies the part will work over the entire frequency range, but if  
the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reload the R0 register to  
ensure it stays in lock. Regardless of what temperature the part was initially programmed at, the temperature can never drift outside the  
frequency range of -40 °C to 85 °C without violating specifications.  
10  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Offset = 1 kHz  
Min  
Typ  
-63  
Max  
Units  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 1 kHz  
-91  
LMK040x2  
fVCO = 1600 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-115  
-137  
-156  
-161  
-61  
dBc/Hz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 1 kHz  
-90  
LMK040x2  
fVCO = 1750 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-114  
-136  
-155  
-160  
-58  
dBc/Hz  
dBc/Hz  
dBc/Hz  
L(f)Fout  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 1 kHz  
-88  
LMK040x3  
fVCO = 1840 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-113  
-135  
-155  
-158  
-54  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
-84  
LMK040x3  
fVCO = 2160 MHz  
SSB Phase Noise  
PLL2 = Open Loop  
Measured at Fout  
-110  
-132  
-154  
-157  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Internal VCO Closed Loop Phase Noise and Jitter Specifications using an Instrumentation Quality VCXO  
Offset = 1 kHz  
-111  
-119  
-121  
-133  
-157  
-162  
-165  
-110  
-117  
-120  
-132  
-156  
-160  
-163  
-111  
-118  
-120  
-132  
-156  
-162  
-165  
-107  
-114  
-117  
-126  
-152  
-156  
-160  
Offset = 10kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 40 MHz  
Offset = 1 kHz  
(13)  
LMK040x0  
fVCO = 1200 MHz  
SSB Phase Noise  
PLL2 = Closed Loop  
Measured at Fout  
dBc/Hz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 40 MHz  
Offset = 1 kHz  
(14)  
LMK040x1  
fVCO = 1500 MHz  
SSB Phase Noise  
PLL2 = Closed Loop  
Measured at Fout  
dBc/Hz  
dBc/Hz  
dBc/Hz  
L(f)Fout  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 40 MHz  
Offset = 1 kHz  
(15)  
LMK040x2  
fVCO = 1600 MHz  
SSB Phase Noise  
PLL2 = Closed Loop  
Measured at Fout  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 20 MHz  
Offset = 40 MHz  
(16)  
LMK040x3  
fVCO = 2000 MHz  
SSB Phase Noise  
PLL2 = Closed Loop  
Measured at Fout  
(13) For LMK040x0, fVCO = 1200 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 3, N2 = 5, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
268 kHz, PM = 75°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
(14) For LMK040x1, fVCO = 1500 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 3, N2 = 5, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
268 kHz, PM = 75°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
(15) For LMK040x2, fVCO = 1600 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 2, N2 = 8, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
252 kHz, PM = 76°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
(16) For LMK040x3, fVCO = 2000 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 2, N2 = 10, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW  
= 434 kHz, PM = 69°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
12  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(13)  
LMK040x0  
BW = 12 kHz to 20 MHz  
105  
fVCO = 1200 MHz  
Integrated RMS Jitter  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
110  
100  
105  
95  
(14)  
LMK040x1  
fVCO = 1500 MHz  
Integrated RMS Jitter  
JFout  
fs  
(15)  
LMK040x2  
fVCO = 1600 MHz  
Integrated RMS Jitter  
100  
105  
110  
(16)  
LMK040x3  
fVCO = 2000 MHz  
Integrated RMS Jitter  
CLKout's Internal VCO Closed Loop Phase Noise and Jitter Specifications using an Instrumentation Quality VCXO  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
-125  
-130  
-132  
-148  
-157  
-126  
-133  
-136  
-147  
-156  
-127  
-133  
-134  
-145  
-157  
-125  
-132  
-135  
-145  
-156  
(17)  
LMK040x0  
fCLKout = 250 MHz  
SSB Phase Noise  
Measured at Clock Outputs  
Value is average for all output  
types  
(18)  
LMK040x1  
fCLKout = 250 MHz  
SSB Phase Noise  
Measured at Clock Outputs  
Value is average for all output  
types  
L(f)CLKout  
dBc/Hz  
(19)  
LMK040x2  
fCLKout = 250 MHz  
SSB Phase Noise  
Measured at Clock Outputs  
Value is average for all output  
types  
(20)  
LMK040x3  
fCLKout = 250 MHz  
SSB Phase Noise  
Measured at Clock Outputs  
Value Is average for all output  
types  
(17) For LMK040x0, fVCO = 1250 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 5, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 3.2 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
251 kHz, PM = 76°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = Bypass. CLKout_DLY = OFF.  
(18) For LMK040x1, fVCO = 1500 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 3, N2 = 5, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
268 kHz, PM = 75°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = 2. CLKout_DLY = OFF.  
(19) For LMK040x2, fVCO = 1750 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 7, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
354 kHz, PM = 73°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = Bypass. CLKout_DLY = OFF.  
(20) For LMK040x3, fVCO = 2000 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 2, N2 = 10, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW  
= 434 kHz, PM = 69°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = 4. CLKout_DLY = OFF.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(21)  
LMK040x0  
BW = 12 kHz to 20 MHz  
130  
fCLKout = 250 MHz  
Integrated RMS Jitter  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
135  
115  
120  
130  
135  
125  
130  
140  
145  
110  
115  
130  
135  
120  
125  
(22)  
LMK040x1  
fCLKout = 250 MHz  
Integrated RMS Jitter  
JCLKout  
LVPECL/2VPECL/LVDS  
fs  
(23)  
LMK040x2  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(24)  
LMK040x3  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(21)  
LMK040x0  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(22)  
LMK040x1  
fCLKout = 250 MHz  
Integrated RMS Jitter  
JCLKout  
LVCMOS  
fs  
(23)  
LMK040x2  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(24)  
LMK040x3  
fCLKout = 250 MHz  
Integrated RMS Jitter  
CLKout's Internal VCO Closed Loop Jitter Specifications using a Commercial Quality VCXO  
(21) For LMK040x0, fVCO = 1250 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 5, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 3.2 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
251 kHz, PM = 76°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = Bypass. CLKout_DLY = OFF.  
(22) For LMK040x1, fVCO = 1500 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 3, N2 = 5, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
268 kHz, PM = 75°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = 2. CLKout_DLY = OFF.  
(23) For LMK040x2, fVCO = 1750 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 7, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW =  
354 kHz, PM = 73°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = Bypass. CLKout_DLY = OFF.  
(24) For LMK040x3, fVCO = 2000 MHz. PLL1 is powered down. A 100 MHz Wenzel XO (model: 501-04623G) drives the OSCin input of  
PLL2. PLL2 parameters: VCO_DIV = 2, N2 = 10, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 22 pF, C2 = 5.6 nF, R2 = 1.8 kΩ, LBW  
= 434 kHz, PM = 69°. Wenzel XO phase noise: 100 Hz: -132 dBc/Hz; 1 kHz: -147 dBc/Hz; 10 kHz: -159 dBc/Hz; 100 kHz: -167 dBc/Hz.  
CLKoutX_DIV = 4. CLKout_DLY = OFF.  
14  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(25) (26)  
LMK040x0  
BW = 12 kHz to 20 MHz  
140  
200  
fCLKout = 250 MHz  
Integrated RMS Jitter  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
185  
130  
190  
150  
190  
145  
200  
130  
190  
145  
200  
(27) (26)  
LMK040x1  
200  
200  
200  
fCLKout = 250 MHz  
Integrated RMS Jitter  
JCLKout  
LVPECL/2VPECL  
fs  
(28) (26)  
LMK040x2  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(29) (26)  
LMK040x3  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(30)  
LMK040x1  
fCLKout = 250 MHz  
Integrated RMS Jitter  
JCLKout  
LVDS  
fs  
(31)  
LMK040x3  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(25) For LMK040x0, FVCO = 1250 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 5, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2  
= 1.8 kΩ, LBW = 254 kHz, PM = 81°. CLKDIST parameters: CLKoutX_DIV = Bypass, CLKout_DLY = OFF. VCXO phase noise: 100 Hz:  
-100 dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(26) Max jitter specification applies to CH3 (LVPECL) output and guaranteed by test in production.  
(27) For LMK040x1, FVCO = 1500 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 3, N2 = 5, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 0 pF, C2 = 12 nF, R2  
= 1.8 kΩ, LBW = 271 kHz, PM = 80°. CLKDIST parameters: CLKoutX_DIV = 2, CLKout_DLY = OFF. VCXO phase noise: 100 Hz: -100  
dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(28) For LMK040x2, FVCO = 1750 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 7, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2  
= 1.8 kΩ, LBW = 360 kHz, PM = 79°. CLKDIST parameters: CLKoutX_DIV = Bypass, CLKout_DLY = OFF. VCXO phase noise: 100 Hz:  
-100 dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(29) For LMK040x3, FVCO = 2000 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 2, N2 = 10, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 0 pF, C2 = 12 nF,  
R2 = 1.8 kΩ, LBW = 445 kHz, PM = 76°. CLKDIST parameters: CLKoutX_DIV = 4, CLKout_DLY = OFF. VCXO phase noise: 100 Hz: -  
100 dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(30) For LMK040x1, FVCO = 1500 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 3, N2 = 5, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 0 pF, C2 = 12 nF, R2  
= 1.8 kΩ, LBW = 271 kHz, PM = 80°. CLKDIST parameters: CLKoutX_DIV = 2, CLKout_DLY = OFF. VCXO phase noise: 100 Hz: -100  
dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(31) For LMK040x3, FVCO = 2000 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 2, N2 = 10, R2 = 1, FDET = 100 MHz, ICP2 = 1.6 mA, C1 = 0 pF, C2 = 12 nF,  
R2 = 1.8 kΩ, LBW = 445 kHz, PM = 76°. CLKDIST parameters: CLKoutX_DIV = 4, CLKout_DLY = OFF. VCXO phase noise: 100 Hz: -  
100 dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(32)  
LMK040x0  
BW = 12 kHz to 20 MHz  
150  
fCLKout = 250 MHz  
Integrated RMS Jitter  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
190  
125  
185  
150  
190  
145  
195  
(30)  
LMK040x1  
fCLKout = 250 MHz  
Integrated RMS Jitter  
JCLKout  
LVCMOS  
fs  
(33)  
LMK040x2  
fCLKout = 250 MHz  
Integrated RMS Jitter  
(31)  
LMK040x3  
fCLKout = 250 MHz  
Integrated RMS Jitter  
CLKout's Internal VCO Closed Loop Jitter Specifications using the Integrated Low Noise Crystal Oscillator Circuit  
(34)  
LMK040x0  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
(35)  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
190  
230  
200  
230  
195  
230  
245  
260  
LMK040x1  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
JCLKout  
LVPECL/2VPECL/LVDS  
fs  
(36)  
LMK040x2  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
(37)  
LMK040x3  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
(32) For LMK040x0, FVCO = 1250 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 5, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2  
= 1.8 kΩ, LBW = 254 kHz, PM = 81°. CLKDIST parameters: CLKoutX_DIV = Bypass, CLKout_DLY = OFF. VCXO phase noise: 100 Hz:  
-100 dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(33) For LMK040x2, FVCO = 1750 MHz. PLL1 parameters: FDET = 1 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 100 MHz VCXO drives  
the OSCin input of PLL2. PLL2 parameters: VCO_DIV = 7, N2 = 5, R2 = 2, FDET = 50 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2  
= 1.8 kΩ, LBW = 360 kHz, PM = 79°. CLKDIST parameters: CLKoutX_DIV = Bypass, CLKout_DLY = OFF. VCXO phase noise: 100 Hz:  
-100 dBc/Hz; 1 kHz: -128 dBc/Hz; 10 kHz: -144 dBc/Hz; 100 kHz: -147 dBc/Hz.  
(34) For LMK040x0, FVCO = 1228.8 MHz. PLL1 parameters: FDET = 1.024 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 12.288 MHz  
Vectron crystal (model: VXB1-1127-12M288000) and tuning circuitry is used with on-chip XO circuitry. PLL2 parameters: VCO_DIV = 5,  
N2 = 10, EN_PLL2_REF2X = 1, FDET = 24.576 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2 = 1.8 kΩ, R3 = 600 Ω, R4 = 10 kΩ, C3  
= 150 pF, C4 = 60 pF, LBW = 109 kHz, PM = 43°, CLKoutX_DIV = 2, CLKout_DLY = OFF.  
(35) For LMK040x1, FVCO = 1474.56 MHz. PLL1 parameters: FDET = 1.024 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 12.288 MHz  
Ecliptek crystal (model: ECX-6465) and tuning circuitry is used with on-chip XO circuitry. PLL2 parameters: VCO_DIV = 3, N2 = 20,  
EN_PLL2_REF2X = 1, FDET = 24.576 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2 = 1.8 kΩ, R3 = 600 Ω, R4 = 10 kΩ, C3 = 150  
pF, C4 = 60 pF, LBW = 103 kHz, PM = 44°, CLKoutX_DIV = 2, CLKout_DLY = OFF.  
(36) For LMK040x2, FVCO = 1720.32 MHz. PLL1 parameters: FDET = 1.024 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 12.288 MHz  
Vectron crystal (model: VXB1-1127-12M288000) and tuning circuitry is used with on-chip XO circuitry. PLL2 parameters: VCO_DIV = 7,  
N2 = 10, EN_PLL2_REF2X = 1, FDET = 24.576 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2 = 1.8 kΩ, R3 = 600 Ω, R4 = 10 kΩ, C3  
= 150 pF, C4 = 60 pF, LBW = 120 kHz, PM = 40°, CLKoutX_DIV = 2, CLKout_DLY = OFF.  
(37) For LMK040x3, FVCO = 1966.08 MHz. PLL1 parameters: FDET = 1.024 MHz, ICP1 = 100 µA, loop bandwidth = 20 Hz. A 12.288 MHz  
Ecliptek crystal (model: ECX-6465) and tuning circuitry is used with on-chip XO circuitry. PLL2 parameters: VCO_DIV = 4, N2 = 20,  
EN_PLL2_REF2X = 1, FDET = 24.576 MHz, ICP2 = 3.2 mA, C1 = 0 pF, C2 = 12 nF, R2 = 1.8 kΩ, R3 = 600 Ω, R4 = 10 kΩ, C3 = 150  
pF, C4 = 60 pF, LBW = 91 kHz, PM = 47°, CLKoutX_DIV = 2, CLKout_DLY = OFF.  
16  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(34)  
LMK040x0  
BW = 12 kHz to 20 MHz  
195  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
BW = 12 kHz to 20 MHz  
BW = 100 Hz to 20 MHz  
230  
195  
220  
195  
230  
240  
260  
(35)  
LMK040x1  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
JCLKout  
LVCMOS  
fs  
(36)  
LMK040x2  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
(37)  
LMK040x3  
fCLKout = 245.76 MHz  
Integrated RMS Jitter  
Digital Inputs (CLKuWire, DATAuWire, LEuWire)  
High-Level Input Voltage  
VIH  
VIL  
IIH  
1.6  
VCC  
0.4  
25  
V
V
Low-Level Input Voltage  
High-Level Input Current  
Low-Level Input Current  
VIH = VCC  
VIL = 0  
-5  
µA  
µA  
IIL  
-5.0  
5.0  
Digital Inputs (GOE, SYNC*)  
VIH  
VIL  
IIH  
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Input Current  
Low-Level Input Current  
1.6  
VCC  
0.4  
5.0  
5.0  
V
V
VIH = VCC  
VIL = 0  
-5.0  
µA  
µA  
IIL  
-40.0  
Digital Outputs (CLKinX_LOS, LD)  
VOH  
VOL  
High-Level Output Voltage  
Low-Level Output Voltage  
IOH = -500 µA  
IOL = 500 µA  
VCC - 0.4  
V
V
0.4  
Default Power On Reset Clock Output Frequency  
CLKout2, LM040x0  
50  
62  
68  
81  
CLKout2, LM040x1  
CLKout2, LM040x2  
CLKout2, LM040x3  
Default output clock frequency  
at device power on  
fCLKout-startup  
MHz  
MHz  
LVDS Clock Outputs (CLKoutX)  
Maximum Frequency  
fCLKout  
TSKEW  
VOD  
RL = 100 Ω  
1080  
(38)  
CLKoutX to CLKoutY  
LVDS-LVDS, T = 25 °C,  
FCLK = 800 MHz, RL= 100 Ω  
30  
ps  
(39)  
Differential Output Voltage  
250  
-50  
350  
450  
mV  
Change in Magnitude of VOD  
for complementary output  
states  
R = 100 Ω differential  
termination, AC coupled to  
receiver input,  
ΔVOD  
50  
mV  
FCLK = 800 MHz,  
T = 25 °C  
VOS  
Output Offset Voltage  
1.125  
1.25  
1.375  
35  
V
Change in VOS for  
complementary output states  
ΔVOS  
|mV|  
ISA  
ISB  
Output short circuit current -  
single ended  
Single-ended output shorted to  
GND, T = 25 °C  
-24  
-12  
24  
12  
mA  
mA  
Output short circuit current -  
differential  
Complimentary outputs tied  
together  
ISAB  
(40)  
LVPECL Clock Outputs (CLKoutX)  
(38) For Clock output frequencies > 1 GHz, the maximum allowable clock delay is limited to ½ of a period, or, 0.5/FCLKoutX  
.
(39) Equal loading and identical channel configuration on each channel is required for specification to be valid. Specification not valid for  
delay mode.  
(40) LVPECL/2VPECL is programmable for all NSIDs.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Maximum Frequency  
fCLKout  
TSKEW  
VOH  
1080  
MHz  
(41)  
LVPECL-to-LVPECL,  
T = 25 °C, FCLK = 800 MHz,  
each output terminated with  
120 Ω to GND.  
CLKoutX to CLKoutY  
40  
ps  
V
(42)  
VCC  
0.93  
-
Output High Voltage  
FCLK = 100 MHz, T = 25 °C  
Termination = 50 Ω to  
VCC - 2 V  
VCC  
1.82  
-
VOL  
VOD  
Output Low Voltage  
Output Voltage  
V
660  
890  
965  
40  
mV  
2VPECL Clock Outputs (CLKoutX)  
Maximum Frequency  
fCLKout  
TSKEW  
VOH  
1080  
MHz  
ps  
(41)  
2VPECL-2VPECL, T=25 °C,  
FCLK = 800 MHz, each output  
terminated with 120 Ω to GND.  
CLKoutX to CLKoutY  
(42)  
VCC  
0.95  
-
Output High Voltage  
V
FCLK = 100 MHz, T = 25 °C  
Termination = 50 Ω to  
VCC - 2 V  
VCC  
1.98  
-
VOL  
VOD  
Output Low Voltage  
Output Voltage  
V
800  
1030  
1200  
0.1  
mV  
LVCMOS Clock Outputs (CLKoutX)  
fCLKout  
VOH  
VOL  
IOH  
Maximum Frequency  
Output High Voltage  
Output Low Voltage  
5 pF Load  
1 mA Load  
1 mA Load  
250  
MHz  
V
VCC - 0.1  
V
Output High Current (Source) VCC = 3.3 V, VO = 1.65 V  
28  
28  
mA  
mA  
IOL  
Output Low Current (Sink)  
VCC = 3.3 V, VO = 1.65 V  
Skew between any two  
LVCMOS outputs, same  
channel or different channel  
RL = 50 Ω, CL = 10 pF,  
TSKEW  
T = 25 °C, FCLK = 100 MHz.  
100  
55  
ps  
(43)  
VCC/2 to VCC/2, FCLK = 100  
DUTYCLK  
Output Duty Cycle  
Output Rise Time  
Output Fall Time  
45  
50  
%
ps  
ps  
(44)  
MHz, T = 25 °C  
20% to 80%, RL = 50 Ω,  
CL = 5 pF  
TR  
TF  
400  
400  
80% to 20%, RL = 50 Ω,  
CL = 5 pF  
Mixed Clock Skew  
Same device, T = 25 °C,  
250 MHz  
LVPECL to LVDS skew  
LVDS to LVCMOS skew  
LVCMOS to LVPECL skew  
-230  
770  
ps  
ps  
ps  
Same device, T = 25 °C,  
250 MHz  
TSKEW ChanX - ChanY  
Same device, T = 25 °C,  
250 MHz  
-540  
Microwire Interface Timing  
TCS  
TCH  
Data to Clock Set Up Time  
Data to Clock Hold Time  
See Microwire Input Timing  
See Microwire Input Timing  
25  
8
ns  
ns  
(41) For Clock output frequencies > 1 GHz, the maximum allowable clock delay is limited to ½ of a period, or, 0.5/FCLKoutX  
.
(42) Equal loading and identical channel configuration on each channel is required for specification to be valid. Specification not valid for  
delay mode.  
(43) Equal loading and identical channel configuration on each channel is required for specification to be valid. Specification not valid for  
delay mode.  
(44) Guaranteed by characterization.  
18  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Electrical Characteristics (continued)  
(3.15 V VCC 3.45 V, -40 °C TA 85 °C. Typical values represent most likely parametric norms at VCC = 3.3 V, TA = 25  
°C, at the Recommended Operating Conditions at the time of product characterization and are not guaranteed.)  
Symbol  
Parameter  
Clock Pulse Width High  
Clock Pulse Width Low  
Conditions  
Min  
25  
Typ  
Max  
Units  
ns  
TCWH  
TCWL  
See Microwire Input Timing  
See Microwire Input Timing  
25  
ns  
Clock to Latch Enable  
Set Up Time  
TES  
See Microwire Input Timing  
25  
ns  
TCES  
TEW  
Clock to Enable Setup Time  
Load Enable Pulse Width  
See Microwire Input Timing  
See Microwire Input Timing  
25  
25  
ns  
ns  
Serial Data Timing Diagram  
MSB  
LSB  
A0  
DATAuWire  
CLKuWire  
LEuWire  
D27  
D26  
D25  
D24  
D23  
D0  
A3  
A2  
A1  
t
t
CWH  
CS  
t
t
ES  
t
CH  
CES  
t
CWL  
t
EWH  
Register programming information on the DATAuWire pin is clocked into a shift register on each rising edge of  
the CLKuWire signal. On the rising edge of the LEuWire signal, the register is sent from the shift register to the  
register addressed. A slew rate of at least 30 V/µs is recommended for these signals. After programming is  
complete the CLKuWire, DATAuWire, and LEuWire signals should be returned to a low state. If the CLKuWire or  
DATAuWire lines are toggled while the VCO is in lock, as is sometimes the case when these lines are shared  
with other parts, the phase noise may be degraded during this programming.  
Charge Pump Current Specification Definitions  
I1 = Charge Pump Sink Current at VCPout = VCC - ΔV  
I2 = Charge Pump Sink Current at VCPout = VCC/2  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
I3 = Charge Pump Sink Current at VCPout = ΔV  
I4 = Charge Pump Source Current at VCPout = VCC - ΔV  
I5 = Charge Pump Source Current at VCPout = VCC/2  
I6 = Charge Pump Source Current at VCPout = ΔV  
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.  
Charge Pump Output Current Magnitude Variation vs. Charge Pump Output Voltage  
Charge Pump Sink Current vs. Charge Pump Output Source Current Mismatch  
Charge Pump Output Current Magnitude Variation vs. Temperature  
20  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Typical Performance Characteristics  
Clock Output AC Characteristics  
LVDS VOD  
vs.  
LVPECL VOD  
vs.  
Frequency  
Frequency  
1.0  
2.5  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
2.0  
LV2PECL Mode  
1.5  
1.0  
0.5  
0.0  
NORMAL Mode  
0
300  
600  
900 1.2k 1.5k 1.8k  
0
400  
800  
1.2k  
1.6k  
2k  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 2.  
Figure 3.  
LVCMOS Vpp  
vs.  
Frequency  
Typical Dynamic ICC, LVCMOS Driver, VCC = 3.3 V,  
Temp = 25 °C, CL= 5 pF  
5
4
3
2
1
0
No Load  
10 pF Load  
40  
35  
30  
25  
20  
15  
10  
5
22 pF Load  
47 pF Load  
0
100 pF Load  
0
100  
200  
300  
400  
500  
0
50 100 150 200 250 300 350 400  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4.  
Figure 5.  
Clock Channel Delay Noise Floor  
Clock Output Noise Floor  
vs.  
vs.  
Frequency  
Frequency  
Delay = 2100 ps  
Delay = 1800 ps  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
LVPECL (differential)  
LVDS (differential)  
Delay = 450 ps  
Delay = 0 ps  
Delay = 900 ps  
LVCMOS  
100  
10  
100  
1000  
10  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6.  
Figure 7.  
To estimate this noise, only the output frequency is required. Divide value and input frequency are not relevant.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Typical Performance Characteristics (continued)  
The noise of the delay block is independent of output type and only applies if the delay is enabled. The noise floor,  
due to the distribution section accounting for the delay noise, can be calculated as: Total Output Noise = 10 x  
log(10Output Buffer Noise/10 + 10Delay Noise Floor/10).  
Typical LVDS Phase Noise, FCLK = 250 MHz, RMS Jitter = 192 fs (100 Hz to 20 MHz)  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 8.  
Typical LVPECL Phase Noise, FCLK = 250 MHz, RMS Jitter = 196 fs (100 Hz to 20 MHz)  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 9.  
Reference clock = 10 MHz, PLL1_R = 10, PLL1_N = 100, PLL1_CP_GAIN = 100 µA, PLL1 Loop BW = 20 Hz, VCXO  
= 100 MHz Crystek CVPD-920-100, PLL2_R = 2, PLL2_N = 10, PLL2_CP_GAIN = 1600 µA, PLL2 Loop BW = 137  
kHz, fVCO = 1500 MHz, VCO_DIV = 3, CLKoutX_DIV = 2, CLK_DLY = OFF.  
22  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Typical Performance Characteristics (continued)  
Typical LVCMOS Phase Noise, FCLK = 250 MHz, RMS Jitter = 188 fs (100 Hz to 20 MHz)  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 10.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
FEATURES  
System Architecture  
The cascaded PLL architecture of the LMK040xx was chosen to provide the lowest jitter performance over the  
widest range of output frequencies and phase noise offset frequencies. The first stage PLL (PLL1) is used in  
conjunction with an external reference clock and an external VCXO to provide a frequency accurate, low phase  
noise reference clock for the second stage frequency multiplication PLL (PLL2). PLL1 typically uses a narrow  
loop bandwidth (10 Hz to 200 Hz) to retain the frequency accuracy of the reference clock input signal while at the  
same time suppressing the higher offset frequency phase noise that the reference clock may have accumulated  
along its path or from other circuits. The “cleaned” reference clock frequency accuracy is combined with the low  
phase noise of an external VCXO to provide the reference input to PLL2. The low phase noise reference  
provided to PLL2 allows it to use wider loop bandwidths (50 kHz to 200 kHz). The chosen loop bandwidth for  
PLL2 should take best advantage of the superior high offset frequency phase noise profile of the internal VCO  
and the good low offset frequency phase noise of the reference VCXO for PLL2. Ultra low jitter is achieved by  
allowing the external VCXO’s phase noise to dominate the final output phase noise at low offset frequencies and  
the internal VCO’s phase noise to dominate the final output phase noise at high offset frequencies. This results in  
best overall phase noise and jitter performance.  
Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*)  
The LMK040xx has two LVDS/LVPECL/LVCMOS compatible reference clock inputs for PLL1, CLKin0 and  
CLKin1. The selection of the preferred input may be fixed to either CLKin0 or CLKin1, or may be configured to  
employ one of two automatic switching modes when redundant clock signals are present. The PLL1 reference  
clock input buffers may also be individually configured as either a CMOS buffered input or a bipolar buffered  
input.  
PLL1 CLKinX (X=0,1) LOSS OF SIGNAL (LOS)  
When either of the two auto-switching modes is selected for the reference clock input mode, the signal status of  
the selected reference clock input is indicated by the state of the CLKinX_LOS (loss-of-signal) output. These  
outputs may be configured as either CMOS (active HIGH on loss-of-signal), NMOS open-drain or PMOS open-  
drain. If PLL1 was originally locked and then both reference clocks go away, then the frequency accuracy of the  
LMK04000 device will be set by the absolute tuning range of the VCXO used on PLL1. The absolute tuning  
range of the VCXO can be determined by multiplying its' tuning constant by the charge pump voltage.  
Integrated Loop Filter Poles  
The LMK040xx features programmable 3rd and 4th order loop filter poles for PLL2. When enabled, internal  
resistors and capacitor values may be selected from a fixed range of values to achieve either 3rd or 4th order  
loop filter response. These programmable components compliment external components mounted near the chip.  
Clock Distribution  
The LMK040xx features a clock distribution block with a minimum of five outputs that are a mixture of LVPECL,  
2VPECL, LVDS, and LVCMOS. The exact combination is determined by the part number. The 2VPECL is a  
National Semiconductor proprietary configuration that produces a 2 Vpp differential swing for compatibility with  
many data converters. More than five outputs may be available for device versions that offer dual LVCMOS  
outputs.  
CLKout Divide (CLKoutX_DIV, X = 0 to 4)  
Each individual clock distribution channel includes a channel divider. The range of divide values is 2 to 510, in  
steps of 2. “Bypass” mode operates as a divide-by-1.  
CLKout Delay (CLKoutX_DLY, X = 0 to 4)  
Each individual clock distribution channel includes a delay adjustment. Clock output delay registers  
(CLKoutX_DLY) support a nominal 150 ps step size and range from 0 to 2250 ps of total delay.  
24  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Global Clock Output Synchronization (Sync*)  
The SYNC* input is used to synchronize the active clock outputs. When SYNC* is held in a logic low state, the  
outputs are also held in a logic low state. When SYNC* goes high, the clock outputs are activated and will  
transition to a high state simultaneously with one another.  
SYNC* must be held low for greater than one clock cycle of the Clock Distribution Path. After this low event has  
been registered, the outputs will not reflect the low state for four more cycles. Similarly after SYNC* becomes  
high, the outputs will simultaneously transition high after four Clock Distribution Path cycles have passed. See  
Figure 11 for further detail.  
Distribution  
Path  
SYNC*  
CLKout0  
CLKout1  
CLKout2  
Figure 11. Clock Output synchronization using the SYNC* pin  
Global Output Enable and Lock Detect  
Each Clock Output Channel may be either enabled or put into a high impedance state via the Clock Output  
Enable control bit (one for each channel). Each output enable control bit is gated with the Global Output Enable  
input pin (GOE). The GOE pin provides an internal pull-up so that if it is un-terminated externally, then the clock  
output states are determined by the Clock Channel Output Enable Register bits. All clock outputs can be  
disabled simultaneously if the GOE pin is pulled low by an external signal.  
Table 2. Clock Output Control  
CLKoutX  
_EN bit  
EN_CLKout  
_Global bit  
CLKoutX Output State  
GOE pin  
1
1
Low  
Low  
Off  
Don't care  
0
Don't care  
1
Don't care  
0
1
Don't care  
Off  
High / No Connect  
Enabled  
The Lock Detect (LD) signal can be connected to the GOE pin in which case all outputs are disabled  
automatically if the synthesizer is not locked. See EN_CLKoutX: Clock Channel Output Enable and also System  
Level Diagram for actual implementation details.  
The Lock Detect (LD) pin can be programmed to output a ‘High’ when both PLL1 and PLL2 are locked, or only  
when PLL1 is locked or only when PLL2 is locked.  
FUNCTIONAL DESCRIPTION  
Architectural Overview  
The LMK040xx chip consists of two high performance synthesizer blocks (Phase Locked Loop, internal  
VCO/VCO Divider, and loop filter), source selection, distribution system, and independent clock output channels.  
The Phase Frequency Detector in PLL1 compares the divided (R Divider 1) system clock signal from the  
selected CLKinX and CLKinX* input with the divided (N Divider 1) output of the external VCXO attached to the  
PLL2 OSCin port. The external loop filter for PLL1 should be narrow to provide an ultra clean reference clock  
from the external VCXO to the OSCin/OSCin* pins for PLL2.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
The Phase Frequency Detector in PLL2 then compares the divided (R Divider 2) reference signal from the PLL2  
OSCin port with the divided (N Divider 2 and VCO Divider) output of the internal VCO. The bandwidth of the  
external loop filter for PLL2 should be designed to be wide enough to take advantage of the low in-band phase  
noise of PLL2 and the low high offset phase noise of the internal VCO. The VCO output is passed through a  
common VCO divider block and placed on a distribution path for the clock distribution section. It is also routed to  
the PLL2_N counter. Each clock output channel allows the user to select a path with a programmable divider  
block, a phase synchronization circuit, a programmable delay, and LVDS/LVPECL/2VPECL/LVCMOS compatible  
output buffers.  
Phase Detector 1 (PD1)  
Phase Detector 1 in PLL1 (PD1) can operate up to 40 MHz. Since a narrow loop bandwidth should be used for  
PLL1, the need to operate at high phase detector rate to lower the in-band phase noise becomes unnecessary.  
Phase Detector 2 (PD2)  
Phase Detector 2 in PLL2 (PD2) supports a maximum comparison rate of 100 MHz, though the actual maximum  
frequency at the input port (PLL2 OSCin/OSCin*) is 250 MHz. Operating at highest possible phase detector rate  
will ensure low in-band phase noise for PLL2 which in turn produces lower total jitter, as the in-band phase noise  
from the reference input and PLL are proportional to N2.  
PLL2 Frequency Doubler  
The PLL2 reference input at the OSCin port may be optionally routed through a frequency doubler function rather  
than through the PLL2_R counter. The maximum phase comparison frequency of the PLL2 phase detector is 100  
MHz, so the input to the frequency doubler is limited to a maximum of 50 MHz. The frequency doubler feature  
allows the phase comparison frequency to be increased when a relative low frequency oscillator is driving the  
OSCin port. By doubling the PLL2 phase comparison frequency, the in-band PLL2 noise is reduced by about 3  
dB.  
Inputs / Outputs  
PLL1 Reference Inputs (CLKin0 / CLKin0*, CLKin1 / CLKin1*)  
The reference clock inputs for PLL1 may be selected from either CLKin0 and CLKin1. The user has the capability  
to manually select one of the two inputs or to configure an automatic switching mode operation. A detailed  
description of this function is described in the uWire programming section of this data sheet.  
PLL2 OSCin / OSCin* Port  
The feedback from the external oscillator being locked with PLL1 is injected to the PLL2 OSCin/OSCin* pins.  
This input may be driven with either a single- ended or differential signal. If operated in single ended mode, the  
unused input should be tied to GND with a 0.1 µF capacitor. Either AC or DC coupling is acceptable. Internal to  
the chip, this signal is routed to the PLL1_N Counter and to the reference input for PLL2. The internal circuitry of  
the OSCin port also supports the optional implementation of a crystal based oscillator circuit. A crystal, varactor  
diode and a small number of other external components may be used to implement the oscillator. The internal  
oscillator circuit is enabled by setting the EN_PLL2_XTAL bit.  
CPout1 / CPout2  
The CPout1 pin provides the charge pump current output to drive the loop filter for PLL1. This loop filter should  
be configured so that the total loop bandwidth for PLL1 is less than 200 Hz. When combined with an external  
oscillator that has low phase noise at offsets close to the carrier, PLL1 generates a reference for PLL2 that is  
frequency locked to the PLL1 reference clock but has the phase noise performance of the oscillator. The CPout2  
pin provides the charge pump current output to drive the loop filter for PLL2. This loop filter should be configured  
so that the total loop bandwidth for PLL2 is in the range of 50 kHz to 200 kHz. See the section on uWire device  
control for a description of the charge pump current gain control.  
26  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Fout  
The buffered output of the internal VCO is available at the Fout pin. This is a single-ended output (sinusoid).  
Each time the PLL2_N counter value is updated via the uWire interface, an internal algorithm is triggered that  
optimizes the VCO performance.  
Digital Lock Detect 1 Bypass  
The VCO coarse tuning algorithm requires a stable OSCin clock (reference clock to PLL2) to frequency calibrate  
the internal VCO correctly. In order to ensure a stable OSCin clock, the first PLL must achieve lock status. A  
digital lock detect is used in PLL1 to monitor its lock status. After lock is achieved by PLL1, the coarse tuning  
circuitry is enabled and frequency calibration for the internal VCO begins.  
The (DLD_BYP) pin is provided to allow an external bypass cap to be connected to the digital lock detect 1. This  
capacitor will eliminate potential glitches at initial startup of PLL1 due to unknown phase relationships between  
the Ncntr1 and Rcntr1.  
Bias  
Proper bypassing of this pin by a 1 µF capacitor connected to VCC is important for low noise performance.  
General Programming Information  
LMK040xx devices are programmed using several 32-bit registers. Each register consists of a 4-bit address field  
and 28-bit data field. The address field is formed by bits 0 through 3 (LSBs) and the data field is formed by bits 4  
through 31 (MSBs). The contents of each register are clocked in MSB first (bit 31), and the LSB (bit 0) last.  
During programming, the LE signal should be held LOW. The serial data is clocked in on the rising edge of the  
CLK signal. After the LSB (bit 0) is clocked in the LE signal should be toggled LOW-to-HIGH-to-LOW to latch the  
contents into the register selected in the address field. Registers R0-R4, R7, and R8-R15 must be programmed  
in order to achieve proper device operation. Figure 12 illustrates the serial data timing sequence.  
MSB  
D27  
LSB  
A0  
DATAuWire  
CLKuWire  
LEuWire  
D26  
D25  
D24  
D23  
D0  
A3  
A2  
A1  
t
t
CWH  
CS  
t
t
ES  
t
CH  
CES  
t
CWL  
t
EWH  
Figure 12. uWire Timing Diagram  
To achieve proper frequency calibration, the OSCin port must be driven with a valid signal before programming  
Register 15. Changes to PLL2_R Counter or the OSCin port signal require Register 15 to be reloaded in order to  
activate the frequency calibration process.  
Recommended Programming Sequence  
The recommended programming sequence involves programming R7 with the reset bit set to 1 (Reg. 7, bit 4) to  
ensure the device is in a default state. If R7 is programmed again, the reset bit should be set to 0. Registers are  
programmed in order with R15 being the last register programmed. An example programming sequence is  
shown below:  
Program R7 with the RESET bit = 1 (b4 = 1). This ensures that the device is configured with default settings.  
When RESET = 1, all other R7 bits are ignored.  
- If R7 is programmed again during the initial configuration of the device, the RESET bit should be cleared  
(b4 = 0)  
Program R0 through R4 as necessary to configure the clock outputs as desired. These registers configure  
clock channel functions such as the channel multiplexer output selection, divide value, delay value, and  
enable/disable bit.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Program R5 and R6 with the default values shown in the register map on the following pages.  
Program R7 with RESET = 0.  
Program R8 through R10 with the default values shown in the register map on the following pages.  
Program R11 to configure the reference clock inputs (CLKin0 and CLKin1).  
- type, LOS timeout, LOS type, and mode (manual or auto-switching)  
Program R12 to configure PLL1.  
- Charge pump gain, polarity, R counter and N counter  
Program R13 through R15 to configure PLL2 parameters, crystal mode options, and certain globally asserted  
functions.  
The following table provides the register map for device programming:  
28  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
Register  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Table 3. Register Map 31-16  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Data [31:16]  
CLKout0  
_PECL_  
LVL  
EN_CLK  
out0  
R0  
R1  
R2  
R3  
R4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
CLKout0_MUX  
CLKout1  
_PECL_  
LVL  
CLKout1B_STATE  
[1:0]  
CLKout1A_STATE  
[1:0]  
EN_CLK  
out1  
CLKout1_MUX [1:0]  
CLKout2_MUX [1:0]  
CLKout3_MUX [1:0]  
CLKout4_MUX [1:0]  
CLKout2  
_PECL_  
LVL  
CLKout2B_STATE  
[1:0]  
CLKout2A_STATE  
[1:0]  
EN_CLK  
out2  
CLKout3  
_PECL_  
LVL  
CLKout3B_STATE  
[1:0]  
CLKout3A_STATE  
[1:0]  
EN_CLK  
out3  
CLKout4  
_PECL_  
LVL  
EN_CLK  
out4  
0
0
0
0
R5  
R6  
R7  
R8  
R9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
RC_DLD  
1_Start  
R10  
R11  
R12  
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
1
1
0
0
0
0
1
0
0
0
1
0
PLL1_C  
P_POL  
PLL1_CP_GAIN [2:0]  
0
PLL1_R Counter [11:0]  
EN_CLK POWER  
out_Glob DOWN,  
al,  
default=1  
EN_PLL  
2_REF2  
X
EN_PLL  
2_XTAL  
R13  
0
0
0
1
0
1
0
0
0
EN_Fout  
0
default =  
0
R14  
R15  
0
0
0
0
0
0
OSCin_FREQ [7:0]  
VCO_DIV [3:0]  
PLL_MUX [4:0]  
PLL2_CP_GAIN  
[1:0]  
1
PLL2_N Counter [17:0]  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Register Map 15-0  
Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
A3  
0
2
A2  
0
1
A1  
0
0
A0  
0
Data [15:4]  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
CLKout0_DIV [7:0]  
CLKout1_DIV [7:0]  
CLKout2_DIV [7:0]  
CLKout3_DIV [7:0]  
CLKout4_DIV [7:0]  
CLKout0_DLY [3:0]  
CLKout1_DLY [3:0]  
CLKout2_DLY [3:0]  
CLKout3_DLY [3:0]  
CLKout4_DLY [3:0]  
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
1
1
0
RESET  
0
1
1
1
0
0
0
1
0
0
0
1
0
0
1
1
0
1
0
CLKin1_ CLKin0_  
BUFTYP BUFTYP LOS_TIMEOUT [1:0]  
R11  
R12  
R13  
0
0
0
0
LOS_TYPE [1:0]  
CLKin_SEL [1:0]  
1
1
1
0
1
1
1
0
0
1
0
1
E
E
PLL1_N Counter [11:0]  
PLL2 CP PLL1 CP  
TRI-  
TRI-  
PLL2_R4_LF [2:0]  
PLL2_R3_LF [2:0]  
PLL2_C3_C4_LF [3:0]  
STATE  
STATE  
R14  
R15  
PLL2_R Counter [11:0]  
PLL2_N Counter [17:0]  
1
1
1
1
1
1
0
1
30  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Default Device Register Settings After Power On/Reset  
Table 4 illustrates the default register settings programmed in silicon for the LMK040xx after power on or  
asserting the reset bit.  
Table 4. Default Device Register Settings after Power On/Reset  
Field Name  
Default  
Value  
Default State  
Field Description  
Register  
Bit Location  
(MSB:LSB)  
(decimal)  
CLKoutX_PECL_LVL  
0
2VPECL disabled This bit sets LVPECL clock level. Valid when  
the clock channel is configured as  
R0 to R4  
23  
LVPECL/2VPECL; otherwise, not relevant.  
CLKoutXB_STATE  
CLKoutXA_STATE  
EN_CLKoutX  
0
1
0
Inverted  
This field sets the state of output B of an  
LVCMOS Clock channel.  
R1 to R3  
R1 to R3  
R0 to R4  
22:21  
20:19  
16  
Non-Inverted  
This field sets the state of output A of an  
LVCMOS Clock channel.  
OFF  
Clock Channel enable bit. Note: The state of  
CLKout2 is ON by default.  
(1)  
(1)  
Reserved Registers  
RC_DLD1_Start  
R5,R6,R8  
R9,R10  
NA  
1
Enabled  
Forces the VCO tuning algorithm state  
machine to wait until PLL1 is locked.  
R10  
29  
CLKin1_BUFTYPE  
CLKin0_BUFTYPE  
LOS_TIMEOUT  
1
1
1
MOS mode  
MOS mode  
3 MHz (min.)  
CLKin1 Input Buffer Type  
CLKin0 Input Buffer Type  
R11  
R11  
R11  
11  
10  
Selects Lower Reference Clock input  
frequency for LOS Detection.  
9:8  
(2)  
LOS_TYPE  
3
0
1
CMOS  
CLKin0  
Selects LOS output type  
R11  
R11  
R12  
7:6  
5:4  
31  
CLKin_SEL  
Selects Reference Clock source  
PLL1 CP Polarity  
Positive polarity  
Selects the charge pump output polarity, i.e.,  
the tuning slope of the external VCXO  
PLL1_CP_GAIN  
PLL1_R Counter  
PLL1_N Counter  
EN_PLL2_REF2X  
6
1
1
0
100 µA  
Divide = 1  
Divide = 1  
Disabled  
Sets the PLL1 Charge Pump Gain  
Sets divide value for PLL1_R Counter  
Sets divide value for PLL1_N Counter  
R12  
R12  
R12  
R13  
30:28  
27:16  
15:4  
16  
Enables or disables the OSCin frequency  
doubler path for the PLL2 reference input  
EN_PLL2_XTAL  
0
OFF  
Enables or Disables internal circuits that  
support an external crystal driving the OSCin  
pins  
R13  
21  
EN_Fout  
0
1
0
OFF  
Enables or disables the VCO output buffer  
Global enable or disable for output clocks  
R13  
R13  
R13  
20  
18  
17  
CLK Global Enable  
POWER DOWN  
Enabled  
Disabled (device is Device power down control  
active)  
PLL2 CP TRI-STATE  
PLL1 CP TRI-STATE  
0
0
TRI-STATE  
disabled  
Enables or disables TRI-STATE for PLL2  
Charge Pump  
R13  
R13  
15  
14  
TRI-STATE  
disabled  
Enables or disables TRI-STATE for PLL1  
Charge Pump  
OSCin_FREQ  
PLL_MUX  
200  
31  
1
200 MHz  
Reserved  
Divide = 1  
1600 µA  
Source frequency driving OSCin port  
Selects output routed to LD pin  
Sets Divide value for PLL2_R Counter  
Sets PLL2 Charge Pump Gain  
R14  
R14  
R14  
R15  
R15  
R15  
28:21  
20:16  
15:4  
PLL2_R Counter  
PLL2_CP_GAIN  
VCO_DIV  
2
27:26  
25:22  
21:4  
2
Divide = 2  
Divide = 1  
Sets divide value for VCO output divider  
Sets PLL2_N Counter value  
PLL2_N Counter  
1
(1) These registers are reserved. The Power On/Reset values for these registers are shown in the register map and should not be changed  
during programming.  
(2) If the CLKin_SEL value is set to either [0,0] or [0,1], the LOS_TYPE field should be set to [0,0].  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Register R0 To R4  
Registers R0 through R4 control the five clock outputs. Register R0 controls CLKout0, Register R1 controls  
CLKout1, and so on. Aside from this, the functions of the bits in these registers are identical. The X in  
CLKoutX_MUX, CLKoutX_DIV, CLKoutX_DLY, and CLKoutX_EN denote the actual clock output which may be  
from 0 to 4.  
CLKoutX_DIV: Clock Channel Divide Registers  
Each of the five clock output channels (0 though 4) has a dedicated 8-bit divider followed by a fixed divide by 2  
that is used to generate even integer related versions of the distribution path clock frequency (VCO Divider  
output). If the VCO Divider value is even then the Channel Divider may be bypassed (See CLK Output Mux),  
giving an effective divisor of 1 while preserving a 50% duty cycle output waveform.  
Table 5. CLKoutX_DIV: Clock Channel Divide Values  
CLKoutX_DIV [ 7:0 ]  
Total Divide Value  
b7  
0
0
0
0
0
0
-
b6  
0
0
0
0
0
0
-
b5  
0
0
0
0
0
0
-
b4  
0
0
0
0
0
0
-
b3  
0
b2  
0
0
0
0
1
1
-
b1  
0
0
1
1
0
0
-
b0  
0
1
0
1
0
1
-
invalid  
0
2
4
0
0
6
0
8
0
10  
-
--  
1
1
1
1
1
1
1
1
510  
EN_CLKoutX: Clock Channel Output Enable  
Each Clock Output Channel may be either enabled or disabled via the Clock Output Enable control bits. Each  
output enable control bit is gated with the Global Output Enable input pin (GOE) and Global Output Enable bit  
(EN_CLKout_Global). The GOE pin provides an internal pull-up so that if it is unterminated externally, the clock  
output states are determined by the Clock Output Enable Register bits. All clock outputs can be set to the low  
state simultaneously if the GOE pin is pulled low by an external signal. If EN_CLKout_Global is programmed to 0  
all outputs are turned off. If both GOE and EN_CLKout_Global are low the clock outputs are turned off.  
Table 6. EN_CLKoutX: Clock Channel Output Enable Control Bits  
BIT NAME  
EN_CLKout0  
EN_CLKout1  
EN_CLKout2  
EN_CLKout3  
EN_CLKout4  
EN_CLKout_Global  
BIT = 1  
ON  
BIT = 0  
DEFAULT  
OFF  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
-
ON  
According to individual channel  
settings  
All EN_CLKout X = OFF  
Note the default state of CLKout2 is ON after power on or RESET assertion. The nominal frequency is 62 MHz  
(LMK040x1) or 81 MHz (LMK040x3). This is based on a channel divide value of 12 and default VCO_DIV value  
of 2. If an active CLKout2 at power on is inappropriate for the user’s application, the following method can be  
employed to shut off CLKout2 during system initialization:  
When the device is powered on, holding the GOE pin LOW will disable all clock outputs. The device can be  
programmed while the GOE is held LOW. The state of CLKout2 can be altered during device programming  
according to the user’s specific application needs. After device configuration is complete, the GOE pin should  
be set HIGH to enable the active clock channels.  
32  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
CLKoutX_DLY: Clock Channel Phase Delay Adjustment  
Each output channel has an output delay register that can be used to introduce a lag relative to the distribution  
path frequency (VCO Divider output). These registers support a 150 ps stepsize and range from 0 to 2.25 ns of  
total delay. When the channel phase delay registers are enabled, a nominal fixed delay of 300 ps of delay is  
incurred in addition to the programmed delay. The Channel Phase Delay Adjustment Registers are 4 bits wide  
and are programmed as follows:  
Table 7. CLKoutX_DLY: Clock Channel Delay Control Bit Values  
CLKoutX_DLY [ 3:0 ]  
DELAY (ps)  
b3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
b2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
b1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
b0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
150  
300  
450  
600  
750  
900  
1050  
1200  
1350  
1500  
1650  
1800  
1950  
2100  
2250  
CLKoutX/CLKoutX* LVCMOS Mode Control  
For clock outputs that are configured as LVCMOS, the LVCMOS CLKoutX/CLKoutX* outputs can be  
independently configured by uWire CLKoutXA_STATE and CLKoutXB_STATE bits. The following choices are  
available for LVCMOS outputs:  
Table 8. CLKoutXA_STATE, CLKoutXB_STATE Control Bits for LVCMOS Modes  
CLKoutXA_STATE  
CLKoutXB_STATE  
LVCMOS Modes  
b1  
0
b0  
0
b1  
0
b0  
0
Inverted  
Normal  
0
1
0
1
1
0
1
0
Low  
1
1
1
1
TRI-STATE  
CLKoutX/CLKoutX* LVPECL Mode Control  
Clock outputs designated as LVPECL can be configured in one of two possible output levels. The default mode  
is the common LVPECL swing of 800 mVp-p single-ended (1.6 Vp-p differential). A second mode, 2VPECL, can  
be enabled in which the swing is increased to 1000 mVp-p single-ended (2 Vp-p differential).  
Table 9. LVPECL Output Format Control  
CLKoutX_PECL_LVL  
Output Format  
LVPECL (800 mVpp)  
2VPECL (1000 mVpp)  
0
1
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
CLKoutX_MUX: Clock Output Mux  
The output of each CLKoutX channel pair is controlled by its' channel multiplexer (mux). The mux can select  
between several signals: bypassed, divided only, divided and delayed, or delayed only.  
Table 10. CLKoutX_MUX: Clock Channel Multiplexer Control Bits  
CLKout_MUX [1:0]  
Clock Mode  
b1  
0
b0  
0
Bypassed  
Divided  
0
1
1
0
Delayed  
1
1
Divided and Delayed  
Registers 5, 6  
These registers are reserved. These register values should not be modified from the values shown in the register  
map.  
Register 7  
Reset bit  
This bit is only in register R7. The use of this bit is optional and it should be set to '0' if not used. Setting this bit  
to a '1' forces all registers to their power on reset condition and therefore automatically clears this bit.  
Registers 8, 9  
These registers are reserved. These register values should not be modified from the values shown in the register  
map.  
Register 10  
RC_DLD1_Start: PLL1 Digital Lock Detect Run Control bit  
This bit is used to control the state machine for the PLL2 VCO tuning algorithm. The following table describes the  
function of this bit.  
Table 11. RC_DLD1_Start bit States  
RC_DLD1_Start  
Description  
1
0
The PLL2 VCO tuning algorithm trigger is delayed until PLL1 Digital Lock Detect is valid.  
The PLL2 VCO tuning algorithm runs immediately after any PLL2_N counter update, despite the state of PLL1  
Digital Lock Detect.  
If the user is unsure of the state of the reference clock input at startup of the LMK040xx device, setting  
RC_DLD1_Start = 0 will allow PLL2 to tune and lock the internal VCO to the oscillator attached to the OSCin  
port. This ensures that the active clock outputs will start up at frequencies close to their desired values. The error  
in clock output frequency will depend on the open loop accuracy of the oscillator driving the OSCin port. The  
frequency of an active clock output is normally given by:  
FOSCin  
N
R
À
FCLK  
=
(VCO_DIV À CLK_DIV)  
If the open loop frequency accuracy of the external oscillator (either a VCXO or crystal based oscillator) is "X"  
ppm, then the error in the output clock frequency (FCLK error) will be:  
X À FOSCin  
N
R
À
FCLK error =  
(VCO_DIV À CLK_DIV)  
34  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Setting this bit to 0 does not prevent PLL1 from locking the external oscillator to the reference clock input after  
the latter input becomes valid.  
Register 11  
CLKinX_BUFTYPE: PLL1 CLKinX/CLKinX* Buffer Mode Control  
The user may choose between one of two input buffer modes for the PLL1 reference clock inputs: either bipolar  
junction differential or MOS. Both CLKinX and CLKinX* input pins must be AC coupled when driven differentially.  
In single ended mode, the CLKinX* pin must be coupled to ground through a capacitor. The active CLKinX buffer  
mode is selected by the CLKinX_TYPE bits programmed via the uWire interface.  
Table 12. PLL1 CLKinX_BUFTYPE Mode Control Bits  
b1  
0
b0  
0
CLKin1_TYPE  
BJT Differential  
BJT Differential  
MOS  
CLKin0_TYPE  
BJT Differential  
MOS  
0
1
1
0
BJT Differential  
MOS  
1
1
MOS  
CLKin_SEL: PLL1 Reference Clock Selection and Revertive Mode Control Bits  
This register allows the user to set the reference clock input that is used to lock PLL1, or to select an auto-  
switching mode. The automatic switching modes are revertive or non-revertive. In either revertive or non-  
revertive mode, CLKin0 is the initial default reference source for the auto-switching mode. When revertive mode  
is active, the switching control logic will always select CLKin0 as the reference if it is active, otherwise it selects  
CLKin1. When non-revertive mode is active, the switching logic will only switch the reference input if the currently  
selected input fails.  
Table 13 illustrates the control modes. Modes [1,0] and [1,1] are the auto-switching modes. The behavior of both  
modes is tied to the state of the LOS signals for the respective reference clock inputs.  
If the reference clock inputs are active prior to configuration of the device, then the normal programming  
sequence described under General Programming Information can be used without modification. If it cannot be  
guaranteed that the reference clocks are active prior to device programming, then the device programming  
sequence should be modified in order to ensure that CLKin0 is selected as the default. Under this scenario, the  
device should be programmed as described in General Programming Information, with CLKin_SEL bits  
programmed to [0,0] in register R11. The other R11 fields for clock type and LOS timeout should be programmed  
with the appropriate values for the given application. After the reference clock inputs have started, register R11  
should be programmed a second time with the CLKin_SEL field modified to the set the desired mode. The clock  
type field and LOS field values should remain the same.  
Table 13. CLKin_SEL: Reference Clock Selection Bits  
CLKin_SEL [1:0]  
Function  
b1  
0
b0  
0
Force CLKin0 / CLKin0* as PLL1 reference  
0
1
Force CLKin1 / CLKin1* as PLL1 reference  
1
0
Non-revertive. Auto-switching. CLKin0 is the default reference clock. If CLKin0 fails, CLKin1  
is automatically selected if active. If CLKin0 restarts, CLKin1 remains as the selected  
reference clock unless it fails, then CLKin0 is re-selected.  
1
1
Revertive. Auto-switching. CLKin0 is the preferred reference clock and is selected when  
active.  
CLKinX_LOS  
The CLKin0_LOS and CLKin1_LOS pins indicate the state of the respective PLL1 CLKinX reference input when  
the CLKin_SEL bits are set set to either [1,0] or [1,1]. The detection logic that determines the state of the  
reference inputs is sensitive to the frequency of the reference inputs and must be configured to operate with the  
appropriate frequency range of the reference inputs, as described in the next section.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
PLL1 Reference Clock LOS Timeout Control  
This register is used to tune the LOS timeout based upon the frequency of the reference clock input(s). The  
register value controls the timeout setting for both CLKin0 and CLKin1. The value programmed in the  
LOS_TIMEOUT register represents the minimum input frequency for which loss of signal can be detected. For  
example, if the reference input frequency is 12.288 MHz, then either register values (0,0) or (0,1) will result in  
valid loss of signal detection. If the reference input frequency is 1 MHz, then only the register value (0,0) will  
result in valid detection of signal loss.  
Table 14. Reference Clock LOS Timeout Control Bits  
b1  
0
b0  
0
Corresponding Minimum Input Frequency  
1 MHz  
3.0 MHz  
13 MHz  
32 MHz  
0
1
1
0
1
1
LOS Output Type Control  
The output format of the LOS pins may be selected as active CMOS, open drain NMOS and open drain PMOS,  
as shown in the following table.  
Table 15. Loss of Signal (LOS) Output Pin Format Type  
LOS_TYPE [1:0]  
Functional Description  
b1  
0
b0  
0
Reserved  
0
1
NMOS open drain  
PMOS open drain  
Active CMOS  
1
0
1
1
The LOS output signal is valid only when CLKin_SEL bits are set to either [1,0] or [1,1]. If the CLKin_SEL field is  
programmed to either of the fixed inputs, [0,0] or [0,1], the LOS_TYPE bits should be set to [0,0].  
Register 12  
PLL1_N: PLL1_N Counter  
The size of the PLL1_N counter is 12 bits. This counter will support a maximum divide ratio of 4095 and  
minimum divide ratio of 1. The 12 bit resolution is sufficient to support minimum phase detector frequency  
resolution of approximately 50 kHz when the VCXO frequency is 200 MHz.  
For a 200 MHz external VCXO, the minimum phase detector rate will be PDmin = 200 MHz/4095 = 48.84 kHz  
Table 16. PLL1_N Counter Values  
N [17:0]  
b5  
VALUE  
b11  
0
b10  
0
...  
b6  
0
0
0
.
b4  
0
0
0
.
b3  
0
0
0
.
b2  
0
0
0
.
b1  
0
0
1
.
b0  
0
1
0
.
0
0
0
.
Not Valid  
0
0
1
2
0
0
...  
1
1
1
4095  
36  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
PLL1_R: PLL1_R Counter  
The size of the PLL1_R counter is 12 bits. This counter will support a maximum divide ratio of 4095 and  
minimum divide ratio of 1.  
Table 17. PLL1_R Counter Values  
R [11:0]  
VALUE  
b11  
b10  
b9  
0
0
.
b8  
0
0
.
b7  
0
0
.
b6  
0
0
.
b5  
0
0
.
b4  
0
0
.
b3  
0
0
.
b2  
0
0
.
b1  
0
0
.
b0  
0
1
.
0
0
.
0
0
.
Not Valid  
1
...  
1
1
1
1
1
1
1
1
1
1
1
1
4095  
PLL1 Charge Pump Current Gain (PLL1_CP_GAIN) and Polarity Control (PLL1_CP_POL)  
The Loop Band Width (LBW) on PLL1 should be narrow to suppress the noise from the system or input clocks at  
CLKinX/CLKinX* port. This configuration allows the noise of the external VCXO to dominate at low offset  
frequencies. Given that the noise of the external VCXO is far superior than the noise of PLL1, this setting  
produces a very clean reference clock to PLL2 at the OSCin port.  
In order to achieve a LBW as low as 10 Hz at the supported VCXO frequency (1 MHz to 200 MHz), a range of  
charge pump currents in PLL1 is provided. The table below shows the available current gains. A small charge  
pump current is required to obtain a narrow LBW at high phase detector rate (small N value).  
Table 18. PLL1 Charge Pump Current Selections (PLL1_CP_GAIN)  
PLL1_CP_GAIN [2:0]  
PLL1 Charge Pump Current Magnitude (µA)  
b2  
0
b1  
0
b0  
0
RESERVED  
0
0
1
RESERVED  
0
1
0
20  
80  
0
1
1
1
0
0
25  
1
0
1
50  
1
1
0
100  
400  
1
1
1
The PLL1_CP_POL bit sets the PLL1 charge pump for operation with a positive or negative slope VCO/VCXO. A  
positive slope VCO/VCXO increases frequency with increased tuning voltage. A negative slope VCO/VCXO  
increases frequency with decreased tuning voltage.  
Table 19. PLL1 Charge Pump Polarity Control Bits (PLL1_CP_POL)  
PLL1_CP_POL  
DESCRIPTION  
0
1
Negative Slope VCO/VCXO  
Positive Slope VCO/VCXO  
Register 13  
EN_PLL2_XTAL: Crystal Oscillator Option Enable  
If an external crystal is being used to implement a discrete VCXO, the internal feedback amplifier must be  
enabled in order to complete the oscillator circuit.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Table 20. EN_PLL2_XTAL: External Crystal Option  
EN_PLL2_XTAL  
Oscillator Amplifier State  
0
1
OFF  
ON  
EN_Fout: Fout Power Down Bit  
The EN_Fout bit allows the Fout port to be enabled or disabled. By default EN_Fout = 0.  
CLK Global Enable: Clock Global enable bit  
In addition to the external GOE pin, an internal Register 13 bit (b18) can be used to globally enable/disable the  
clock outputs via the uWire programming interface. The default value is 1. When CLK Global Enable = 1, the  
active output clocks are enabled. The active output clocks are disabled if this bit is 0.  
POWERDOWN Bit -- Device Power Down  
This bit can power down the entire device. Enabling this bit powers down the entire device and all functional  
blocks, regardless of the state of any of the other bits or pins.  
Table 21. Power Down Bit Values  
POWERDOWN Bit  
Mode  
0
1
Normal Operation  
Entire device powered down  
EN_PLL2 REF2X: PLL2 Frequency Doubler control bit  
When FOSCin is below 50 MHz, the PLL2 frequency doubler can be enabled by setting EN_PLL2_REF2X = 1. The  
default value is 0. When EN_PLL2_REF2X = 1, the signal at the OSCin port bypasses the PLL2_R counter and  
is passed through a frequency doubler circuit. The output of this circuit is then input to the PLL2 phase  
comparator block. This feature allows the phase comparison frequency to be increased for lower frequency  
OSCin sources (< 50 MHz), and can be used with either VXCOs or crystals. For instance, when using a pullable  
crystal of 12.288 MHz to drive the OSCin port, the PLL2 phase comparison frequency is 24.576 MHz when  
EN_PLL2_REF2X = 1. A higher PLL phase comparison frequency reduces PLL2 in-band phase noise and RMS  
jitter. The PLL in-band phase noise can be reduced by approximately 2 to 3 dB. The on-chip loop filter typically is  
enabled to reduce PLL2 reference spurs when EN_PLL2_REF2X is enabled. Suggested values in this case are:  
R3 = 600 Ω, C3 = 50 pF, R4 = 10 kΩ, C4 = 60 pF.  
PLL2 Internal Loop Filter Component Values  
Internal loop filter components are available for PLL2, enabling the user to implement either 3rd or 4th order loop  
filters without requiring external components. The user may select from a fixed set of values for both the resistors  
and capacitors. Internal loop filter resistance values for R3 and R4 can be set individually according to Table 22  
and Table 23.  
Table 22. PLL2 Internal Loop Filter Resistor Values, PLL2_R3_LF  
PLL2_R3_LF [2:0]  
RESISTANCE  
b2  
0
b1  
0
b0  
0
< 600 Ω  
10 kΩ  
20 kΩ  
30 kΩ  
40 kΩ  
Invalid  
Invalid  
Invalid  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
38  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Table 23. PLL2 Internal Loop Filter Resistor Values, PLL2_R4_LF  
PLL2_R4_LF [2:0]  
RESISTANCE  
b2  
0
b1  
0
b0  
0
< 200 Ω  
10 kΩ  
20 kΩ  
30 kΩ  
40 kΩ  
Invalid  
Invalid  
Invalid  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Internal loop filter capacitors for C3 and C4 can be set individually according to the following table.  
Table 24. PLL2 Internal Loop Filter Capacitor Values  
PLL2_C3_C4_LF [3:0]  
Loop Filter Capacitance(pF)  
b3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
b2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
b1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
b0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
C3 = 0, C4 = 10  
C3 = 0, C4 = 60  
C3 = 50, C4 = 10  
C3 = 0, C4 = 110  
C3 = 50, C4 = 110  
C3 = 100, C4 = 110  
C3 = 0, C4 = 160  
C3 = 50, C4 = 160  
C3 = 100, C4 = 10  
C3 = 100, C4 = 60  
C3 = 150, C4 = 110  
C3 = 150, C4 = 60  
Reserved  
Reserved  
Reserved  
Reserved  
PLL1 CP TRI-STATE and PLL2 CP TRI-STATE  
The charge pump output of either CPout1 or CPout2 may be placed in a TRI-STATE mode by setting the  
appropriate PLLx CP TRI-STATE bit.  
Table 25. PLL1 Charge Pump TRI-STATE bit values  
PLL1 CP TRI-STATE  
Description  
1
0
PLL1 CPout1 is at TRI-STATE  
PLL1 CPout1 is active  
Table 26. PLL2 Charge Pump TRI-STATE bit values  
PLL2 CP TRI-STATE  
Description  
1
0
PLL2 CPout2 is at TRI-STATE  
PLL2 CPout2 is active  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Register 14  
OSCin_FREQ: PLL2 Oscillator Input Frequency Register  
The frequency of the PLL2 reference input to the PLL2 Phase Detector (OSCin/OSCin* port) must be  
programmed in order to support proper operation of the internal VCO tuning algorithm. This is an 8-bit register  
that sets the frequency to the nearest 1-MHz increment.  
Table 27. OSCin_FREQ Register Values  
OSCin_FREQ [7:0]  
VALUE  
b7  
0
b6  
0
0
0
.
b5  
0
0
0
.
b4  
0
0
0
.
b3  
0
0
0
.
b2  
0
0
0
.
b1  
0
0
1
.
b0  
0
1
0
.
Not Valid  
1 MHz  
2 MHz  
...  
0
0
1
1
.
1
1
.
1
0
.
1
0
.
1
1
.
0
0
.
1
0
.
0
1
.
250 MHz  
Not Valid  
.
1
1
1
1
1
1
1
1
Not Valid  
PLL2_R: PLL2_R Counter  
The PLL2 R Counter is 12 bits wide. It divides the PLL2 OSCin/OSCin* clock and is connected to the PLL2  
Phase Detector.  
Table 28. PLL2_R: PLL2_R Counter Values  
R [11:0]  
VALUE  
b11  
0
b10  
0
b9  
0
b8  
0
b7  
0
b6  
0
b5  
0
b4  
0
b3  
0
b2  
0
b1  
0
b0  
0
Not Valid  
0
0
0
0
0
0
0
0
0
0
0
1
1
...  
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
1
1
1
1
1
1
1
4095  
PLL_MUX: LD Pin Selectable Output  
The signal appearing on the LD pin is programmable via the uWire interface and provides access to several  
internal signals which may be valuable for either status monitoring during normal operation or for debugging  
during the hardware development phase. This pin may be forced to either a HIGH or LOW state, and may also  
be configured as specified in Table 29.  
40  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Table 29. PLL_MUX: LD Pin Selectable Outputs  
PLL_MUX [4:0]  
LD Output  
b4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
b3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
b2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
b1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
b0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HiZ  
Logic High  
Logic Low  
PLL2 Digital Lock Detect Active High  
PLL2 Digital Lock Detect Active Low  
PLL2 Analog Lock Detect Push Pull  
PLL2 Analog Lock Detect Open Drain NMOS  
PLL2 Analog Lock Detect Open Drain PMOS  
Reserved  
PLL2_N Divider Output / 2  
Reserved  
PLL2_R Divider Output / 2  
Reserved  
Reserved  
PLL1 Digital Lock Detect Active HIGH  
PLL1 Digital Lock Detect Active LOW  
Reserved  
Reserved  
Reserved  
Reserved  
PLL1_N Divider Output / 2  
Reserved  
PLL1_R Divider Output / 2  
PLL1 and PLL2 Digital Lock Detect  
Inverted PLL1 and PLL2 Digital Lock Detect  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Register 15  
PLL2_N: PLL2_N Counter  
The PLL2_N Counter is 18 bits wide. It divides the output of the VCO Divider and is connected to the PLL2  
Phase Detector. Each time the PLL2_N Counter value is updated via the uWire interface, an internal algorithm is  
triggered that optimizes the VCO performance.  
Table 30. PLL2_N: PLL2_N Counter Values  
N [17:0]  
VALUE  
b17  
0
b16  
0
...  
...  
b6  
0
0
0
.
b5  
0
0
0
.
b4  
0
0
0
.
b3  
0
0
0
.
b2  
0
0
0
.
b1  
0
0
1
.
b0  
0
1
0
.
Not Valid  
0
0
1
0
0
2
...  
1
1
1
1
1
1
1
1
1
262143  
PLL2_CP_GAIN: PLL2 Charge Pump Current and Output Control  
The PLL2 charge pump output current level is controlled with the PLL2_CP_GAIN register. The following table  
presents the charge pump current control values.  
Table 31. PLL2_CP_GAIN: PLL2 Charge Pump Current Selections  
PLL2_CP_GAIN [1:0]  
CP_TRI  
Charge Pump Current (µA)  
b1  
X
0
b0  
X
0
1
0
0
0
0
Hi-Z  
100  
0
1
400  
1
0
1600  
3200  
1
1
VCO_DIV: PLL2 VCO Divide Register  
A divider is provided on the output of the PLL2 VCO to enable a wide range of output clock frequencies. The  
output of this divider is placed on the input path for the clock distribution section, which feeds each of the  
individual clock channels. The divider provides integer divide ratios from 2 to 8.  
Table 32. VCO_DIV: PLL2 VCO Divider Values  
VCO_DIV [3:0]  
Divide Value  
b3  
0
b2  
0
b1  
0
b0  
0
Invalid  
0
0
0
1
Invalid  
0
0
1
0
2
3
4
5
6
7
8
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
42  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
APPLICATION INFORMATION  
System Level Diagram  
The following diagram illustrates the typical interconnection of the LMK040xx in a clocking application.  
0.1 mF  
120Ö  
To  
To  
System  
System  
0.1 mF  
120Ö  
120Ö  
0.1 mF  
0.1 mF  
To  
System  
To  
System  
120Ö  
Vcc  
1 mF  
100 pF  
100 pF  
Bias  
Fout  
To  
System  
PLL2 Loop Filter  
CPout2  
51Ö  
LD  
(optional)  
GOE  
0.1 uF  
OSCin*  
OSCin  
LEuWire  
CLKuWire  
DATAuWire  
To Host  
LMK040xx  
0.1 mF  
R
term  
VCXO  
SYNC*  
CLKin1*  
CLKin1  
To Host  
0.1 mF  
LDObyp1  
100 Ö  
LDObyp2  
0.1 mF  
Reference Clock #2  
(Secondary)  
0.1 mF  
10 mF  
PLL1 Loop Filter  
0.1 mF  
0.1 mF  
0.47 mF  
100Ö  
To  
System  
Reference Clock #1  
(Primary)  
Figure 13. Typical Application  
Figure 13 shows an LMK04000 family device with external circuitry. The primary reference clock input is at  
CLKin0/0*. A secondary reference clock is driving CLKin1/1*. Both clocks are depicted as AC coupled differential  
drivers. The VCXO attached to the OSCin/OSCin* port is configured as an AC coupled single-ended driver. Any  
of the input ports (CLKin0/0*, CLKin1/1*, or OSCin/OSCin*) may be configured as either differential or single-  
ended. These options are discussed later in the data sheet.  
The diagram shows an optional connection between the LD pin and GOE. With this arrangement, the LD pin can  
be programmed to output a lock detect signal that is active HIGH (see Table 29 for optional LD pin outputs). If  
lock is lost, the LD pin will transition to a LOW, pulling GOE low and causing all clock outputs to be disabled.  
This scheme should be used only if disabling the clock outputs is desirable when lock is lost.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
The loop filter for PLL2 consists of three external components that implement two lower order poles, plus optional  
internal integrated components if 3rd or 4th order poles are needed. The loop filter components for PLL1 must be  
external components.  
The VCO output buffer signal that appears at the Fout pin when enabled (EN_Fout = 1) should be AC coupled  
using a 100 pF capacitor. This output is a single-ended signal by default. If a differential signal is required, a 50  
Ω balun may be connected to this pin to convert it to differential.  
The clock outputs are all AC coupled with 0.1 µF capacitors. CLKout1 and CLKout3 are depicted as LVPECL,  
with 120 Ω emitter resistors as source termination. However, the output format of the clock channels will vary by  
device part number, so the designer should use the appropriate source termination for each channel. Later  
sections of this data sheet illustrate alternative methods for AC coupling, DC coupling and terminating the clock  
outputs.  
LDO Bypass And Bias Pin  
The LDObyp1 and LDObyp2 pins should be connected to GND through external capacitors, as shown in the  
diagram. Furthermore, the Bias pin should be connected to VCC through a 1 µF capacitor in series.  
Loop Filter  
Each PLL of the LMK04000 family requires a dedicated loop filter. The loop filter for PLL1 must be connected to  
the CPout1 pin. Figure 14 shows a simple 2-pole loop filter. The output of the filter drives an external VCXO  
module or discrete implementation of a VCXO using a crystal resonator. Higher order loop filters may be  
implemented using additional external R and C components. It is recommended the loop filter for PLL1 result in a  
total closed loop bandwidth in the range of 10 Hz to 200 Hz. The design of the loop filter is application specific  
and highly dependent on parameters such as the phase noise of the reference clock, VCXO phase noise, and  
phase detector frequency for PLL1. National’s Clock Conditioner Owner’s Manual covers this topic in detail and  
National’s Clock Design Tool can be used to simulate loop filter designs for both PLLs. These resources may be  
found: http://www.national.com/timing/.  
As shown in the diagram, the charge pump for PLL2 is directly connected to the optional internal loop filter  
components, which are normally used only if either a third or fourth pole is needed. The first and second poles  
are implemented with external components. The loop must be designed to be stable over the entire application-  
specific tuning range of the VCO. The designer should note the range of KVCO listed in the table of Electrical  
Characteristics and how this value can change over the expected range of VCO tuning frequencies. Because  
loop bandwidth is directly proportional to KVCO, the designer should model and simulate the loop at the expected  
extremes of the desired tuning range, using the appropriate values for KVCO  
.
When designing with the integrated loop filter of the LMK04000 family, considerations for minimum resistor  
thermal noise often lead one to the decision to design for the minimum value for integrated resistors, R3 and R4.  
Both the integrated loop filter resistors and capacitors (C3 and C4) also restrict the maximum loop bandwidth.  
However, these integrated components do have the advantage that they are closer to the VCO and can therefore  
filter out some noise and spurs better than external components. For this reason, a common strategy is to  
minimize the internal loop filter resistors and then design for the largest internal capacitor values that permit a  
wide enough loop bandwidth. In situations where spurs requirements are very stringent and there is margin on  
phase noise, it might make sense to design for a loop filter with integrated resistor values larger than their  
minimum value.  
44  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
LMK040xx  
Internal VCO  
PLL2 Internal Loop Filter  
R3 R4  
PLL2  
Phase  
Detector  
C3  
C4  
C2  
PLL2 External Loop  
Filter  
C1  
R2  
LMK040xx  
External VCXO  
PLL1  
Phase  
CPout1  
Detector  
C2  
C1  
R2  
PLL1 External Loop  
Filter  
Figure 14. Loop Filter  
Table 33. Typical Current Consumption for Selected Functional Blocks  
Power  
Dissipated in  
LVPECL/2VPECL  
Emitter  
Typical ICC  
(Temp = 25 °C,  
VCC = 3.3 V)  
(mA)  
Power  
Dissipated in  
device  
Block  
Condition  
(mW)  
Resistors  
(mW)  
Single input clock (CLKIN_SEL = 0 or 1); LOS disabled;  
PLL1 and PLL2 locked; All CLKouts are off; No LVPECL  
emitter resistors connected  
Entire device,  
core current  
115  
380  
-
REFMUX  
LOS  
Enable auto-switch mode (CLKIN_SEL = 2 or 3)  
Enable LOS (LOS_TYPE = 1, or 2, or 3)  
4.3  
3.6  
14  
12  
-
-
Low Channel  
Internal Buffer  
The low channel internal buffer is enabled when CLKout0 is  
enabled  
10  
10  
33  
33  
-
-
High Channel  
Internal Buffer  
The high channel internal buffer is enabled when one of  
CLKout1 through CLKout4 is enabled  
Divider bypassed (CLKout_MUX = 0, 2)  
Divider enabled, divide = 2 (CLKout_MUX = 1, 3)  
Divider enabled, divide > 2 (CLKout_MUX = 1, 3)  
Delay bypassed (CLKout_MUX = 0, 1)  
Delay enabled, delay < 8 (CLKout_MUX = 2, 3)  
Delay enabled, delay > 7 (CLKout_MUX = 2, 3)  
EN_Fout = 1  
0
0
-
-
-
-
-
-
-
-
Divide circuitry  
per output  
5.3  
8.5  
0
17  
28  
0
Delay circuitry per  
output  
5.8  
9.9  
14.5  
19.3  
19  
33  
48  
64  
Fout Buffer  
LVDS Buffer  
LVDS buffer, enabled  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Power  
Table 33. Typical Current Consumption for Selected Functional Blocks (continued)  
Typical ICC  
(Temp = 25 °C,  
VCC = 3.3 V)  
(mA)  
Power  
Dissipated in  
device  
Dissipated in  
LVPECL/2VPECL  
Emitter  
Block  
Condition  
(mW)  
Resistors  
(mW)  
LVPECL/2VPECL buffer (enabled and with 120 Ω emitter  
resistors)  
40  
82  
47  
50  
25  
LVPECL/2VPECL  
Buffer  
LVPECL/2VPECL buffer (disabled and with 120 Ω emitter  
resistors)  
21.7  
LVPECL/2VPECL (disabled and with no emitter resistors)  
LVCMOS buffer static ICC, CL = 5 pF  
0
0
-
-
4.5  
15  
LVCMOS Buffer  
(1)  
LVCMOS buffer dynamic ICC, CL = 5 pF, CLKout = 100  
MHz  
16  
53  
-
(2) (3)  
Entire device  
LMK0400x  
379.5  
377.5  
1102  
996  
150  
250  
(Single input clock  
(CLKIN_SEL = 0  
or 1); LOS  
(2) (3)  
LMK0401x  
(2) (3)  
LMK0403x  
disabled; PLL1  
and PLL2 locked;  
Fout disabled; All  
CLKouts are on;  
No delay); Divide  
> 2 on each  
337.1  
1012  
100  
output.  
(1) Dynamic power dissipation of LVCMOS buffer varies with output frequency and can be found in the LVCMOS dynamic ICC vs frequency  
plot, as shown in Typical Performance Characteristics. Total power dissipation of the LVCMOS buffer is the sum of static and dynamic  
power dissipation. CLKoutXa and CLKoutXb are each considered an LVCMOS buffer.  
(2) Assuming ThetaJ = 27.4 °C/W, the total power dissipated on chip must be less than 40/27.4 = 1450 mW to guarantee a junction  
temperature is less than 125 °C.  
(3) Worst case power dissipation can be estimated by multiplying typical power dissipation with a factor of 1.2.  
Current Consumption / Power Dissipation Calculations  
Due to the myriad of possible configurations the following table serves to provide enough information to allow the  
user to calculate estimated current consumption of the device. Unless otherwise noted VCC = 3.3 V, TA = 25 °C.  
From Table 33 the current consumption can be calculated in any configuration. For example, the current for the  
entire device with 1 LVDS (CLKout0) & 1 LVPECL (CLKout1) output in bypassed mode can be calculated by  
adding up the following blocks: core current, clock buffer, one LVDS output buffer current, and one LVPECL  
output buffer current. There will also be one LVPECL output drawing emitter current, but some of the power from  
the current draw is dissipated in the external 120 Ω resistors which doesn't add to the power dissipation budget  
for the device. If delays or divides are switched in, then the additional current for these stages needs to be added  
as well.  
For power dissipated by the device, the total current entering the device is multiplied by the voltage at the device  
minus the power dissipated in any emitter resistors connected to any of the LVPECL outputs. If no emitter  
resistors are connected to the LVPECL outputs, this power will be 0 watts. For example, in the case of 1 LVDS  
(CLKout0) & 1 LVPECL (CLKout1) operating at 3.3 V, we calculate 3.3 V × (115 + 10 + 10 + 19.3 + 40) mA = 3.3  
V × 194.3 mA = 641.2 mW. Because the LVPECL output (CLKout1) has the emitter resistors hooked up and the  
power dissipated by these resistors is 50 mW, the total device power dissipation is 641.2 mW - 50 mW = 591.2  
mW.  
When the LVPECL output is active, ~1.7 V is the average voltage on each output as calculated from the LVPECL  
VOH & VOL typical specification. Therefore the power dissipated in each emitter resistor is approximately (1.7 V)2 /  
120 Ω = 25 mW. When the LVPECL output is disabled, the emitter resistor voltage is ~1.07 V. Therefore the  
power dissipated in each emitter resistor is approximately (1.07 V)2 / 120 Ω = 9.5 mW.  
46  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Power Supply Conditioning  
The recommended technique for power supply management is to connect the power pins for the clock outputs  
(pins 13, 37, 40, 43, and 46) to a dedicated power plane and connect all other power pins on the device (pins 3,  
8, 18, 19, 22, 24, 30, 31, and 33) to a second power plane. Note: the LMK04000 family has internal voltage  
regulators for the PLL and VCO blocks to provide noise immunity.  
Thermal Management  
Power consumption of the LMK04000 family of devices can be high enough to require attention to thermal  
management. For reliability and performance reasons the die temperature should be limited to a maximum of  
125 °C. That is, as an estimate, TA (ambient temperature) plus device power consumption times θJA should not  
exceed 125 °C.  
The package of the device has an exposed pad that provides the primary heat removal path as well as excellent  
electrical grounding to a printed circuit board. To maximize the removal of heat from the package a thermal land  
pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the  
package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package. A  
recommended land and via pattern is shown in Figure 15. More information on soldering WQFN packages can  
be obtained: http://www.national.com/analog/packaging/.  
5.0 mm, min  
0.33 mm, typ  
1.2 mm, typ  
Figure 15. Recommended Land and Via Pattern  
To minimize junction temperature it is recommended that a simple heat sink be built into the PCB (if the ground  
plane layer is not exposed). This is done by including a copper area of about 2 square inches on the opposite  
side of the PCB from the device. This copper area may be plated or solder coated to prevent corrosion but  
should not have conformal coating (if possible), which could provide thermal insulation. The vias shown in  
Figure 15 should connect these top and bottom copper layers and to the ground layer. These vias act as “heat  
pipes” to carry the thermal energy away from the device side of the board to where it can be more effectively  
dissipated.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
OSCin*  
C
opt  
C
C1  
= 2.2 nF  
R1 = 4.7k  
SMV1249-074LF  
R3 = 10k  
LMK040xx  
XTAL  
1 nF  
R2 = 4.7k  
C
= 2.2 nF  
C2  
OSCin  
C
opt  
PLL1 Loop Filter  
Figure 16. Reference Design Circuit for Crystal Oscillator Option  
Optional Crystal Oscillator Implementation (OSCin/OSCin*)  
The LMK04000 family features supporting circuitry for a discretely implemented oscillator driving the OSCin port  
pins. Figure 16 illustrates a reference design circuit for a crystal oscillator:  
This circuit topology represents a parallel resonant mode oscillator design. When selecting a crystal for parallel  
resonance, the total load capacitance, CL, must be specified. The load capacitance is the sum of the tuning  
capacitance (CTUNE), the capacitance seen looking into the OSCin port (CIN), and stray capacitance due to PCB  
parasitics (CSTRAY), and is given by:  
CSTRAY  
CL = CTUNE + CIN  
+
2
CTUNE is provided by the varactor diode shown in Figure 16, Skyworks model SMV1249-074. A dual diode  
package with common cathode and provides the variable capacitance for tuning. The single diode capacitance  
ranges from approximately 31 pF at 0.3 V to 3.4 pF at 3 V. The capacitance range of the dual package (anode to  
anode) is approximately 15.5 pF at 3 V to 1.7 pF at 0.3 V. The desired value of VTUNE applied to the diode should  
be VCC/2, or 1.65 V for VCC = 3.3 V. The typical performance curve from the data sheet for the SMV1249-074  
indicates that the capacitance at this voltage is approximately 6 pF (12 pF/2).  
The nominal input capacitance (CIN) of the LMK04000 family OSCin pins is 6 pF. The stray capacitance (CSTRAY  
)
of the PCB should be minimized by arranging the oscillator circuit layout to achieve trace lengths as short as  
possible and as narrow as possible trace width (50 Ω characteristic impedance is not required). As an example,  
assume that CSTRAY is 4 pF. The total load capacitance is nominally:  
4
2
= 14 pF  
CL = 6 + 6 +  
Consequently the load capacitance specification for the crystal in this case should be nominally 14 pF.  
48  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
The 2.2 nF capacitors shown in the circuit are coupling capacitors that block the DC tuning voltage applied by the  
4.7 k and 10 k resistors. The value of these coupling capacitors should be large, relative to the value of CTUNE  
(CC1 = CC2 >> CTUNE), so that CTUNE becomes the dominant capacitance.  
For a specific value of CL, the corresponding resonant frequency (FL) of the parallel resonant mode circuit is:  
1
+ 1  
C1  
2(C0 + CL1  
C0  
CL  
C1  
+ 1  
= FS À  
÷
FL = FS  
À
)
+
2 C  
1
«
FS = Series resonant frequency  
C1 = Motional capacitance of the crystal  
CL = Load capacitance  
C0 = Shunt capacitance of the crystal, specified on the crystal datasheet  
The normalized tuning range of the circuit is closely approximated by:  
1
1
-
FCL1 - FCL2  
C1  
2
1
2
1
1
DF  
F
C0 CL1  
+
C0 CL2  
+
À
-
«
’ ≈  
÷
À
=
=
=
(C0 + CL1  
)
(C0 + CL2)  
FFCL1  
÷ ∆C  
C1  
C1  
C1  
1
◊ «  
CL1, CL2 = The endpoints of the circuit’s load capacitance range, assuming a variable capacitance element is one  
component of the load. FCL1, FCL2 = parallel resonant frequencies at the extremes of the circuit’s load  
capacitance range.  
A common range for the pullability ratio, C0/C1, is 250 to 280. The ratio of the load capacitance to the shunt  
capacitance is ~(n * 1000), n < 10. Hence, picking a crystal with a smaller pullability ratio supports a wider tuning  
range because this allows the scale factors related to the load capacitance to dominate.  
Examples of the phase noise and jitter performance of the LMK04031 with a crystal oscillator are shown in  
Table 34. This table illustrates the clock output phase noise when a 12.288 MHz crystal is paired with PLL1.  
Table 34. Example RMS Jitter and Clock Output Phase Noise for LMK04031 with a  
(1)  
12.288 MHz Crystal Driving OSCin (T = 25 °C, VCC = 3.3 V)  
RMS Jitter (ps)  
Integration Bandwidth  
100 Hz – 20 MHz  
Clock Output Type  
PLL2 PDF = 12.288 MHz  
(EN_PLL2_REF2X = 0)  
PLL2 PDF = 24.576 MHz  
(EN_PLL2_REF2X = 1)  
FCLK = 122.88 MHz  
FCLK = 153.6 MHz  
0.263  
FCLK = 122.88 MHz  
0.300  
LVPECL  
LVCMOS  
LVDS  
0.279  
0.244  
0.248  
0.218  
0.272  
0.251  
0.269  
0.245  
10 kHz – 20 MHz  
LVPECL  
LVCMOS  
LVDS  
0.234  
0.284  
0.211  
0.215  
0.193  
0.236  
0.235  
0.217  
Phase Noise (dBc/Hz)  
Offset  
Clock Output Type  
PLL2 FPD = 12.288 MHz  
(EN_PLL2_REF2X = 0)  
PLL2 FPD = 24.576 MHz  
(EN_PLL2_REF2X = 1)  
FCLK = 122.88 MHz  
FCLK = 153.6 MHz  
FCLK = 122.88 MHz  
100 Hz  
LVPECL  
LVCMOS  
LVDS  
-107  
-105  
-105  
-106  
-103  
-104  
-106  
-104  
-106  
(1) Performance data and crystal specifications contained in this section are based on Ecliptek model ECX-6465, 12.288 MHz.  
Submit Documentation Feedback  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
Copyright © 2008–2011, Texas Instruments Incorporated  
49  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Table 34. Example RMS Jitter and Clock Output Phase Noise for LMK04031 with a  
12.288 MHz Crystal Driving OSCin (T = 25 °C, VCC = 3.3 V) (1) (continued)  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
LVPECL  
LVCMOS  
LVDS  
-126  
-125  
-126  
-125  
-127  
-126  
-134  
-135  
-134  
-155  
-157  
-155  
-158  
-160  
-158  
-124  
-124  
-123  
-124  
-125  
-124  
-133  
-133  
-132  
-154  
-155  
-153  
-158  
-159  
-158  
-130  
-127  
-126  
-131  
-128  
-131  
-134  
-134  
-134  
-154  
-155  
-154  
-158  
-159  
-157  
LVPECL  
LVCMOS  
LVDS  
LVPECL  
LVCMOS  
LVDS  
LVPECL  
LVCMOS  
LVDS  
10 MHz  
LVPECL  
LVCMOS  
LVDS  
Example crystal specifications are presented in Table 35.  
Table 35. Example Crystal Specifications  
Parameter  
Value  
Nominal Frequency (MHz)  
12.288  
Frequency Stability, T = 25 °C  
Operating temperature range  
Frequency Stability, -40 °C to +85 °C  
Load Capacitance  
± 10 ppm  
-40 °C to +85 °C  
± 15 ppm  
14 pF  
Shunt Capacitance (C0)  
Motional Capacitance (C1)  
Equivalent Series Resistance  
Drive level  
5 pF Maximum  
20 fF ± 30%  
25 Ω Maximum  
2 mWatts Maximum  
225 typical, 250 Maximum  
C0/C1 ratio  
See Figure 17 for a representative tuning curve.  
180  
140  
100  
60  
20  
-20  
-60  
-100  
-140  
-180  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
(VDC)  
V
TUNE  
Figure 17. Example Tuning Curve, 12.288 MHz Crystal  
50  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
 
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
The tuning curve achieved in the user's application may differ from the curve shown above due to differences in  
PCB layout and component selection.  
This data is measured on the bench with the crystal integrated with the LMK04000 family. Using a voltmeter to  
monitor the VTUNE node for the crystal, the PLL1 reference clock input frequency is swept in frequency and the  
resulting tuning voltage generated by PLL1 is measured at each frequency. At each value of the reference clock  
frequency, the lock state of PLL1 should be monitored to ensure that the tuning voltage applied to the crystal is  
valid.  
The curve shows over the tuning voltage range of 0.17 VDC to 3.0 VDC, the frequency range is ± 163 ppm; or  
equivalently, a crystal frequency range of ± 2000 Hz. The measured tuning voltage at the nominal crystal  
frequency (12.288 MHz) is 1.4 V. Using the diode data sheet tuning characteristics, this voltage results in a  
tuning capacitance of approximately 6.5 pF.  
The tuning curve data can be used to calculate the gain of the oscillator (KVCO). The data used in the calculations  
is taken from the most linear portion of the curve, a region centered on the crossover point at the nominal  
frequency (12.288 MHz). For a well designed circuit, this is the most likely operating range. In this case, the  
tuning range used for the calculations is ± 1000 Hz (± 0.001 MHz), or ± 81.4 ppm. The simplest method is to  
calculate the ratio:  
DF2 - DF1  
= V  
«
DF  
DV  
MHz  
V
÷,  
KVCO  
=
TUNE2 - VTUNE1  
ΔF2 and ΔF1 are in units of MHz. Using data from the curve this becomes:  
0.001 - (-0.001)  
2.03 - 0.814  
MHz  
V
= 0.00164  
A second method uses the tuning data in units of ppm:  
FNOM À (Dppm2 - Dppm1)  
DV À 106  
KVCO  
=
FNOM is the nominal frequency of the crystal and is in units of MHz. Using the data, this becomes:  
12.288 À (81.4 - (-81.4))  
MHz  
= 0.00164,  
(2.03 - 0.814) À 106  
V
In order to ensure startup of the oscillator circuit, the equivalent series resistance (ESR) of the selected crystal  
should conform to the specifications listed in the table of Electrical Characteristics. It is also important to select a  
crystal with adequate power dissipation capability, or drive level. If the drive level supplied by the oscillator  
exceeds the maximum specified by the crystal manufacturer, the crystal will undergo excessive aging and  
possibly become damaged. Drive level is directly proportional to resonant frequency, capacitive load seen by the  
crystal, voltage and equivalent series resistance (ESR). For more complete coverage of crystal oscillator design,  
see  
Application  
Note  
AN-1939  
at  
http://www.national.com/analog/timing/clocking  
or  
http://www.national.com/appnotes.  
Termination and use of Clock Output (Drivers)  
When terminating clock drivers keep in mind these guidelines for optimum phase noise and jitter performance:  
Transmission line theory should be followed for good impedance matching to prevent reflections.  
Clock drivers should be presented with the proper loads. For example:  
LVDS drivers are current drivers and require a closed current loop.  
LVPECL drivers are open emitters and require a DC path to ground.  
Receivers should be presented with a signal biased to their specified DC bias level (common mode voltage)  
for proper operation. Some receivers have self-biasing inputs that automatically bias to the proper voltage  
level. In this case, the signal should normally be AC coupled.  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
It is possible to drive a non-LVPECL or non-LVDS receiver with an LVDS or LVPECL driver as long as the above  
guidelines are followed. Check the datasheet of the receiver or input being driven to determine the best  
termination and coupling method to be sure that the receiver is biased at its optimum DC voltage (common mode  
voltage). For example, when driving the OSCin/OSCin* input of the LMK04000 family, OSCin/OSCin* should be  
AC coupled because OSCin/OSCin* biases the signal to the proper DC level (See Figure 13) This is only slightly  
different from the AC coupled cases described in Driving CLKin Pins with a Single-Ended Source because the  
DC blocking capacitors are placed between the termination and the OSCin/OSCin* pins, but the concept remains  
the same. The receiver (OSCin/OSCin*) sets the input to the optimum DC bias voltage (common mode voltage),  
not the driver.  
Termination for DC Coupled Differential Operation  
For DC coupled operation of an LVDS driver, terminate with 100 Ω as close as possible to the LVDS receiver as  
shown in Figure 18.  
CLKoutX  
100W Trace  
(Differential)  
LVDS  
Receiver  
LVDS  
Driver  
CLKoutX*  
Figure 18. Differential LVDS Operation, DC Coupling, No Biasing of the Receiver  
For DC coupled operation of an LVPECL driver, terminate with 50 Ω to VCC - 2 V as shown in Figure 19.  
Alternatively terminate with a Thevenin equivalent circuit (120 Ω resistor connected to VCC and an 82 Ω resistor  
connected to ground with the driver connected to the junction of the 120 Ω and 82 Ω resistors) as shown in  
Figure 20 for VCC = 3.3 V.  
Vcc - 2 V  
CLKoutX  
100W Trace  
(Differential)  
LVPECL  
Driver  
LVPECL  
Receiver  
CLKoutX*  
Vcc - 2 V  
Figure 19. Differential LVPECL Operation, DC Coupling  
Vcc  
CLKoutX  
100W Trace  
(Differential)  
LVPECL  
Driver  
LVPECL  
Receiver  
CLKoutX*  
Vcc  
Figure 20. Differential LVPECL Operation, DC Coupling, Thevenin Equivalent  
52  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
 
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
Termination for AC Coupled Differential Operation  
AC coupling allows for shifting the DC bias level (common mode voltage) when driving different receiver  
standards. Since AC coupling prevents the driver from providing a DC bias voltage at the receiver it is important  
to ensure the receiver is biased to its ideal DC level.  
When driving non-biased LVDS receivers with an LVDS driver, the signal may be AC coupled by adding DC  
blocking capacitors, however the proper DC bias point needs to be established at the receiver. One way to do  
this is with the termination circuitry in Figure 21.  
0.1 mF  
100W Trace  
CLKoutX  
(Differential)  
LVDS  
Receiver  
LVDS  
Driver  
Vbias  
CLKoutX*  
0.1 mF  
Figure 21. Differential LVDS Operation, AC Coupling, External Biasing at the Receiver  
Some LVDS receivers may have internal biasing on the inputs. In this case, the circuit shown in Figure 21 is  
modified by replacing the 50 Ω terminations to Vbias with a single 100 Ω resistor across the input pins of the  
receiver, as shown in Figure 22. When using AC coupling with LVDS outputs, there may be a startup delay  
observed in the clock output due to capacitor charging. The previous figures employ a 0.1 µF capacitor. This  
value may need to be adjusted to meet the startup requirements for a particular application.  
0.1 mF  
100W Trace  
(Differential)  
LVDS  
Receiver  
LVDS  
Driver  
0.1 mF  
Figure 22. LVDS Termination for a Self-Biased Receiver  
LVPECL drivers require a DC path to ground. When AC coupling an LVPECL signal use 120 Ω emitter resistors  
close to the LVPECL driver to provide a DC path to ground as shown in Figure 23. For proper receiver operation,  
the signal should be biased to the DC bias level (common mode voltage) specified by the receiver. The typical  
DC bias voltage for LVPECL receivers is 2 V. A Thevenin equivalent circuit (82 Ω resistor connected to VCC and  
a 120 Ω resistor connected to ground with the driver connected to the junction of the 82 Ω and 120 Ω resistors) is  
a valid termination as shown in Figure 23 for VCC = 3.3 V. Note this Thevenin circuit is different from the DC  
coupled example in Figure 20.  
Vcc  
CLKoutX  
0.1 mF  
100W Trace  
(Differential)  
LVPECL  
Receiver  
LVPECL  
Driver  
0.1 mF  
CLKoutX*  
Vcc  
Figure 23. Differential LVPECL Operation, AC Coupling, Thevenin Equivalent, External Biasing at the  
Receiver  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
 
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
Termination for Single-Ended Operation  
A balun can be used with either LVDS or LVPECL drivers to convert the balanced, differential signal into an  
unbalanced, single-ended signal.  
It is possible to use an LVPECL driver as one or two separate 800 mVpp signals. When using only one LVPECL  
driver of a CLKoutX/CLKoutX* pair, be sure to properly terminated the unused driver. When DC coupling one of  
the LMK04000 family clock LVPECL drivers, the termination should be 50 Ω to VCC - 2 V as shown in Figure 24.  
The Thevenin equivalent circuit is also a valid termination as shown in Figure 25 for Vcc = 3.3 V.  
Vcc - 2V  
CLKoutX  
50W Trace  
LVPECL  
Driver  
Vcc - 2V  
Load  
CLKoutX*  
50W  
Figure 24. Single-Ended LVPECL Operation, DC Coupling  
Vcc  
CLKoutX  
Vcc  
50W Trace  
LVPECL  
Driver  
CLKoutX*  
Load  
Figure 25. Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent  
When AC coupling an LVPECL driver use a 120 Ω emitter resistor to provide a DC path to ground and ensure a  
50 Ω termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL  
receivers is 2 V (See Driving CLKin Pins with a Single-Ended Source). If the companion driver is not used it  
should be terminated with either a proper AC or DC termination. This latter example of AC coupling a single-  
ended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or  
phase noise analyzer. When using most RF test equipment no DC bias point (0 VDC) is required for safe and  
proper operation. The internal 50 Ω termination of the test equipment correctly terminates the LVPECL driver  
being measured as shown in Figure 26.  
CLKoutX  
50W Trace  
0.1 mF  
LVPECL  
Driver  
0.1 mF  
CLKoutX*  
Load  
Figure 26. Single-Ended LVPECL Operation, AC Coupling  
54  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
 
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
DRIVING CLKin AND OSCin INPUTS  
Driving CLKin Pins with a Differential Source  
Both CLKin ports can be driven by differential signals. It is recommended that the input mode be set to bipolar  
(CLKinX_TYPE = 0) when using differential reference clocks. The LMK04000 family internally biases the input  
pins so the differential interface should be AC coupled. The recommended circuits for driving the CLKin pins with  
either LVDS or LVPECL are shown in Figure 27 and Figure 28.  
Figure 27. CLKinX/X* Termination for an LVDS Reference Clock Source  
Figure 28. CLKinX/X* Termination for an LVPECL Reference Clock Source  
Finally, a reference clock source that produces a differential sinewave output can drive the CLKin pins using the  
following circuit. Note: the signal level must conform to the requirements for the CLKin pins listed in the Electrical  
Characteristics table.  
CLKinX  
0.1 mF  
100W Trace  
LMK040XX  
Input  
(Differential)  
0.1 mF  
Differential  
Sinewave Clock  
Source  
CLKinX*  
Figure 29. CLKinX/X* Termination for a Differential Sinewave Reference Clock Source  
Driving CLKin Pins with a Single-Ended Source  
The CLKin pins of the LMK04000 family can be driven using a single-ended reference clock source, for example,  
either a sinewave source or an LVCMOS/LVTTL source. Either AC coupling or DC coupling may be used. In the  
case of the sinewave source that is expecting a 50 Ω load, it is recommended that AC coupling be used as  
shown in the circuit below with a 50 Ω termination..  
NOTE  
The signal level must conform to the requirements for the CLKin pins listed in the  
Electrical Characteristics table. CLKinX_TYPE in Register 11 is recommended to be set to  
bipolar mode (CLKinX_TYPE = 0).  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
0.1 mF  
50W Trace  
CLKinX  
LMK040XX  
Clock Source  
CLKinX*  
0.1 mF  
Figure 30. CLKinX/X* Single-ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKinX_TYPE should be set to MOS buffer mode  
(CLKinX_TYPE = 1) and the voltage swing of the source must meet the specifications for DC coupled, MOS-  
mode clock inputs given in the table of Electrical Characteristics. If AC coupling is used, the CLKinX_TYPE  
should be set to the bipolar buffer mode (CLKinX_TYPE = 0). The voltage swing at the input pins must meet the  
specifications for AC coupled, bipolar mode clock inputs given in the table of Electrical Characteristics. In this  
case, some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC  
coupling capacitor is sufficient.  
Figure 31. DC Coupled LVCMOS/LVTTL Reference Clock  
Additional Outputs with an LMK04000 Family Device  
The number of outputs on a LMK04000 family device can be expanded in many ways. The first method is to use  
the differential outputs as two single-ended outputs. For CMOS outputs, both the positive and negative outputs  
can be programmed to be in phase, or 180 degrees out of phase. LVDS/LVPECL positive and negative outputs  
are always 180 degrees out of phase. LVDS single-ended is not recommended.  
In addition to this technique, the number of outputs can be expanded with a LMK01000 family device. To do this,  
one of the clock outputs of a LMK04000 can drive the LMK01000 device.  
For more information on phase synchronization with multiple devices, please refer to application note AN-1864:  
http://www.national.com/an/AN/AN-1864.pdf.  
Output Clock Phase Noise Performance VS. VCXO Phase Noise  
The jitter cleaning capability of the LMK04000 family is highly dependent on the phase noise performance of the  
VCXO (or crystal) that is integrated with PLL1. The VCXO is the reference for PLL2 which provides the clock for  
the output distribution path. Consequently, the designer must choose a VCXO (or crystal) that supports the  
required performance at the clock outputs.  
An example of the difference in performance that can be obtained from various VCXOs is illustrated in the  
following plots. Figure 32 compares the phase noise of two different VCXOs: VCXO “A” and VCXO “B”. Both  
VCXOs have a center frequency of 100 MHz. The figure of merit, RMS jitter, is measured over the bandwidth  
100 Hz to 200 kHz. This is the most relevant integration bandwidth for the VCXO because it will have the most  
impact inside the loop bandwidth of PLL2.  
56  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
www.ti.com  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
ë/óh ^!_  
ë/óh ^._  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 32. VCXO Phase Noise Comparison, 100 MHz  
This plot shows that VCXO “B” exhibits superior phase noise when compared to VCXO “A”. Both VCXOs offer  
excellent jitter performance from 100 Hz to 200 kHz. VCXO “A” exhibits RMS jitter of 151 femtoseconds (fs),  
while VCXO “B” has RMS jitter of 90 fs.  
Figure 33 Figure 34 Figure 35 present a side-by-side comparison of clock output phase noise at 250 MHz,  
organized by output format and associated VCXO. The total RMS jitter listed on the plots is integrated from 100  
Hz to 20 MHz. Examining these plots, the clock output phase noise associated with VCXO “B” is superior in all  
cases. The average improvement in RMS jitter due to VCXO “B” is approximately 47 fs. The plots show the  
primary difference in clock output phase noise is in the band from 100 Hz to approximately 4 kHz. Across this  
range, the VCXO phase noise dominates that of the PLL, given the loop bandwidth of this design, which is 152  
kHz. Above 4 kHz, the PLL noise dominates (inside the loop bandwidth), so it is basically the same for either  
VCXO. Comparing the jitter of two VCXOs in the 100 Hz to 4 kHz band, it can be shown that VCXO “A” exhibits  
jitter of 142 fs, and VCXO “B” exhibits jitter of 90 fs. The difference, 52 fs, accounts for the majority of the  
average difference in RMS jitter at the clock outputs when comparing VCXOs.  
The PLL configurations listed below were the same for both VCXOs/LMK040xx pair:  
PLL1 loop filter components: C1 = 100 nF, C2 = 680 nF, R2 = 39 kΩ  
PLL1 fPD = 1 MHz, CP gain = 100 µA, loop BW = 20 Hz  
PLL2 loop filter components: C1 = 0, C2 = 12 nF, R2 = 1.8 kΩ  
PLL2 fPD = 25 MHz, CP gain = 3200 µA, loop BW = 152 kHz  
-80  
-90  
ë/óh ^!_, RMS jitter = 224 fs  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
ë/óh ^._, RMS jitter = 167 fs  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 33. LVDS Clock Output Phase Noise Comparison, 250 MHz  
Copyright © 2008–2011, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
 
LMK04000, LMK04001, LMK04002, LMK04010  
LMK04011, LMK04031, LMK04033  
SNOSAZ8J SEPTEMBER 2008REVISED SEPTEMBER 2011  
www.ti.com  
-80  
-90  
ë/óh ^!_, RMS jitter = 211 fs  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
ë/óh ^._, RMS jitter = 171 fs  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 34. LVPECL Clock Output Phase Noise Comparison, 250 MHz  
-80  
-90  
ë/óh ^!_, RMS jitter = 209 fs  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
ë/óh ^._, RMS jitter = 166 fs  
100  
1000  
10000  
100000  
1000000  
10000000  
100000000  
OFFSET (Hz)  
Figure 35. LVCMOS Clock Output Phase Noise Comparison, 250 MHz  
58  
Submit Documentation Feedback  
Copyright © 2008–2011, Texas Instruments Incorporated  
Product Folder Links: LMK04000 LMK04001 LMK04002 LMK04010 LMK04011 LMK04031 LMK04033  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04000BISQ/NOPB  
LMK04000BISQE/NOPB  
LMK04000BISQX/NOPB  
LMK04001BISQ/NOPB  
LMK04001BISQE/NOPB  
LMK04001BISQX/NOPB  
LMK04002BISQ/NOPB  
LMK04002BISQE/NOPB  
LMK04002BISQX/NOPB  
LMK04010BISQ/NOPB  
LMK04010BISQE/NOPB  
LMK04010BISQX/NOPB  
LMK04011BISQ/NOPB  
LMK04011BISQE/NOPB  
LMK04011BISQX/NOPB  
LMK04031BISQ/NOPB  
LMK04031BISQE/NOPB  
LMK04031BISQX/NOPB  
LMK04033BISQ/NOPB  
LMK04033BISQE/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
K04000BI  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
K04000BI  
K04000BI  
K04001BI  
K04001BI  
K04001BI  
K04002BI  
K04002BI  
K04002BI  
K04010BI  
K04010BI  
K04010BI  
K04011BI  
K04011BI  
K04011BI  
K04031BI  
K04031BI  
K04031BI  
K04033BI  
K04033BI  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04033BISQX/NOPB  
ACTIVE  
WQFN  
RHS  
48  
2500 RoHS & Green  
SN  
Level-3-260C-168 HR  
-40 to 85  
K04033BI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK04000BISQ/NOPB  
WQFN  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LMK04000BISQE/NOPB WQFN  
LMK04000BISQX/NOPB WQFN  
2500  
1000  
250  
LMK04001BISQ/NOPB  
WQFN  
LMK04001BISQE/NOPB WQFN  
LMK04001BISQX/NOPB WQFN  
2500  
1000  
250  
LMK04002BISQ/NOPB  
WQFN  
LMK04002BISQE/NOPB WQFN  
LMK04002BISQX/NOPB WQFN  
2500  
1000  
250  
LMK04010BISQ/NOPB  
WQFN  
LMK04010BISQE/NOPB WQFN  
LMK04010BISQX/NOPB WQFN  
2500  
1000  
250  
LMK04011BISQ/NOPB  
WQFN  
LMK04011BISQE/NOPB WQFN  
LMK04011BISQX/NOPB WQFN  
2500  
1000  
LMK04031BISQ/NOPB  
WQFN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK04031BISQE/NOPB WQFN  
LMK04031BISQX/NOPB WQFN  
RHS  
RHS  
RHS  
RHS  
RHS  
48  
48  
48  
48  
48  
250  
2500  
1000  
250  
178.0  
330.0  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
LMK04033BISQ/NOPB  
WQFN  
LMK04033BISQE/NOPB WQFN  
LMK04033BISQX/NOPB WQFN  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK04000BISQ/NOPB  
LMK04000BISQE/NOPB  
LMK04000BISQX/NOPB  
LMK04001BISQ/NOPB  
LMK04001BISQE/NOPB  
LMK04001BISQX/NOPB  
LMK04002BISQ/NOPB  
LMK04002BISQE/NOPB  
LMK04002BISQX/NOPB  
LMK04010BISQ/NOPB  
LMK04010BISQE/NOPB  
LMK04010BISQX/NOPB  
LMK04011BISQ/NOPB  
LMK04011BISQE/NOPB  
LMK04011BISQX/NOPB  
LMK04031BISQ/NOPB  
LMK04031BISQE/NOPB  
LMK04031BISQX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
RHS  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2500  
1000  
250  
2500  
1000  
250  
2500  
1000  
250  
2500  
1000  
250  
2500  
1000  
250  
2500  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK04033BISQ/NOPB  
LMK04033BISQE/NOPB  
LMK04033BISQX/NOPB  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
2500  
Pack Materials-Page 4  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY