LMK04610 [TI]

具有双 PLL 且符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器;
LMK04610
型号: LMK04610
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双 PLL 且符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器

时钟
文件: 总132页 (文件大小:2885K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
具有双环路 PLL 且符合 JESD204B 标准的 LMK04610 超低噪声和低功耗  
时钟抖动消除器  
1 特性  
–40ºC +85ºC 工业环境温度  
支持 105ºC PCB 温度(在散热焊盘上测量)  
1
双环路 PLL 架构  
超低噪声(10kHz 20MHz):  
LMK046108mm × 8mm VQFN-56 封装,间距为  
0.5mm  
1966.08MHz 频率下 48fs RMS 抖动  
983.04MHz 频率下 50fs RMS 抖动  
122.88MHz 频率下 61fs RMS 抖动  
2 应用  
LTE-BTS、小型蜂窝、远程射频单元 (RRU) 等无  
线基础设施  
122.88MHz 时具有 –165dBc/Hz 本底噪声  
JESD204B 支持  
数据转换器和集成收发器时钟  
网络、SONET/SDHDSLAM  
测试和测量  
一次性、脉冲和连续 SYSREF  
10 个差动输出时钟(处于 8 个频率组中)  
介于 700mVpp 1600mVpp 之间的可编程输  
出摆幅  
3 说明  
每个输出对可配置为 SYSREF 时钟输出  
16 位通道分频器  
LMK0461x 器件系列具有业界性能最高且功耗最低的  
抖动清除器,支持 JESD204B 接口。  
最小 SYSREF 频率为 25kHz  
最大输出频率为 2GHz  
器件信息(1)  
器件型号  
LMK04610  
VCO 频率  
精密数字延迟,动态可调  
5870MHz 6175MHz  
数字延迟 (DDLY) ½ × 时钟分配路径频率  
(最大 2GHz)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
60ps 步长模拟延迟  
50% 占空比输出分配,1 65535  
(偶数和奇数)  
简化原理图  
OSCout  
Multiple —clean“  
clocks at different  
frequencies  
VCXO  
LMX2582  
Recovered  
—dirty“ clock or  
clean clock  
PLL+VCO  
2 个基准输入  
CLKin0  
输入丢失时采用保持模式  
Backup  
Reference  
Clock  
CLKout9  
CLKout10  
FPGA  
LMK04610  
CLKin1  
自动和手动切换模式  
信号损失 (LOS) 检测  
CLKout5 &  
CLKout6  
CLKout1 &  
CLKout2  
10 个有源输出下的典型功耗为 0.88W  
DAC  
ADC  
CLKout7 &  
CLKout8  
CLKout3 &  
CLKout4  
通常由 1.8V(输出、输入)和 3.3V 电源(数字、  
PLL1PLL2_OSCPLL2 内核)供电  
Copyright © 2017, Texas Instruments Incorporated  
完全集成的可编程环路滤波器  
PLL2  
PLL2 相位检测器频率高达 250MHz  
OSCin 倍频器  
集成式低噪声 VCO  
内部功率调节:优于 –80dBc PSRR(在 VDDO  
上)(对于 122.88MHz 差动输出)  
3 线制或 4 线制 SPI 接口(4 线制为默认设置)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS699  
 
 
 
 
 
 
 
 
 
 
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
目录  
7.20 Typical Characteristics.......................................... 18  
Parameter Measurement Information ................ 20  
8.1 Differential Voltage Measurement Terminology ..... 20  
8.2 Output Termination Scheme ................................... 20  
Detailed Description ............................................ 22  
9.1 Overview ................................................................. 22  
9.2 Functional Block Diagram ....................................... 24  
9.3 Feature Description................................................. 25  
9.4 Device Functional Modes........................................ 52  
9.5 Programming........................................................... 54  
9.6 Register Maps......................................................... 56  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
8
9
10 Application and Implementation...................... 116  
10.1 Application Information........................................ 116  
10.2 Typical Application .............................................. 117  
10.3 Do's and Don'ts................................................... 119  
11 Power Supply Recommendations ................... 120  
11.1 Recommended Power Supply Connection ......... 120  
7.5 Digital Input and Output Characteristics (CLKin_SEL,  
STATUSx, SYNC, RESETN) ..................................... 9  
7.6 Clock Input Characteristics (CLKinX)........................ 9  
7.7 Clock Input Characteristics (OSCin) ....................... 10  
7.8 PLL1 Specification Characteristics ......................... 11  
7.9 PLL2 Specification Characteristics ......................... 11  
7.10 Clock Output Type Characteristics (CLKoutX)...... 12  
7.11 Oscillator Output Characteristics (OSCout) .......... 13  
11.2 Current Consumption / Power Dissipation  
Calculations............................................................ 120  
12 Layout................................................................. 121  
12.1 Layout Guidelines ............................................... 121  
12.2 Layout Example .................................................. 122  
13 器件和文档支持 ................................................... 123  
13.1 器件支持 ............................................................. 123  
13.2 接收文档更新通知 ............................................... 123  
13.3 社区资源.............................................................. 123  
13.4 ..................................................................... 123  
13.5 静电放电警告....................................................... 123  
13.6 Glossary.............................................................. 123  
14 机械、封装和可订购信息..................................... 123  
7.12 Jitter and Phase Noise Characteristics for CLKoutX  
and OSCout ............................................................. 14  
7.13 Clock Output Skew and Isolation Characteristics . 15  
7.14 Clock Output Delay Characteristics ...................... 15  
7.15 DEFAULT POWER on RESET CLOCK OUTPUT  
Characteristics ......................................................... 15  
7.16 Power Supply Characteristics ............................... 16  
7.17 Typical Power Supply Noise Rejection  
Characteristics ......................................................... 16  
7.18 SPI Interface Timing ............................................. 17  
7.19 Timing Diagram..................................................... 17  
4 修订历史记录  
Changes from Revision A (June 2017) to Revision B  
Page  
删除了双环路 PLL 架构 特性要点下的项目列表 ..................................................................................................................... 1  
添加了超低噪声 特性要点 ....................................................................................................................................................... 1  
VCO 频率单位从“5.8GHz 6.175GHz”更改为“5870MHz 6175MHz.......................................................................... 1  
Added LMK04616 device configuration information............................................................................................................... 4  
Changed VCO frequency from: 5800 MHz to: 5870 MHz...................................................................................................... 4  
Added PACKAGE column to device configuration information table ..................................................................................... 4  
Added LMK04616 row to device configuration information table ........................................................................................... 4  
Added Footnote and link to LMK04616 datasheet ................................................................................................................ 4  
Added OSCout polarity information to the OSCout/OSCout* pin description ........................................................................ 6  
Changed PLL1 phase detector maximum frequency from 40 MHz to 4 MHz ..................................................................... 11  
Changed VCO tuning range minimum from: 5800 to: 5870................................................................................................. 11  
Changed VOD symbol to VOD,pp to match mVpp units. .......................................................................................................... 12  
Changed VOD symbol to VOD,pp to match mVpp units. ......................................................................................................... 13  
Added content to the HSDS 4/6/8mA section ..................................................................................................................... 20  
Added content to the HCSL section .................................................................................................................................... 21  
Changed the VCXO Buffered Output section ...................................................................................................................... 22  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
修订历史记录 (接下页)  
Changed VCO frequency to 5870 MHz to 6175 MHz and updated max output frequency to 2058 MHz ........................... 23  
Added content to the Programmable Output Formats section ............................................................................................ 23  
Changed HSDS to LVPECL With Bias Voltage Vb graphic caption..................................................................................... 31  
Changed HCSL to LVPECL graphic..................................................................................................................................... 31  
Changed HSDS to LVPECL With Bias Voltage Vb graphic caption..................................................................................... 32  
Changed HSDS to LVPECL graphic .................................................................................................................................... 32  
Added content to the OSCout section ................................................................................................................................. 35  
Added OSCin to OSCout differential results in clock inversion from OSCin to OSCout. .................................................... 35  
Added Note to use TICS Pro EVM tool to calculate SDPLL loop filter values..................................................................... 38  
Changed PLL1_PROP max from 255 to 127. ..................................................................................................................... 38  
Added PLL1_PROP_FL to table. ......................................................................................................................................... 38  
Changed PLL1_FBCLK_INV and CLKinx_PLL1_INV for Low Pulse mode......................................................................... 38  
Changed PLL1_FBCLK_INV and CLKinx_PLL1_INV for High Pulse mode ....................................................................... 38  
Deleted Examples of PLL1 Setting....................................................................................................................................... 38  
Changed the tuning range of the oscillator from: 5800 MHz to: 5870 MHz ......................................................................... 40  
Added PLL2 DLD programming information and updated the PLLx DLD flowchart graphic .............................................. 41  
Changed PLL1_STORAGE_CELL description from 40-bit thermometer code to 6-bit decimal value ................................ 44  
Clarified CTRL_VCXO represented as PLL1_STORAGE_CELL value .............................................................................. 44  
Changed section from: Low Skew Mode to: Zero Delay Mode (ZDM) ................................................................................ 49  
Changed Set Prop/Store-CP from "fast lock" value to "non-fast lock" value at end of flowchart......................................... 51  
Deleted references to tunable crystal .................................................................................................................................. 52  
Deleted reference to CLKin2 and CLKin3 ........................................................................................................................... 52  
Deleted use of external VCO for PLL2................................................................................................................................. 52  
Added register 0x85, 0x86, 0xF6, and 0xAD for PLL2 DLD to recommended programming sequence ............................. 55  
Changed PLL1_PROP from 8 bit to 7 bit field in register map ............................................................................................ 59  
Changed PLL1_PROP_FL from 8 bit to 7 bit field in register map ..................................................................................... 59  
Changed PLL1_STORAGE_CELL 40 bit to 6 bit field. Not a 40 bit thermometer code. Set registers 0x66, 0x67,  
0x68, 0x69 to RSRVD in register map ................................................................................................................................ 59  
Changed PLL2_PROP from 8 bit to 6 bit field in register map ............................................................................................ 60  
Changed PLL2_INTG from 8 bit to 5 bit field in register map ............................................................................................. 60  
Added register 0xAC for field PLL1_TSTMODE_REF_FB_EN in register map................................................................... 61  
Added register 0xAD for fields RESET_PLL2_DLD, PLL2_TSTMODE_REF_FB_EN, and PD_VCO_LDO in register  
map....................................................................................................................................................................................... 61  
Added register 0xF6 for PLL2_DLD_EN in register map ..................................................................................................... 61  
Deleted unused DEVID values............................................................................................................................................. 65  
Changed reset value for CHIPID from 0x1 to 0x3................................................................................................................ 65  
Changed reset value for CHIPVER from 0x1 to 0x1B ......................................................................................................... 65  
Changed PLL1_PROP from 8 bit to 7 bit field in register definition .................................................................................... 85  
Changed PLL1_PROP_FL from 8 bit to 7 bit field in register definition .............................................................................. 85  
Deleted 'PLL1 Start-up in Holdover.' text from the PLL1_STARTUP_HOLDOVER_EN bit description .............................. 85  
Changed PLL2_PROP field size from 8 bits to 6 bits in register definition ......................................................................... 90  
Changed PLL2_INTG field from 8 bit to 5 bit field in register 0x80 definition ...................................................................... 92  
Added definition and requirement for setting PLL2_LD_WNDW_SIZE = 0 in register 0x85 definition ............................... 93  
Added definition and requirement for setting PLL2_LD_WNDW_SIZE_INITIAL = 0 in register 0x86 definition.................. 93  
Added note for using PLL1/2 REF/FB(SYS) status output for STAT0 ................................................................................ 96  
Added note for using PLL1/2 REF/FB(SYS) status output for STAT1 ................................................................................ 97  
版权 © 2017–2019, Texas Instruments Incorporated  
3
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
修订历史记录 (接下页)  
Added note for using PLL1/2 REF/FB(SYS) status output for SYNC ............................................................................... 100  
Added register 0xAC to register description. New field PLL1_TSTMODE_REF_FB_EN.................................................. 101  
Added register 0xAD to register description. New fields RESET_PLL2_DLD, PLL2_TSTMODE_REF_FB_EN, and  
PD_VCO_LDO.................................................................................................................................................................... 101  
Added register 0xF6 to register description. New field PLL2_DLD_EN............................................................................. 102  
Added register 0xF7 to register description. New field PLL2_DUAL_LOOP_EN .............................................................. 102  
Changed Channel 5 and 6 FBClock Buffers from: Low Skew to: Zero Delay Mode.......................................................... 112  
Changed registers for WINDOW SIZE and LOCK COUNT. Updated equation to reflect the more general WINDOW  
SIZE and LOCK COUNT names and count frequency. Removed reference to holdover. Updated descriptive text ........ 116  
Updated minimum lock time calculation example to reflect updated register names and count frequency ...................... 116  
Simplified HSDS format description .................................................................................................................................. 121  
Changes from Original (January 2017) to Revision A  
Page  
LMK04610 中删除了 16 个差动 输出 时钟和 6 个频率组特性 ........................................................................................... 1  
删除了 LMK04610 中的 4 个基准输入特............................................................................................................................. 1  
将文本从“–70dBc PSRR”更改为“–80dBc PSRR(在 VDDO 上).......................................................................................... 1  
SPI 接口默认设置从 3 线制更改为 4 线制.......................................................................................................................... 1  
VCO 频率从“5.8GHz 6.2GHz”更改为“5.8GHz 6.175GHz”........................................................................................ 1  
Changed VCO frequency from: 6200 MHz to: 6175 MHz...................................................................................................... 4  
Updated PLL1_CAP pin description....................................................................................................................................... 6  
Removed tablenote from the doubler input frequency parameter........................................................................................ 11  
Changed VCO tuning range maximum from: 6200 to: 6175................................................................................................ 11  
Changed tablenote text from: ATE tested at 2949.12 MHz to: ATE tested at 258 MHz...................................................... 11  
Removed the CLKin2/CLKin2*, and CLKin3/CLKin3* inputs from the LMK04610............................................................... 22  
Updated the Functional Block Diagram................................................................................................................................ 24  
Added content to the Driving CLKin and OSCin Pins With a Differential Source section.................................................... 28  
Changed text from: Either AC coupling or DC coupling may be used. to: The clock is internally AC-coupled.................... 29  
Updated Figure 36 ............................................................................................................................................................... 37  
Changed the tuning range of the oscillator from: 6200 MHz to: 6175 MHz ......................................................................... 40  
Updated Figure 49 ............................................................................................................................................................... 50  
Changed the caption title on Figure 53 ............................................................................................................................... 52  
Changed the caption title on Figure 54 ............................................................................................................................... 53  
Changed the caption title on Figure 55 ................................................................................................................................ 53  
5 Device Comparison Table  
Table 1. Device Configuration Information  
PLL2  
PROGRAMMABLE  
HCSL/HSDS  
REFEREN  
CE  
INPUTS  
OSCout (BUFFERED  
OSCin OR PLL2 CLOCK)  
HCSL/ HSDS/ LVCMOS  
PART NUMBER  
VCO FREQUENCY  
PACKAGE  
OUTPUTS  
LMK04610  
LMK04616  
2
4
1
1
10  
16  
5870 to 6175 MHz  
5870 to 6175 MHz  
VQFN-56  
NFBGA-144(1)  
(1) Refer to LMK04616 datasheet.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
6 Pin Configuration and Functions  
RTQ Package  
56-Pin VQFN  
Top View  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PLL1_CAP  
1
2
NC  
NC  
CTRL_VCXO  
VDD_PLL1  
3
NC  
VDD_PLL2OSC  
PLL2_VCO_LDO_CAP  
VDD_PLL2CORE  
PLL2_LDO_CAP  
VDD_CORE  
4
OSCin  
OSCin*  
5
6
VDD_OSC  
OSCout  
56 pin QFN  
Top down view  
7
8
OSCout*  
CLKin_SEL  
STATUS0  
9
10  
11  
12  
13  
14  
CLKin0  
STATUS1  
SDIO  
CLKin0*  
DAP = GND  
SCS*  
VDD_IO  
CLKin1  
CLKin1*  
SCL  
SYNC  
A. LMK04610  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Pin Functions: LMK04610(1)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
POWER  
Die attach pad.  
The DAP is an electrical connection and provides a thermal dissipation path. For proper  
electrical and thermal performance of the device, the DAP must be connected to the PCB  
ground plane.  
DAP  
DAP  
GND  
VDD_CORE  
VDD_IO  
8
P
P
P
P
P
P
P
P
P
P
P
P
3.3-V power supply for core  
31  
37  
40  
6
1.8-V to 3.3-V power supply for input block  
1.8-V to 3.3-V power supply for OSCout  
3.3-V power supply for PLL 1  
VDD_OSC  
VDD_PLL1  
VDD_PLL2CORE  
VDD_PLL2OSC  
VDDO_1/2  
VDDO_3/4  
VDDO_5  
3.3-V power supply for PLL 2  
4
3.3-V power supply for PLL2 VCO  
20  
25  
28  
43  
46  
51  
1.8-V to 3.3-V power supply for CLKout1 and CLKout2  
1.8-V to 3.3-V power supply for CLKout3 and CLKout4  
1.8-V to 3.3-V power supply for CLKout5  
1.8-V to 3.3-V power supply for CLKout6  
1.8-V to 3.3-V power supply for CLKout7 and CLKout8  
1.8-V to 3.3-V power supply for CLKout9 and CLKout10  
VDDO_6  
VDDO_7/8  
VDDO_9/10  
PLL  
CTRL_VCXO  
PLL1_CAP  
PLL2_LDO_CAP  
41  
42  
7
Analog  
Analog  
Analog  
VCXO control output  
PLL1 LDO capacitance - 10-µF external  
PLL2 LDO capacitance - 10-µF external  
PLL2_VCO_LDO_  
CAP  
5
Analog  
PLL2 LDO capacitance - 10-µF external  
INPUT BLOCK  
CLKin_SEL  
CLKin0  
34  
33  
32  
30  
29  
39  
38  
I
I
CMOS  
Analog  
Manual reference input selection for PLL1 weak pullup resistor.  
Reference clock input Port 0 for PLL1.  
CLKin0*  
CLKin1  
I
I
Analog  
Analog  
Reference clock input Port 1 for PLL1.  
CLKin1*  
OSCin  
Feedback to PLL1, reference input to PLL2.  
Accepts a differential or single-ended (VCXO)  
OSCin*  
OUTPUT BLOCK  
OSCout  
36  
35  
16  
17  
18  
19  
21  
22  
23  
24  
26  
27  
45  
44  
48  
47  
50  
49  
Buffered output of OSCin port. When using differential output mode, OSCout polarity is  
reversed from OSCin polarity.  
O
O
O
O
O
O
O
O
O
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
Programmable  
OSCout*  
CLKout1  
CLKout1*  
CLKout2  
CLKout2*  
CLKout3  
CLKout3*  
CLKout4  
CLKout4*  
CLKout5  
CLKout5*  
CLKout6  
CLKout6*  
CLKout7  
CLKout7*  
CLKout8  
CLKout8*  
Differential clock output pair 1.  
Differential clock output pair 2.  
Differential clock output pair 3.  
Differential clock output pair 4.  
Differential clock output pair 5.  
Differential clock output pair 6.  
Differential clock output pair 7.  
Differential clock output pair 8.  
(1) See Pin Connection Recommendations section for recommended connections.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Pin Functions: LMK04610(1) (continued)  
PIN  
I/O  
O
TYPE  
DESCRIPTION  
NAME  
NO.  
53  
CLKout9  
CLKout9*  
CLKout10  
CLKout10*  
Programmable  
Programmable  
Differential clock output pair 9.  
Differential clock output pair 10.  
52  
55  
O
54  
DIGITAL CONTROL / INTERFACES  
NC  
1, 2, 3, 56  
Not connect pin  
RESETN  
SCL  
15  
13  
12  
11  
9
I
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
CMOS  
Device reset input  
I
SPI serial clock.  
SCS*  
I
SPI serial chip select (active low).  
SPI serial data input or output  
SDIO  
I/O  
I/O  
I/O  
STATUS0  
STATUS1  
Programmable status pin. See STATUS0/1 and SYNC Pin Functions for more details.  
Programmable status pin. See STATUS0/1 and SYNC Pin Functions for more details.  
10  
Synchronization of output divider, definition of OSCout divider or programmable status  
pin. See STATUS0/1 and SYNC Pin Functions for more details.  
SYNC  
14  
I/O  
CMOS  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VDD_IO  
Supply voltage for input(3)  
Supply voltage for digital(3)  
Supply voltage for PLL1(3)  
3.6  
VDD_CORE  
VDD_PLL1  
3.6  
V
3.6  
V
VDD_PLL2CORE Supply voltage for PLL2 core  
3.6  
V
VDD_PLL2OSC  
VDD_OSC  
VDDO_x  
Supply voltage for PLL2 OSC(3)  
Supply voltage for OSCout(3)  
Supply voltage for CLKoutX  
3.6  
3.6  
V
V
3.6  
V
VIN_clk  
Input voltage for CLKinX and OSCin(3)  
(VDD_IO + 0.3)  
V
Input voltage for digital and status pins (CLKin_SEL, SCK, SDIO,  
SCS*, STATUSx, SYNC, RESETN)  
VIN_gpio  
–0.3  
2.1  
V
TL  
Lead temperature (solder 4 s)  
Junction temperature  
Input current  
+260  
125  
20  
°C  
°C  
TJ  
IIN  
mA  
MSL  
Tstg  
Moisture sensitivity level  
Storage temperature  
3
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress  
ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation  
sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.  
(3) Never to exceed 3.6 V.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
±2000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(3)  
Electrostatic  
discharge(1)  
V(ESD)  
V
Machine model  
±150  
(1) This device is a high performance RF integrated circuit with an ESD rating up to 2-kV human-body model, up to 150-V machine model,  
and up to 250-V charged-device model and is ESD sensitive. Handling and assembly of this device should only be done at ESD-free  
workstations.  
(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
TJ  
Junction temperature  
125  
85  
°C  
°C  
°C  
V
TA  
Ambient temperature  
–40  
25  
TPCB  
PCB temperature (measured at thermal pad)  
Supply voltage for input  
105  
VDD_IO  
1.7  
3.135  
3.135  
3.135  
3.135  
1.7  
1.8 3.465  
3.3 3.465  
3.3 3.465  
3.3 3.465  
3.3 3.465  
1.8 3.465  
1.8 3.465  
VDD_CORE  
VDD_PLL1  
VDD_PLL2CORE  
VDD_PLL2OSC  
VDD_OSC  
VDDO_x  
Supply voltage for digital  
V
Supply voltage for PLL1  
V
Supply voltage for PLL2 Core  
Supply voltage for PLL2 OSC  
Supply voltage for OSCout  
Supply voltage for CLKoutX  
V
V
V
1.7  
V
7.4 Thermal Information  
LMK04610  
THERMAL METRIC(1)  
RTQ (VQFN)  
56 PINS  
26.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
12.3  
4.6  
ψJT  
0.2  
ψJB  
4.6  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
7.5 Digital Input and Output Characteristics (CLKin_SEL, STATUSx, SYNC, RESETN)  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
High-level output voltage  
(STATUSX, SYNC)  
IOH = –500 µA  
1.8-V mode  
VOH  
VOL  
VOH  
VOL  
1.2  
1.9  
0.6  
1.9  
0.6  
V
V
V
V
Low-level output voltage  
(STATUSX, SYNC)  
IOL = 500 µA  
1.8-V mode  
0
1.2  
0
High-level output voltage  
(SDIO)  
IOH = –500 µA during SPI read  
1.8-V mode  
Low-level output voltage  
(SDIO)  
IOL = 500 µA during SPI read  
1.8-V mode  
High-level input voltage  
VIH  
1.3  
0
1.9  
V
(CLKin_SEL, STATUSX, SYNC,  
RESETN, SCK, SDIO, SCS*)  
Low-level input voltage  
(CLKin_SEL, STATUSX, SYNC,  
RESETN, SCK, SDIO, SCS*)  
VIL  
0.45  
V
V
Mid-level input voltage  
(CLKin_SEL, SYNC)  
VMID  
0.8  
–10  
10  
1.0  
10  
High-level input current  
VIH = 1.8 V  
(CLKin_SEL, RESETN)  
Internal pullup  
IIH  
µA  
Internal pulldown  
Internal pullup  
60  
Low-level input current  
VIL = 0 V  
(CLKin_SEL, RESETN)  
–60  
–10  
–10  
10  
IIL  
µA  
µA  
Internal pulldown  
High-level input current (SCK, SDIO,  
SCS*, SYNC)  
IIH  
VIH = VDD_IO  
–10  
10  
10  
Low-level input current (SCK, SDIO,  
SCS*, SYNC)  
IIL  
VIL = 0  
–10  
25  
µA  
ns  
tLOW  
RESETN pin held low for device reset  
7.6 Clock Input Characteristics (CLKinX)  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
Clock input frequency  
Differential input slew rate  
TEST CONDITIONS  
MIN  
5
TYP  
MAX UNIT  
(1)  
Single-ended, DC-coupled  
Single-ended, AC-coupled  
500  
(1)  
fCLKin  
5
500  
600  
MHz  
(2)  
Differential, AC-coupled  
5
(3)  
SLEWDIFF  
SLEWSE  
20% to 80%  
0.2  
0.1  
6
3
V/ns  
V/ns  
(3)  
Single-ended input slew rate  
20% to 80%  
DC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
0.5  
0.5  
3.3  
3.3  
VCLKin  
Single-ended input voltage  
Vpp  
AC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
(1) See Driving CLKin and OSCin Pins With a Single-Ended Source.  
(2) See Driving CLKin and OSCin Pins With a Differential Source.  
(3) To meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended differential slew rate for  
all input clocks is 3 V/ns; this is especially true for single-ended clocks. Phase noise performance begins to degrade as the clock input  
slew rate is reduced. However, the device functions at slew rates down to the minimum listed. When compared to single-ended clocks,  
differential clocks (LVDS, LVPECL) are less susceptible to degradation in phase noise performance at lower slew rates due to their  
common mode noise rejection. However, TI also recommends using the highest possible slew rate for differential clocks to achieve  
optimal phase noise performance at the device outputs.  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Clock Input Characteristics (CLKinX) (continued)  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(4)  
Peak-to-peak differential input voltage  
See Figure 9  
VID,pp  
IDC  
AC-coupled  
0.4  
3.3  
Vpp  
Input duty cycle  
45%  
50%  
55%  
No LOS state change with single-  
ended, peak-to-peak input voltage  
noise injects to either CLKinX or  
CLKinX* or to both in phase.  
Measured with 1-MHz sinusoidal  
signal  
Rejected input voltage noise during LOS  
condition  
VNoise  
40  
mV  
(4) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
7.7 Clock Input Characteristics (OSCin)  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX UNIT  
(2)  
Single-ended, AC-coupled  
300  
MHz  
600  
(1)  
fOSCin  
PLL2 reference input  
(3)  
Differential, AC-coupled  
10  
SLEWDIFF  
SLEWSE  
Differential input slew rate(4)  
Single-ended input slew rate(4)  
20% to 80%  
20% to 80%  
0.2  
0.1  
6
3
V/ns  
V/ns  
AC-coupled to OSCin;  
OSCin* AC-coupled to Ground  
VOSCin  
Single-ended input voltage  
0.5  
3.3  
Vpp  
Vpp  
Peak-to-peak differential input voltage(5)  
See Figure 9  
VID,pp  
IDC  
AC-coupled  
0.4  
3.3  
Input duty cycle  
45%  
50%  
55%  
(1) FOSCin maximum frequency assured by characterization. Production tested at 122.88 MHz.  
(2) See Driving CLKin and OSCin Pins With a Single-Ended Source.  
(3) See Driving CLKin and OSCin Pins With a Differential Source.  
(4) To meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended differential slew rate for  
all input clocks is 3 V/ns; this is especially true for single-ended clocks. Phase noise performance begins to degrade as the clock input  
slew rate is reduced. However, the device functions at slew rates down to the minimum listed. When compared to single-ended clocks,  
differential clocks (LVDS, LVPECL) are less susceptible to degradation in phase noise performance at lower slew rates due to their  
common mode noise rejection. However, TI also recommends using the highest possible slew rate for differential clocks to achieve  
optimal phase noise performance at the device outputs.  
(5) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
7.8 PLL1 Specification Characteristics  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fPD1  
PLL1 phase detector frequency  
CTRL_VCXO tune voltage  
4
MHz  
V
VTUNE  
0
3.3  
PLL 1/f noise at 10-kHz offset.  
Normalized to 1 GHz output  
frequency.  
10-Hz loop bandwidth  
–130  
–131  
PN10kHz  
dBc/Hz  
(1)  
300-Hz loop bandwidth  
BWmin  
BWmax  
Minimum PLL1 bandwidth  
Maximum PLL1 bandwidth  
3
Hz  
Hz  
300  
Measured with PLL1 only. PLL1  
Bandwidth set to 50 Hz. PLL1 PFD  
update frequency 1 MHz.  
PFDspur  
PLL1 PFD update spur  
–150  
–100 dBc/Hz  
(1) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10 dB/decade slope. PN10kHz is normalized to a 10-kHz offset and a 1-GHz carrier frequency. PN10kHz = LPLL_flicker(10  
kHz) – 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise,  
L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean  
crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
7.9 PLL2 Specification Characteristics  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
EN_PLL2_REF_2X = 1(1)  
OSCin duty cycle 40% to 60%  
;
fdoubler_max  
fPD2  
Doubler input frequency  
125  
250  
MHz  
MHz  
(2)  
Phase detector frequency  
PLL 1/f noise at 10-kHz offset.(3)  
Normalized to  
1-GHz output frequency  
PN10kHz  
fVCO  
400-kHz loop bandwidth  
–120  
dBc/Hz  
MHz  
°C  
VCO tuning range  
5870  
6175  
145  
After programming for lock, no changes  
to output configuration are permitted to  
assure continuous lock  
Allowable temperature drift for  
continuous lock(4)  
|ΔTCL  
|
BWmin  
BWmax  
Minimum PLL2 bandwidth  
Maximum PLL2 bandwidth  
90  
kHz  
kHz  
1000  
(1) The EN_PLL2_REF_2X bit enables/disables a frequency doubler mode for the PLL2 OSCin path.  
(2) Assured by characterization. ATE tested at 258 MHz.  
(3) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10 dB/decade slope. PN10kHz is normalized to a 10-kHz offset and a 1-GHz carrier frequency. PN10kHz = LPLL_flicker(10  
kHz) – 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise,  
L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean  
crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
(4) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value and still  
have the part stay in lock; this implies the part will work over the entire frequency range. However, if the temperature drifts more than  
the maximum allowable drift for continuous lock, it will be necessary to reload the appropriate register to ensure it stays in lock.  
Regardless of what temperature the part was initially programmed at, the temperature must never drift outside the frequency range of  
–40°C to 105°C without violating specifications.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
7.10 Clock Output Type Characteristics (CLKoutX)(1)  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
4-mA HSDS  
MIN  
TYP  
MAX UNIT  
1000  
6-mA HSDS  
1500  
MHz  
2000  
fCLKout  
Output frequency  
8-mA HSDS  
16-mA HCSL  
4-mA HSDS  
1500  
55%  
55%  
55%  
60%  
55%  
45%  
45%  
45%  
40%  
45%  
50%  
50%  
50%  
6-mA HSDS  
ODC  
Output duty cycle  
8-mA HSDS  
8-mA HSDS, >1.5 GHz  
16-mA HCSL  
50%  
148  
164  
148  
73  
4-mA HSDS  
245.76 MHz, 20%  
to 80%,  
RL = 100 Ω  
6-mA HSDS  
8-mA HSDS  
16-mA HCSL  
4-mA HSDS  
6-mA HSDS  
8-mA HSDS  
16-mA HCSL  
TR  
Output rise time  
ps  
149  
163  
146  
74  
245.76 MHz, 80%  
to 20%,  
RL = 100 Ω  
T F  
Output fall time  
ps  
4-mA HSDS  
6-mA HSDS  
8-mA HSDS  
16-mA HSCL  
4-mA HSDS  
6-mA HSDS  
8-mA HSDS  
16-mA HSCL  
4-mA HSDS  
6-mA HSDS  
8-mA HSDS  
16-mA HSCL  
4-mA HSDS  
6-mA HSDS  
8-mA HSDS  
16-mA HCSL  
0.5  
0.72  
0.75  
0.75  
0.1  
0.75  
1.06  
V
VOH  
Output high voltage  
Output low voltage  
Differential output voltage  
1.3  
1.04  
0.18  
0.15  
0.17  
0.0  
0.26  
V
VOL  
0.31  
0.05  
mVpp  
15  
958  
1380  
1544  
1807  
VOD,pp  
–15  
–20  
–90  
–15  
20  
Change in VOD for complementary  
output states  
ΔVOD  
mVpp  
115  
15  
(1) See test load description in Output Termination Scheme.  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
7.11 Oscillator Output Characteristics (OSCout)  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
2-pF load, 1.8-V LVCMOS(3)  
4-mA HSDS(3)  
MIN  
TYP  
MAX UNIT  
200  
800  
MHz  
1000  
fCLKout  
Output frequency(1) (2)  
8-mA HSDS(3)  
16-mA HCSL(3)  
400  
55%  
55%  
55%  
55%  
2-pF load, 1.8-V LVCMOS  
4-mA HSDS  
45%  
45%  
45%  
45%  
50%  
50%  
50%  
50%  
156  
ODC  
Output duty cycle  
Output rise/fall time  
Output high voltage  
8-mA HSDS  
16-mA HCSL  
20% to 80%, CL = 2 pF, 1.8 V LVCMOS  
80% to 20%, CL = 2 pF, 1.8 V LVCMOS  
273  
< 300 MHz, 20 % to 80 %, RL = 100 Ω,  
4-mA HSDS  
176  
152  
183  
300  
> 300 MHz, 20 % to 80 %, RL = 100  
Ω, 4-mA HSDS  
TR / T F  
ps  
< 300 MHz, 20% to 80%, RL = 100 Ω, 8-  
mA HSDS  
300  
> 300 MHz, 20 % to 80 %, RL = 100 Ω,  
8-mA HSDS  
138  
135  
20 % to 80 %, RL = 100 Ω, 16-mA HCSL  
1-mA load, 1.8-V LVCMOS  
4-mA HSDS  
1.44  
0.46  
0.82  
0.61  
0.7  
V
VOH  
8-mA HSDS  
1.19  
16-mA HCSL  
0.89  
0.36  
1-mA load, 1.8-V LVCMOS  
4-mA HSDS  
0.1  
0.22  
V
VOL  
Output low voltage  
8-mA HSDS  
0.11  
0.24  
16-mA HCSL  
0.02  
775  
1548  
1360  
–25  
26  
0.06  
950  
4-mA HSDS  
600  
1240  
1000  
VOD,pp  
Differential output voltage  
8-mA HSDS  
mVpp  
16-mA HCSL  
IOH  
IOL  
Output high current (source)  
Output low current (sink)  
VOUT = 2 pF to GND, 1.8-V LVCMOS  
VOUT = 2 pF to GND, 1.8-V LVCMOS  
DC-Coupled, 4-mA HSDS  
DC-Coupled, 8-mA HSDS  
DC-Coupled, 16-mA HCSL  
IOUT at VOUT = 0.9 V  
mA  
mA  
0.1  
0.3  
0.34  
0.55  
0.34  
67  
0.45  
VOX  
Output common mode  
Output impedance  
0.7  
V
ROUT  
Ω
(1) Assured by characterization. ATE tested to 122.88 MHz.  
(2) OSCout Divider maximum input frequency is 1.5 GHz.  
(3) See test load description in Output Termination Scheme.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
7.12 Jitter and Phase Noise Characteristics for CLKoutX and OSCout  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
HSDS 4 mA  
MIN  
TYP  
–166  
–166  
–166  
–165  
MAX UNIT  
HSDS 6 mA  
HSDS 8 mA  
Noise floor  
20-MHz offset  
HCSL 16 mA  
L(f)CLKout/OSCoutNF  
122.88 MHz  
dBc/Hz  
100-Hz loop bandwidth for PLL1  
400-kHz loop bandwidth for  
PLL2(1)  
OSCout, HSDS 4  
mA  
–161  
–161  
OSCout, HSDS 8  
mA  
OSCout, LVCMOS  
HSDS 4 mA  
–156  
–151  
–151  
–151  
Noise floor with analog delay  
enabled  
20-MHz offset  
100-Hz loop bandwidth for PLL1  
400-kHz loop bandwidth for  
PLL2(1)  
HSDS 6 mA  
122.88 MHz,  
maximum analog  
delay setting  
L(f)CLKoutNF,ADLY  
dBc/Hz  
HSDS 8 mA  
HCSL 16 mA  
–151  
Offset = 100 Hz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 800 kHz  
Offset = 1 MHz  
–97  
–126  
–139  
–147  
–158  
–159  
–166  
–165  
–97  
SSB phase noise(2)  
122.88-MHz output frequency  
100-Hz loop bandwidth for PLL1  
L(f)CLKoutPN  
dBc/Hz  
400-kHz loop bandwidth for PLL2  
(1) (3)  
HSDS 8 mA  
HCSL 16 mA  
Offset = 10 MHz  
Offset = 100 Hz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 10 MHz  
SSB phase noise  
122.88-MHz output frequency  
100-Hz loop bandwidth for PLL1  
–136  
–148  
–157  
–160  
–160  
160  
L(f)OSCoutPN  
dBc/Hz  
fs rms  
400-kHz loop bandwidth for PLL2  
(1) (3)  
HSDS 4 mA  
HSDS 8 mA  
fCLKout = 122.88 MHz  
Integrated RMS jitter  
100-Hz loop bandwidth for PLL1  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 10 kHz to 20 MHz  
HCSL 16 mA, BW = 100 Hz to 20 MHz  
HCSL 16 mA, BW = 10 kHz to 20 MHz  
75  
JCLKout  
160  
400-kHz loop bandwidth for PLL2  
(1) (4)  
75  
(1) VCXO used is a 122.88-MHz Crystek CVHD-950-122.880.  
(2) Phase noise is defined in dual-loop mode and in single PLL mode if OSCin is used as the ref input.  
(3) The input is configured to either a full swing AC-coupled, single-ended signal or a LVDS like AC-coupled differential signal. The input  
frequency is 122.88 MHz. VDD_IN is at 1.8 V.  
(4) PLL1 and PLL2 settings optimized to meet multicarrier GSM phase-noise specifications. For RMS jitter optimized settings, see PLL1 and  
PLL2.  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
7.13 Clock Output Skew and Isolation Characteristics  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Same format, after SYNC  
FCLK = 245.76 MHz, RL= 100 Ω, AC-coupled  
Maximum CLKoutX to  
CLKoutY  
|TSKEW  
|
60  
95  
|ps|  
Buffer mode  
fin=fout=122.88 MHz  
CLKout0_TYPE = HSDS 8 mA  
tPDCLKin0_  
CLKoutX  
Absolute propagation delay  
from CLKin0 to CLKout0  
3
ns  
CLKout2 = 7.68 MHz (SYSref, HSDS 8 mA,  
aggressor)  
CLKout3 = 122.88 MHz (DeviceClk, HSDS 8  
mA, victim)  
isolationSYSref-  
DeviceCLKtyp  
Isolation between a SYSref  
signal to a DeviceClk signal(1)  
–94  
dBc  
CLKoutX = 153.6 MHz (HSDS 8 mA,  
aggressor)  
CLKoutY = 122.88 MHz (HSDS 8 mA, victim)  
Isolation between 2 adjacent  
CLKout channels(1)  
isolationCLKoutXtyp  
–70  
–99  
–80  
–80  
dBc  
dBc  
dBc  
dBc  
OSCout = 30.72 MHz (HSDS 8 mA,  
aggressor)  
CLKoutY = 122.88 MHz (HSDS 8 mA, victim)  
isolationOSCout-  
CLKouttyp  
Isolation between OSCout and  
CLKoutX channels(1)  
PLL2 PFD update frequency = 122.88 MHz  
(aggressor)  
CLKoutX = 491.52 MHz (HSDS 8 mA, victim)  
Isolation between PLL2 PFD  
update and CLKoutX  
channels(1)  
isolationPLL2PFD-  
DeviceCLKtyp  
PLL2 PFD update frequency = 122.88 MHz  
(aggressor)  
CLKoutX = 1228.8 MHz (HSDS 8 mA, victim)  
(1) Isolation in the victim channel is measured at aggressor frequency in power spectrum relative to the carrier (victim). Measured with  
< 100-Hz resolution bandwidth. Internal LDO must be enabled.  
7.14 Clock Output Delay Characteristics  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fADLYmax  
Maximum analog delay frequency  
1st Analog delay step size  
Analog delay step size variation  
200  
MHz  
ps  
tstepADLY1st  
300  
66  
tstepADLYvariation  
tstepDDLY1.47456GHz  
tstepDDLYvariation  
Variation over all steps  
ps  
Digital delay step size at 1.47456 GHz Half-step enabled  
Digital delay step size variation  
339  
0
ps  
ps  
7.15 DEFAULT POWER on RESET CLOCK OUTPUT Characteristics  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40 °C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SYNC pin pulled Low at start up  
VCXO used is a 122.88-MHz  
Crystek CVHD-950-122.880  
Default OSCout clock frequency at device  
power on after RESETN = 1  
fCLKout-startup  
122.88  
MHz  
(1) (2)  
(1) Assured by characterization. ATE tested at 122.88 MHz.  
(2) OSCout will oscillate at start-up at the frequency of the VCXO attached to OSCin port. All other outputs are disabled.  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
7.16 Power Supply Characteristics  
3.135 V < VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE < 3.465 V;  
1.7 V < VDD_IO, VDD_OSC, VDDO_x < 3.465 V; –40°C < TA < 85°C and TPCB 105°C. Typical values at VDD_PLL2OSC,  
VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC, VDDOx = 1.8 V, TA = 25°C, at the Recommended  
Operating Conditions and are not assured.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IDD_PD  
Power-down supply current  
12  
20  
mA  
10 HSDS 8-mA clocks enabled at 122.88  
MHz  
OSCout disabled, LOS disabled  
PLL1 and PLL2 locked.  
122.88 MHz at CLKin0 and 122.88-MHz  
VCXO  
950  
1050  
mW  
PTotal  
Total power consumption(1)  
10 HSDS 4-mA clocks enabled at 122.88  
MHz  
OSCout disabled, LOS disabled  
PLL1 and PLL2 locked.  
122.88 MHz at CLKin0 and 122.88-MHz  
VCXO  
880  
950  
mW  
mA  
CLKoutX supply current  
(VDDO_3/4, VDDO_7/8)  
IDDO_X  
See PTotal Test Condition (HSDS 8-mA)  
41.1  
49.1  
IDDIO  
IO supply current  
See PTotal Test Condition (HSDS 8-mA)  
See PTotal Test Condition (HSDS 8-mA)  
See PTotal Test Condition (HSDS 8-mA)  
See PTotal Test Condition (HSDS 8-mA)  
See PTotal Test Condition (HSDS 8-mA)  
See PTotal Test Condition (HSDS 8-mA)  
5.3  
14.8  
45.5  
60.7  
22.5  
3.2  
8.4  
16.1  
52.0  
64.9  
28.6  
4.1  
mA  
mA  
mA  
mA  
mA  
mA  
IDD_PLL1  
PLL1 supply current  
PLL2 core supply current  
PLL2 OSC supply current  
Core supply current  
OSC supply current  
IDD_PLL2CORE  
IDD_PLL2OSC  
IDD_CORE  
IDD_OSC  
(1) See applications section Power Supply Recommendations for Icc for specific part configuration and how to calculate Icc for a specific  
design.  
7.17 Typical Power Supply Noise Rejection Characteristics  
Typical values at VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE = 3.3 V, VDD_IO, VDD_OSC,  
VDDOx = 1.8 V, TA = 25°C, at the Recommended Operating Conditions and are not assured. Sinusoidal noise injected in  
either of the following supply nodes: VDD_PLL2OSC, VDD_PLL1, VDD_PLL2CORE, VDD_CORE, VDD_IO, VDD_OSC, or  
VDDOx  
TEST  
CONDITION  
VDD_PLL2 VDD_PLL2  
VDD_OSC/  
VDD_IO  
PARAMETER  
VDD_PLL1  
VDD_CORE  
–104  
n/a  
VDDOx  
UNIT  
OSC  
CORE  
PSNR10kHz  
10-kHz spur on 122.88-  
MHz output  
dBc  
–59  
–94  
n/a  
–108  
n/a  
n/a  
25-mV ripple on  
supply.  
Single HSDS 8-  
mA  
PSNR100kHz 100-kHz spur on 122.88-  
MHz output  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
–71  
–87  
–81  
–80  
–88  
–81  
–75  
–74  
–101  
–90  
–83  
–109  
–98  
–84  
–77  
–101  
–93  
PSNR500kHz 500-kHz spur on 122.88-  
MHz output  
–87  
n/a  
n/a  
output enabled.  
PSNR1MHz  
1-MHz spur on 122.88-  
MHz output  
–100  
–53  
n/a  
n/a  
–88  
PSNR10kHz  
10-kHz spur on 122.88-  
MHz output  
–100  
n/a  
–104  
n/a  
–107  
–98  
50-mV ripple on  
supply.  
Single HSDS 8-  
mA output  
PSNR100kHz 100-kHz spur on 122.88-  
MHz output  
–65  
PSNR500kHz 500-kHz spur on 122.88-  
MHz output  
–81  
–108  
–104  
n/a  
–87  
enabled.  
PSNR1MHz  
1-MHz spur on 122.88-  
MHz output  
–94  
n/a  
–82  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
7.18 SPI Interface Timing  
TEST CONDITIONS  
See 1  
MIN  
10  
10  
50  
25  
25  
10  
30  
TYP  
MAX  
UNIT  
ns  
tds  
Setup time for SDI edge to SCLK rising edge  
tdH  
Hold time for SDI edge from SCLK rising edge  
Period of SCLK  
See 1  
See 1  
See 1  
See 1  
See 1  
ns  
tSCLK  
tHIGH  
tLOW  
tcs  
ns  
High width of SCLK  
ns  
Low width of SCLK  
ns  
Setup time for CS* falling edge to SCLK rising edge  
ns  
tcH  
Hold time for CS* rising edge from SCLK rising edge See 1  
SCLK falling edge to valid read back data See 1  
ns  
tdv  
20  
ns  
7.19 Timing Diagram  
Each serial interface access cycle is exactly (2 + N) bytes long, where N is the number of data bytes. A frame is  
initiated by asserting SCS* low. The frame ends when SCS* is de-asserted high. The first bit transferred is the  
R/W bit. The next 15 bits are the register address and the remaining bits are data. For all writes, data is  
committed in bytes as the 8th data bit of a data field is clocked in on the rising edge of SCL. If the write access is  
not an even multiple of 8 clocks, the trailing data bits are not committed. On read access, data is clocked out on  
the falling edge of SCL on the SDO pin.  
Four-wire mode read back has the same timing as the SDIO pin.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
See Programming for more details.  
SDIO  
(WRITE)  
D7 to D2  
R/W  
A14 to A0  
D1  
D0  
tdS  
tdH  
SCL  
tcH  
tcS  
tHIGH  
tLOW  
tSCLK  
SDIO  
(Read)  
D7 to  
D2  
D1  
D0  
Data valid only  
during read  
tdV  
SCS*  
1. SPI Timing Diagram  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
7.20 Typical Characteristics  
7.20.1 Clock Output AC Characteristics  
NOTE  
These plots show performance at frequencies beyond what the part is ensured to operate  
at to give the user an idea of the capabilities of the part, but they do not imply any sort of  
ensured specification.  
Figure 3. LMK0461x CLKout2 Phase Noise  
VCO = 5898.24 MHz  
Figure 2. LMK0461x CLKout2 Phase Noise  
VCO = 5898.24 MHz  
CLKout2 Frequency = 122.88 MHz  
HSDS 8 mA  
CLKout2 Frequency = 122.88 MHz  
HSDS 8 mA  
With PLL2 3rd Order Pole  
Figure 4. LMK0461x CLKout2 Phase Noise  
VCO = 5898.24 MHz  
Figure 5. LMK0461x CLKout2 Phase Noise  
VCO Frequency = 5898.24 MHz  
CLKout2 Frequency = 983.04 MHz  
HSDS 8 mA  
CLKout2 Frequency = 245.76 MHz  
HSDS 8 mA  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Clock Output AC Characteristics (continued)  
Figure 7. LMK0461x CLKout2 Phase Noise  
VCO Frequency = 6144 MHz  
CLKout2 Frequency = 1228.8 MHz  
HSDS 8 mA  
Figure 6. LMK0461x CLKout2 Phase Noise  
VCO Frequency = 5898.24 MHz  
CLKout2 Frequency = 1474.56 MHz  
HSDS 8 mA  
Figure 8. LMK0461x CLKout2 Phase Noise  
VCO Frequency = 5898.24 MHz  
CLKout2 Frequency = 1966.08 MHz  
HSDS 8 mA  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Differential Voltage Measurement Terminology  
The differential voltage of a differential signal can be described by two different definitions, causing confusion  
when reading data sheets or communicating with other engineers. This section addresses the measurement and  
description of a differential signal so the reader is able to understand and distinguish between the two different  
definitions when used.  
The first definition used to describe a differential signal is the absolute value of the voltage potential between the  
inverting and noninverting signal. The symbol for this first measurement is typically VID or VOD, depending on if  
an input or output voltage is being described.  
The second definition used to describe a differential signal is to measure the potential of the noninverting signal  
with respect to the inverting signal. The symbol for this second measurement is VSS and is a calculated  
parameter; this signal does not exist in the IC with respect to ground, it only exists in reference to its differential  
pair. VSS can be measured directly by oscilloscopes with floating references, otherwise this value can be  
calculated as twice the value of VOD as described in the first description.  
Figure 9 illustrates the two different definitions side-by-side for inputs and Figure 10 illustrates the two different  
definitions side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the noninverting  
and inverting signals toggle between with respect to ground. VSS input and output definitions show that if the  
inverting signal is considered the voltage potential reference, the noninverting signal voltage potential is now  
increasing and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the  
differential signal can be measured.  
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).  
V
ID  
Definition  
V
Definition for Input  
ID  
Non-Inverting Clock  
V
V
A
B
V
IDpp  
V
ID  
Inverting Clock  
V
= | V - V  
A
|
V
= 2·V  
IDpp ID  
ID  
B
GND  
Figure 9. Two Different Definitions for  
Differential Input Signals  
V
Definition  
V
Definition for Output  
OD  
OD  
Non-Inverting Clock  
V
V
A
B
V
ODpp  
V
OD  
Inverting Clock  
= | V - V  
V
|
V
= 2·V  
ODpp OD  
OD  
A
B
GND  
Figure 10. Two Different Definitions for  
Differential Output Signals  
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for  
more information.  
8.2 Output Termination Scheme  
This section describes the test loads setup during device characterization.  
8.2.1 HSDS 4/6/8mA  
Available on CLKoutX/CLKoutX* and OSCout/OSCout*. When OSCout is programmed for differential output from  
OSCin, the OSCout signal will be inverted from input.  
CPARA3 pF  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Output Termination Scheme (continued)  
The differential transmission line impedance is 100 Ω.  
Receiver  
CPARA  
50 Ohm  
50 Ohm  
VTERM  
Diff Microstrip  
HSDS  
CPARA  
Figure 11. HSDS Test and Simulation Circuit  
8.2.2 HCSL  
Available on CLKoutX/CLKoutX* and OSCout/OSCout*. When OSCout is programmed for differential output from  
OSCin, the OSCout signal will be inverted from input..  
CPARA 3 pF  
The differential transmission line impedance is 100 Ω.  
Receiver  
CPARA  
Rs (opt.)  
50 Ohm  
50 Ohm  
VTERM  
Diff Microstrip ~10cm  
HSCL  
50 Ohm  
CPARA  
Figure 12. HCSL Test and Simulation Circuit  
8.2.3 LVCMOS  
Available at STATUS0/1 and OSCout/OSCout*.  
CLoad = 10 pF  
RS is optional to adjust LVCMOS driver impedance to transmission line.  
The transmission line impedance is 50 Ω.  
High Impedance Probe  
Rs (opt.)  
Oscilloscope  
LVCMOS  
Microstrip ~10cm  
CLoad  
Figure 13. LVCMOS Test and Simulation Circuit  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LMK04610 device is very flexible in meeting many application requirements. The typical use case for  
LMK04610 is a cascaded Dual Loop Jitter Cleaner with optional support for JESD204B.  
NOTE  
While the Clock outputs (CLKoutX) do not provide LVCMOS outputs, the OSCout may be  
used to provide LVCMOS outputs.  
In addition to dual-loop operation, by powering down various blocks, the LMK04610 may be configured for single-  
loop or clock distribution modes also.  
9.1.1 Jitter Cleaning  
The dual-loop PLL architecture of LMK04610 provides the lowest jitter performance over a wide range of output  
frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external  
reference clock and uses an external VCXO to provide a frequency accurate, low phase noise reference clock for  
the second stage frequency multiplication PLL (PLL2).  
PLL1 typically uses a narrow loop bandwidth (typically 10 Hz to 200 Hz) to retain the frequency accuracy of the  
reference clock input signal while simultaneously suppressing the higher offset frequency phase noise that the  
reference clock may have accumulated along its path or from other circuits. This cleaned reference clock  
provides the reference input to PLL2.  
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically 90  
kHz to 500 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency  
phase noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO.  
Ultra-low jitter is achieved by allowing the external VCXO phase noise to dominate the final output phase noise  
at low offset frequencies and the internal VCO’s phase noise to dominate the final output phase noise at high  
offset frequencies. This results in best overall phase noise and jitter performance.  
9.1.2 Two Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*)  
The LMK04610 has two reference clock inputs for PLL1. They are CLKin0, CLKin1. The active clock is chosen  
based on CLKin_SEL_MODE. Automatic or manual switching can occur between the inputs.  
Fast manual switching between CLKin0 and CLKin1 reference clocks is possible with external pin CLKin_SEL.  
9.1.3 VCXO Buffered Output  
The LMK04610 provides OSCout, which by default is a buffered copy of the PLL1 feedback or PLL2 reference  
input. This reference input is typically a low noise VCXO. This output can be used to clock external devices such  
as microcontrollers, FPGAs, CPLDs, and so forth, before the LMK04610 is programmed.  
The OSCout buffer output types are LVCMOS, HSDS, and HCSL. When using HSDS and HCSL output from  
OSCin, the output will be inverted from OSCin input.  
OSCout has the option to fan out a copy of PLL2 output.  
9.1.4 Frequency Holdover  
LMK04610 supports holdover operation for PLL1 to keep the clock outputs on frequency with minimum drift when  
the reference is lost until a valid reference clock signal is re-established.  
9.1.5 Integrated Programmable PLL1 and PLL2 Loop Filter  
LMK04610 features programmable loop filter for PLL1 and PLL2. See PLL1 and PLL2.  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Overview (continued)  
9.1.6 Internal VCOs  
LMK04610 has an internal VCO in PLL2 with 5870 MHz to 6175 MHz tuning range. The output of the VCO is  
routed through a mandatory divider (by 3, by 4, by 5, or by 6) to the Clock Distribution Path. This limits the Clock  
Distribution Path frequency to 2058 MHz. This same clock is also fed back to the PLL2 phase detector through  
the N-divider (feedback divider).  
9.1.7 Clock Distribution  
The LMK04610 features a total of 10 PLL2 clock outputs driven from one of the internal VCOs.  
All PLL2 clock outputs have programmable output types. They can be programmed to HSDS or HCSL.  
If OSCout is included in the total number of clock outputs the LMK04610 is able to distribute up to 11 differential  
clocks.  
The following sections discuss specific features of the clock distribution channels that allow the user to control  
various aspects of the output clocks.  
9.1.7.1 Output Clock Divider  
The output divider supports a divide range of 1 to 65535 (even and odd) with 50% output duty cycle.  
9.1.7.2 Output Clock Delay  
The clocks include both a analog and digital delay for phase adjustment of the clock outputs.  
The analog delay allows a nominal 60-ps step size and range from 0 to 1.2 ns of total delay per output. See  
Analog Delay for further information.  
The digital delay allows an output channel to be delayed from 1 to 255 VCO cycles. The delay step can be as  
small as half the period of the clock distribution path. For example, 1.5-GHz clock distribution path frequency  
results in 333-ps coarse tuning steps. The coarse (digital) delay value takes effect on the clock outputs after a  
SYNC event. See Digital Delay for further information.  
1. Fixed Digital Delay (per output channel) – Allows all the output channels to have a known phase relationship  
upon a SYNC event. Typically performed at start-up.  
2. Dynamic Digital Delay (per output) – Allows additional coarse adjustment per output.  
9.1.7.3 Glitchless Half-Step and Glitchless Analog Delay  
The device clocks include a features to ensure glitchless operation of the Half-Step and analog delay operations  
when enabled.  
9.1.7.4 Programmable Output Formats  
All LMK0461x clock outputs (CLKoutX) can be programmed to an HSDS or HCSL output type. The OSCout can  
be programmed to an HSDS, HCSL, or LVCMOS output type.  
Any HSDS output type can be programmed to typical 800-, 1200-, or 1600-mVpp differential amplitude levels.  
When OSCout is programmed for differential output from OSCin, the OSCout signal will be inverted from input.  
9.1.7.5 Clock Output SYNChronization  
Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital  
delay.  
The SYNC event must occur for digital delay values to take effect.  
9.1.8 Status Pins  
The LMK0461x provides status pins that can be monitored for feedback or in some cases used for input,  
depending upon device programming. For example:  
Indication of the loss-of signal (LOS) for CLKinX.  
Indication of the selected active clock input.  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Overview (continued)  
PLL1 and PLL2 lock signal.  
Holdover Status.  
The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL  
lock detect signals, readback, and so forth. See Programming for more information.  
A full list of functions can be found in STATUS0/1 and SYNC Pin Functions.  
9.2 Functional Block Diagram  
Figure 14 illustrates the complete block diagram.  
VCXO  
VDD_PLL2CORE  
(1.8 - 3.3 V)  
VDD_PLL2OSC  
(3.3 V)  
VDD_OSC  
(1.8 - 3.3 V)  
VDD_PLL1  
(3.3 V)  
OSCin  
CTRL_VCXO  
PLL2_CAP0/1  
PLL1_CAP  
VDD_IO  
(1.8 - 3.3 V)  
CMOS & Diff  
P
M
U
X
Int. Div  
8 bit  
DRV  
OSCout  
SYNC & RST  
Input Stage  
2
CLKout1  
DRV  
DRV  
M
U
X
DIGITAL FSM  
LOS  
VDD1v8  
VDD3v3  
VDDO_1/2  
(1.8 - 3.3 V)  
SYNC & RST  
P
P
LDO  
PLL1  
LDO  
1v8/1V2  
CMOS  
&
Diff  
CLKin0  
CLKin1  
Ref Clk  
/R  
0 V t 3.3 V  
CLKout2  
M
U
X
Analg  
Prop-CP  
DIV  
Ctrl_VCXO  
CMOS  
&
Diff  
ADC/  
DAC  
MUX  
f
VDDO_3/4  
(1.8 - 3.3 V)  
SYNC & RST  
LDO  
OSCin  
/N  
Digital  
Strg-CP  
DIV  
DRV  
DRV  
CLKout3  
CLKout4  
Clock  
Control  
CLKin_SEL  
controls CLKin0/1  
VDD3v3  
VDD1v8  
(Digital Control)  
SD-PLL2  
LC-VCO  
LDO  
3v3/2v5  
LDO  
1v8/1V2  
INIT &  
RESET  
BIASING  
VDDO_5  
(1.8 - 3.3 V)  
SYNC & RST  
P
LDO  
x2  
M
U
X
REF  
PRE  
SCALER  
DRV  
DIVIDER  
CLKout5  
DRV  
Prop  
/R  
DIV  
REF  
(Digital  
Control)  
f
Storage  
S
/N  
DIV  
VDDO_6  
(1.8 - 3.3 V)  
SYNC & RST  
P
P
LDO  
Intgrl  
VDD_CORE  
(3.3 V)  
Control Voltage  
Supplies / BGAP / POR  
DRV  
REF  
CLKout6  
DRV  
VDDO_7/8  
(1.8 - 3.3 V)  
SYNC & RST  
LDO  
DRV  
DRV  
CLKout7  
CLKout8  
SYNC & SYSREF_REQ  
Generation  
Async SYSREF_REQ  
Async SYNC  
Input Stage  
Clock  
Control  
SDIO  
Boot-Up  
Holdover  
SCL  
SS  
Device  
Configuration  
Registers  
(PLL1/PLL2 Status & Test)  
SYNC & RST  
Output  
Channels  
JESD204B  
SYNC  
(Digital Status & Debug)  
CLKout9  
DRV  
RESET  
SYNC  
VDDO_9/10  
(1.8 - 3.3 V)  
SYNC & RST  
P
LDO  
Digital  
Device Control  
and Status  
CLKout10  
DRV  
STATUS1  
(LVCMOS)  
STATUS0  
(LVCMOS)  
Figure 14. Detailed LMK04610 Block Diagram  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3 Feature Description  
9.3.1 Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*)  
External VCXO  
VDD_IO  
Divider implemented  
in PLL1  
LOS  
R div  
8bit  
CLKin0  
R div  
8bit  
PLL1  
PLL2  
CLKin1  
Digital Logic  
- Pin Select  
- LOS detection  
CLKin_SEL  
Figure 15. LMK04610 Clock Input Block  
9.3.1.1 Input Clock Switching  
Manual, pin select, and priority or automatic are three different kinds clock input switching modes can be set with  
the CLKIN_SEL_MODE register.  
Below is information about how the active input clock is selected and what causes a switching event in the  
various clock input selection modes.  
9.3.1.1.1 Input Clock Switching – Register Select Mode  
When CLKIN_SEL_MODE = 2, then CLKin0 or CLKin1 is selected through register control (SW_REFINSEL[3:0]).  
If holdover is entered in this mode, then the device relocks to the selected CLKin upon holdover exit.  
Table 2. Active Clock Input – Register Select Mode (SW_REFINSEL[3:0])  
SW_REFINSEL[3:0]  
0100b  
ACTIVE CLOCK (LMK04610)  
CLKin0  
CLKin1  
1000b  
9.3.1.1.2 Input Clock Switching – Pin Select Mode (CLKin_SEL)  
When CLKIN_SEL_MODE = 1, the pin CLKin_SEL selects which clock input is active.  
Configuring Pin Select Mode  
The polarity of CLKin_SEL input pin can be inverted with the CLKinSEL1_INV bit.  
Table 3 defines which input clock is active depending on CLKin_SEL state.  
Table 3. Active Clock Input – Pin Select Mode (CLKin_SEL), CLKinSEL_INV = 0  
PIN CLKin_SEL  
ACTIVE CLOCK  
CLKin0  
Low  
High  
CLKin1  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.1.1.3 Input Clock Switching – Automatic Mode  
When CLKINSEL1_MODE = 0, the input clock switching is in automatic mode. The priority of each input clock  
can be individually set by programming CLKINx_PRIO[1:0] as shown in Table 4:  
Table 4. Clock Input Priority Selection  
CLKINx_PRIO[1:0]  
CLKINx  
00b  
01b  
10b  
Disabled  
Priority 1 (Highest)  
Priority 2 (Lowest)  
SPACER  
NOTE  
Equal priority setting for two CLKINx inputs are not allowed.  
The clock inputs in this mode are monitored by on-chip LOS detection circuits. The device reads the priority bits  
at start-up and locks to the input clock with highest priority. In the event of input clock loss, the internal PLL  
switches to the next available clock. TI recommends using holdover mode while using the automatic reference  
clock switching. See Holdover for programming the holdover mode.  
In this case, the outputs clocks see minimum disturbance while switching from one clock to the other. In the  
event of reference clock loss, the PLL1 enters the holdover mode. After the internal logic switches the PLL1 input  
clock to the next available clock as per priority setting, PLL1 holdover exit is initiated and PLL1 relocks to the  
new clock with minimum disturbance. Figure 16 describes the sequence of operations in the automatic reference  
clock switching mode while holdover is enabled and programmed.  
Lock State  
(CLKinX)  
CLKinX Priority Loop  
IN  
NO  
Switch to next  
highest priority  
CLKinZ  
LOSz = 0?  
YES  
NO  
Holdover LOS  
enabled?  
(PLL1_HOLDOVER_  
LOS_MASK=0)  
Configure CLKinX  
PLL1 R divider  
OUT  
YES  
Keep PLL1 R/N divider in Reset  
Assert PLL1 reset  
Release holdover status  
Release PLL1 R/N divider  
LOSX = 1?  
YES  
CLKinY disabled (optional)  
LOSY disabled (optional)  
Lock State  
(CLKinX)  
Figure 16. Input Clock Switching – Priority Loop  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.1.2 Loss of Signal Detection – LOS  
The loss of signal detection circuit is available for all clock inputs. It has programmable assertion and de-  
assertion cycles. LOS detection circuit reliable operation is ensured with >200-mVpp differential or >200-mV  
single-ended CLKin amplitude and input frequencies between 10 MHz to 500 MHz. Maximum input frequency for  
the doubler in the LOS block is 250 MHz. The ratio between VCXO frequency and input frequency must be  
between 0.25 and 4.  
9.3.1.2.1 LOS – Assertion  
LOS assertion time is programmable between 1 to 8 VCXO clock cycles. The LOS assertion time is programmed  
through  
CLKINx_LOS_LAT_SEL[7:0].  
LOS_LAT_SEL  
is  
an  
8-Bit  
code.  
Additionally,  
CLKINx_LOS_FRQ_DBL_EN bit controls the frequency doubler for the LOS block. This is especially important  
for VCXO frequencies equal or smaller than CLKinX frequency.  
For correct operation of LOS, the reference clock must be switched to logic low level (differential or single-  
ended).  
Example 1:  
LOS_LAT_SEL = 0010 0000  
LOS_LAT_SEL  
LOS_FRQ_DBL_EN = 0  
VCXO = 122.88 MHz  
CLKinX = 30.72 MHz  
LOS_FRQ_DBL_EN  
LOS_LAT_SEL  
CNT reset  
CNT reset  
LOS (internal)  
LOS detection 0.5 RefCLK Cycles  
Example 2:  
LOS_LAT_SEL = 0000 1000  
LOS_LAT_SEL  
LOS_FRQ_DBL_EN = 1  
LOS  
(internal)  
VCXO  
VCXO = 122.88 MHz  
CLKinX = 122.88 MHz  
x2  
CNT reset  
CNT reset  
LOS (internal)  
LOS detection 1 RefCLK Cycles  
CLKinX  
Example 3:  
LOS_LAT_SEL = 0000 0010  
LOS_FRQ_DBL_EN = 1  
LOS_LAT_SEL  
STATUSx  
VCXO = 30.72 MHz  
CLKinX = 122.88 MHz  
CNT reset  
LOS (internal)  
LOS detection 3 RefCLK Cycles  
Figure 17. LOS Detection  
Table 5. Recommended LOS Register Configurations  
CLKin TO OSCin FREQUENCY  
RATIO  
MAX LOS DETECTION  
LATENCY IN CLKin CYCLES  
LOS_LAT_SEL  
LOS_FRQ_DBL_EN  
0.25  
0010 0000b  
0000 1000b  
0000 1000b  
0000 0100b  
0000 0100b  
0000 0010b  
0
0
1
0
1
1
0.5  
1
0.5  
1
1
1 (OSCin 250MHz)  
2
2
4
2
3
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.1.2.2 LOS – Reference Clock Recovery  
LOS de-assertion can be programmed to 15 to 4095 reference clock cycles (CLKINx_LOS_REC_CNT[7:0]).  
Number of Cycles  
programmable  
CLKinX  
LOS (internal)  
LOS (STATUSx pin)  
Figure 18. LOS Deassertion  
9.3.1.3 Driving CLKin and OSCin Inputs  
9.3.1.3.1 Driving CLKin and OSCin Pins With a Differential Source  
The CLKin ports and OSCin can be driven by differential signals. TI recommends setting the input mode to  
differential (CLKINX_SE_MODE = 0) when using differential reference clocks. The LMK0461x internally AC  
couples the inputs. An optional AC-coupling cap can be connected as shown in input termination sachems. The  
recommended circuits for driving the CLKin or OSCin pins with either LVDS or LVPECL are shown in Figure 19  
and Figure 20.  
CLKinX/  
OSCin  
0.1 mF  
100W Trace  
(Differential)  
LMK046XX  
LVDS  
0.1 mF  
CLKinX*/  
OSCin*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Termination for an LVDS Reference Clock Source  
CLKinX/  
OSCin  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
100W Trace  
(Differential)  
LVPECL  
Ref Clk  
LMK046XX  
CLKinX*/  
OSCin*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. Termination for an LVPECL Reference Clock Source  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Also, a reference clock source can produce a differential sine wave output can drive the CLKin pins using  
Figure 21.  
NOTE  
The signal level must conform to the requirements for the CLKin pins listed in Clock Input  
Characteristics (CLKinX). CLKINX_SE_MODE is recommended to be set to differential  
mode (CLKINX_SE_MODE = 0).  
CLKinX/  
OSCin  
0.1 mF  
100W Trace  
(Differential)  
LMK046XX  
SINE  
0.1 mF  
CLKinX*/  
OSCin*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 21. CLKinX/X* Termination for a Differential Sinewave Reference Clock Source  
9.3.1.3.2 Driving CLKin and OSCin Pins With a Single-Ended Source  
The CLKin pins of the LMK0461x family can be driven using a single-ended reference clock source, like a sine  
wave source or an LVCMOS or LVTTL source. The clock is internally AC-coupled.. In the case of the sine wave  
source that is expecting a 50-Ω load, TI recommends using AC coupling as shown in Figure 22 with a 50-Ω  
termination.  
NOTE  
The signal level must conform to the requirements for the CLKin pins listed in Clock Input  
Characteristics (CLKinX). CLKINX_SE_MODE is recommended to be set to single-ended  
mode (CLKINX_SE_MODE = 1).  
CLKinX/  
OSCin  
0.1 mF  
50W Trace  
50W  
LMK046XX  
Clock Source  
CLKinX*/  
OSCin*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 22. CLKinX/X* and OSCin AC-Coupled Single-Ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS or LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKINX_SE_MODE should be set to single-ended buffer  
mode (CLKINX_SE_MODE = 1) and the voltage swing of the source must meet the specifications for  
DC-coupled, single-ended mode clock inputs given in Clock Input Characteristics (CLKinX). If AC coupling is  
used, the CLKINX_SE_MODE should be set to the differential buffer mode (CLKINX_SE_MODE = 0). The  
voltage swing at the input pins must meet the specifications for AC-coupled, differential mode clock inputs given  
in Clock Input Characteristics (CLKinX). In this case, some attenuation of the clock input level may be required. A  
simple resistive divider circuit before the AC-coupling capacitor is sufficient.  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
 
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
CLKinX  
50W Trace  
LMK046XX  
LVCMOS/LVTTL  
Clock Source  
CLKinX*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 23. DC-Coupled LVCMOS or LVTTL Reference Clock  
9.3.2 Clock Outputs (CLKoutX)  
This section describes all related features of the clock outputs.  
DUAL-CLK OUTPUT CHANNEL  
Channel Specific  
CLKoutX Specific  
HS_EN_CH_xy  
PLL_WRAPPER  
SD-PLL2  
OUTCHxy_DIV  
½
CYC  
DEL  
DDLY  
CLKoutX  
Clock  
Distribution Path  
ADLY  
PRE  
SCAL  
ER  
INV  
PF  
D
CLK  
CLK  
CMOS  
DIVID  
ER  
C
P
OUTCHxy_  
16-bit Divider  
CHx_ADLY  
DIV_INV  
RSTB  
DYN_DDLY_CHx  
FB  
DIV  
CHx_ADLY_EN  
DYN_DDLY_EN_CHx  
OUTCHx_DRIV_MODE  
CLKROOT  
CHxy_DDLY  
LDO  
VDDOxy  
SYNCronize  
SYNCronize  
SYNC TO ALL  
CHANNELS  
CLKoutY Specific  
SYNC | RESET  
SYSREF_REQ  
Static Digital Delay  
SYNC_EN_CHxy  
RSTB  
SYSREF_EN_CHxy  
Re-  
sampling  
SYNC  
DDLY  
CLKoutY  
ADLY  
INV  
CHx_SYNC  
CLK  
OUTCH_SYSREF_PLSCNT  
OUTCHxy_  
CHy_ADLY  
DYN_DDLY_CHy  
DIV_INV  
Re-  
sampling  
SYSREF Pulse  
Counter  
CHy_ADLY_EN  
DYN_DDLY_EN_CHy  
OUTCHy_DRIV_MODE  
CHx_SYSREF_REQ  
Figure 24. Clock Output Block and SYNC Clocking Path  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.2.1 HCSL  
Figure 25 shows a typical implementation for the HCSL output driver mode. HCSL requires external 50-Ω  
termination resistors. Optionally, source resistors in the range from 22 Ω to 33 Ω are employed to eliminate  
ringing.  
For HSCL outputs, set OUTCHxx_DRIV_MODE to 0x3F.  
Receiver  
CPARA  
Rs (opt.)  
50 Ohm  
VTERM  
Diff Microstrip ~10cm  
HSCL  
50 Ohm  
50 Ohm  
CPARA  
Figure 25. HCSL Output Termination  
Figure 26 and Figure 27 show different connection methods to a LVPECL receiver.  
Rs (opt.)  
HSCL  
LVPECL  
50 Ohm  
50 Ohm  
Vb  
Figure 26. HCSL to LVPECL With Bias Voltage Vb (Voltage as Required for Receiver Bias)  
3.3V  
82 Ohm  
Rs (opt.)  
HSCL  
LVPECL  
50 Ohm  
130 Ohm  
Figure 27. HCSL to LVPECL  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
 
 
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.2.2 HSDS  
HSDS does not need external output termination (see Figure 28).  
For HSDS: 8-mA outputs set OUTCHxx_DRIV_MODE to 0x18.  
For HSDS: 6-mA outputs set OUTCHxx_DRIV_MODE to 0x14.  
For HSDS: 4-mA outputs set OUTCHxx_DRIV_MODE to 0x10.  
Receiver  
CPARA  
50 Ohm  
VTERM  
Diff Microstrip  
HSDS  
50 Ohm  
CPARA  
Figure 28. HSDS Output Termination  
Figure 29 to Figure 31 show different connection methods to a LVPECL and LVDS receiver. In case of LVDS  
receivers, use HSDS 4-mA or HSDS 6-mA and for LVPECL use HSDS 8-mA setting.  
HSDS  
LVPECL  
50 Ohm  
Vb  
Figure 29. HSDS to LVPECL With Bias Voltage Vb (Voltage as Required for Receiver Bias)  
3.3V  
82 Ohm  
HSDS  
LVPECL  
130 Ohm  
Figure 30. HSDS to LVPECL  
HSDS  
100 Ohm  
LVDS  
Figure 31. HSDS to LVDS  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.2.3 SYNC  
See additional information about the SYNC pin in STATUS0/1 and SYNC Pin Functions.  
SYNC aligns all clock outputs to start at a common rising clock distribution path clock edge. Clocks divided by 1  
or divider bypass are not gated during the SYNC event.  
SYNC is not available in buffer mode.  
Clock Distribution  
Path (internal)  
CLKoutA  
(div by 1)  
tskew1  
CLKoutB  
(div by 2)  
No CLKout during SYNC  
CLKoutC  
(div by 5)  
CLKoutD  
(div by 5 + HS)  
Latency 1  
SYNC  
Latency 2  
SYNC asserted  
SYNC released  
Figure 32. SYNC Example  
9.3.2.4 Digital Delay  
Digital (coarse) delay allows an output to be delayed by 1 to 255 periods of the clock distribution path frequency.  
The delay step can be as small as half the period of the clock distribution path frequency by using the  
HS_EN_CHx bit.  
The digital delay step size calculates with: 1 / VCO frequency / prescaler  
1. Fixed digital delay (per output channel)  
2. Dynamic digital delay (per output)  
9.3.2.4.1 Fixed Digital Delay  
Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs are LOW for  
a while during the SYNC event. Applications that cannot accept clock breakup when adjusting digital delay  
should use dynamic digital delay.  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
 
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Clock Distribution  
Path  
No CLKout during SYNC  
CLKoutX  
2 Cycles DDLY  
CLKoutY  
3 Cycles DDLY  
1 Clock Distribution Path cycle delay  
Fixed Delay  
SYNC  
SYNC event  
Figure 33. Fixed Digital Delay Example  
Table 6. Digital Delay Register Controls  
REGISTER NAME  
DESCRIPTION  
HS_EN_CHx  
Enables a Half-Step for Channel X: 0.5 / VCO frequency / Prescaler  
Sets number of Digital Delay steps for Channel X. The channel delays 0 to 255 Clock  
Distribution Path periods compared to other channels.  
CHx_DDLY  
9.3.2.4.2 Dynamic Digital Delay  
Additionally, for the fixed digital delay per output channel, each output can be individually delayed using dynamic  
digital delay. Up to 5 periods of the clock distribution path frequency can be shifted.  
The setting applies without SYNC to the output.  
Table 7. Dynamic Digital Delay Register Controls  
REGISTER NAME  
DESCRIPTION  
DYN_DDLY_CHx_EN  
Enable CHx Dynamic Digital Delay.  
Sets number of Dynamic Digital Delay steps for Output X. The Output delays 0 to 5 Clock  
Distribution Path periods compared to other channels.  
DYN_DDLY_CHx  
9.3.2.5 Analog Delay  
Analog delay is available for all outputs. The typical step size is 60 ps and covers a total range of 1.3 ns.  
Table 8. Analog Delay Register Controls  
REGISTER NAME  
CHx_ADLY_EN  
CHx_ADLY  
DESCRIPTION  
Enables Analog Delay for Channel X.  
Analog Steps can be programmed from 0 to 15. The resulting delay is shown in Figure 34.  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
330  
300  
270  
240  
210  
180  
150  
120  
90  
306  
124  
95  
87  
60  
72  
71  
70  
64  
59  
59  
59  
57  
53  
50  
49  
45  
30  
0
Figure 34. Analog Delay  
9.3.3 OSCout  
The default function for OSCout is providing two buffered LVCMOS copies (in phase or complementary) of the  
external VCXO. Additionally, an 8-bit divider is integrated. The multiplexer selects the VCXO input or high-speed  
clock distribution tree. The output type can be programmed to HSDS, HCSL, and LVCMOS. See Output  
Termination Scheme for test load descriptions. When OSCout is programmed for differential output from OSCin,  
the OSCout signal will be inverted from input.  
NOTE  
External VCXO  
VCXO_CTRL  
OSCin  
Reference  
PLL1  
M
U
X
CMOS  
DIFF  
Integer Div  
8-bit  
OSCout  
PLL2  
Figure 35. OSCout Block  
9.3.3.1 Pin-Controlled OSCout Divider  
During power up (see Power-Up Sequence) after RESET = 1, the state of the SYNC pin is sampled. The input  
level determines the OSCout divider setting.  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
NOTE  
This function is only available after power up and RESET transition from LOW to HIGH.  
Table 9. Pin-Controlled OSCout Divider Settings  
SYNC PIN INPUT LEVEL AT POWER UP  
OSCout DIVIDER SETTING  
OR RESET TRANSITION FROM LOW TO HIGH  
LOW  
OPEN  
HIGH  
1
2
4
9.3.4 STATUS0/1 and SYNC Pin Functions  
Status and SYNC Pins supports 1.8-V logic and it can be configured as:  
Input  
Output  
Common STATUS0/1 and SYNC Pin Functions describes the common input and output pin functions.  
SYNC and STATUS0 have additional features that are restricted to the pins. See Additional SYNC Pin Functions.  
9.3.4.1 Common STATUS0/1 and SYNC Pin Functions  
Two status pins are available (STATUS0, STATUS1). STATUSx/SYNC_OUTPUT_HIZ = 1 configures the pins as  
input, while STATUSx/SYNC_OUTPUT_HIZ = 0 configures the pins as output. STATUSx/SYNC_INT_MUX  
register configures the pin functions in Table 10.  
Table 10. Common STATUS0/1 and SYNC Pin Functions  
FUNCTION  
SDO  
INPUT/OUTPUT  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
DESCRIPTION  
Serial Data Output for 4-wire SPI  
LD1 and LD2  
LD1  
Digital Lock Detect for PLL1 and PLL2  
Digital Lock Detect for PLL1  
LD2  
Digital Lock Detect for PLL2  
LD1 and LD2 and not Holdover  
LD1 and not Holdover  
LOS  
PLL1 Lock Detect and PLL2 Lock Detect and not PLL1 Holdover  
PLL1 Lock Detect and not PLL1 Holdover  
Output of LOS Block  
Holdover status  
Holdover Control  
Copy SYNC pin  
Copy CLKIN_SEL pin  
PLL2 Reference Clock  
PLL1_R  
Output of Holdover Status. High = Holdover. Low = Normal operation  
Manual Holdover entry through pin. See Holdover.  
Outputs a copy of SYNC pin  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Outputs a copy of CLKIN_SEL pin  
PLL2 Reference Clock (Copy of OSCin divided by PLL2 R)  
Output PLL1_R Clock Frequency  
PLL2_R  
Output PLL2_R Clock Frequency  
PLL1_N  
Output PLL1_N Clock Frequency  
PLL2_N  
Output PLL2_N Clock Frequency  
Logic High  
Logic Low  
9.3.4.2 Additional STATUS0 Pin Functions  
This chapter describes the additional functions that are available on STATUS0 pin only.  
Table 11. Additional STATUS0 Pin Functions  
FUNCTION  
INPUT/OUTPUT  
DESCRIPTION  
CLKIN_SEL0  
Input  
See for implementation details.  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.4.3 Additional SYNC Pin Functions  
This chapter describes the additional functions that are available on SYNC pin only.  
Table 12. Additional SYNC Pin Functions  
FUNCTION  
INPUT/OUTPUT  
DESCRIPTION  
Sampled Pin Logic state at power up configures default OSCout divider setting.  
Low level = divide by 1  
Mid level = divide by 2  
High level = divide by 4  
OSCout Div Control  
Input  
SYNC_PIN_FUNC=0 SYNC output channels. See SYNC  
SYNC_PIN_FUNC=1 Sysref Request  
SYNC  
Input  
SYNC_PIN_FUNC=2 Reset PLL1 N-/R-Dividers  
SYNC_PIN_FUNC=3 Reserved  
9.3.5 PLL1 and PLL2  
LMK0461x has two programmable PLLs. PLL1 is a very low bandwidth PLL with an external VCXO. The  
bandwidth of the PLL1 can be programmed from 3 Hz to 300 Hz. PLL2 is a high bandwidth PLL using an on-  
chip, very low phase noise LC VCO. PLL2 bandwidth can be programmed from 90 kHz to 1 MHz. The detailed  
description about the individual PLLs is provided in the following sections.  
9.3.5.1 PLL1  
PLL1 in LMK0461x is a very low bandwidth PLL. The PLL is a fully programmable, ultra-flexible design and is  
intended to be used for jitter cleaning of the noisy input clock. The PLL uses a semi-digital architecture and there  
is no need for external loop filter. The loop-filter has separated integral and proportional paths, which can be  
programmed individually to define the PLL transfer. There is a possibility to add higher order poles by connecting  
a capacitor outside the chip with a fixed on-chip resistor RCTRL. The block diagram of the PLL1 is shown in  
Figure 36. The PLL uses an external VCXO as a voltage controlled oscillator. Both positive and negative gain  
VCXOs are supported by LMK046xx.  
V
CTRL  
PLL1_PROP  
PROP  
RCTRL  
PLL_RDIV  
PFD  
INT  
PLL1_INTG  
PLL_NDIV  
PLL1_NDIV PROP_MODE  
Figure 36. PLL1 Block Diagram  
To reduce lock time, PLL1 supports two locking modes which can be individually configured by the user. When  
configured, PLL1 starts with Fastlock (with very high integral gain) and after lock, it switches to desired integral  
gain.  
PLL1 Bandwidth depends on the VCXO gain and loop parameters. LMK0461x PLLs are designed with active  
damping technique. For a given VCXO gain and divider settings, the bandwidth can be programmed by using the  
PLL1_PROP settings. The higher the value, the higher the bandwidth.  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 13 shows the internal PLL1 parameter, register and programming ranges. Use the TICS Pro EVM tool to  
calculate PLL1_PROP, PLL1_PROP_LF, PLL1_INTG, and PLL1_INTG_LF values.  
Table 13. PLL1 Parameter and Register  
PARAMETER  
REGISTER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
0x1B,0x1C,0X1D,0x1E,  
0x1F,0x20,0x21,0x22  
CLKINx_PLL1_RDIV  
Input clock divider for PLL1  
1
32771  
PLL1_NDIV  
PLL1_PROP  
PLL1_PROP_FL  
PLL1_INTG  
PLL1_INTG_FL  
RCTRL  
0x61,0x62  
0x5A  
Feedback clock divider for PLL1  
Proportional gain setting  
1
0
0
0
0
32771  
127  
127  
15  
0x5B  
Proportional gain setting for Fast Lock  
Integral gain setting  
0x59  
0
15  
0x59  
Integral gain setting for Fast Lock  
15  
500  
Ω
9.3.5.1.1 PLL1 Proportional Modes  
PLL1 bandwidth can be increased or decreased even further by using the different PROP modes (see Table 14).  
Table 14. PLL1 Proportional Modes  
PROP MODE  
REGISTER SETTINGS  
DUTY CYCLE OF CLOCK  
PLL1_RDIV_4CY = 0  
PLL1_NDIV_4CY = 0  
Default  
50%  
PLL1_RDIV_4CY = 1  
PLL1_NDIV_4CY = 1  
PLL1_FBCLK_INV = 1  
CLKINx_PLL1_INV = 1  
Low Pulse mode  
High Pulse mode  
(4/DIV) * 100  
PLL1_RDIV_4CY = 1  
PLL1_NDIV_4CY = 1  
PLL1_FBCLK_INV = 0  
CLKINx_PLL1_INV = 0  
(1-4/DIV) * 100  
In the default input mode, the proportional is effective for 50% of the PFD clock period. Using low pulse mode,  
the effect of the proportional is reduced which results in a reduced PLL bandwidth. Similarly, using the high pulse  
mode, the proportional is effective for more than half of the PFD cycle, which results in higher bandwidth.  
PLL1_INTG settings affect the integral gain in the loop. TI recommends using setting 0 in normal mode and  
higher settings only for Fast lock using PLL1_INTG_FL.  
9.3.5.1.2 PLL1 Higher Order Poles  
There are no external resistors and capacitors required for the low bandwidth PLL1. However, to introduce 3rd  
order pole in the loop, external capacitor C3 can be attached to the control voltage, which in combination with the  
on-chip resistor, creates a pole at the desired frequency. Higher order poles can also be introduced using  
external resistors and capacitors like in standard analog PLLs as shown in Figure 37.  
PLL1  
PLL1  
R1  
C3  
Figure 37. 3rd Order Loop Filter  
Figure 38. Higher Order Loop Filter  
38  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.5.2 PLL2  
The second PLL in LMK046xx is a high bandwidth PLL requiring no external components. The PLL contains a  
very low phase noise on chip LC-based Voltage controlled oscillator (VCO). The VCO is very flexible and full  
programmable. Similar to PLL1, PLL2 is also a semi-digital PLL designed with an active damping concept. The  
bandwidth of the PLL can be programmed between 90 kHz to 1 MHz. PLL2 also has separated integral and  
proportional paths to control the VCO. The 3rd order pole can also be introduced by selecting the integrated  
resistors and capacitors.  
The input clock frequency to the PLL2 can be doubled by using an integrated frequency doubler. Apart from that  
there are additional input modes possible to have more flexibility for bandwidth programming.  
LC VCO  
x2  
PRE  
SCALER  
DIVIDER  
Prop  
R DIV  
f
/N  
DIV  
Intgrl  
Figure 39. PLL2 Block Diagram  
9.3.5.2.1 PLL2 Divider  
PLL2 contains three dividers. Input clock can be divided down by using reference divider (PLL2_RDIV). Second  
divider is the high-frequency prescalar at the output of the VCO. Third divider is in the PLL feedback path which  
defines the PLL frequency multiplication ratio in combination with prescalar. Each of the three dividers is  
programmable with the registers as described in Table 15.  
Table 15. PLL2 Divider  
PARAMETER  
REGISTER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
PLL2_RDIV  
0x76  
Input clock divider for PLL2  
1
31  
Feedback clock divider for  
PLL2  
PLL2_NDIV  
0x73, 0x74  
0x146  
1
3
65535  
6
The prescaler defines the  
Clock Distribution Frequency.  
PLL2_PRESCALER  
9.3.5.2.2 PLL2 Input Modes  
PLL2 has four input modes which can be selected by the user. These modes give more flexibility to adjust the  
PLL2 bandwidth. See Table 16.  
Table 16. PLL2 Input Modes  
INPUT MODE  
DESCRIPTION  
Doubler Mode  
The Input clock gets multiplied by 2. The duty cycle of the clock is <50%.  
This mode is same like the doubler mode, where the input clock gets multiplied by 2, but the  
duty cycle of the output clock is >50%.  
Doubler invert mode  
Pulse mode  
RDIV mode  
The duty cycle of the input clock is adjusted to a fixed value and is >50%.  
The input divider is used to divide down the frequency with the range as shown in Table 15.  
Copyright © 2017–2019, Texas Instruments Incorporated  
39  
 
 
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.5.2.3 PLL2 Loop Filter  
PLL2 design is based on semi-digital PLL architecture where the proportional and integral parts are separated  
from each other. Proportional gain and integral gain can be individually programmed by the user to define the  
bandwidth and noise transfer characteristics of the PLL2 in combination with the input modes.  
Table 17. PLL2 Parameter and Register  
PARAMETER  
PLL2_PROP_SET  
PLL2_CPROP  
PLL2_INTG  
REGISTER  
0x72  
DESCRIPTION  
Proportional gain setting  
Proportional cap setting  
Integral gain setting  
MIN  
0
TYP  
MAX  
63  
UNIT  
0x151  
0x80  
3
5.4  
31  
pF  
0
PLL2_RFILT  
0x151  
0x153  
3rd order filter resistor selection  
3rd order filter capacitor selection  
4.7  
0
9.2  
124  
kΩ  
PLL2_CFILT  
15  
pF  
The proportional gain can be changed using PLL2_PROP and PLL2_CPROP. The difference between the two  
modes is, PLL2_PROP controls the proportional charge pump current to define the gain and PLL2_CPROP  
controls the on-chip capacitor used in active damping to define the proportional gain. Higher values of  
PLL2_PROP result in higher proportional gain and Higher PLL2_CPROP values result in lower proportional gain.  
9.3.5.2.4 PLL2 3rd Order Loop Filter  
PLL2 also has programmable on-chip 3rd order loop filter in the proportional path to create additional pole for  
better noise cutting, as shown in Figure 39. The resistor and capacitor value can be programmed as shown in  
Table 18.  
Table 18. 3rd Order Loop Filter  
PARAMETER  
DESCRIPTION  
PLL2_EN_FILTER=1 Enables resistor  
PLL2_RFILT=0 9.2 kΩ  
R3  
PLL2_RFILT=1 4.7 kΩ  
00000 0 pF  
00001 4 pF  
..  
C3  
PLL2_CFILT<5:0>  
11111 124 pF  
9.3.5.2.5 PLL2 Voltage Controlled Oscillator (VCO)  
PLL contains on chip very low phase noise LC oscillator. The tuning range of the oscillator is 5870 MHz to 6175  
MHz. The VCO is tuned to the target frequency using the semi-digital control by the PLL loop. Due to the semi-  
digital control, the PLL loops tracks the temperature and input frequency change with its loop bandwidth.  
40  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.5.2.6 Examples of PLL2 Setting  
This section shows PLL2 setting examples to generate given loop bandwidth.  
Table 19. PLL2 Settings  
PLL2_  
FIN_PLL2  
FVCO  
PLL2_RDIV  
PLL2_NDIV PRESCALER INPUT MODE PLL2_PROP PLL2_INTG  
R3, C3(1)  
CPROP  
5.4 pF  
5.4 pF  
5.4 pF  
5.4 pF  
122.88 MHz  
122.88 MHz  
30.72 MHz  
30.72 MHz  
5898.24 MHz  
5898.24 MHz  
5898.24 MHz  
5898.24 MHz  
1
1
1
1
4
4
6
6
6
6
Doubler Invert  
Doubler Invert  
Doubler Invert  
Doubler Invert  
20  
21  
20  
7
0
0
0
0
disabled, 0 pF  
4.7 kΩ, 96 pF  
disabled, 0 pF  
4.7 kΩ, 96 pF  
16  
16  
(1) See Table 18 for reference.  
9.3.5.3 Digital Lock Detect  
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference  
path (R) and the feedback path (N) of the PLL. When the time error (phase error) between the two signals is less  
than a specified window size (ε), a lock detect count increments.  
When the PLL1 lock detect count reaches a user specified value, PLL1_LOCKDET_CYC_CNT, lock detect is  
asserted true. Once digital lock detect is true, a single phase comparison outside the specified window causes  
the digital lock detect to be asserted false (see Figure 40).  
NO  
NO  
PLL1  
YES  
YES  
Increment  
PLL1 Lock Count  
PLL1  
PLL1 Lock Count =  
PLL1_LOCKDET_CYC_CNT  
START  
Lock Detected = False  
Lock Count = 0  
Phase Error < x  
Phase Error < x  
Lock Detected = True  
YES  
NO  
Figure 40. PLL1 Digital Lock Detect Flowchart  
PLL2 DLD requires register 0xF6 = 0x02, 0x85 = 0x00, and 0x86 = 0x00 set. Then to program register 0xAD for  
valid digital lock detect. See Recommended Programming Sequence. When the PLL2 lock detect count reaches  
a user specified value, PLL2_LOCKDET_CYC_CNT, lock detect is asserted true. Once digital lock detect is true,  
a single phase comparison outside the specified window causes the digital lock detect to be asserted false (see  
Figure 41).  
START  
Set Register 0xAD = 0x30  
Wait 20 ms  
Set Register 0xAD = 0x00  
NO  
NO  
PLL2  
YES  
YES  
Increment  
PLL2 Lock Count  
PLL2  
PLL2 Lock Count =  
PLL2_LOCKDET_CYC_CNT  
Lock Detected = False  
Lock Count = 0  
Phase Error < x  
Phase Error < x  
Lock Detected = True  
YES  
NO  
Figure 41. PLL2 Digital Lock Detect Flowchart  
This incremental lock detect count feature functions as a digital filter to ensure that lock detect isn't asserted for  
only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial  
phase lock.  
The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be  
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.  
Copyright © 2017–2019, Texas Instruments Incorporated  
41  
 
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
PLL (Analog Domain)  
Digital-Block (Digital Domain)  
LOCK_CYC_CNT  
Div2  
bypass  
WNDW  
CMP  
LOCK  
REF  
SYS  
SYNC  
CNT  
VDD  
Div2  
bypass  
WNDW  
CMP  
Figure 42. Digital Lock Detect Implementation  
9.3.5.3.1 Calculating Digital Lock Detect Frequency Accuracy  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Exiting  
Holdover for more info.  
9.3.6 Holdover  
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock  
reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed  
tuning voltage is set on CPout1 to operate PLL1 in open-loop.  
42  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.6.1 Holdover Flowchart  
Lock State  
(CLKinX)  
- CLKinY disabled (optional)  
- LOSY disabled (optional)  
NO  
NO  
NO  
NO  
Manual  
Holdover LOS  
Holdover Rail detect  
enabled?  
(PLL1_HOLDOVER_  
Holdover PLL1 DLD  
enabled?  
(PLL1_HOLDOVER_  
Holdover  
through Pin or  
Register?  
enabled?  
(PLL1_HOLDOVER_  
LOS_MASK=0)  
LCKDET_MASK=0)  
RAILDET_EN=1)  
CLKinX Priority Loop  
IN  
YES  
YES  
YES  
NO  
Switch to next  
highest Priority  
CLKinZ  
LOSz = 0?  
YES  
NO  
RAILDET_UPP <  
VCTRL <  
RAILDET_LOW?  
PLL1 LD = 0?  
LOSX = 1?  
NO  
NO  
- configure CLKinX  
PLL1 R Divider  
YES  
YES  
YES  
OUT  
YES  
CLKINSEL1_MODE =  
AUTO?  
- enable Holdover  
- enable Holdover status  
- hold last Vctrl value  
NO  
- enable Holdover  
- enable Holdover status  
- hold last Vctrl value  
YES  
- enable Holdover  
- enable Holdover status  
- hold last Vctrl value  
Start  
Holdover  
Counter  
YES  
Holdover  
Counter enabled?  
(PLL1_HOLDOVER_MAX  
_CNT_EN=1)  
Holdover Counter Loop  
NO  
NO  
Wait for SPI command to exit  
Holdover  
(Rail detect: PLL1_HOLDOVER_DLD_SWRST  
Deassert Pin or  
register?  
NO  
Holdover  
counter  
elapsed?  
NO  
LOSX = 0?  
LOSX = 0?  
NO  
or  
PLL1 Loss of Lock:  
CLKinX Priority  
Loop  
PLL1_HOLDOVER_LOCKDET_SWRST)  
YES  
YES  
YES  
YES  
- configure CLKinX  
PLL1 R Divider  
CLKinX Priority  
Loop  
- keep PLL1 R/N Divider in Reset  
- assert PLL1 reset  
- release Holdover Status  
- release PLL1 R/N Divider  
- CLKinY disabled (optional)  
- LOSY disabled (optional)  
Register Setting  
Lock State  
(CLKinX)  
Figure 43. Holdover Flowchart Using LOS  
9.3.6.2 Enable Holdover  
Program HOLDOVER_EN = 1 to enable holdover mode for PLL1.  
9.3.6.2.1 Automatic Tracked CTRL_VCXO Holdover Mode  
In holdover mode, PLL1 retains the last used control voltage.  
Copyright © 2017–2019, Texas Instruments Incorporated  
43  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.6.3 Enter Holdover  
Holdover can be entered through different events.  
LOS_x detects reference loss.  
PLL1 DLD detects PLL1 unlock.  
CTRL_VCXO rail detect.  
Manual through register control  
Manual through pin  
Start-up into holdover  
9.3.6.3.1 LOS_x Detect  
Enter holdover if reference is lost.  
9.3.6.3.2 PLL1 DLD Detect  
Enter holdover if PLL1 is unlocked.  
9.3.6.3.3 CTRL_VCXO Rail Detect  
Rail detection allows to set upper and lower boundaries for the tuning voltage.  
Once the boundaries are touched, the device enters holdover mode if this feature is enabled. The boundaries get  
compared against the current 6-bit value of the PLL1 storage cells array, PLL1_STORAGE_CELL. It can be  
determined whether the boundaries are absolute or relative boundaries.  
Enter holdover if CTRL_VCXO represented as PLL1_STORAGE_CELL crosses a programmable high or low limit  
of CTRL_VCXO.  
If PLL1_STORAGE_CELL RAILDET_LOW, then go to holdover or into normal operation.  
If PLL1_STORAGE_CELL RAILDET_UPP, then go to holdover or into normal operation.  
CTRL_VCXO_HIGH/LOW_RAIL granularity is 82.5 mV.  
9.3.6.3.3.1 Absolute Limits  
RAILDET_LOW and RAILDET_UPP values are considered as absolute numbers, being compared against  
current storage value.  
9.3.6.3.3.2 Relative Limits  
RAILDET_LOW and RAILDET_UPP values are considered as relative numbers. After PLL1 has locked the  
current storage value is added to the relative numbers to form the absolute boundary.  
9.3.6.3.4 Manual Holdover Enable – Register Control  
When PLL1_HOLDOVER_FORCE is 1 PLL1 enters holdover mode regardless of other conditions.  
9.3.6.3.5 Manual Holdover Enable – Pin Control  
The SYNC control pin can be programmed to control the entry and exit of holdover.  
9.3.6.3.6 Start-Up into Holdover  
During the initial programming, the LMK0461x can be configured to start-up into holdover. It presets the VCXO  
Control voltage to approximately 1.2 V. This allows PLL2 to lock to the VCXO reference. PLL1 locks as soon a  
valid reference input clock is detected. The holdover status can be optionally displayed at the status pins.  
9.3.6.4 During Holdover  
PLL1 is run in open-loop mode:  
PLL1 charge pump is set to TRI-STATE.  
PLL1 DLD is unasserted.  
The HOLDOVER status is asserted.  
During holdover, if the PLL2 was locked prior to entry of holdover mode, PLL2 DLD continues to be asserted.  
44  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
LOS engine searches for active input clock.  
PLL1 attempts to lock with the active clock input.  
The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the  
PLL1_DLD_MUX or PLL2_DLD_MUX register to Holdover Status.  
9.3.6.5 Exiting Holdover  
Holdover mode can be exited in one of four ways.  
Manually by programming the device from the host.  
Manual through pin.  
Automatically by a clock operating within a specified ppm of the current PLL1 frequency on the active clock  
input.  
Automatically by LOS deassertion.  
Automatically by switching to next clock input after holdover counter overflow. The order of switching is set in  
a priority list.  
9.3.6.6 Holdover Frequency Accuracy  
The holdover frequency accuracy depends on the PLL1 loop bandwidth. A low loop bandwidth of 10 Hz results  
in less then 0.6-ppm accuracy typical.  
9.3.6.7 Holdover Mode – Automatic Exit by LOS Deassertion  
As soon as the reference clock is valid again and the LOS signal is deasserted, the PLL1_N and PLL1_R divider  
reset and PLL1 exits holdover.  
9.3.6.8 Holdover Mode – Automatic Exit of Holdover With Holdover Counter  
A programmable holdover counter can be set between 0 and 17 seconds count time. The counter starts counting  
as soon the device is in holdover.  
If the reference clock is valid again within the specified time, the device exits holdover.  
If the counter overflows, the device switches to the next clock input. The order of clock inputs is set in a priority  
list.  
Minimum Holdover counter configuration step size: 4.069 ns  
Holdover counter range: 0 – 17 s  
Copyright © 2017–2019, Texas Instruments Incorporated  
45  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.7 JEDEC JESD204B  
Table 20 illustrates the some possible SYNC and SYSREF modes.  
Table 20. Possible SYNC/SYSREF_REQ Configurations  
NAME  
DESCRIPTION  
SYNC Disabled  
No SYNC occurs.  
Basic SYNC functionality, SYNC pin polarity is selected by SYNC_POL.  
To achieve SYNC through SPI, toggle the SYNC_POL bit.  
Pin or SPI SYNC  
Produce SYSREF_PULSE_CNT programmed number of pulses on pin transition. SYNC_POL can be  
used to cause SYNC through SPI.  
JESD204B Pulser on pin transition.  
JESD204B Pulser on SPI  
programming.  
Programming SYSREF_PULSE_CNT register starts sending the number of pulses.  
When SYNC pin is asserted, continuous SYSERF pulses occur. Turning on and off of the pulses is  
SYNChronized to prevent runt pulses from occurring on SYSREF.  
External SYSREF request  
Continuous SYSREF  
Continuous SYSREF signal.  
LMK0461x family provides support for JEDEC JESD204B. High-frequency device clock and low frequency  
SYSREF clocks can be generated with programmable analog and digital delays and SYNC functionality. The  
device provides possibility to control the SYNC and SYSREF functions by SYNC pin (pin mode) or SPI  
programming. Each clock output can be used either as a device clock or SYSREF clock. Steps to use the SYNC  
and SYSREF modes are described in Figure 44.  
SYNC output divider  
Setup SYSREF mode (and pulser)  
Program SYNC mode  
(Pin/SPI)  
&
Enable the SYNC for the  
channels to be synced  
Program SYSREF mode  
(Pulser /Continuous) &  
Enable SYSREF channels  
Issue a SYNC request  
(PIN/SPI)  
Program SYSREF  
Pin/SPI mode  
Issue a SYSREF request  
(PIN/SPI)  
Figure 44. Manual SYSREF Setup  
The programming of the SYNC and SYSREF modes can be already done at the device setup. One time SYNC  
for the output channels is issued automatically at the device start-up irrespective of the SYNC programming.  
Detail description on setting up the SYNC and SYSREF modes are described in the following sections.  
9.3.7.1 SYNC Pins  
The SYNC pin in LMK0461x family has multiple functions which can be configured by the user using SPI  
interface. Following table lists the possible function:  
Table 21. SYNC Pins  
BIT NAME  
EN_SYNC_PIN_FUNC  
SYNC_INV  
FUNCTION  
Enables the different functions at the SYNC pin when 1  
Inverts SYNC Input when 1  
00  
01  
10  
11  
SYNC output channels  
SYSREF Request  
SYNC_PIN_FUNC[1:0]  
Reset PLL1 N-divider and R-divider  
Reserved  
SYNC_ANALOGDLY_EN  
SYNC_ANALOGDLY[4:0]  
Enables the Analog delay at the SYNC input pin  
Analog delay can be programed from 0-15. See Analog Delay for details  
46  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.3.7.2 SYNC modes  
SYNC can be requested by either PIN or using the SPI interface. Following table lists the register values that  
must be programmed to use the SYNC functionality:  
Table 22. Additional SYNC Bits  
BIT NAME  
FUNCTION  
GLOBAL_SYNC  
Global SW SYNC. Writing 1 puts the Device into SYNC mode. Writing 0 exits SYNC mode.  
SYNC_EN_CH1  
SYNC_EN_CH2  
SYNC_EN_CH3_4  
SYNC_EN_CH5  
SYNC_EN_CH6  
SYNC_EN_CH7_8  
SYNC_EN_CH9  
SYNC_EN_CH10  
Enables the corresponding channel for SYNC functionality  
Steps to configure each mode are described below.  
SYNC pin mode:  
1. EN_SYNC_PIN_FUNC should be set to 1. This enables the different functions supported by the SYNC  
pin.  
2. SYNC_PIN_FUNC[1:0] should be programmed to 00b (default). This sets the SYNC pin for SYNC  
function.  
3. SYNC_INV, when 0, SYNC is rising edge triggered. When set to 1, the SYNC pin is internaly inverted and  
is falling edge triggered.  
4. SYNC_EN_CHx should be set 1 for the channels which needs to SYNCed.  
5. Depending on the SYNC_INV value, the output channels are SYNChronized by either rising edge or the  
falling edge on the SYNC pin.  
SYNC SPI mode:  
1. EN_SYNC_PIN_FUNC should be set to 0. This disables the pin mode for SYNC function.  
2. SYNC_EN_CHx should be set 1 for the channels which must SYNCed.  
3. Writing 1 to the GLOBAL_SYNC puts the device into SYNC mode.  
9.3.7.3 SYSREF Modes  
Any channel can be programmed to generate SYSREF clock. There are different SYSREF modes supported by  
LMK0461x. SYSREF can be either fixed number of pulses or a continuous clock. There is a 5-bit register  
provided to program the number of pulses to be generated at each SYSREF request. Also, there is a possibility  
to control the number of pulses with the SYNC pin. Each SYSREF clock can be individually delayed. There are  
different options to introduce the delay in the SYSREF path. See Digital Delay and Analog Delay for  
programming the delays. Following bits needs to be programed to use the SYSREF feature:  
Table 23. SYSREF Registers  
BIT NAME  
FUNCTION  
Enable SYNC_SYSREF features at SYNC pin  
Enable continuous SYSREF  
EN_SYNC_PIN_FUNC  
GLOBAL_CONT_SYSREF  
GLOBAL_SYSREF  
Trigger SYSREF, Self-clearing  
OUTCH_SYSREF_PLSCNT  
Set number of desired SYSREF pulses from 1 to 32. 0 Enables continuous SYSREF  
SYSREF_EN_CH10  
SYSREF_EN_CH9  
SYSREF_EN_CH7_8  
SYSREF_EN_CH6  
SYSREF_EN_CH5  
SYSREF_EN_CH3_4  
SYSREF_EN_CH2  
SYSREF_EN_CH1  
Enable SYSREF feature at channel CHx  
Copyright © 2017–2019, Texas Instruments Incorporated  
47  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.7.3.1 SYSREF Pulser  
This mode allows for the output of 1 to 32 SYSREF pulses for every SYNC pin event or SPI programming. This  
implements the gapped periodic functionality of the JEDEC JESD204B specification.  
programmable  
SYSREF_PULSE_CNT  
SYSREF Output  
SPI Programming  
Or  
SYNC pin  
Figure 45. SYSREF Pulser  
9.3.7.3.1.1 SPI Pulser Mode  
OUTCH_SYSREF_PLSCNT is a 5-bit register that can be programmed to the required number of pulses.  
When GLOBAL_SYSREF is programmed to 1, fixed number of pulses are defined by  
OUTCH_SYSREF_PLSCNT are generated at the output channels which are enabled for SYSREF. The  
GLOBAL_SYSREF bit is cleared automatically after fulfilling the SYSREF request.  
9.3.7.3.1.2 Pin Pulser Mode  
By programming EN_SYNC_PIN_FUNC= 1, SYNC_PIN_FUNC=01 and OUTCH_SYSREF_PLSCNT to the  
desired number of pulses, The SYSREF output is in pin control Pulser mode. The SYSREF clock can be initiated  
by a pulse at the SYNC pin. Fixed number of pulses as per the OUTCH_SYSREF_PLSCNT value are generated  
after a fixed latency.  
9.3.7.3.1.3 Multiple SYSREF Frequencies  
In case of multiple SYSREF frequencies the latencies until SYSREF pulses start are different. As shown in  
Figure 46, the different SYSREF signals are rising edge aligned with the device clock. The different SYSREF  
signals might not be rising edge aligned if different SYSREF frequencies are used.  
DeviceCLK  
SYSREF_A  
SYSREF_B  
Latency A  
Latency B  
SYSREF Request  
asserted  
released  
Figure 46. SYSREF Timing in Pulsor Mode With Different SYSREF Frequencies  
9.3.7.3.2 Continuous SYSREF  
This mode allows for continuous output of the SYSREF clock.  
Setting GLOBAL_CONT_SYSREF to 1 allows for continuous output of the SYSREF clock.  
48  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Continuous operation of SYSREF is not recommended due to crosstalk from the SYSREF clock to device clock.  
JESD204B is designed to operate with a single burst of pulses to initialize the system at start-up, after which it is  
theoretically not required to send another SYSREF because the system continues to operate with deterministic  
phases.  
If continuous operation of SYSREF is required, consider using a SYSREF output from a non-adjacent output or  
SYSREF from the OSCout pin to minimize crosstalk.  
SYSREF Output  
Figure 47. Continuous SYSREF  
9.3.7.3.3 SYSREF Request  
This mode allows an external source to SYNChronously turn on or off a continuous stream of SYSREF pulses  
using the SYNC pin.  
When programming EN_SYNC_PIN_FUNC= 1, SYNC_PIN_FUNC=01 and OUTCH_SYSREF_PLSCNT=0, the  
SYSREF output is in pin mode. The SYSREF pulses can be controlled by the pulse width at the SYNC pin.  
When the SYNC pin is asserted, the channel is SYNChronously set to continuous mode providing continuous  
pulses at the SYSREF frequency until the SYNC pin is unasserted. SYSREF stops after completing the final  
pulse SYNChronously.  
SYSREF Output  
SYSREF_REQ  
Or  
SPI  
Figure 48. SYSREF Request  
9.3.7.4 How to Enable SYSREF  
Enabling JESD204B operation involves SYNChronizing all the clock dividers and programming of the delays,  
then configuring the actual SYSREF functionality.  
9.3.7.4.1 Setup Example 1: Pulser Mode, Pin Controlled  
1. Program EN_SYNC_PIN_FUNC=1, SYNC pin is enabled for SYSREF requests.  
2. Program SYNC_PIN_FUNC=01, SYNC pin is programmed to accept the SYSREF requests.  
3. Program OUTCH_SYSREF_PLSCNT= xx (max 32), programs the number of SYSREF pulses to be  
generated.  
4. Program SYSREF_EN_CHxx=1, enables corresponding output channels to generate SYSREF clock pulses.  
5. Apply rising Edge at SYNC pin generates xx number of at the enabled at the enabled channel.  
9.3.7.4.2 Setup Example 2: Pulser Mode, Spi Controlled  
1. Program EN_SYNC_PIN_FUNC=0, the SYSREF function on the SYNC pin is not enabled.  
2. Program OUTCH_SYSREF_PLSCNT= xx (max 32), programs the number of SYSREF pulses to be  
generated.  
3. Program SYSREF_EN_CHxx=1, enables corresponding output channels to generate SYSREF clock pulses.  
4. Programming GLOBAL_SYSREF=1 generates the defined number of pulses on the SYSREF enabled  
channels.  
9.3.8 Zero Delay Mode (ZDM)  
The LMK0461x zero delay mode (ZDM) is an internal feedback loop that minimizes the phase error between  
output and reference input. The feedback can be selected from CLKout5 or CLKout6.  
Copyright © 2017–2019, Texas Instruments Incorporated  
49  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
CLKoutX*  
CLKoutX  
- Divider  
- Digital Delay  
- Analog Delay  
PLL2  
CLKoutY*  
CLKoutY  
R
N
Phase  
Detector  
PLL2  
Pre  
Div  
Integrated  
Loop Filter  
CLKoutX*  
CLKoutX  
- Divider  
- Digital Delay  
- Analog Delay  
CLKoutY*  
CLKoutY  
Figure 49. Zero Delay Mode (ZDM)  
9.3.9 Power-Up Sequence  
Figure 50 shows the steps to power up the device.  
Power Supplies  
all off  
All Supplies  
powered up  
DEVICE IDLE  
In  
Power-Down  
State  
DEVICE IDLE  
READY FOR SPI  
PROGRAMMING  
Release RESETn  
Ramp-up Power Supplies  
DEVICE  
NOT READY  
RESETn = X  
(Power-down)  
RESETn = 0  
(Power-down)  
RESETn = 1  
Program device configuration settings  
DEVICE IDLE  
Trigger Startup  
Sequence through SPI  
STAT0/1  
indicates  
PLL Lock  
DEVICE  
BOOTING  
UP  
DEVICE  
CONFIG  
PROGRAMMING  
DONE  
DEVICE  
RUNNING  
DEV_STARTUP = 1  
(self clearing bit)  
RESETn = 1  
RESETn = 1  
RESETn = 1  
Figure 50. Simplified Power-Up Sequence  
The first step is to apply all the supplies needed for device to be functional. The RESETn should be kept at logic  
0 when power supplies start ramping. LMK046xx devices do not need any specific power up sequencing for the  
external power supplies. The on-chip POR logic makes sure that the device stays in power-down state until all  
the supplies are available.  
After all the device power supplies are stable, RESETn can be released to logic 1. The device enters idle state  
and is now ready for the SPI programming.  
After programming the device configuration, the DEV_start-up should be triggered using SPI, which initiates the  
device bootup sequence. The loading of the configurations to the corresponding functional blocks and enable  
sequencing is cared for by the on-chip state machines. One-time SYNC is also issued to the output channels  
during device booting. The lock signals for the PLLs can be observed at the STAT0/1.  
50  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Figure 51 shows the LMK0461x booting sequence of operations in details. Branch A, B, and C run in parallel.  
RESETN = 0  
Enable OSCout  
SET OSCout  
Low level  
buffer:  
divider = 1  
LVCMOS  
All Supplies  
powered up  
Sample SYNC pin  
voltage level  
SET OSCout  
divider = 2  
Mid level  
Program  
device and  
boot up  
SPI interface  
ready  
RESETN = 1  
SET OSCout  
divider = 4  
High level  
Branch A  
(PLL1)  
Branch B  
(PLL2)  
Branch C  
(Outputs)  
PLL2 in power down  
mode.  
PLL2 REF clock  
available.  
Internal LDO  
settling time  
Internal LDO  
settling time  
PLL1 Enabled?  
YES  
PLL2 Enabled?  
NO  
YES  
Assert internal  
SYNC signal  
Set Prop/  
Store-CP to  
^(ꢀ•š o}ꢁl_  
value  
^(ꢀ•š o}ꢁl_  
enabled?  
YES  
Internal LDO  
settling time  
PLL2  
Amplitude  
Calibration  
NO  
MUTE enabled?  
YES  
NO  
Force Holdover  
Mode with  
CRTL_VCXO =  
VDD/2  
PLL1_STARTUP_I  
N_HOLDOVER  
Set?  
YES  
Waiting for  
PLL2 lock  
Release reset  
of channels  
Release reset  
of channels  
NO  
NO  
PLL1_N,  
PLL1_R divider  
reset is  
CLKinX  
available?  
Wait for PLL2  
lock  
released  
Release  
internal SYNC  
signal  
Release  
internal SYNC  
signal  
Wait for PLL1  
Lock  
Set Prop/  
Store-CP to  
^v}v-(ꢀ•š o}ꢁl_  
^(ꢀ•š o}ꢁl_  
enabled?  
YES  
PLL2 locks  
value  
NO  
STATUS0/1 will  
indicate PLL lock  
Switch digital-block  
clock to PLL2 Ref  
clock source  
Figure 51. Detailed Power-Up Sequence  
Copyright © 2017–2019, Texas Instruments Incorporated  
51  
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.4 Device Functional Modes  
The following section describes the settings to enable various modes of operation for the LMK0461x device  
family.  
The LMK0461x device is a flexible device that can be configured for many different use cases. The following  
simplified block diagrams help show the user the different use cases of the device.  
9.4.1 Dual PLL  
Figure 60 illustrates the typical use case of the LMK0461x device family in dual-loop mode. In dual-loop mode  
the reference to PLL1 from CLKin0 or CLKin1. An external VCXO is used to provide feedback for the first PLL  
and a reference to the second PLL. This first PLL cleans the jitter with the VCXO by using a narrow loop  
bandwidth. The VCXO output may be buffered through the OSCout port. The VCXO is used as the reference to  
PLL2 and may be doubled using the frequency doubler. The internal VCO drives up to 8 divide or delay blocks  
which drive up to 10 clock outputs.  
Holdover functionality is optionally available when the input reference clock is lost. Holdover works by fixing the  
tuning voltage of PLL1 to the VCXO.  
PLL1  
PLL2  
OSCout  
Divider  
External  
VCXO  
OSCout*  
CLKinX  
CLKinX*  
R
N
Device/SYSref  
Clock  
Divider  
Digital Delay  
Analog Delay  
Phase  
Detector  
PLL1  
Integrated  
Loop Filter  
2 inputs  
CLKoutX*  
CLKoutX  
Internal VCO  
R
N
Phase  
Detector  
PLL2  
10 Device/Sysref  
Clocks  
Pre  
Div  
Integrated  
Loop Filter  
2 blocks  
Device/SYSref  
Clock  
Divider  
CLKoutX*  
CLKoutX  
CLKoutX*  
CLKoutX  
Digital Delay  
Analog Delay  
LMK04610  
4 blocks  
Copyright © 2017, Texas Instruments Incorporated  
Figure 52. Simplified Functional Block Diagram for Dual-Loop Mode  
9.4.2 Single PLL  
No LOS detection and automatic reference switching available in this mode.  
PLL1  
PLL2  
OSCout  
Divider  
External  
VCXO  
OSCout*  
CLKinX  
CLKinX*  
R
N
Phase  
Detector  
PLL1  
Device/SYSref  
Clock  
Divider  
Digital Delay  
Analog Delay  
Integrated  
Loop Filter  
2 inputs  
CLKoutX*  
CLKoutX  
Internal VCO  
R
N
Phase  
Detector  
PLL2  
10 Device/Sysref  
Clocks  
Pre  
Div  
Integrated  
Loop Filter  
2 blocks  
Device/SYSref  
Clock  
Divider  
CLKoutX*  
CLKoutX  
CLKoutX*  
CLKoutX  
Digital Delay  
Analog Delay  
LMK04610  
4 blocks  
Copyright © 2017, Texas Instruments Incorporated  
Figure 53. Simplified Functional Block Diagram for PLL2 Only or Clock Generator Mode  
52  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Device Functional Modes (continued)  
9.4.3 PLL2 Bypass  
PLL1  
PLL2  
OSCout  
Divider  
External  
VCXO  
OSCout*  
CLKinX  
R
CLKinX*  
Phase  
Device/SYSref  
Clock  
Divider  
Digital Delay  
Analog Delay  
Integrated  
Loop Filter  
Detector  
PLL1  
2 inputs  
CLKoutX*  
Internal VCO  
CLKoutX  
R
N
N
Phase  
Detector  
PLL2  
10 Device/Sysref  
Clocks  
Pre  
Div  
Integrated  
Loop Filter  
2 blocks  
Device/SYSref  
Clock  
Divider  
CLKoutX*  
CLKoutX  
CLKoutX*  
CLKoutX  
Digital Delay  
Analog Delay  
LMK04610  
4 blocks  
Copyright © 2017, Texas Instruments Incorporated  
Figure 54. Simplified Functional Block Diagram for PLL1 Only or PLL2 Bypass Mode  
9.4.4 Clock Distribution  
No LOS detection and automatic Reference Switching available in this mode.  
PLL1  
PLL2  
OSCout  
Divider  
External  
VCXO  
OSCout*  
CLKinX  
CLKinX*  
R
N
Device/SYSref  
Clock  
Divider  
Digital Delay  
Analog Delay  
Phase  
Detector  
PLL1  
Integrated  
Loop Filter  
2 inputs  
CLKoutX*  
CLKoutX  
Internal VCO  
R
N
Phase  
Detector  
PLL2  
10 Device/Sysref  
Clocks  
Pre  
Div  
Integrated  
Loop Filter  
2 blocks  
Device/SYSref  
Clock  
Divider  
CLKoutX*  
CLKoutX  
CLKoutX*  
CLKoutX  
Digital Delay  
Analog Delay  
LMK04610  
4 blocks  
Copyright © 2017, Texas Instruments Incorporated  
Figure 55. Simplified Functional Block Diagram for Clock Distribution Mode  
Copyright © 2017–2019, Texas Instruments Incorporated  
53  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.5 Programming  
LMK0461x device is programmed using 24-bit registers. Each register consists of a 1-bit command field (R/W), a  
15-bit address field (A14 to A0) and a 8-bit data field (D7 to D0). The contents of each register is clocked in MSB  
first (R/W), and the LSB (D0) last. During programming, the CS* signal is held low. The serial data is clocked in  
on the rising edge of the SCK signal. After the LSB is clocked in, the CS* signal goes high to latch the contents  
into the shift register. TI recommends programming registers in numeric order -- for example, 0x000 to 0x1FFF --  
to achieve proper device operation. Each register consists of one or more fields that control the device  
functionality. See the electrical characteristics and 1 for timing details.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
SCS*  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
19 20 21 22 23 24  
SCL  
SDIO  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2  
D1 D0  
SDO  
(STATUS1)  
Figure 56. SPI Write  
SCS*  
SCL  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
19 20 21 22 23 24  
SDIO  
SDIO  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2  
D1 D0  
R/W A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
SDO  
(STATUS1)  
D7 D6 D5 D4 D3 D2  
D1 D0  
Figure 57. SPI Read  
SCS*  
1
2
3
14 15 16 17 18  
19 20 21 22 23 24 25 26 27  
28 29 30 31 32  
SCL  
Addr N  
A2 A1 A0 D7 D6 D5 D4 D3 D2  
Addr N+1 (ascending), Addr N-1 (descending)  
D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
SDIO  
R/W A14 A13  
SDO  
(STATUS1)  
Figure 58. SPI Write – Streaming Mode  
54  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Programming (continued)  
SCS*  
1
2
3
14 15 16 17 18  
19 20 21 22 23 24 25 26 27  
28 29 30 31 32  
SCL  
Addr N  
A2 A1 A0 D7 D6 D5 D4 D3 D2  
Addr N+1 (ascending), Addr N-1 (descending)  
SDIO  
SDIO  
R/W A14 A13  
R/W A14 A13  
D1 D0 D7 D6 D5 D4 D3 D2  
D1 D0  
A2 A1 A0  
SDO  
(STATUS1)  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2  
D1 D0  
Figure 59. SPI Read – Streaming Mode  
9.5.1 Recommended Programming Sequence  
The default programming sequence from POR involves:  
1. Toggle RESETn pin High-Low-High  
2. Program all registers with Register 0x0011 bit 0 = 0  
Register 0x85 = 0x00  
Register 0x86 = 0x00  
Register 0xF6 = 0x02  
3. Program Register 0x0011 bit 0 = 1 to start the device  
4. Enable PLL2 digital lock detect  
0xAD = 0x30  
Delay 20 ms  
0xAD = 0x00  
Also refer to Power-Up Sequence.  
9.5.1.1 Readback  
Readback of the complete register content is possible.  
Copyright © 2017–2019, Texas Instruments Incorporated  
55  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6 Register Maps  
9.6.1 Register Map for Device Programming  
Table 24 provides the register map for device programming. Any register can be read from the same data address it is written to.  
Table 24. Register Map  
ADDRESS  
[15:0]  
DATA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ADDR_ASCEND_C  
PY  
0x00  
SWRST  
LSB_FIRST  
ADDR_ASCEND  
SDO_ACTIVE  
SDO_ACTIVE_CPY  
LSB_FIRST_CPY  
SWRST_CPY  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
RSRVD  
RSRVD1  
RSRVD  
RSRVD  
RSRVD2[1:0]  
DEVID[1:0]  
CHIPTYPE[3:0]  
CHIPID[15:8]  
CHIPID[7:0]  
CHIPVER[7:0]  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD3  
RSRVD4  
RSRVD5  
RSRVD6  
RSRVD7  
VENDORID[15:8]  
VENDORID[7:0]  
RSRVD  
RSRVD  
RSRVD8  
RSRVD9  
CLKINBLK_LOSLD  
O_EN  
0x10  
0x11  
0x12  
0x13  
0x14  
RSRVD  
OUTCH_MUTE  
RSRVD  
CH6TO10EN  
CH1TO5EN  
PLL2EN  
PLL1EN  
RSRVD  
DEV_STARTUP  
PORCLKAFTERLO  
CK  
DIG_CLK_EN  
PLL2_DIG_CLK_EN  
RSRVD  
RSRVD  
PLL2_REF_DIGCLK_DIV[4:0]  
EN_SYNC_PIN_F  
UNC  
GLOBAL_CONT_SY  
SREF  
INV_SYNC_INPUT_  
SYNC_CLK  
GLOBAL_SYSREF  
SYNC_PIN_FUNC[1:0]  
GLOBAL_SYNC  
CLKINSEL1_INV  
RSRVD  
CLKIN_STAGGER_  
EN  
0x15  
0x16  
RSRVD  
CLKINSEL1_MODE[1:0]  
CLKIN_SWRST  
RSRVD  
RSRVD  
RSRVD  
CLKINBLK_ALL_E  
N
CLKINBLK_EN_BU CLKINBLK_EN_BU  
F_CLK_PLL F_BYP_PLL  
56  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
DATA  
CLKIN0_LOS_FRQ_  
DBL_EN  
0x19  
0x1A  
RSRVD  
RSRVD  
CLKIN0_PLL1_INV  
CLKIN1_PLL1_INV  
CLKIN0_EN  
CLKIN1_EN  
CLKIN0_SE_MODE  
CLKIN1_SE_MODE  
CLKIN0_PRIO[2:0]  
CLKIN1_PRIO[2:0]  
CLKIN1_LOS_FRQ_  
DBL_EN  
0x1F  
0x20  
0x21  
0x22  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
CLKIN0_PLL1_RDIV[15:8]  
CLKIN0_PLL1_RDIV[7:0]  
CLKIN1_PLL1_RDIV[15:8]  
CLKIN1_PLL1_RDIV[7:0]  
CLKIN0_LOS_REC_CNT[7:0]  
CLKIN0_LOS_LAT_SEL[7:0]  
CLKIN1_LOS_REC_CNT[7:0]  
CLKIN1_LOS_LAT_SEL[7:0]  
RSRVD  
SW_CLKLOS_TMR[4:0]  
SW_LOS_CH_SEL[3:0]  
SW_ALLREFSON_TMR[4:0]  
OSCIN_BUF_TO_O OSCIN_OSCINSTA OSCIN_BUF_REF_ OSCIN_BUF_LOS_  
SW_REFINSEL[3:0]  
RSRVD  
0x2E  
0x2F  
RSRVD  
OSCIN_PD_LDO  
OSCIN_SE_MODE  
CH6_SWRST  
SCOUT_EN  
OSCOUT_SEL_VB OSCOUT_DIV_CLK  
EN  
GE_EN  
EN  
EN  
OSCOUT_LVCMO OSCOUT_DIV_REG  
S_WEAK_DRIVE CONTROL  
OSCOUT_SEL_SR  
C
OSCOUT_PINSEL_DIV[1:0]  
OSCOUT_SWRST  
G
0x30  
0x31  
0x32  
OSCOUT_DIV[7:0]  
OSCOUT_DRV_MUTE[1:0]  
CH10_SWRST CH9_SWRST  
OUTCH1_LDO_B OUTCH1_LDO_MA  
YP_MODE SK  
OSCOUT_DRV_MODE[5:0]  
CH5_SWRST CH34_SWRST  
CH78_SWRST  
CH2_SWRST  
CH1_SWRST  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
RESERVED[5:0]  
OUTCH1_DIV_CLK  
EN  
OUTCH1_DRIV_MODE[5:0]  
DIV_DCC_EN_CH1  
OUTCH2_LDO_B OUTCH2_LDO_MA  
YP_MODE SK  
OUTCH2_DRIV_MODE[5:0]  
OUTCH3_DRIV_MODE[5:0]  
OUTCH5_DRIV_MODE[5:0]  
OUTCH2_DIV_CLK  
EN  
RESERVED[5:0]  
DIV_DCC_EN_CH2  
OUTCH34_LDO_ OUTCH34_LDO_M  
BYP_MODE ASK  
DIV_DCC_EN_CH3 OUTCH34_DIV_CL  
_4 KEN  
OUTCH4_DRIV_MODE[5:0]  
OUTCH5_LDO_B OUTCH5_LDO_MA  
YP_MODE SK  
Copyright © 2017–2019, Texas Instruments Incorporated  
57  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
DATA  
DIV_DCC_EN_CH OUTCH5_DIV_CLK  
0x3A  
RESERVED[5:0]  
5
EN  
OUTCH6_LDO_B OUTCH6_LDO_MA  
YP_MODE SK  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
RESERVED[5:0]  
OUTCH7_DRIV_MODE[5:0]  
RESERVED[5:0]  
OUTCH6_DIV_CLK  
EN  
OUTCH6_DRIV_MODE[5:0]  
OUTCH8_DRIV_MODE[5:0]  
OUTCH9_DRIV_MODE[5:0]  
RESERVED[5:0]  
DIV_DCC_EN_CH6  
OUTCH78_LDO_ OUTCH78_LDO_M  
BYP_MODE ASK  
DIV_DCC_EN_CH7 OUTCH78_DIV_CL  
_8  
KEN  
OUTCH9_LDO_B OUTCH9_LDO_MA  
YP_MODE SK  
OUTCH9_DIV_CLK  
EN  
DIV_DCC_EN_CH9  
OUTCH10_LDO_ OUTCH10_LDO_M  
BYP_MODE ASK  
OUTCH10_DRIV_MODE[5:0]  
DIV_DCC_EN_CH1 OUTCH10_DIV_CL  
KEN  
0
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
OUTCH1_DIV[15:8]  
OUTCH1_DIV[7:0]  
OUTCH2_DIV[15:8]  
OUTCH2_DIV[7:0]  
OUTCH34_DIV[15:8]  
OUTCH34_DIV[7:0]  
OUTCH5_DIV[15:8]  
OUTCH5_DIV[7:0]  
OUTCH6_DIV[15:8]  
OUTCH6_DIV[7:0]  
OUTCH78_DIV[15:8]  
OUTCH78_DIV[7:0]  
OUTCH9_DIV[15:8]  
OUTCH9_DIV[7:0]  
OUTCH10_DIV[15:8]  
OUTCH10_DIV[7:0]  
58  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
DATA  
OUTCH10_DIV_IN  
0x53  
0x54  
0x55  
0x56  
0x57  
OUTCH9_DIV_INV OUTCH78_DIV_INV OUTCH6_DIV_INV  
OUTCH5_DIV_INV OUTCH34_DIV_INV OUTCH2_DIV_INV  
PLL1_LDO_WAIT_TMR[3:0]  
OUTCH1_DIV_INV  
V
PLL1_EN_REGULA  
TION  
PLL1_DIR_POS_GA  
PLL1_F_30  
PLL1_PD_LD  
IN  
PLL1_LCKDET_B  
Y_32  
PLL1_LCKDET_LO  
S_MASK  
PLL1_PFD_UP_HO PLL1_PFD_DOWN_  
PLL1_FAST_LOCK  
RSRVD  
PLL1_FBCLK_INV  
RSRVD  
PLL1_BYP_LOS  
PLL1_RDIV_4CY  
LDOVER  
HOLDOVER  
PLL1_LOL_NORES  
ET  
PLL1_RDIV_CLKEN  
PLL1_NDIV_CLKEN  
PLL1_NDIV_4CY  
PLL1_HOLDOVER_ PLL1_RDIV_SWRS PLL1_NDIV_SWRS PLL1_HOLDOVERC PLL1_HOLDOVER_  
DLD_SWRST NT_SWRST LOCKDET_SWRST  
RSRVD  
PLL1_SWRST  
T
T
0x58  
0x59  
0x5A  
0x5B  
PLL1_LD_WNDW_SIZE[7:0]  
PLL1_INTG_FL [3:0]  
PLL1_INTG [3:0]  
RSRVD  
RSRVD  
PLL1_PROP[6:0]  
PLL1_PROP_FL[6:0]  
PLL1_HOLDOVE PLL1_STARTUP_H PLL1_HOLDOVER_ PLL1_HOLDOVER_ PLL1_HOLDOVER_ PLL1_HOLDOVER_ PLL1_HOLDOVER_ PLL1_HOLDOVER_  
0x5C0x5C  
R_EN  
OLDOVER_EN  
FORCE  
RAIL_MODE  
MAX_CNT_EN  
LOS_MASK  
LCKDET_MASK  
RAILDET_EN  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
PLL1_HOLDOVER_MAX_CNT[31:24]  
PLL1_HOLDOVER_MAX_CNT[23:16]  
PLL1_HOLDOVER_MAX_CNT[15:8]  
PLL1_HOLDOVER_MAX_CNT[7:0]  
PLL1_NDIV[15:8]  
PLL1_NDIV[7:0]  
PLL1_LOCKDET_CYC_CNT[23:16]  
PLL1_LOCKDET_CYC_CNT[15:8]  
PLL1_LOCKDET_CYC_CNT[7:0]  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
PLL1_STORAGE_CELL[5:0]  
RSRVD  
RSRVD  
RSRVD  
PLL1_RC_CLK_EN  
PLL1_RC_CLK_DIV[2:0]  
PLL2_BYP_TOP PLL2_BYP_BOT  
PLL2_VCO_PRESC  
_LOW_POWER  
PLL2_GLOBAL_BY  
P
0x6C  
0x6D  
PLL2_BYP_OSC  
PLL2_EN_PULSE  
_GEN  
PLL2_SMART_TRI PLL2_LCKDET_LO PLL2_RDIV_DBL_E  
S_MASK  
PLL2_RDIV_BYP  
PLL2_DBL_EN_INV PLL2_PD_VARBIAS  
PLL2_PD_LD  
M
N
Copyright © 2017–2019, Texas Instruments Incorporated  
59  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
DATA  
PLL2_BYP_SYNC PLL2_BYP_SYNC_ PLL2_EN_BYP_BU PLL2_EN_BUF_SY PLL2_EN_BUF_SY PLL2_EN_BUF_OS PLL2_EN_BUF_CL PLL2_EN_BUF_CL  
0x6E  
0x6F  
_TOP  
BOTTOM  
F
NC_TOP  
NC_BOTTOM  
COUT  
K_TOP  
K_BOTTOM  
PLL2_RDIV_SWRS PLL2_NDIV_SWRS  
RSRVD  
PLL2_SWRST  
T
T
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
PLL2_C4_LF_SEL[3:0]  
PLL2_C3_LF_SEL[3:0]  
PLL2_R4_LF_SEL[3:0]  
PLL2_R3_LF_SEL[3:0]  
RSRVD  
PLL2_PROP[5:0]  
PLL2_NDIV[15:8]  
PLL2_NDIV[7:0]  
PLL2_RDIV[15:8]  
PLL2_RDIV[7:0]  
PLL2_STRG_INITVAL[15:8]  
PLL2_STRG_INITVAL[7:0]  
RSRVD  
RSRVD  
RSRVD  
RAILDET_UPP[5:0]  
RAILDET_LOW[5:0]  
PLL2_IDACSET_RECAL[1:0]  
PLL2_INTG[4:0]  
PLL2_AC_THRESHOLD[4:0]  
PLL2_AC_CAL_EN  
PLL2_PD_AC  
PLL2_AC_REQ  
PLL2_FAST_ACAL  
RSRVD  
RSRVD  
RSRVD  
PLL2_AC_STRT_THRESHOLD[4:0]  
PLL2_AC_INIT_WAIT[3:0]  
PLL2_AC_CMP_WAIT[3:0]  
RSRVD  
PLL2_AC_JUMP_STEP[3:0]  
PLL2_LD_WNDW_SIZE[7:0]  
PLL2_LD_WNDW_SIZE_INITIAL[7:0]  
PLL2_LOCKDET_CYC_CNT[23:16]  
PLL2_LOCKDET_CYC_CNT[15:8]  
PLL2_LOCKDET_CYC_CNT[7:0]  
PLL2_LOCKDET_CYC_CNT_INITIAL[23:16]  
PLL2_LOCKDET_CYC_CNT_INITIAL[15:8]  
PLL2_LOCKDET_CYC_CNT_INITIAL[7:0]  
SPI_EN_THREE_  
WIRE_IF  
SPI_SDIO_OUTPUT SPI_SDIO_OUTPUT SPI_SDIO_OUTPUT SPI_SDIO_EN_PUL SPI_SDIO_EN_PUL  
_MUTE _INV _WEAK_DRIVE LUP LDOWN  
0x8D  
0x8E  
RSRVD  
RSRVD  
SPI_SCL_EN_PULL SPI_SCL_EN_PULL SPI_SCS_EN_PULL SPI_SCS_EN_PULL  
UP DOWN UP DOWN  
60  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
DATA  
SPI_SDIO_OUTPUT SPI_SDIO_ENB_IN SPI_SDIO_EN_ML_  
_HIZ STAGE INSTAGE  
SPI_SDIO_OUTPUT SPI_SDIO_INPUT_ SPI_SDIO_INPUT_  
0x8F  
0x90  
0x91  
0x92  
0x93  
RSRVD  
RSRVD  
_DATA  
Y12  
SPI_SCL_INPUT_Y SPI_SCL_INPUT_M  
12 12  
SPI_SCS_INPUT_Y SPI_SCS_INPUT_M  
12 12  
M12  
SPI_SCL_ENB_INS SPI_SCL_EN_ML_I  
TAGE NSTAGE  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
SPI_SCS_ENB_INS SPI_SCS_EN_ML_I  
TAGE NSTAGE  
STATUS0_OUTPUT STATUS0_OUTPUT STATUS0_OUTPUT STATUS0_EN_PUL STATUS0_EN_PUL  
_MUTE _INV _WEAK_DRIVE LUP LDOWN  
STATUS0_MUX_SEL[2:0]  
STATUS1_MUX_SEL[2:0]  
STATUS1_OUTPUT STATUS1_OUTPUT STATUS1_OUTPUT STATUS1_EN_PUL STATUS1_EN_PUL  
_MUTE _INV _WEAK_DRIVE LUP LDOWN  
0x94  
0x95  
STATUS1_INT_MUX[7:0]  
STATUS0_INT_MUX[7:0]  
PLL2_REF_CLK_E  
0x96  
0x97  
0x98  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
PLL2_REF_STATCLK_DIV[2:0]  
N
STATUS0_OUTPUT STATUS0_ENB_IN STATUS0_EN_ML_I  
_HIZ STAGE NSTAGE  
STATUS0_OUTPUT STATUS0_INPUT_Y STATUS0_INPUT_  
_DATA 12 M12  
RSRVD  
RSRVD  
STATUS1_OUTPUT STATUS1_ENB_IN STATUS1_EN_ML_I  
STATUS1_OUTPUT STATUS1_INPUT_Y STATUS1_INPUT_  
_HIZ  
STAGE  
NSTAGE  
_DATA  
12  
M12  
SYNC_OUTPUT_M SYNC_OUTPUT_IN SYNC_OUTPUT_W  
SYNC_EN_PULLDO  
WN  
0x99  
0x9A  
0x9B  
SYNC_MUX_SEL[2:0]  
SYNC_EN_PULLUP  
UTE  
V
EAK_DRIVE  
RSRVD  
RSRVD  
CLKINSEL1_EN_PU CLKINSEL1_EN_PU  
LLUP LLDOWN  
RSRVD  
CLKINSEL1_ENB_I CLKINSEL1_EN_ML  
CLKINSEL1_INPUT CLKINSEL1_INPUT  
0x9C  
0xAC  
0xAD  
RSRVD  
RSRVD  
NSTAGE  
_INSTAGE  
_Y12  
_M12  
PLL1_TSTMODE_  
REF_FB_EN  
RSRVD  
PLL2_TSTMODE_R  
EF_FB_EN  
RSRVD  
RSRVD  
RESET_PLL2_DLD[1:0]  
RSRVD  
PD_VCO_LDO[1:0]  
0xBE  
0xF6  
LOS  
HOLDOVER_DLD  
HOLDOVER_LOL  
HOLDOVER_LOS  
PLL2_LCK_DET  
PLL2_DLD_EN  
PLL1_LCK_DET  
RSRVD  
RSRVD  
0xFD  
0xFF  
OUTCH1_DDLY[7:0]  
OUTCH2_DDLY[7:0]  
OUTCH34_DDLY[7:0]  
OUTCH5_DDLY[7:0]  
OUTCH6_DDLY[7:0]  
0x101  
0x103  
0x105  
Copyright © 2017–2019, Texas Instruments Incorporated  
61  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
0x107  
DATA  
OUTCH78_DDLY[7:0]  
OUTCH9_DDLY[7:0]  
OUTCH10_DDLY[7:0]  
CH1_ADLY[4:0]  
0x109  
0x10B  
0x10D  
0x10E  
0x110  
0x111  
0x112  
0x115  
0x116  
0x117  
0x119  
0x11A  
0x124  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
CH1_ADLY_EN  
CH2_ADLY_EN  
CH3_ADLY_EN  
CH4_ADLY_EN  
CH5_ADLY_EN  
CH6_ADLY_EN  
CH7_ADLY_EN  
CH8_ADLY_EN  
CH9_ADLY_EN  
CH10_ADLY_EN  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
CH2_ADLY[4:0]  
CH3_ADLY[4:0]  
CH4_ADLY[4:0]  
CH5_ADLY[4:0]  
CH6_ADLY[4:0]  
CH7_ADLY[4:0]  
CH8_ADLY[4:0]  
CH9_ADLY[4:0]  
CH10_ADLY[4:0]  
RSRVD  
CLKMUX[3:0]  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_  
0x127  
0x128  
0x129  
0x12A  
0x12B  
0x12C  
0x12D  
SYNC_EN_CH1  
HS_EN_CH1  
HS_EN_CH2  
HS_EN_CH3_4  
HS_EN_CH5  
HS_EN_CH6  
HS_EN_CH7_8  
HS_EN_CH9  
DRIV_1_SLEW[1:0]  
RSRVD  
NG_CH1  
CH1  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_  
SYNC_EN_CH2  
RSRVD  
DRIV_2_SLEW[1:0]  
DRIV_3_SLEW[1:0]  
DRIV_5_SLEW[1:0]  
RSRVD  
NG_CH2  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_ SYNC_EN_CH3_4  
NG_CH3_4 CH3_4  
CH2  
DRIV_4_SLEW[1:0]  
RSRVD  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_  
SYNC_EN_CH5  
NG_CH5  
CH5  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_  
SYNC_EN_CH6  
DRIV_6_SLEW[1:0]  
DRIV_8_SLEW[1:0]  
DRIV_9_SLEW[1:0]  
NG_CH6  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_ SYNC_EN_CH7_8  
NG_CH7_8 CH7_8  
CH6  
DRIV_7_SLEW[1:0]  
RSRVD  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_  
SYNC_EN_CH9  
NG_CH9  
CH9  
62  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Register Maps (continued)  
Table 24. Register Map (continued)  
ADDRESS  
DATA  
SYSREF_BYP_D SYSREF_BYP_ANA  
YNDIGDLY_GATI LOGDLY_GATING_  
0x12E  
SYNC_EN_CH10  
HS_EN_CH10  
RSRVD  
DRIV_10_SLEW[1:0]  
NG_CH10  
CH10  
0x130  
0x131  
0x133  
0x134  
0x135  
0x138  
0x139  
0x13A  
0x13C  
0x13D  
0x140  
0x141  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
RSRVD  
DYN_DDLY_CH1[2:0]  
DYN_DDLY_CH2[2:0]  
DYN_DDLY_CH3[2:0]  
DYN_DDLY_CH4[2:0]  
DYN_DDLY_CH5[2:0]  
DYN_DDLY_CH6[2:0]  
DYN_DDLY_CH7[2:0]  
DYN_DDLY_CH8[2:0]  
DYN_DDLY_CH9[2:0]  
DYN_DDLY_CH10[2:0]  
RSRVD  
OUTCH_SYSREF_PLSCNT[5:0]  
SYNC_INT_MUX[7:0]  
SYNC_OUTPUT_HI SYNC_ENB_INSTA SYNC_EN_ML_INS  
SYNC_OUTPUT_D  
0x142  
0x143  
0x146  
RSRVD  
RSRVD  
RSRVD  
ATA  
SYNC_INPUT_Y12 SYNC_INPUT_M12  
FBBUF_CH6_EN  
Z
GE  
TAGE  
RSRVD  
FBBUF_CH5_EN  
RSRVD  
PLL2_NBYPASS_DI  
V2_FB  
PLL2_PRESCALER[3:0]  
PLL2_FBDIV_MUXSEL[1:0]  
PLL1_CLKINSEL1_ PLL1_SYNC_HOLD PLL1_STATUS1_H PLL1_STATUS0_H  
0x149  
0x14A  
0x14B  
0x14C  
0x14E  
0x150  
0x151  
RSRVD  
ML_HOLDOVER  
OVER  
OLDOVER  
OLDOVER  
SYNC_ANALOGDL  
Y_EN  
RSRVD  
SYNC_ANALOGDLY[4:0]  
RESERVED  
SYNC_INV  
DYN_DDLY_CH10_ DYN_DDLY_CH9_E  
EN  
DYN_DDLY_CH8_E DYN_DDLY_CH7_E DYN_DDLY_CH6_E  
RESERVED  
RESERVED  
RESERVED  
N
N
N
N
DYN_DDLY_CH5_ DYN_DDLY_CH4_E DYN_DDLY_CH3_E  
DYN_DDLY_CH2_E DYN_DDLY_CH1_E  
RESERVED  
RESERVED  
EN  
N
N
N
N
SYSREF_EN_CH  
10  
SYSREF_EN_CH7_  
8
SYSREF_EN_CH3_  
4
SYSREF_EN_CH9  
SYSREF_EN_CH6  
SYSREF_EN_CH5  
SYSREF_EN_CH2  
SYSREF_EN_CH1  
PLL2_PFD_DIS_SA  
MPLE  
RSRVD  
PLL2_PROG_PFD_RESET[2:0]  
PLL2_CP_EN_SAM  
RSRVD  
RSRVD  
PLL2_RFILT  
RSRVD  
PLL2_CPROP[1:0]  
PLL2_CSAMPLE[2:0]  
PLE_BYP  
0x152  
0x153  
RSRVD  
PLL2_EN_FILTER  
PLL2_CFILT  
Copyright © 2017–2019, Texas Instruments Incorporated  
63  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2 Device Register Descriptions  
The following section details the fields of each register, the Power-On-Reset Defaults, and specific descriptions  
of each bit.  
In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as  
X or Y. In these cases, the X represents even numbers from 0 to 12 and the Y represents odd numbers from 1 to  
13. In the case where X and Y are both used in a bit name, then Y = X + 1.  
9.6.2.1 CONFIGA  
The CONFIGA Register provides control of the SPI operation. The data written to this register must always be  
symmetrical otherwise the write will not take place, that is, Bit0=Bit7, Bit1=Bit6, Bit2=Bit5, Bit3=Bit4. Return to  
Register Map.  
Table 25. Register – 0x00  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Software Reset. Writing a 1 to SWRST resets the device  
apart from the SPI programmable registers. SWRST is  
automatically cleared to 0.  
[7]  
SWRST  
RWSC  
0
Least Significant Bit First. This feature is not support, register  
data is always transmitted MSB first.  
[6]  
[5]  
LSB_FIRST  
RW  
RW  
0
0
Address Increment Ascending. When set to 1 the address in  
streaming transactions is incremented by 1 after each data  
byte. When set to 0 the address is decremented by 1 in  
streaming transactions.  
ADDR_ASCEND  
[4]  
[3]  
SDO_ACTIVE  
RW  
RW  
0
0
SDO Active. SDO is always active. This bit always reads 1.  
SDO Active. Must be programmed equal to bit 4.  
SDO_ACTIVE_CPY  
Address Increment Ascending. Must be programmed equal  
to bit 5.  
[2]  
ADDR_ASCEND_CPY  
RW  
0
Least Significant Bit First. Must be programmed equal to bit  
6.  
[1]  
[0]  
LSB_FIRST_CPY  
SWRST_CPY  
RW  
0
0
RWSC  
Software Reset. Must be programmed equal to bit 7.  
9.6.2.2 RESERVED1  
Reserved Register space. Return to Register Map.  
Table 26. Register – 0x01  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD1  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
9.6.2.3 RESERVED2  
Reserved Register space. Return to Register Map.  
Table 27. Register – 0x02  
BIT NO.  
[7:2]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[1:0]  
RSRVD2[1:0]  
R
0x0  
Reserved for compatibility.  
64  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.4 CHIP_TYPE  
The CHIP_TYPE Register defines the nature of this device. Return to Register Map.  
Table 28. Register – 0x03  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Device Identification. Indicates the device partname  
DEVID - Device  
0 - LMK04616  
1 - LMK04610  
[7:6]  
DEVID[1:0]  
R
0x0  
[5:4]  
[3:0]  
RSRVD  
-
-
Reserved.  
CHIPTYPE[3:0]  
R
0x6  
Chip Type. Indicates that this is a PLL Device.  
9.6.2.5 CHIP_ID_BY1  
The CHIP_ID is a vendor specific field recorded in registers CHIP_ID_BY1 and CHIP_ID_BY0. Return to  
Register Map.  
Table 29. Register – 0x04  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CHIPID[15:8]  
R
0x38  
CHIP Identification.  
9.6.2.6 CHIP_ID_BY0  
The CHIP_ID lower byte is recorded in CHIP_ID_BY1. Return to Register Map.  
Table 30. Register – 0x05  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CHIPID[7:0]  
R
0x3  
CHIP Identification.  
9.6.2.7 CHIP_VER  
The CHIP_VER Register records the mask set revision. Return to Register Map.  
Table 31. Register – 0x06  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CHIPVER[7:0]  
R
0x1B  
CHIP Version.  
9.6.2.8 RESERVED3  
Reserved Register space. Return to Register Map.  
Table 32. Register – 0x07  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD3  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
9.6.2.9 RESERVED4  
Reserved Register space. Return to Register Map.  
Table 33. Register – 0x08  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD4  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
Copyright © 2017–2019, Texas Instruments Incorporated  
65  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.10 RESERVED5  
Reserved Register space. Return to Register Map.  
Table 34. Register – 0x09  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD5  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
9.6.2.11 RESERVED6  
Reserved Register space. Return to Register Map.  
Table 35. Register – 0x0A  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD6  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
9.6.2.12 RESERVED7  
Reserved Register space. Return to Register Map.  
Table 36. Register – 0x0B  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD7  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
9.6.2.13 VENDOR_ID_BY1  
The VENDOR_ID field is recorded in registers VENDOR_ID_BY1 and VENDOR_ID_BY0. Return to Register  
Map.  
Table 37. Register – 0x0C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
VENDORID[15:8]  
R
0x51  
Vendor Identification.  
9.6.2.14 VENDOR_ID_BY0  
VENDOR_ID Lower Byte. Return to Register Map.  
Table 38. Register – 0x0D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
VENDORID[7:0]  
R
0x8  
Vendor Identification.  
9.6.2.15 RESERVED8  
Reserved Register space. Return to Register Map.  
Table 39. Register – 0x0E  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD8  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
66  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.16 RESERVED9  
Reserved Register space. Return to Register Map.  
Table 40. Register – 0x0F  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD9  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[0]  
R
0
Reserved for compatibility.  
9.6.2.17 STARTUP_CFG  
The STARTUP_CFG Register provides control of the device operation at start-up. Return to Register Map.  
Table 41. Register – 0x10  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
Output Channel Mute. When OUTCH_MUTE is 1 the output  
drivers are disabled until the PLL's have locked.  
[5]  
OUTCH_MUTE  
RW  
0
[4]  
[3]  
[2]  
[1]  
[0]  
CLKINBLK_LOSLDO_EN  
CH6TO10EN  
CH1TO5EN  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
Enable LOS LDO during the start-up sequence.  
Enable Channels 6 to 10 during the start-up sequence.  
Enable Channels 1 to 5 during the start-up sequence.  
Activate PLL2 during the start-up sequence.  
PLL2EN  
PLL1EN  
Activate PLL1 during the start-up sequence.  
9.6.2.18 STARTUP  
The STARTUP Register allows device activation to be triggered. Return to Register Map.  
Table 42. Register – 0x11  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:1]  
RSRVD  
-
-
Reserved.  
Device Start-up. When DEV_STARTUP is 1 the device  
activation sequence is triggered. The device modules that  
are automatically enabled during the sequence is determined  
by the STARTUP_CFG register. If DEV_STARTUP is 1 on  
exit from software reset then the start-up sequence is also  
triggered.  
[0]  
DEV_STARTUP  
RW  
0
9.6.2.19 DIGCLKCTRL  
The DIGCLKCTRL Register allows control of the digital system clock. Return to Register Map.  
Table 43. Register – 0x12  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Digital Clock Enable. When DIG_CLK_EN is 1 the digital  
system clock is active. When DIG_CLK_EN is 0 the digital  
system clock is disabled.  
[2]  
[1]  
DIG_CLK_EN  
RW  
RW  
1
1
PLL2_DIG_CLK_EN  
Enable PLL2 Digital Clock Buffer.  
POR Clock behavior after Lock. If PORCLKAFTERLOCK is 0  
then the system clock is switched from the POR Clock to the  
PLL2 Digital Clock after lock and the POR Clock oscillator is  
disabled. If PORCLKAFTERLOCK is 1, the POR Clock  
remains as the digital system clock regardless of the PLL  
Lock state.  
[0]  
PORCLKAFTERLOCK  
RW  
0
Copyright © 2017–2019, Texas Instruments Incorporated  
67  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.20 PLL2REFCLKDIV  
The PLL2REFCLKDIV Register controls the PLL2 Reference Clock Divider value. Return to Register Map.  
Table 44. Register – 0x13  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:5]  
RSRVD  
-
-
Reserved.  
PLL2 Ref Clock Divider for Digital Clock. Defines the divider  
ratio for the PLL2 Reference Clock that can be used as the  
digital system clock.  
PLL2_REF_DIGCLK_DIV– Divider Value  
b00000– 32  
PLL2_REF_DIGCLK_DIV[4:0  
]
[4:0]  
RW  
0x0  
b00001– 16  
b00010– 8  
b00100– 4  
b01000– 2  
b10000– 1  
9.6.2.21 GLBL_SYNC_SYSREF  
The GLBL_SYNC_SYSREF Register provides software control of the SYSREF and SYNC features. Return to  
Register Map.  
Table 45. Register – 0x14  
BIT NO.  
[7]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
Enable SYNC_SYSREF features at SYNC pin.  
Reserved.  
EN_SYNC_PIN_FUNC  
RSRVD  
0
-
[6]  
-
[5]  
GLOBAL_CONT_SYSREF  
GLOBAL_SYSREF  
RW  
0
0
Enable continuous SYSREF.  
Trigger SYSREF. Self-clearing.  
[4]  
RWSC  
INV_SYNC_INPUT_SYNC_C  
LK  
Invert the internal synchronization clock for SYNC input sync  
(For PLL1 N- and R-Divider Reset)  
[3]  
[2:1]  
[0]  
RW  
RW  
RW  
0
0x0  
0
SYNC input pin function.  
SYNC_PIN_FUNC– Function  
00– SYNC output channels  
01– Sysref Request  
10– Reset PLL1 N- and R-Divider  
11– Reserved  
SYNC_PIN_FUNC[1:0]  
GLOBAL_SYNC  
Global SW SYNC. Writing 1 puts the Device into SYNC  
mode. Writing 0 exits SYNC mode.  
9.6.2.22 CLKIN_CTRL0  
The CLKIN_CTRL0 Register provides control of CLK Input features. Return to Register Map.  
Table 46. Register – 0x15  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:4]  
RSRVD  
-
-
Reserved.  
CLKINBLK Staggered Activation/Deactivation. When  
CLKIN_STAGGER_EN is 1, the input clock stages are  
activated and deactivated one at a time.  
[3]  
CLKIN_STAGGER_EN  
RW  
1
CLKINBLK Software Reset. Writing a 1 to CLKIN_SWRST  
resets the CLKIN Block. The CLKIN_SWRST is cleared  
automatically to 0.  
[2]  
[1]  
CLKIN_SWRST  
RSRVD  
RWSC  
-
0
-
Reserved.  
CLKIN_SEL Invert.  
CLKINSEL1_INV– Polarity  
0– Non-Inverted  
[0]  
CLKINSEL1_INV  
RW  
0
1– Inverted  
68  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.23 CLKIN_CTRL1  
The CLKIN_CTRL1 Register provides control of CLK Input features. Return to Register Map.  
Table 47. Register – 0x16  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CLK Inputs All Enabled after Clock Switch. If  
CLKINBLK_ALL_EN is 1 then all clock input paths remain  
enabled after a valid clock has been selected. If  
CLKINBLK_ALL_EN is 0 then the clock paths are disabled  
apart from the selected clock.  
[7]  
CLKINBLK_ALL_EN  
RW  
0
CLK Input Select Mode.  
CLKINSEL1_MODE– CLOCK Selection Mode  
[6:5]  
CLKINSEL1_MODE[1:0]  
RW  
0x0  
0– Auto  
1– Pin  
2– Register  
CLKINBLK_EN_BUF_CLK_P  
LL  
[4]  
[3]  
RW  
RW  
0
0
Clock Buffer for PLL1 Enable.  
CLKINBLK_EN_BUF_BYP_P  
LL  
Clock Buffer for PLL2 Enable (PLL1 By-Passed).  
[2]  
[1]  
[0]  
RSRVD  
RSRVD  
RSRVD  
RW  
RW  
RW  
0
0
0
Reserved.  
Reserved.  
Reserved.  
9.6.2.24 CLKIN0CTRL  
The CLKIN0CTRL Register provides control of the CLK0 input path. Return to Register Map.  
Table 48. Register – 0x19  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Inverts CLKIN0_PLL1_RDIV.  
0=Noninverted  
[6]  
CLKIN0_PLL1_INV  
RW  
1
1=Inverted  
[5]  
[4]  
CLKIN0_LOS_FRQ_DBL_EN  
CLKIN0_EN  
RW  
RW  
0
0
CLKIN0 Loss of Source Frequency Doubler Enable.  
CLKIN0 Input Stage Enable. (not clk buffer).  
CLKIN0 Signal Mode.  
CLKIN0_SE_MODE– Signal Mode Selection  
0– Differential  
[3]  
CLKIN0_SE_MODE  
RW  
1
1– Single-ended  
CLKIN0 Priority.  
CLKIN0_PRIO– Clock Priority  
0– Clock Disabled  
1– Priority 1– Highest  
2– Priority 2  
[2:0]  
CLKIN0_PRIO[2:0]  
RW  
0x3  
3– Priority 3  
4– Priority 4– Lowest  
9.6.2.25 CLKIN1CTRL  
The CLKIN1CTRL Register provides control of the CLK1 input path. Return to Register Map.  
Table 49. Register – 0x1A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Inverts CLKIN1_PLL1_RDIV.  
0=Non-Inverted  
[6]  
CLKIN1_PLL1_INV  
RW  
1
1=Inverted  
Copyright © 2017–2019, Texas Instruments Incorporated  
69  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 49. Register – 0x1A (continued)  
BIT NO.  
[5]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
CLKIN1_LOS_FRQ_DBL_EN  
CLKIN1_EN  
0
0
CLKIN1 Loss of Source Frequency Doubler Enable.  
CLKIN1 Input Stage Enable. (not CLK buffer).  
[4]  
RW  
CLKIN1 Signal Mode.  
CLKIN1_SE_MODE– Signal Mode Selection  
0– Differential  
[3]  
CLKIN1_SE_MODE  
CLKIN1_PRIO[2:0]  
RW  
RW  
1
1– Single-ended  
CLKIN1 Priority.  
CLKIN1_PRIO– Clock Priority  
0– Clock Disabled  
1– Priority 1– Highest  
2– Priority 2  
[2:0]  
0x4  
3– Priority 3  
4– Priority 4– Lowest  
9.6.2.26 CLKIN0RDIV_BY1  
The CLKIN0 RDIV Values is determined by CLKIN0RDIV_BY1 and CLKIN0RDIV_BY0. Return to Register Map.  
Table 50. Register – 0x1F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CLKIN0 PLL1 Reference Divider Value.  
CLKIN0_PLL1_RDIV– Reference Divider  
0– Reserved  
1– 1  
[7:0]  
CLKIN0_PLL1_RDIV[15:8]  
RW  
0x0  
..– ..  
65535– 65535  
9.6.2.27 CLKIN0RDIV_BY0  
The CLKIN0RDIV_BY0 Register controls the lower 8-bits of the CLKIN0 Reference Divider. Return to Register  
Map.  
Table 51. Register – 0x20  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CLKIN0_PLL1_RDIV[7:0]  
RW  
0x78  
CLKIN0 PLL1 Reference Divider Value.  
9.6.2.28 CLKIN1RDIV_BY1  
The CLKIN1 RDIV Values is determined by CLKIN1RDIV_BY1 and CLKIN1RDIV_BY0. Return to Register Map.  
Table 52. Register – 0x21  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CLKIN1 PLL1 Reference Divider Value.  
CLKIN1_PLL1_RDIV– Reference Divider  
0– Reserved  
1– 1  
[7:0]  
CLKIN1_PLL1_RDIV[15:8]  
RW  
0x0  
..– ..  
65535– 65535  
70  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.29 CLKIN1RDIV_BY0  
The CLKIN1RDIV_BY0 Register controls the lower 8-bits of the CLKIN1 Reference Divider. Return to Register  
Map.  
Table 53. Register – 0x22  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CLKIN1_PLL1_RDIV[7:0]  
RW  
0x78  
CLKIN1 PLL1 Reference Divider Value.  
9.6.2.30 CLKIN0LOS_REC_CNT  
The CLKIN0LOS_REC_CNT Register sets the CLKIN0 Loss of Source recovery counter value. Return to  
Register Map.  
Table 54. Register – 0x27  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CLKIN0 LOS Recovery Counter Value.  
CLKIN0_LOS_REC_CNT– Counter Value  
0– 15+0*16  
1– 15+1*16  
2– 15+2*16  
3– 15+3*16  
..– ..  
CLKIN0_LOS_REC_CNT[7:0  
]
[7:0]  
RW  
0x14  
255– 15+255*16  
9.6.2.31 CLKIN0LOS_LAT_SEL  
The CLKIN0LOS_LAT_SEL Register sets the CLKIN0 Loss of Source latency. Return to Register Map.  
Table 55. Register – 0x28  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CLKIN0_LOS_LAT_SEL[7:0]  
RW  
0x80  
CLKIN0 LOS Max Latency for LOS Detection.  
9.6.2.32 CLKIN1LOS_REC_CNT  
The CLKIN1LOS_REC_CNT Register sets the CLKIN1 Loss of Source recovery counter value. Return to  
Register Map.  
Table 56. Register – 0x29  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CLKIN1 LOS Recovery Counter Value.  
CLKIN1_LOS_REC_CNT– Counter Value  
0– 15+0*16  
1– 15+1*16  
2– 15+2*16  
3– 15+3*16  
..– ..  
CLKIN1_LOS_REC_CNT[7:0  
]
[7:0]  
RW  
0x14  
255– 15+255*16  
9.6.2.33 CLKIN1LOS_LAT_SEL  
The CLKIN1LOS_LAT_SEL Register sets the CLKIN1 Loss of Source latency. Return to Register Map.  
Table 57. Register – 0x2A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
CLKIN1_LOS_LAT_SEL[7:0]  
RW  
0x80  
CLKIN1 LOS Max Latency for LOS Detection.  
Copyright © 2017–2019, Texas Instruments Incorporated  
71  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.34 CLKIN_SWCTRL0  
The CLKIN_SWCTRL0 Register provides control of the input settling time after switching to another Ref channel  
for Loss-Of-Signal Inspection. Return to Register Map.  
Table 58. Register – 0x2B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:5]  
RSRVD  
-
-
Reserved.  
Wait Time for a Valid LOS Detection. Used during Priority  
Switching in Auto CLKin selection mode.  
[4:0]  
SW_CLKLOS_TMR[4:0]  
RW  
0x0  
9.6.2.35 CLKIN_SWCTRL1  
The CLKIN_SWCTRL1 Register provides control of the Loss-Of-Signal Channel select. Return to Register Map.  
Table 59. Register – 0x2C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Software Mode Reference Input Select.  
SW_REFINSEL– Input Selected  
0001– RESERVED  
[7:4]  
SW_REFINSEL[3:0]  
RW  
0x0  
0010– RESERVED  
0100– CLKIN0  
1000– CLKIN1  
Loss of Source Channel Select.  
SW_LOS_CH_SEL– Input Selected  
0001– RESERVED  
[3:0]  
SW_LOS_CH_SEL[3:0]  
RW  
0x0  
0010– RESERVED  
0100– CLKIN0  
1000– CLKIN1  
9.6.2.36 CLKIN_SWCTRL2  
The CLKIN_SWCTRL2 Register provides control of the input stage settling time when switching on all inputs in  
case of Loss-Of-Signal. Return to Register Map.  
Table 60. Register – 0x2D  
BIT NO.  
[7:5]  
FIELD  
RSRVD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
-
[4:0]  
SW_ALLREFSON_TMR[4:0]  
RW  
0x0  
Wait Time to allow Clock Inputs to Settle.  
9.6.2.37 OSCIN_CTRL  
The OSCIN_CTRL Register provides control of the OSCIN signal path. Return to Register Map.  
Table 61. Register – 0x2E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
OSCIN LDO Power Down.  
OSCIN_PD_LDO– LDO State  
0– LDO On  
[5]  
[4]  
OSCIN_PD_LDO  
RW  
RW  
0
1
1– LDO Off  
OSCin Signal Mode.  
OSCIN_SE_MODE– Signal Mode Selection  
0– Differential  
OSCIN_SE_MODE  
1– Single-ended  
OSCIN_BUF_TO_OSCOUT_  
EN  
[3]  
[2]  
RW  
RW  
1
1
OSCin to OSCout Buffer Enable.  
OSCin Clock Input Stage Enable.  
OSCIN_OSCINSTAGE_EN  
72  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 61. Register – 0x2E (continued)  
BIT NO.  
[1]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
OSCIN_BUF_REF_EN  
OSCIN_BUF_LOS_EN  
0
0
OSCin to PLL1 and PLL2 Ref Clock Buffer Enable.  
OSCin to LOS Clock Buffer Enable.  
[0]  
RW  
9.6.2.38 OSCOUT_CTRL  
The OSCOUT_CTRL Register controls the OSCOUT Function. Return to Register Map.  
Table 62. Register – 0x2F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OSCOUT_LVCMOS_WEAK_  
DRIVE  
[7]  
RW  
0
Enable OSCOUT LVCMOS weak drive.  
OSCOUT_DIV_REGCONTR  
OL  
Enable OSCOUT Divider setting through configuration  
register rather than SYNC pin control.  
[6]  
RW  
R
0
OSCOUT pin-selected Divider.  
OSCOUT_PINSEL_DIV– Pin-Selected Oscout Divider ratio  
00– 1  
01– 2  
10– 2  
11– 4  
[5:4]  
OSCOUT_PINSEL_DIV[1:0]  
0x0  
OSCOUT Bandgap Source Select. When  
OSCOUT_SEL_VBG is 0 the PLL1 Bandgap is used for  
OSCOUT. If OSCOUT_SEL_VBG is 1 the Output Channel  
Bandgap is used.  
[3]  
OSCOUT_SEL_VBG  
RW  
0
[2]  
[1]  
OSCOUT_DIV_CLKEN  
OSCOUT_SWRST  
RW  
1
0
OSCout Divider Clock Enable. (RESERVED for PG1p0)  
OSCOUT Software Reset. Writing a 1 to OSCOUT_SWRST  
resets the OSCOUT Block. The OSCOUT_SWRST is  
cleared automatically to 0.  
RWSC  
OSCout Clock source select.  
OSCOUT_SEL_SRC– Clock Source  
0– PLL2 Output  
[0]  
OSCOUT_SEL_SRC  
RW  
1
1– OSCin  
9.6.2.39 OSCOUT_DIV  
The OSCOUT_DIV Register controls the OSCOUT Divider. Return to Register Map.  
Table 63. Register – 0x30  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OSCOUT_DIV[7:0]  
RW  
0x0  
OSCOUT Divider. Set value of OSCOUT channel divider.  
Copyright © 2017–2019, Texas Instruments Incorporated  
73  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.40 OSCOUT_DRV  
The OSCOUT_DRV Register controls the OSCOUT Driver. Return to Register Map.  
Table 64. Register – 0x31  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OSCOUT Driver Mute Control. OSCOUT_DRV_MUTE sets  
the OSCOUT driver mute input after the internal reset has  
been de-asserted. During the reset sequence the mute input  
is set to 11. It is configured together with  
OSCOUT_DRV_MODE.  
OSCOUT_DRV_MUTE,OSCOUT_DRV_MODE– Output  
State  
00,XXXXXX– OSCOUT Driver is Active  
01,11XXXX– OSCOUT_P operating normal, OSCOUT_N  
Low  
01,01XXXX– OSCOUT_P operating normal, OSCOUT_N  
Operating normal  
01,10XX00– OSCOUT_P High, OSCOUT_N High  
01,10XX01– OSCOUT_P operating normal, OSCOUT_N  
operating normal  
01,10XX10– OSCOUT_P operating normal, OSCOUT_N  
operating normal  
[7:6]  
OSCOUT_DRV_MUTE[1:0]  
RW  
0x0  
01,10XX11– OSCOUT_P operating normal, OSCOUT_N  
operating normal  
10,11XXXX– OSCOUT_P Low, OSCOUT_N operating  
normal  
10,01XXXX– OSCOUT_P Low, OSCOUT_N High  
10,10XX00– OSCOUT_P High, OSCOUT_N High  
10,10XX01– OSCOUT_P Low, OSCOUT_N High  
10,10XX10– OSCOUT_P Low, OSCOUT_N High  
10,10XX11– OSCOUT_P Low, OSCOUT_N High  
11,11XXXX– OSCOUT_P Low, OSCOUT_N Low  
11,01XXXX– OSCOUT_P Low, OSCOUT_N High  
11,10XX00– OSCOUT_P High, OSCOUT_N High  
11,10XX01– OSCOUT_P Low, OSCOUT_N High  
11,10XX10– OSCOUT_P Low, OSCOUT_N High  
11,10XX11– OSCOUT_P Low, OSCOUT_N High  
OSCOUT Driver Mode.  
OSCOUT_DRV_MODE– Output stage configuration  
00XXXX– Power Down  
01XXXX– HSDS Mode  
10XXXX– HSCL Mode  
11XXXX– LVCMOS Mode  
XX00XX– HSDS, HSCL: ITail: 4mA, LVCMOS: OSCOUT_P  
tristate  
XX01XX– HSDS, HSCL: ITail: 6mA, LVCMOS: OSCOUT_P  
Weak Drive  
XX10XX– HSDS, HSCL: ITail: 8mA, LVCMOS: OSCOUT_P  
Normal Drive Inverted  
[5:0]  
OSCOUT_DRV_MODE[5:0]  
RW  
0x3F  
XX11XX– ITail HSDS: 8mA, HSCL: 16mA, LVCMOS:  
OSCOUT_P Normal Drive Non-Inverted  
XXXX00– Rload HSDS: open, HSCL: open, LVCMOS:  
OSCOUT_N tristate  
XXXX01– Rload HSDS: open, HSCL: 50Ohm, LVCMOS:  
OSCOUT_N Weak Drive  
XXXX10– Rload HSDS: open, HSCL: 100Ohm for Itail=4mA,  
6mA, 8mA, LVCMOS: OSCOUT_N Normal Drive Inverted  
XXXX11– Rload HSDS: open, HSCL: 200Ohm for Itail=4mA,  
LVCMOS: OSCOUT_N Normal Drive Non-Inverted  
74  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.41 OUTCH_SWRST  
The OUTCH_SWRST Register allows software reset to applied independently to each output channel. Return to  
Register Map.  
Table 65. Register – 0x32  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CH10 Software Reset. Writing a 1 to CH10_SWRST resets  
CH10. CH10_SWRST is cleared automatically to 0.  
[7]  
CH10_SWRST  
RWSC  
0
CH9 Software Reset. Writing a 1 to CH9_SWRST resets  
CH9. CH9_SWRST is cleared automatically to 0.  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
CH9_SWRST  
CH78_SWRST  
CH6_SWRST  
CH5_SWRST  
CH34_SWRST  
CH2_SWRST  
CH1_SWRST  
RWSC  
RWSC  
RWSC  
RWSC  
RWSC  
RWSC  
RWSC  
0
0
0
0
0
0
0
CH78 Software Reset. Writing a 1 to CH78_SWRST resets  
CH78. CH78_SWRST is cleared automatically to 0.  
CH6 Software Reset. Writing a 1 to CH6_SWRST resets  
CH6. CH6_SWRST is cleared automatically to 0.  
CH5 Software Reset. Writing a 1 to CH5_SWRST resets  
CH5. CH5_SWRST is cleared automatically to 0.  
CH34 Software Reset. Writing a 1 to CH34_SWRST resets  
CH34. CH34_SWRST is cleared automatically to 0.  
CH2 Software Reset. Writing a 1 to CH2_SWRST resets  
CH2. CH2_SWRST is cleared automatically to 0.  
CH1 Software Reset. Writing a 1 to CH1_SWRST resets  
CH1. CH1_SWRST is cleared automatically to 0.  
9.6.2.42 OUTCH1CNTL0  
The OUTCH1CNTRL0 Register controls Output CH1. Return to Register Map.  
Table 66. Register – 0x33  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH1 LDO Bypass.  
OUTCH1_LDO_BYP_MODE– LDO State  
0– Enabled  
[7]  
OUTCH1_LDO_BYP_MODE  
RW  
0
1– Bypassed  
OUTCH1 LDO Mask. If OUTCH1_LDO_MASK is 1 then CH1  
LDO is masked from the Power Up Sequence and enabled  
directly.  
[6]  
OUTCH1_LDO_MASK  
RSRVD[5:0]  
RW  
RW  
0
0
[5:0]  
RESERVED  
9.6.2.43 OUTCH1CNTL1  
The OUTCH1CNTRL1 Register controls Output CH1. Return to Register Map.  
Table 67. Register – 0x34  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH1 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
[7:2]  
OUTCH1_DRIV_MODE[5:0]  
RW  
0x18  
20 - HSDS 6 mA  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
[1]  
[0]  
DIV_DCC_EN_CH1  
RW  
RW  
1
1
Output CH1 Divier Duty Cycle Correction Enable  
OUTCH1 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
OUTCH1_DIV_CLKEN  
Copyright © 2017–2019, Texas Instruments Incorporated  
75  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.44 OUTCH2CNTL0  
The OUTCH2CNTL0 Register controls Output CH2. Return to Register Map.  
Table 68. Register – 0x35  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH2 LDO Bypass.  
OUTCH2_LDO_BYP_MODE– LDO State  
0– Enabled  
[7]  
OUTCH2_LDO_BYP_MODE  
RW  
0
1– Bypassed  
OUTCH2 LDO Mask. If OUTCH2_LDO_MASK is 1 then CH2  
LDO is masked from the Power Sequence.  
[6]  
OUTCH2_LDO_MASK  
RW  
RW  
0
OUTCH2 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
20 - HSDS 6 mA  
[5:0]  
OUTCH2_DRIV_MODE[5:0]  
0x18  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
9.6.2.45 OUTCH2CNTL1  
The OUTCH2CNTRL1 Register controls Output CH2. Return to Register Map.  
Table 69. Register – 0x36  
BIT NO.  
[7:2]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
RESERVED  
RESERVED[5:0]  
DIV_DCC_EN_CH2  
0
1
[1]  
RW  
Output CH2 Divider Duty Cycle Correction Enable  
OUTCH2 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
[0]  
OUTCH2_DIV_CLKEN  
RW  
1
9.6.2.46 OUTCH34CNTL0  
The OUTCH34CNTRL0 Register controls Output CH3_4. Return to Register Map.  
Table 70. Register – 0x37  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH34 LDO Bypass.  
OUTCH34_LDO_BYP_MODE– LDO State  
0– Enabled  
OUTCH34_LDO_BYP_MOD  
E
[7]  
RW  
0
1– Bypassed  
OUTCH34 LDO Mask. If OUTCH34_LDO_MASK is 1 then  
CH34 LDO is masked from the Power Sequence.  
[6]  
OUTCH34_LDO_MASK  
RW  
RW  
0
OUTCH3 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
20 - HSDS 6 mA  
[5:0]  
OUTCH3_DRIV_MODE[5:0]  
0x18  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
76  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.47 OUTCH34CNTL1  
The OUTCH34CNTRL1 Register controls Output CH3_4. Return to Register Map.  
Table 71. Register – 0x38  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH4 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
[7:2]  
OUTCH4_DRIV_MODE[5:0]  
RW  
0x18  
20 - HSDS 6 mA  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
[1]  
[0]  
DIV_DCC_EN_CH3_4  
OUTCH34_DIV_CLKEN  
RW  
RW  
1
1
Output CH3_4 Divider Duty Cycle Correction Enable  
OUTCH34 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
9.6.2.48 OUTCH5CNTL0  
The OUTCH5CNTRL0 Register controls Output CH5. Return to Register Map.  
Table 72. Register – 0x39  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH5 LDO Bypass.  
OUTCH5_LDO_BYP_MODE– LDO State  
0– Enabled  
[7]  
OUTCH5_LDO_BYP_MODE  
RW  
0
1– Bypassed  
OUTCH5 LDO Mask. If OUTCH5_LDO_MASK is 1 then CH5  
LDO is masked from the Power Sequence.  
[6]  
OUTCH5_LDO_MASK  
RW  
RW  
0
OUTCH5 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
20 - HSDS 6 mA  
[5:0]  
OUTCH5_DRIV_MODE[5:0]  
0x18  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
9.6.2.49 OUTCH5CNTL1  
The OUTCH5CNTRL1 Register controls Output CH5. Return to Register Map.  
Table 73. Register – 0x3A  
BIT NO.  
[7:2]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
RESERVED  
RSRVD[5:0]  
0
0
[1]  
DIV_DCC_EN_CH5  
RW  
Output CH5 Divider Duty Cycle Correction Enable  
OUTCH5 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
[0]  
OUTCH5_DIV_CLKEN  
RW  
1
9.6.2.50 OUTCH6CNTL0  
The OUTCH6CNTRL0 Register controls Output CH6. Return to Register Map.  
Table 74. Register – 0x3B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH6 LDO Bypass.  
OUTCH6_LDO_BYP_MODE– LDO State  
0– Enabled  
[7]  
OUTCH6_LDO_BYP_MODE  
RW  
0
1– Bypassed  
OUTCH6 LDO Mask. If OUTCH6_LDO_MASK is 1 then CH6  
LDO is masked from the Power Sequence.  
[6]  
OUTCH6_LDO_MASK  
RW  
0
Copyright © 2017–2019, Texas Instruments Incorporated  
77  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 74. Register – 0x3B (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[5:0]  
RSRVD[5:0]  
RW  
0
RESERVED  
9.6.2.51 OUTCH6CNTL1  
The OUTCH6CNTRL1 Register controls Output CH6. Return to Register Map.  
Table 75. Register – 0x3C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH6 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
[7:2]  
OUTCH6_DRIV_MODE[5:0]  
RW  
0x18  
20 - HSDS 6 mA  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
[1]  
[0]  
DIV_DCC_EN_CH6  
RW  
RW  
0
1
Output CH6 Divider Duty Cycle Correction Enable  
OUTCH6 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
OUTCH6_DIV_CLKEN  
9.6.2.52 OUTCH78CNTL0  
The OUTCH78CNTRL0 Register controls Output CH7_8. Return to Register Map.  
Table 76. Register – 0x3D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH78 LDO Bypass.  
OUTCH78_LDO_BYP_MODE– LDO State  
0– Enabled  
OUTCH78_LDO_BYP_MOD  
E
[7]  
RW  
0
1– Bypassed  
OUTCH78 LDO Mask. If OUTCH78_LDO_MASK is 1 then  
CH78 LDO is masked from the Power Sequence.  
[6]  
OUTCH78_LDO_MASK  
RW  
RW  
0
OUTCH7 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
20 - HSDS 6 mA  
[5:0]  
OUTCH7_DRIV_MODE[5:0]  
0x18  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
9.6.2.53 OUTCH78CNTL1  
The OUTCH78CNTRL1 Register controls Output CH7_8. Return to Register Map.  
Table 77. Register – 0x3E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH8 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
[7:2]  
OUTCH8_DRIV_MODE[5:0]  
RW  
0x18  
20 - HSDS 6 mA  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
[1]  
[0]  
DIV_DCC_EN_CH7_8  
OUTCH78_DIV_CLKEN  
RW  
RW  
0
1
Output CH7_8 Divider Duty Cycle Correction Enable  
OUTCH78 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
78  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.54 OUTCH9CNTL0  
The OUTCH9CNTRL0 Register controls Output CH9. Return to Register Map.  
Table 78. Register – 0x3F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH9 LDO Bypass.  
OUTCH9_LDO_BYP_MODE– LDO State  
0– Enabled  
[7]  
OUTCH9_LDO_BYP_MODE  
RW  
0
1– Bypassed  
OUTCH9 LDO Mask. If OUTCH9_LDO_MASK is 1 then CH9  
LDO is masked from the Power Sequence.  
[6]  
OUTCH9_LDO_MASK  
RSRVD[5:0]  
RW  
RW  
0
0
[5:0]  
RESERVED  
9.6.2.55 OUTCH9CNTL1  
The OUTCH9CNTRL1 Register controls Output CH9. Return to Register Map.  
Table 79. Register – 0x40  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH9 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
[7:2]  
OUTCH9_DRIV_MODE[5:0]  
RW  
0x18  
20 - HSDS 6 mA  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
[1]  
[0]  
DIV_DCC_EN_CH9  
RW  
RW  
0
1
Output CH9 Divider Duty Cycle Correction Enable  
OUTCH9 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
OUTCH9_DIV_CLKEN  
9.6.2.56 OUTCH10CNTL0  
The OUTCH10CNTRL0 Register controls Output CH10. Return to Register Map.  
Table 80. Register – 0x41  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH10 LDO Bypass.  
OUTCH10_LDO_BYP_MODE– LDO State  
0– Enabled  
OUTCH10_LDO_BYP_MOD  
E
[7]  
RW  
0
1– Bypassed  
OUTCH10 LDO Mask. If OUTCH10_LDO_MASK is 1 then  
CH10 LDO is masked from the Power Sequence.  
[6]  
OUTCH10_LDO_MASK  
RW  
RW  
0
OUTCH10 Clock Driver Mode Setting.  
0 - Power down  
16 - HSDS 4 mA  
20 - HSDS 6 mA  
[5:0]  
OUTCH10_DRIV_MODE[5:0]  
0x18  
24 - HSDS 8 mA  
59 - HCSL 8 mA  
63 - HCSL 16 mA  
9.6.2.57 OUTCH10CNTL1  
The OUTCH10CNTRL1 Register controls Output CH10. Return to Register Map.  
Table 81. Register – 0x42  
BIT NO.  
[7:2]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
RESERVED  
RESERVED[5:0]  
DIV_DCC_EN_CH10  
0
0
[1]  
RW  
Output CH10 Divider Duty Cycle Correction Enable  
Copyright © 2017–2019, Texas Instruments Incorporated  
79  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 81. Register – 0x42 (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH10 Channel Divider Clock Enable. Enables output  
channel PLL Clock Buffer.  
[0]  
OUTCH10_DIV_CLKEN  
RW  
1
9.6.2.58 OUTCH1DIV_BY1  
The OUTCH1DIV_BY1,BY0 Registers set the OUTCH1 Divider Value. Return to Register Map.  
Table 82. Register – 0x43  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH1 Divider Value. Sets the divider value for output  
channel 1. An automatic reset is issued whenever the divider  
value is changed.  
[7:0]  
OUTCH1_DIV[15:8]  
RW  
0x0  
9.6.2.59 OUTCH1DIV_BY0  
The OUTCH1DIV_BY0 Register sets the lower 7 bits of the OUTCH1 Divider Value. Return to Register Map.  
Table 83. Register – 0x44  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH1_DIV[7:0]  
RW  
0x1  
OUTCH1 Divider Value.  
9.6.2.60 OUTCH2DIV_BY1  
The OUTCH2DIV_BY1,BY0 Registers set the OUTCH2 Divider Value. Return to Register Map.  
Table 84. Register – 0x45  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH2 Divider Value. Sets the divider value for output  
channel 2. An automatic reset is issued whenever the divider  
value is changed.  
[7:0]  
OUTCH2_DIV[15:8]  
RW  
0x0  
9.6.2.61 OUTCH2DIV_BY0  
The OUTCH2DIV_BY0 Register sets the lower 7 bits of the OUTCH2 Divider Value. Return to Register Map.  
Table 85. Register – 0x46  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH2_DIV[7:0]  
RW  
0x2  
OUTCH2 Divider Value.  
9.6.2.62 OUTCH34DIV_BY1  
The OUTCH34DIV_BY1,BY0 Registers set the OUTCH34 Divider Value. Return to Register Map.  
Table 86. Register – 0x47  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH34 Divider Value. Sets the divider value for output  
channels 3 and 4. An automatic reset is issued whenever the  
divider value is changed.  
[7:0]  
OUTCH34_DIV[15:8]  
RW  
0x0  
80  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.63 OUTCH34DIV_BY0  
The OUTCH34DIV_BY0 Register sets the lower 7 bits of the OUTCH34 Divider Value. Return to Register Map.  
Table 87. Register – 0x48  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH34_DIV[7:0]  
RW  
0x8  
OUTCH34 Divider Value.  
9.6.2.64 OUTCH5DIV_BY1  
The OUTCH5DIV_BY1,BY0 Registers set the OUTCH5 Divider Value. Return to Register Map.  
Table 88. Register – 0x49  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH5 Divider Value. Sets the divider value for output  
channel 5. An automatic reset is issued whenever the divider  
value is changed.  
[7:0]  
OUTCH5_DIV[15:8]  
RW  
0x0  
9.6.2.65 OUTCH5DIV_BY0  
The OUTCH5DIV_BY0 Register sets the lower 7 bits of the OUTCH5 Divider Value. Return to Register Map.  
Table 89. Register – 0x4A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH5_DIV[7:0]  
RW  
0x20  
OUTCH5 Divider Value.  
9.6.2.66 OUTCH6DIV_BY1  
The OUTCH6DIV_BY1,BY0 Registers set the OUTCH6 Divider Value. Return to Register Map.  
Table 90. Register – 0x4B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH6 Divider Value. Sets the divider value for output  
channel 6. An automatic reset is issued whenever the divider  
value is changed.  
[7:0]  
OUTCH6_DIV[15:8]  
RW  
0x0  
9.6.2.67 OUTCH6DIV_BY0  
The OUTCH6DIV_BY0 Register sets the lower 7 bits of the OUTCH6 Divider Value. Return to Register Map.  
Table 91. Register – 0x4C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH6_DIV[7:0]  
RW  
0x3  
OUTCH6 Divider Value.  
9.6.2.68 OUTCH78DIV_BY1  
The OUTCH78DIV_BY1,BY0 Registers set the OUTCH78 Divider Value. Return to Register Map.  
Table 92. Register – 0x4D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH78 Divider Value. Sets the divider value for output  
channels 7 and 8. An automatic reset is issued whenever the  
divider value is changed.  
[7:0]  
OUTCH78_DIV[15:8]  
RW  
0x0  
Copyright © 2017–2019, Texas Instruments Incorporated  
81  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.69 OUTCH78DIV_BY0  
The OUTCH78DIV_BY0 Register sets the lower 7 bits of the OUTCH78 Divider Value. Return to Register Map.  
Table 93. Register – 0x4E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH78_DIV[7:0]  
RW  
0x5  
OUTCH78 Divider Value.  
9.6.2.70 OUTCH9DIV_BY1  
The OUTCH9DIV_BY1,BY0 Registers set the OUTCH9 Divider Value. Return to Register Map.  
Table 94. Register – 0x4F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH9 Divider Value. Sets the divider value for output  
channel 9. An automatic reset is issued whenever the divider  
value is changed.  
[7:0]  
OUTCH9_DIV[15:8]  
RW  
0x0  
9.6.2.71 OUTCH9DIV_BY0  
The OUTCH9DIV_BY0 Register sets the lower 7 bits of the OUTCH9 Divider Value. Return to Register Map.  
Table 95. Register – 0x50  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH9_DIV[7:0]  
RW  
0x9  
OUTCH9 Divider Value.  
9.6.2.72 OUTCH10DIV_BY1  
The OUTCH10DIV_BY1,BY0 Registers set the OUTCH10 Divider Value. Return to Register Map.  
Table 96. Register – 0x51  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH10 Divider Value. Sets the divider value for output  
channel 10. An automatic reset is issued whenever the  
divider value is changed.  
[7:0]  
OUTCH10_DIV[15:8]  
RW  
0x0  
9.6.2.73 OUTCH10DIV_BY0  
The OUTCH10DIV_BY0 Register sets the lower 7 bits of the OUTCH10 Divider Value. Return to Register Map.  
Table 97. Register – 0x52  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
OUTCH10_DIV[7:0]  
RW  
0x1F  
OUTCH10 Divider Value.  
9.6.2.74 OUTCH_DIV_INV  
The OUTCH_DIV_INV Register controls inversion of the dividier output clock. Return to Register Map.  
Table 98. Register – 0x53  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH10 Divider Output Invert. When OUTCH10_DIV_INV  
is 1 the divider output for channel 10 is inverted.  
[7]  
OUTCH10_DIV_INV  
RW  
0
OUTCH9 Divider Output Invert. When OUTCH9_DIV_INV is  
1 the divider output for channel 9 is inverted.  
[6]  
[5]  
[4]  
OUTCH9_DIV_INV  
OUTCH78_DIV_INV  
OUTCH6_DIV_INV  
RW  
RW  
RW  
0
0
0
OUTCH78 Divider Output Invert. When OUTCH78_DIV_INV  
is 1 the divider output for channels 7 and 8 is inverted.  
OUTCH6 Divider Output Invert. When OUTCH6_DIV_INV is  
1 the divider output for channel 6 is inverted.  
82  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 98. Register – 0x53 (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
OUTCH5 Divider Output Invert. When OUTCH5_DIV_INV is  
1 the divider output for channel 5 is inverted.  
[3]  
OUTCH5_DIV_INV  
RW  
0
OUTCH34 Divider Output Invert. When OUTCH34_DIV_INV  
is 1 the divider output for channels 3 and 4 is inverted.  
[2]  
[1]  
[0]  
OUTCH34_DIV_INV  
OUTCH2_DIV_INV  
OUTCH1_DIV_INV  
RW  
RW  
RW  
0
0
0
OUTCH2 Divider Output Invert. When OUTCH2_DIV_INV is  
1 the divider output for channel 2 is inverted.  
OUTCH1 Divider Output Invert. When OUTCH1_DIV_INV is  
1 the divider output for channel 1 is inverted.  
9.6.2.75 PLL1CTRL0  
The PLL1CTRL0 Register provides control of the following PLL1 related features. Return to Register Map.  
Table 99. Register – 0x54  
BIT NO.  
[7]  
FIELD  
PLL1_F_30  
TYPE  
RESET  
DESCRIPTION  
PLL1 RC Freq 0=122MHz 1=32MHz.  
PLL1_F_30– PLL1 RC Frequency  
0– 122MHz  
RW  
0
0
1
1– 32MHz  
[6]  
PLL1_EN_REGULATION  
PLL1_PD_LD  
RW  
PLL1 Prop-CP Enable Regulation  
PLL1 Window Comparator Power Down.  
PLL1_PD_LD– PLL1 Window Comparator  
[5]  
RW  
0– Enabled  
1– Off  
PLL1 VCXO pos/neg Gain.  
PLL1_DIR_POS_GAIN– Polarity  
0– Positive  
[4]  
PLL1_DIR_POS_GAIN  
RW  
RW  
1
1– Negative  
PLL1 LDO Wait Timer. The PLL1 LDO Wait Timer counts a  
number of clock cycles equal to  
32*(PLL1_LDO_WAIT_TMR+31) before releasing the PLL1  
NDIV and RDIV resets.  
[3:0]  
PLL1_LDO_WAIT_TMR[3:0]  
0x0  
9.6.2.76 PLL1CTRL1  
The PLL1CTRL1 Register provides control over PLL1 related features. Return to Register Map.  
Table 100. Register – 0x55  
BIT NO.  
[7]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
PLL1 Lock Detect counter multiply with 32.  
PLL1 Fast Lock Enable.  
PLL1_LCKDET_BY_32  
PLL1_FAST_LOCK  
0
1
[6]  
RW  
PLL1 Lock Detect LOS Mask. When  
PLL1_LCKDET_LOS_MASK is 1 then Loss of Source has no  
effect on the PLL1 Lock Detect circuit.  
[5]  
PLL1_LCKDET_LOS_MASK  
RW  
0
PLL1 Feedback Clock Inversion. When PLL1_FBCLK_INV is  
1 then the Feedback Clock divider output is inverted.  
[4]  
[3]  
PLL1_FBCLK_INV  
RSRVD  
RW  
-
1
-
Reserved.  
PLL1 Bypass Loss of Source indication. When  
PLL1_BYP_LOS is 1 the PLL1 controller ignores the LOS  
indicator.  
[2]  
PLL1_BYP_LOS  
RW  
0
[1]  
[0]  
PLL1_PFD_UP_HOLDOVER  
RW  
RW  
0
0
PLL1 PFD UP-Input value during Holdover.  
PLL1_PFD_DOWN_HOLDO  
VER  
PLL1 PFD DN-Input value during Holdover.  
Copyright © 2017–2019, Texas Instruments Incorporated  
83  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.77 PLL1CTRL2  
The PLL1CTRL2 Register provides control over PLL1 related features. Return to Register Map.  
Table 101. Register – 0x56  
BIT NO.  
[7:5]  
[4]  
FIELD  
TYPE  
-
RESET  
DESCRIPTION  
RSRVD  
-
Reserved.  
PLL1_LOL_NORESET  
PLL1_RDIV_CLKEN  
RW  
RW  
0
1
If set to 1, PLL1 will not reset on a Loss-of-Lock event.  
PLL1 RDIV Clock Enable.  
[3]  
PLL1 RDIV Enable tied clock low phase to 4cycs.  
Independent from divider setting.  
[2]  
[1]  
[0]  
PLL1_RDIV_4CY  
PLL1_NDIV_CLKEN  
PLL1_NDIV_4CY  
RW  
RW  
RW  
1
1
1
PLL1 NDIV Clock Enable  
PLL1 NDIV Enable tied clock low phase to 4cycs.  
Independent from divider setting.  
9.6.2.78 PLL1_SWRST  
The PLL1_SWRST Register provides control of the PLL1 software resets. Return to Register Map.  
Table 102. Register – 0x57  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
PLL1 Holdover DLD Software Reset. Writing a 1 to  
PLL1_HOLDOVER_DLD_SWRST activates the reset.  
PLL1_HOLDOVER_DLD_SWRST is cleared automatically to  
0.  
PLL1_HOLDOVER_DLD_SW  
RST  
[5]  
RWSC  
0
PLL1 R-Divider Software Reset. Writing a 1 to  
PLL1_RDIV_SWRST resets the R-Divider.  
PLL1_RDIV_SWRST is cleared automatically to 0.  
[4]  
[3]  
PLL1_RDIV_SWRST  
PLL1_NDIV_SWRST  
RWSC  
RWSC  
0
0
PLL1 N-Divider Software Reset. Writing a 1 to  
PLL1_NDIV_SWRST resets the N-Divider.  
PLL1_NDIV_SWRST is cleared automatically to 0.  
PLL1 Holdover Counter Software Reset. Writing a 1 to  
PLL1_HOLDOVERCNT_SWRST activates the reset.  
PLL1_HOLDOVERCNT_SWRST is cleared automatically to  
0.  
PLL1_HOLDOVERCNT_SW  
RST  
[2]  
RWSC  
0
PLL1 Holdover Lock Detect Software Reset. Writing a 1 to  
PLL1_HOLDOVER_LOCKDET_SWRST activates the reset.  
PLL1_HOLDOVER_LOCKDET_SWRST is cleared  
automatically to 0.  
PLL1_HOLDOVER_LOCKDE  
T_SWRST  
[1]  
[0]  
RWSC  
RWSC  
0
0
PLL1 Software Reset. Writing a 1 to PLL1_SWRST resets  
PLL1 PLL1_SWRST is cleared automatically to 0.  
PLL1_SWRST  
9.6.2.79 PLL1WNDWSIZE  
The PLL1WNDWSIZE Register sets the PLL1 Window Comparator Size. Return to Register Map.  
Table 103. Register – 0x58  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
PLL1_LD_WNDW_SIZE[7:0]  
RW  
0x3F  
PLL1 Window Comparator Size.  
9.6.2.80 PLL1STRCELL  
The PLL1STRCELL Register provides control of the Storage Cell settings. Return to Register Map.  
Table 104. Register – 0x59  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:4]  
PLL1_INTG_FL[3:0]  
RW  
0x1  
PLL1 Integral Gain setting during Fast Lock.  
84  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 104. Register – 0x59 (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[3:0]  
PLL1_INTG[3:0]  
RW  
0x1  
PLL1 Integral Gain setting.  
9.6.2.81 PLL1CPSETTING  
The PLL1CPSETTING Register provides control of the Chargepump Current/Bandwidth Setting. Return to  
Register Map.  
Table 105. Register – 0x5A  
BIT NO.  
[7]  
FIELD  
RSRVD  
TYPE  
RW  
RESET  
0x0  
DESCRIPTION  
Reserved.  
[6:0]  
PLL1_PROP[6:0]  
RW  
0x8  
Prop-CP Current/Bandwidth Setting.  
9.6.2.82 PLL1CPSETTING_FL  
The PLL1CPSETTING_FL Register provides control of the Chargepump Current/Bandwidth Setting during Fast  
Lock. Return to Register Map.  
Table 106. Register – 0x5B  
BIT NO.  
[7]  
FIELD  
RSRVD  
TYPE  
RW  
RESET  
0x1  
DESCRIPTION  
Reserved  
[6:0]  
PLL1_PROP_FL[6:0]  
RW  
0x7F  
Prop-CP Current/Bandwidth Setting for Fast Lock.  
9.6.2.83 PLL1_HOLDOVER_CTRL1  
The PLL1_HOLDOVER_CTRL1 Register provides control of the PLL1 holdover operation. Return to Register  
Map.  
Table 107. Register – 0x5C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Enable PLL1 Holdover function. When  
PLL1_HOLDOVER_EN is 1 the holdover circuit is enabled.  
When PLL1_HOLDOVER_EN is 0 the holdover circuit is  
disabled.  
[7]  
PLL1_HOLDOVER_EN  
RW  
1
PLL1_STARTUP_HOLDOVE  
R_EN  
When PLL1_HOLDOVER_FORCE is 1, PLL1 enters  
holdover mode immediately on start-up.  
[6]  
[5]  
RW  
RW  
1
0
PLL1 Force Holdover Operation. When  
PLL1_HOLDOVER_FORCE is 1 PLL1 enters holdover mode  
regardless of other conditions.  
PLL1_HOLDOVER_FORCE  
PLL1 Rail Detection Level Relative or absolute.  
PLL1_HOLDOVER_RAIL_MODE– Level Mode  
0– Absolute-Level  
PLL1_HOLDOVER_RAIL_M  
ODE  
[4]  
RW  
0
1– Relative to Level set at Lock  
PLL1 Holdover Max Counter enable. Wait for  
PLL1_HOLDOVER_MAXCNT cycles before starting Auto-  
CLKin-Switch procedure.  
PLL1_HOLDOVER_MAX_CN  
T_EN  
[3]  
[2]  
[1]  
RW  
RW  
RW  
1
0
1
PLL1 Holdover LOS Mask. When  
PLL1_HOLDOVER_LOS_MASK is 1 then Loss of Source  
has no effect in the activation of holdover.  
PLL1_HOLDOVER_LOS_MA  
SK  
PLL1 Holdover Lock Detect Mask. When  
PLL1_HOLDOVER_LCKDET_MASK is 1 then Lock Detect  
has no effect in the activation of holdover.  
PLL1_HOLDOVER_LCKDET  
_MASK  
PLL1 Holdover Rail Detection Enable. When  
PLL1_HOLDOVER_RAILDET_EN is 1 the rail detection  
circuit is enabled. When PLL1_HOLDOVER_RAILDET EN is  
0 the rail detection circuit is disabled.  
PLL1_HOLDOVER_RAILDE  
T_EN  
[0]  
RW  
0
Copyright © 2017–2019, Texas Instruments Incorporated  
85  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.84 PLL1_HOLDOVER_MAXCNT_BY3  
The PLL1_HOLDOVER_MAXCNT field is set by PLL1_HOLDOVER_MAXCNT_BY3,BY2,BY1 and BY0. Return  
to Register Map.  
Table 108. Register – 0x5D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1 Maximum Holdover Count. When the value specified  
by PLL1_HOLDOVER_MAX_CNT is reached then the  
device attempts to switch to any available reference clocks.  
PLL1_HOLDOVER_MAX_CN  
T[31:24]  
[7:0]  
RW  
0x0  
9.6.2.85 PLL1_HOLDOVER_MAXCNT_BY2  
The PLL1_HOLDOVER_MAXCNT1 Register sets bits [23:16]. Return to Register Map.  
Table 109. Register – 0x5E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_HOLDOVER_MAX_CN  
T[23:16]  
[7:0]  
RW  
0x1  
PLL1 Maximum Holdover Count.  
9.6.2.86 PLL1_HOLDOVER_MAXCNT_BY1  
The PLL1_HOLDOVER_MAXCNT0 Register sets bits [15:8]. Return to Register Map.  
Table 110. Register – 0x5F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_HOLDOVER_MAX_CN  
T[15:8]  
[7:0]  
RW  
0x84  
PLL1 Maximum Holdover Count.  
9.6.2.87 PLL1_HOLDOVER_MAXCNT_BY0  
The PLL1_HOLDOVER_MAXCNT0 Register sets bits [7:0]. Return to Register Map.  
Table 111. Register – 0x60  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_HOLDOVER_MAX_CN  
T[7:0]  
[7:0]  
RW  
0x80  
PLL1 Maximum Holdover Count.  
9.6.2.88 PLL1_NDIV_BY1  
The PLL1_NDIV value is set by Register's PLL1_NDIV_BY1 and PLL1_NDIV_BY0. Return to Register Map.  
Table 112. Register – 0x61  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1 N-Feedback Divider Value.  
PLL1_NDIV– N-Feedback Divider  
0– Reserved  
1– 1  
[7:0]  
PLL1_NDIV[15:8]  
RW  
0x0  
..– ..  
65535– 65535  
9.6.2.89 PLL1_NDIV_BY0  
The PLL1_NDIV_BY0 Register sets bits [7:0]. Return to Register Map.  
Table 113. Register – 0x62  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
PLL1_NDIV[7:0]  
RW  
0x78  
PLL1 N-Feedback Divider Value.  
86  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.90 PLL1_LOCKDET_CYC_CNT_BY2  
The  
PLL1_LOCKDET_CYC_CNT  
is  
set  
by  
registers  
PLL1_LOCKDET_CYC_CNT_BY2,  
PLL1_LOCKDET_CYC_CNT_BY1 and PLL1_LOCKDET_CYC_CNT_BY0. Return to Register Map.  
Table 114. Register – 0x63  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_LOCKDET_CYC_CNT[  
23:16]  
[7:0]  
RW  
0x0  
PLL1 Lock Detect Cycle Counter.  
9.6.2.91 PLL1_LOCKDET_CYC_CNT_BY1  
The PLL1_LOCKDET_CYC_CNT_BY1 Register sets bits [15:8]. Return to Register Map.  
Table 115. Register – 0x64  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_LOCKDET_CYC_CNT[  
15:8]  
[7:0]  
RW  
0x40  
PLL1 Lock Detect Cycle Counter.  
9.6.2.92 PLL1_LOCKDET_CYC_CNT_BY0  
The PLL1_LOCKDET_CYC_CNT_BY0 Register sets bits [7:0]. Return to Register Map.  
Table 116. Register – 0x65  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_LOCKDET_CYC_CNT[  
7:0]  
[7:0]  
RW  
0x0  
PLL1 Lock Detect Cycle Counter.  
9.6.2.93 PLL1_STRG_BY4  
Readback of the PLL1 Storage cell's is provided by PLL1_STRG_BY4/BY3/BY2/BY1/BY0 Registers. Return to  
Register Map.  
Table 117. Register – 0x66  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_STORAGE_CELL[39:3  
2]  
[7:0]  
R
0x0  
PLL1 Storage Cell Value.  
9.6.2.94 PLL1_STRG_BY3  
The PLL1_STRG_BY3 reads bits[31:24]. Return to Register Map.  
Table 118. Register – 0x67  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_STORAGE_CELL[31:2  
4]  
[7:0]  
R
0x0  
PLL1 Storage Cell Value.  
9.6.2.95 PLL1_STRG_BY2  
The PLL1_STRG_BY3 reads bits [23:16]. Return to Register Map.  
Table 119. Register – 0x68  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_STORAGE_CELL[23:1  
6]  
[7:0]  
R
0x0  
PLL1 Storage Cell Value.  
Copyright © 2017–2019, Texas Instruments Incorporated  
87  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.96 PLL1_STRG_BY1  
The PLL1_STRG_BY3 reads bits [15:8]. Return to Register Map.  
Table 120. Register – 0x69  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL1_STORAGE_CELL[15:8  
]
[7:0]  
R
0x0  
PLL1 Storage Cell Value.  
9.6.2.97 PLL1_STRG_BY0  
The PLL1_STRG_BY3 reads bits [7:0]. Return to Register Map.  
Table 121. Register – 0x6A  
BIT NO.  
FIELD  
TYPE  
RESET  
0x0  
DESCRIPTION  
[7:0]  
PLL1_STORAGE_CELL[7:0]  
R
PLL1 Storage Cell Value.  
9.6.2.98 PLL1RCCLKDIV  
The PLL1RCCLKDIV Register controls the PLL1 RC Clock Divider. Return to Register Map.  
Table 122. Register – 0x6B  
BIT NO.  
[7:5]  
[4]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
RW  
-
-
1
-
PLL1_RC_CLK_EN  
RSRVD  
PLL1 RC Clock Enable.  
Reserved.  
[3]  
PLL1 RC Clk Divider value. Sets the divider value for the  
PLL1 RC clock that is derived from the PLL2 VCO Clock.  
PLL1_RC_CLK_DIV– Divider Value  
0– 1  
1– 2  
..– ..  
7– 8  
[2:0]  
PLL1_RC_CLK_DIV[2:0]  
RW  
0x7  
9.6.2.99 PLL2_CTRL0  
The PLL2_CTRL0 Register provides control of PLL2 features. Return to Register Map.  
Table 123. Register – 0x6C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:5]  
RSRVD  
-
-
Reserved.  
PLL2_VCO_PRESC_LOW_P  
OWER  
[4]  
[3]  
RW  
RW  
0
0
PLL2 Prescaler Low Power Mode.  
Clock Source for Oscout Buffer.  
PLL2_BYP_OSC– Oscout Clock Source  
0– PLL2 Output  
PLL2_BYP_OSC  
PLL2_BYP_TOP  
PLL2_BYP_BOT  
1– PLL2 Input  
Clock Source for Top Outputs.  
PLL2_BYP_TOP– Top Outputs Clock Source  
0– PLL2 Output  
[2]  
[1]  
RW  
RW  
0
0
1– PLL2 Input  
Clock Source for Bottom Outputs.  
PLL2_BYP_BOT– Bottom Outputs Clock Source  
0– PLL2 Output  
1– PLL2 Input  
88  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 123. Register – 0x6C (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 Global Bypass Enable.  
PLL2_GLOBAL_BYP– PLL2 Input Clock Source  
0– OSCin  
[0]  
PLL2_GLOBAL_BYP  
RW  
0
1– CLKIN0..1  
9.6.2.100 PLL2_CTRL1  
The PLL2_CTRL1 Register provides control of PLL2 features. Return to Register Map.  
Table 124. Register – 0x6D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
PLL2_EN_PULSE_GEN  
RW  
0
Enable Pulse Generator in PLL2 R input block.  
PLL2 R-Divider Bypass. When PLL2_RDIV_BYP is 1 the R-  
Divider is by-passed.  
[6]  
PLL2_RDIV_BYP  
RW  
0
PLL2 Doubler Enable Invert. When PLL2_DBL_EN_INV is 1  
the output of the PLL2 Doubler is inverted.  
[5]  
[4]  
PLL2_DBL_EN_INV  
PLL2_PD_VARBIAS  
RW  
RW  
0
0
VCO Varactor Biasing PD.  
PLL2 Smart trim enable. If PLL2_SMART_TRIM is set to 1  
then the initial calibration threshold is set by  
[3]  
PLL2_SMART_TRIM  
RW  
1
PLL2_AC_STRT_THRESHOLD and the final threshold is set  
by PLL2_AC_THRESHOLD. If PLL2_SMART_TRIM is 0 the  
threshold is set by PLL2_AC_THRESHOLD at all times.  
PLL2 Lock Detect LOS Mask. When  
PLL2_LCKDET_LOS_MASK is 1 then Loss of Source has no  
effect on the PLL2 Lock Detect circuit.  
[2]  
PLL2_LCKDET_LOS_MASK  
RW  
1
[1]  
[0]  
PLL2_RDIV_DBL_EN  
PLL2_PD_LD  
RW  
RW  
0
1
PLL2 R-Divider Doubler Enable.  
PLL2 Window Comparator Powerdown.  
9.6.2.101 PLL2_CTRL2  
The PLL2_CTRL2 Register provides control of PLL2 features. Return to Register Map.  
Table 125. Register – 0x6E  
BIT NO.  
[7]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
RESERVED  
PLL2_BYP_SYNC_TOP  
PLL2_BYP_SYNC_BOTTOM  
PLL2_EN_BYP_BUF  
0
0
0
[6]  
RW  
RESERVED  
[5]  
RW  
PLL2 Enable Bypass Clock Buffer.  
PLL2 Enable Clock Buffer for Re-clocked SYNC signal to  
TOP Output-CHs.  
[4]  
[3]  
PLL2_EN_BUF_SYNC_TOP  
RW  
RW  
1
1
PLL2_EN_BUF_SYNC_BOT  
TOM  
PLL2 Enable Clock Buffer for Re-clocked SYNC signal to  
Bottom Output-CHs.  
[2]  
[1]  
PLL2_EN_BUF_OSCOUT  
PLL2_EN_BUF_CLK_TOP  
RW  
RW  
0
1
PLL2 Enable Clock Buffer for OSCOut.  
PLL2 Enable Clock Buffer for Top Output-CHs.  
PLL2_EN_BUF_CLK_BOTT  
OM  
[0]  
RW  
1
PLL2 Enable Clock Buffer for Bottom Output-CHs.  
9.6.2.102 PLL2_SWRST  
The PLL2_SWRST Register allows activation of the following PLL2 related software resets. Return to Register  
Map.  
Table 126. Register – 0x6F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Copyright © 2017–2019, Texas Instruments Incorporated  
89  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 126. Register – 0x6F (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 R-Divider Software Reset. Writing a 1 to  
PLL2_RDIV_SWRST resets the R-Divider.  
[2]  
PLL2_RDIV_SWRST  
RWSC  
0
PLL2_RDIV_SWRST is cleared automatically to 0.  
PLL2 N-Divider Software Reset. Writing a 1 to  
PLL2_NDIV_SWRST resets the N-Divider.  
PLL2_NDIV_SWRST is cleared automatically to 0.  
[1]  
[0]  
PLL2_NDIV_SWRST  
PLL2_SWRST  
RWSC  
RWSC  
0
0
PLL2 Software Reset. Writing a 1 to PLL2_SWRST resets  
PLL2. PLL2_SWRST is cleared automatically to 0.  
9.6.2.103 PLL2_LF_C4R4  
The PLL2_LF_C4R4 Register sets the values for C4 and R4. Return to Register Map.  
Table 127. Register – 0x70  
BIT NO.  
[7:4]  
FIELD  
TYPE  
RW  
RESET  
0x0  
DESCRIPTION  
PLL2_C4_LF_SEL[3:0]  
PLL2_R4_LF_SEL[3:0]  
PLL2 Loop Filter C4 Value.  
PLL2 Loop Filter R4 Value.  
[3:0]  
RW  
0x0  
9.6.2.104 PLL2_LF_C3R3  
The PLL2_LF_C3R3 Register sets the values for C3 and R3. Return to Register Map.  
Table 128. Register – 0x71  
BIT NO.  
[7:4]  
FIELD  
TYPE  
RW  
RESET  
0x0  
DESCRIPTION  
PLL2_C3_LF_SEL[3:0]  
PLL2_R3_LF_SEL[3:0]  
PLL2 Loop Filter C3 Value.  
PLL2 Loop Filter R3 Value.  
[3:0]  
RW  
0x0  
9.6.2.105 PLL2_CP_SETTING  
The PLL2_CP_SETTING Register provides control of the PLL2 Chargepump. Return to Register Map.  
Table 129. Register – 0x72  
BIT NO.  
[7:6]  
FIELD  
RSRVD  
TYPE  
RW  
RESET  
0x0  
DESCRIPTION  
Reserved.  
[5:0]  
PLL2_PROP[5:0]  
RW  
0x3  
PLL2 Charge pump Setting.  
9.6.2.106 PLL2_NDIV_BY1  
The PLL2 N-Divider Value is set by Register's PLL2_NDIV_BY1 and PLL2_NDIV_BY0. Return to Register Map.  
Table 130. Register – 0x73  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
PLL2_NDIV[15:8]  
RW  
0x0  
PLL2 N-Divider Value.  
9.6.2.107 PLL2_NDIV_BY0  
The PLL2_NDIV_BY0 Register sets bits [7:0]. Return to Register Map.  
Table 131. Register – 0x74  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
PLL2_NDIV[7:0]  
RW  
0x20  
PLL2 N-Divider Value.  
90  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.108 PLL2_RDIV_BY1  
RESERVED. Return to Register Map.  
Table 132. Register – 0x75  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 R-Divider Value. PLL2 R-Divider configuration limited  
to bits [5..0].  
[7:0]  
PLL2_RDIV[15:8]  
RW  
0x0  
9.6.2.109 PLL2_RDIV_BY0  
The PLL2_RDIV Register sets the PLL2 R-Divider bits [5:0]. Return to Register Map.  
Table 133. Register – 0x76  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 R-Divider Value. PLL2 R-Divider configuration limited  
to bits [5..0].  
[7:0]  
PLL2_RDIV[7:0]  
RW  
0x0  
9.6.2.110 PLL2_STRG_INIT_BY1  
The PLL2_STRG_INIT_BY1 Register. Return to Register Map.  
Table 134. Register – 0x77  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:0]  
PLL2_STRG_INITVAL[15:8]  
RW  
0x0  
PLL2 Storage-CP Init Value.  
9.6.2.111 PLL2_STRG_INIT_BY0  
The PLL2_STRG_INIT_BY0 Register. Return to Register Map.  
Table 135. Register – 0x78  
BIT NO.  
FIELD  
TYPE  
RW  
RESET  
0xFF  
DESCRIPTION  
[7:0]  
PLL2_STRG_INITVAL[7:0]  
PLL2 Storage-CP Init Value.  
9.6.2.112 RAILDET_UP  
The Rail Detect Upper Limit. Return to Register Map.  
Table 136. Register – 0x7D  
BIT NO.  
[7:6]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[5:0]  
RAILDET_UPP[5:0]  
RW  
0x0  
Upper Rail Detection Limit.  
9.6.2.113 RAILDET_LOW  
The Rail Detect Lower Limit. Return to Register Map.  
Table 137. Register – 0x7E  
BIT NO.  
[7:6]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[5:0]  
RAILDET_LOW[5:0]  
RW  
0x0  
Lower Rail Detection Limit.  
Copyright © 2017–2019, Texas Instruments Incorporated  
91  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.114 PLL2_AC_CTRL  
The PLL2_AC_CTRL Register provides control of PLL2 Amplitude Calibration features. Return to Register Map.  
Table 138. Register – 0x7F  
BIT NO.  
[7:6]  
[5]  
FIELD  
RSRVD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
-
PLL2_AC_CAL_EN  
PLL2_PD_AC  
RW  
RW  
1
1
PLL2 Amplitude Calibration Enable.  
VCO Peak detector Power down. 1=off, 0=enabled.  
[4]  
PLL2 IDAC Re-Calibration Setting. When the difference  
between consecutive IDACSET values is greater than  
PLL2_IDACSET_RECAL the amplitude calibration is  
restarted.  
[3:2]  
PLL2_IDACSET_RECAL[1:0]  
RW  
0x1  
[1]  
[0]  
PLL2_AC_REQ  
RWSC  
RW  
0
0
PLL2 Amplitude Calibration Request.  
PLL2 Fast Amplitude Calibration Enable.  
PLL2_FAST_ACAL  
9.6.2.115 PLL2_CURR_STOR_CELL  
The PLL2_CURR_STOR_CELL Register is described below. Return to Register Map.  
Table 139. Register – 0x80  
BIT NO.  
[7:5]  
FIELD  
RSRVD  
TYPE  
RW  
RESET  
0x0  
DESCRIPTION  
Reserved.  
[4:0]  
PLL2_INTG[4:0]  
RW  
0x3  
PLL2 Integral gain setting.  
9.6.2.116 PLL2_AC_THRESHOLD  
The PLL2_AC_THRESHOLD Register sets the Amplitude Calibration Threshold. Return to Register Map.  
Table 140. Register – 0x81  
BIT NO.  
[7:5]  
FIELD  
RSRVD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
-
[4:0]  
PLL2_AC_THRESHOLD[4:0]  
RW  
0x0  
PLL2 VCO Amplitude Calibration Threshold.  
9.6.2.117 PLL2_AC_STRT_THRESHOLD  
The PLL2_AC_THRESHOLD Register sets the Amplitude Calibration Starting Threshold. Return to Register  
Map.  
Table 141. Register – 0x82  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:5]  
RSRVD  
-
-
Reserved.  
PLL2_AC_STRT_THRESHO  
LD[4:0]  
[4:0]  
RW  
0x0  
PLL2 VCO Amplitude Calibration Starting Threshold.  
9.6.2.118 PLL2_AC_WAIT_CTRL  
The PLL2_AC_WAIT_CTRL Register sets the Amplitude Calibration Wait Periods. Return to Register Map.  
Table 142. Register – 0x83  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 VCO Amplitude Calibration Delay between IDAC Code  
Changes. Delay is equal to PLL2_AC_CMP_WAIT*4*Clock  
Period (Clock Period 100 ns).  
[7:4]  
PLL2_AC_CMP_WAIT[3:0]  
RW  
0x0  
PLL2 VCO Amplitude Calibration Initial Comparator Delay.  
Delay is equal to PLL2_AC_INIT_WAIT*4*Clock Period.  
[3:0]  
PLL2_AC_INIT_WAIT[3:0]  
RW  
0x0  
92  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.119 PLL2_AC_JUMPSTEP  
The PLL2_AC_JUMPSTEP Register provides control of the PLL2 Amplitude Calibration step size. Return to  
Register Map.  
Table 143. Register – 0x84  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:4]  
RSRVD  
-
-
Reserved.  
PLL2 IDAC Code Jump Step. When PLL2_FAST_ACAL is 1  
then the IDACSET step value is set by  
PLL2_AC_JUMP_STEP.  
[3:0]  
PLL2_AC_JUMP_STEP[3:0]  
RW  
0xF  
9.6.2.120 PLL2_LD_WNDW_SIZE  
The PLL2_LD_WNDW_SIZE Register sets the PLL2 Window Comparator Setting. Return to Register Map.  
Table 144. Register – 0x85  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 Window Comparator Size Setting. PLL2 Window  
comparator size after PLL2 AC Calibration and initial lock.  
[7:0]  
PLL2_LD_WNDW_SIZE[7:0]  
RW  
0x1  
Always set to 0.  
0: 1 ns.  
1 to 255: Reserved  
9.6.2.121 PLL2_LD_WNDW_SIZE_INITIAL  
The PLL2_LD_WNDW_SIZE_INITIAL Register sets the PLL2 Window Comparator Initial Setting. Return to  
Register Map.  
Table 145. Register – 0x86  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 Window Comparator Size Initial Setting. Window  
comparator size prior to PLL2 AC Calibration and initial lock.  
PLL2_LD_WNDW_SIZE_INI  
TIAL[7:0]  
[7:0]  
RW  
0x7F  
Always set to 0.  
0: 1 ns.  
1 to 255: Reserved  
9.6.2.122 PLL2_LOCKDET_CYC_CNT_BY2  
The PLL2 Lock Detection Cycle  
Count  
is  
set  
by  
PLL2_LOCKDET_CYC_CNT_BY2,  
PLL2_LOCKDET_CYC_CNT_BY1 and PLL2_LOCKDET_CYC_CNT_BY0. Return to Register Map.  
Table 146. Register – 0x87  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2_LOCKDET_CYC_CNT[  
23:16]  
[7:0]  
RW  
0x0  
PLL2 Lock detection cycle counter.  
9.6.2.123 PLL2_LOCKDET_CYC_CNT_BY1  
The PLL2_LOCKDET_CYC_CNT_BY1 Register sets bits [15:8]. Return to Register Map.  
Table 147. Register – 0x88  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2_LOCKDET_CYC_CNT[  
15:8]  
[7:0]  
RW  
0x40  
PLL2 Lock detection cycle counter.  
Copyright © 2017–2019, Texas Instruments Incorporated  
93  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.124 PLL2_LOCKDET_CYC_CNT_BY0  
The PLL2_LOCKDET_CYC_CNT_BY0 Register sets bits [7:0]. Return to Register Map.  
Table 148. Register – 0x89  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2 Lock detection cycle counter.  
PLL2_LOCKDET_CYC_CNT[  
7:0]  
[7:0]  
RW  
0x0  
9.6.2.125 PLL2_LOCKDET_CYC_CNT_INITIAL_BY2  
The PLL2 Lock Detection Initial Cycle Count is set by PLL2_LOCKDET_CYC_CNT_INITIAL_BY2,  
PLL2_LOCKDET_CYC_CNT_INITIAL_BY1 and PLL2_LOCKDET_CYC_CNT_INITIAL_BY0. This counter is  
used for initial PLL2 Lock before final Amplitude Calibration has finished. Return to Register Map.  
Table 149. Register – 0x8A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2_LOCKDET_CYC_CNT  
_INITIAL[23:16]  
[7:0]  
RW  
0x0  
PLL2 Lock detection initial cycle counter.  
9.6.2.126 PLL2_LOCKDET_CYC_CNT_INITIAL_BY1  
The PLL2_LOCKDET_CYC_CNT_INITIAL_BY1 Register sets bits [15:8]. Return to Register Map.  
Table 150. Register – 0x8B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2_LOCKDET_CYC_CNT  
_INITIAL[15:8]  
[7:0]  
RW  
0x40  
PLL2 Lock detection initial cycle counter.  
9.6.2.127 PLL2_LOCKDET_CYC_CNT_INITIAL_BY0  
The PLL2_LOCKDET_CYC_CNT_INITIAL_BY0 Register sets bits [7:0]. Return to Register Map.  
Table 151. Register – 0x8C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
PLL2_LOCKDET_CYC_CNT  
_INITIAL[7:0]  
[7:0]  
RW  
0x0  
PLL2 Lock detection initial cycle counter.  
9.6.2.128 IOCTRL_SPI0  
The IOCTRL_SPI0 Register provides control of the SDIO Input/Output Driver. Return to Register Map.  
Table 152. Register – 0x8D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SPI 3-Wire Selection. 1=3-Wire, 0=4-Wire. When configured  
for 4-wire operation the SDO output is connected to the  
STATUS1 output pad.  
[7]  
SPI_EN_THREE_WIRE_IF  
RW  
0
[6:5]  
[4]  
RSRVD  
-
-
Reserved.  
SDIO Output Mute. When SPI_SDIO_OUTPUT_MUTE is 1  
the SDIO output driver is forced to 0 if it is enabled.  
SPI_SDIO_OUTPUT_MUTE  
RW  
0
SDIO Output Invert. When SPI_SDIO_OUTPUT_INV is 1 the  
SDIO output is inverted.  
[3]  
[2]  
[1]  
SPI_SDIO_OUTPUT_INV  
RW  
RW  
RW  
0
0
0
SDIO Output Weak Drive Strength. When  
SPI_SDIO_OUTPUT_WEAK DRIVE is 1 the SDIO output is  
configured with a low slew rate.  
SPI_SDIO_OUTPUT_WEAK  
_DRIVE  
SPI SDIO Pullup Enable. When SPI_SDIO_PULLUP_EN is 1  
a pullup resistor is activated.  
SPI_SDIO_EN_PULLUP  
94  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 152. Register – 0x8D (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SPI SDIO Pulldown Enable. When  
SPI_SDIO_PULLDWN_EN is 1 a pulldown resistor is  
activated.  
[0]  
SPI_SDIO_EN_PULLDOWN  
RW  
0
9.6.2.129 IOCTRL_SPI1  
The IOCTRL_SPI1 Register provides control of the SCL and SCS input drivers. Return to Register Map.  
Table 153. Register – 0x8E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:4]  
RSRVD  
-
-
Reserved.  
SPI SCL Pullup Enable. When SPI_SCL_PULLUP_EN is 1 a  
pullup resistor is activated.  
[3]  
[2]  
[1]  
SPI_SCL_EN_PULLUP  
SPI_SCL_EN_PULLDOWN  
SPI_SCS_EN_PULLUP  
RW  
RW  
RW  
0
0
0
SPI SCL Pulldown Enable. When SPI_SCL_PULLDWN_EN  
is 1 a pulldown resistor is activated.  
SPI SCS Pullup Enable. When SPI_SCS_PULLUP_EN is 1  
a pullup resistor is activated.  
SPI SCS Pulldown Enable. When  
SPI_SCS_PULLDWNEN_EN is 1 a pulldown resistor is  
activated.  
[0]  
SPI_SCS_EN_PULLDOWN  
RW  
0
9.6.2.130 IOTEST_SDIO  
The IOTEST_SDIO Register provides control of the SDIO driver and test features. Return to Register Map.  
Table 154. Register – 0x8F  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
RW  
0
Reserved.  
SPI SDIO Output Driver High Impedance. When  
SPI_SDIO_OUTPUT_HIZ is set to 1 the SDIO output driver  
stage is disabled. Only when SPI_SDIO_IOTESTEN is 1.  
[6]  
[5]  
[4]  
SPI_SDIO_OUTPUT_HIZ  
SPI_SDIO_ENB_INSTAGE  
RW  
RW  
RW  
1
0
0
SPI SDIO Input Stage Enable BAR. When  
SPI_SDIO_INPUT_ENB is 0 the SDIO Input stage is  
enabled. Whenever SPI_SDIO_INPUT_ENB is set to 1 the  
SPI interface is rendered inoperable and can only be  
recovered by a hardware reset.  
SPI SDIO Input Stage Enable Multi-level. When  
SPI_SDIO_INPUT_ENML is 1 the input stage is configured  
for multi-level mode.  
SPI_SDIO_EN_ML_INSTAG  
E
[3]  
[2]  
RSRVD  
RW  
RW  
0
0
Reserved.  
SPI SDIO Output Data. Controls the SDIO output data value  
when SPI_SDIO_IOTESTEN is set to 1.  
SPI_SDIO_OUTPUT_DATA  
SPI SDIO Input Y12 Value. Indicates the logic level present  
on the SDIO Y12 pin. This feature is currently not supported.  
[1]  
[0]  
SPI_SDIO_INPUT_Y12  
SPI_SDIO_INPUT_M12  
R
R
0
0
SPI SDIO Input M12 Value. Indicates the logic level present  
on the SDIO M12 pin. This feature is currently not supported.  
9.6.2.131 IOTEST_SCL  
The IOTEST_SCL Register provides control of the SCL driver and test features. Return to Register Map.  
Table 155. Register – 0x90  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
Copyright © 2017–2019, Texas Instruments Incorporated  
95  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 155. Register – 0x90 (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SPI SCL Input Stage Enable BAR. When  
SPI_SCL_INPUT_ENB is 0 the SCL Input stage is enabled.  
Whenever SPI_SCL_INPUT_ENB is set to 1 the SPI  
interface is rendered inoperable and can only be recovered  
by a hardware reset.  
[5]  
SPI_SCL_ENB_INSTAGE  
RW  
0
SPI SCL Input Stage Enable Multi-level. When  
SPI_SCL_INPUT_ENML is 1 the input stage is configured for  
multi-level mode.  
[4]  
SPI_SCL_EN_ML_INSTAGE  
RW  
0
[3:2]  
[1]  
RSRVD  
-
-
Reserved.  
SPI SCL Input Y12 Value. Indicates the logic level present  
on the SCL Y12 pin. This feature is currently not supported.  
SPI_SCL_INPUT_Y12  
R
0
SPI SCL Input M12 Value. Indicates the logic level present  
on the SCL M12 pin. This feature is currently not supported.  
[0]  
SPI_SCL_INPUT_M12  
R
0
9.6.2.132 IOTEST_SCS  
The IOTEST_SCS Register provides control of the SCS driver and test features. Return to Register Map.  
Table 156. Register – 0x91  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
SPI SCS Input Stage Enable BAR. When  
SPI_SCS_INPUT_ENB is 0 the SCS Input stage is enabled.  
Whenever SPI_SCS_INPUT_ENB is set to 1 the SPI  
interface is rendered inoperable and can only be recovered  
by a hardware reset.  
[5]  
SPI_SCS_ENB_INSTAGE  
RW  
RW  
0
0
SPI SCS Input Stage Enable Multi-level. When  
SPI_SCS_INPUT_ENML is 1 the input stage is configured  
for multi-level mode.  
[4]  
SPI_SCS_EN_ML_INSTAGE  
[3:2]  
[1]  
RSRVD  
-
-
Reserved.  
SPI SCS Input Y12 Value. Indicates the logic level present  
on the SCS Y12 pin. This feature is currently not supported.  
SPI_SCS_INPUT_Y12  
R
0
SPI SCS Input M12 Value. Indicates the logic level present  
on the SCS M12 pin. This feature is currently not supported.  
[0]  
SPI_SCS_INPUT_M12  
R
0
9.6.2.133 IOCTRL_STAT0  
The IOCTRL_STAT0 Register provides control of the STATUS0 Input/Output Driver. Return to Register Map.  
Table 157. Register – 0x92  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
STAT0 Output Mux Select. When selecting PLL1 or 2  
REF/FB clock, also set corresponding  
PLLx_TSTMODE_REF_FB_EN bit.  
STATUS0_MUX_SEL - STATUS0 Output  
000 - PLL1 REF CLK  
[7:5]  
STATUS0_MUX_SEL[2:0]  
RW  
0x4  
001 - PLL2 REF CLK  
010 - PLL1 FB (SYS) CLK  
011 - PLL2 FB (SYS) CLK  
1XX - Signal selected by STATUS0_INT_MUX (digital)  
STATUS0 Output Mute. When STATUS0_OUTPUT_MUTE  
is 1 the STATUS0 output driver is forced to 0 if it is enabled.  
[4]  
[3]  
STATUS0_OUTPUT_MUTE  
STATUS0_OUTPUT_INV  
RW  
RW  
0
0
STATUS0 Output Invert. When STATUS0_OUTPUT_INV is  
1 the STATUS0 output is inverted.  
STATUS0 Output Weak drivestrength. When  
STATUS0_OUTPUT_WEAK DRIVE is 1 the STATUS0  
output is configured with a lower slew rate.  
STATUS0_OUTPUT_WEAK_  
DRIVE  
[2]  
RW  
0
96  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 157. Register – 0x92 (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
STATUS0 Pullup Enable. When STATUS0_PULLUPEN_EN  
is 1 a pullup resistor is activated.  
[1]  
STATUS0_EN_PULLUP  
RW  
0
STATUS0 Pulldown Enable. When  
STATUS0_PULLDWN_EN is 1 a pulldown resistor is  
activated.  
[0]  
STATUS0_EN_PULLDOWN  
RW  
0
9.6.2.134 IOCTRL_STAT1  
The IOCTRL_STAT1 Register provides control of the STATUS1 Input/Output Driver. Return to Register Map.  
Table 158. Register – 0x93  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
STAT1 Output Mux Select. When selecting PLL1 or 2  
REF/FB clock, also set corresponding  
PLLx_TSTMODE_REF_FB_EN bit.  
STATUS1_MUX_SEL - STATUS1 Output  
000 - PLL1 REF CLK  
[7:5]  
STATUS1_MUX_SEL[2:0]  
RW  
0x4  
001 - PLL2 REF CLK  
010 - PLL1 FB (SYS) CLK  
011 - PLL2 FB (SYS) CLK  
1XX - Signal selected by STATUS1_INT_MUX (digital)  
STATUS1 Output Mute. When STATUS1_OUTPUT_MUTE  
is 1 the STATUS1 output driver is forced to 0 if it is enabled.  
[4]  
[3]  
STATUS1_OUTPUT_MUTE  
STATUS1_OUTPUT_INV  
RW  
RW  
0
0
STATUS1 Output Invert. When STATUS1_OUTPUT_INV is  
1 the STATUS1 output is inverted.  
STATUS1 Output weak drive. When  
STATUS1_OUTPUT_WEAK_DRIVE is 1 the STATUS1  
output is configured with a lower slew rate.  
STATUS1_OUTPUT_WEAK_  
DRIVE  
[2]  
[1]  
[0]  
RW  
RW  
RW  
0
0
0
STATUS1 Pullup Enable. When STATUS1_PULLUP_EN is  
1 a pullup resistor is activated.  
STATUS1_EN_PULLUP  
STATUS1 Pulldown Enable. When  
STATUS1_PULLDWN_EN is 1 a pulldown resistor is  
activated.  
STATUS1_EN_PULLDOWN  
Copyright © 2017–2019, Texas Instruments Incorporated  
97  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.135 STAT1MUX  
The STAT1MUX Register controls the status signal that is routed to the STATUS0 output. Return to Register  
Map.  
Table 159. Register – 0x94  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
STAT1 Integrated Mux Select.  
STAT1_INT_MUX– STATUS1 Output  
0– PLL1 Lock Detect and PLL2 Lock Detect  
1– PLL1 Lock Detect  
2– PLL2 Lock Detect  
3– CLKINBLK LOS  
4– SPI Output Data  
5– Reserved  
6– Reserved  
7– Reserved  
8– HOLDOVER_EN  
[7:0]  
STATUS1_INT_MUX[7:0]  
RW  
0x4  
9– Mirror of SYNC_INPUT  
10– Mirror of CLKINSEL1 INPUT  
11– Reserved  
12– Reserved  
13– PLL2 Reference Clock  
14– Reserved  
15– PLL1 Lock Detect and PLL2 Lock Detect and not PLL1  
Holdover  
16– PLL1 Lock Detect and not PLL1 Holdover  
17– Logic 1  
18– Logic 0  
9.6.2.136 STAT0MUX  
The STAT0MUX Register controls the status signal that is routed to the STATUS1 output. Return to Register  
Map.  
Table 160. Register – 0x95  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
STAT0 Integrated Mux Select.  
STAT0_INT_MUX– STATUS0 Output  
0– PLL1 Lock Detect and PLL2 Lock Detect  
1– PLL1 Lock Detect  
2– PLL2 Lock Detect  
3– CLKINBLK LOS  
4– SPI Output Data  
5– Reserved  
6– Reserved  
7– Reserved  
8– HOLDOVER_EN  
[7:0]  
STATUS0_INT_MUX[7:0]  
RW  
0x0  
9– Mirror of SYNC_INPUT  
10– Mirror of CLKINSEL1 INPUT  
11– Reserved  
12– Reserved  
13– PLL2 Reference Clock  
14– Reserved  
15– PLL1 Lock Detect and PLL2 Lock Detect and not PLL1  
Holdover  
16– PLL1 Lock Detect and not PLL1 Holdover  
17– Logic 1  
18– Logic 0  
98  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.137 STATPLL2CLKDIV  
The STATPLL2CLKDIV Register controls the PLL2 Status Output Clock Divider. Return to Register Map.  
Table 161. Register – 0x96  
BIT NO.  
[7:5]  
[4]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
RW  
-
-
1
-
PLL2_REF_CLK_EN  
RSRVD  
PLL2 Ref Clock Enable.  
Reserved.  
[3]  
PLL2 Ref Clock Divider for Status Outputs. Sets the divider  
value for the PLL2 VCO clock that can be routed to the  
STAT0/1 outputs.  
PLL2_REF_STATCLK_DIV– Divider Value  
PLL2_REF_STATCLK_DIV[2  
:0]  
[2:0]  
RW  
0x0  
0– 1  
1– 2  
..– ..  
7– 8  
9.6.2.138 IOTEST_STAT0  
The IOTEST_STAT0 Register provides control of the STATUS0 driver and test features. Return to Register Map.  
Table 162. Register – 0x97  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
RW  
0
Reserved.  
STATUS0 Output Driver High Impedance. When  
STATUS0_OUTPUT_HIZ is set to 1 the STATUS0 output  
driver stage is disabled.  
[6]  
[5]  
[4]  
STATUS0_OUTPUT_HIZ  
STATUS0_ENB_INSTAGE  
RW  
RW  
RW  
0
1
0
STATUS0 Input Stage Enable BAR. When  
STATUS0_INPUT_ENB is 0 the STATUS0 Input stage is  
enabled. When STATUS0_INPUT_ENB is set to 1 the  
STATUS0 input stage is disabled.  
STATUS0 Input Stage Enable Multi-level. When  
STATUS0_INPUT_ENML is 1 the input stage is configured  
for multi-level mode.  
STATUS0_EN_ML_INSTAG  
E
[3]  
[2]  
RSRVD  
RW  
RW  
0
0
Reserved.  
STATUS0 Output Data. Set the STATUS0 output data value  
when STATUS0_IOTESTEN is 1.  
STATUS0_OUTPUT_DATA  
STATUS0 Input Y12 Value. Indicates the logic level present  
on the STATUS0 Y12 pin.  
[1]  
[0]  
STATUS0_INPUT_Y12  
STATUS0_INPUT_M12  
R
R
0
0
STATUS0 Input M12 Value. Indicates the logic level present  
on the STATUS0 M12 pin.  
9.6.2.139 IOTEST_STAT1  
The IOTEST_STAT1 Register provides control of the STATUS1 driver and test features. Return to Register Map.  
Table 163. Register – 0x98  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
RW  
0
Reserved.  
STATUS1 Output Driver High Impedance. When  
STATUS1_OUTPUT_HIZ is set to 1 the STATUS1 output  
driver stage is disabled.  
[6]  
[5]  
STATUS1_OUTPUT_HIZ  
STATUS1_ENB_INSTAGE  
RW  
RW  
0
1
STATUS1 Input Stage Enable BAR. When  
STATUS1_INPUT_ENB is 0 the STATUS1 Input stage is  
enabled. When STATUS1_INPUT_ENB is set to 1 the  
STATUS1 input stage is disabled.  
Copyright © 2017–2019, Texas Instruments Incorporated  
99  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 163. Register – 0x98 (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
STATUS1 Input Stage Enable Multi-level. When  
STATUS1_INPUT_ENML is 1 the input stage is configured  
for multi-level mode.  
STATUS1_EN_ML_INSTAG  
E
[4]  
RW  
0
[3]  
[2]  
RSRVD  
RW  
RW  
0
0
Reserved.  
STATUS1 Output Data. Set the STATUS1 output data value  
when STATUS1_IOTESTEN is 1.  
STATUS1_OUTPUT_DATA  
STATUS1 Input Y12 Value. Indicates the logic level present  
on the STATUS1 Y12 (high-level) pin.  
[1]  
[0]  
STATUS1_INPUT_Y12  
STATUS1_INPUT_M12  
R
R
0
0
STATUS1 Input M12 Value. Indicates the logic level present  
on the STATUS1 M12 (mid-level) pin.  
9.6.2.140 IOCTRL_SYNC  
The IOCTRL_SYNC Register provides control of the SYNC Input. Return to Register Map.  
Table 164. Register – 0x99  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYNC Output Mux Select. When selecting PLL1 or 2  
REF/FB clock, also set corresponding  
PLLx_TSTMODE_REF_FB_EN bit.  
SYNC_MUX_SEL - SYNC Output  
000 - PLL1 REF CLK  
[7:5]  
SYNC_MUX_SEL[2:0]  
RW  
0x4  
001 - PLL2 REF CLK  
010 - PLL1 FB (SYS) CLK  
011 - PLL2 FB (SYS) CLK  
1XX - Signal selected by SYNC_INT_MUX (digital)  
SYNC Output Mute. When SYNC_OUTPUT_MUTE is 1 the  
SYNC output driver is forced to 0 if it is enabled.  
[4]  
[3]  
SYNC_OUTPUT_MUTE  
SYNC_OUTPUT_INV  
RW  
RW  
0
0
SYNC Output Invert. When SYNC_OUTPUT_INV is 1 the  
SYNC output is inverted.  
SYNC Output weak drive. When  
SYNC_OUTPUT_WEAK_DRIVE is 1 the SYNC output is  
configured with a lower slew rate.  
SYNC_OUTPUT_WEAK_DRI  
VE  
[2]  
RW  
0
SYNC Pullup Enable. When SYNC_PULLUPEN_EN is 1 a  
pullup resistor is activated.  
[1]  
[0]  
SYNC_EN_PULLUP  
RW  
RW  
0
0
SYNC Pulldown Enable. When SYNC_PULLDWN_EN is 1 a  
pulldown resistor is activated.  
SYNC_EN_PULLDOWN  
9.6.2.141 DUMMY_REGISTER_1  
Placeholder 1. Return to Register Map.  
Table 165. Register – 0x9A  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
-
-
[0]  
Reserved.  
9.6.2.142 IOCTRL_CLKINSEL1  
The IOCTRL_CLKINSEL1 Register provides control of the CLKINSEL1 Input. Return to Register Map.  
Table 166. Register – 0x9B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:2]  
RSRVD  
-
-
Reserved.  
CLKIN_SEL1 Pullup Enable. When  
CLKINSEL1_PULLUP_EN is 1 a pullup resistor is activated.  
[1]  
CLKINSEL1_EN_PULLUP  
RW  
0
100  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 166. Register – 0x9B (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
CLKIN_SEL1 Pulldown Enable. When  
CLKINSEL1_PULLDWN_EN is 1 a pulldown resistor is  
activated.  
CLKINSEL1_EN_PULLDOW  
N
[0]  
RW  
0
9.6.2.143 IOTEST_CLKINSEL1  
The IOTEST_CLKINSEL1 Register provides control of the CLKINSEL1 driver test features. Return to Register  
Map.  
Table 167. Register – 0x9C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
CLKINSEL1 Input Stage Enable BAR. When  
CLKINSEL1_INPUT_ENB is 0 the CLKINSEL1 Input stage is  
enabled.  
[5]  
[4]  
CLKINSEL1_ENB_INSTAGE  
RW  
RW  
0
0
CLKINSEL1 Input Stage Enable Multi-level. When  
CLKINSEL1_INPUT_ENML is 1 the input stage is configured  
for multi-level mode.  
CLKINSEL1_EN_ML_INSTA  
GE  
[3:2]  
[1]  
RSRVD  
-
-
Reserved.  
CLKINSEL1 Input Y12 Value. Indicates the logic level  
present on the CLKINSEL1 Y12 (high-level) pin.  
CLKINSEL1_INPUT_Y12  
R
0
CLKINSEL1 Input M12 Value. Indicates the logic level  
present on the CLKINSEL1 M12 (mid-level) pin.  
[0]  
CLKINSEL1_INPUT_M12  
R
0
9.6.2.144 PLL1_TSTMODE  
The PLL1_TSTMODE Register supports PLL1 Test by enabling output of PLL1 phase detector inputs.Back to  
Register Map.  
Table 168. Register - 0xAC  
BIT NO.  
[7]  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Set this bit when STATUS0_MUX_SEL,  
STATUS1_MUX_SEL, or SYNC_MUX_SEL selects a PLL1  
REF clock or FB (SYS) clock output.  
0: PLL1 REF or PLL1 FB (SYS) clock not selected by any  
mux  
PLL1_TSTMODE_REF_FB_  
EN  
RW  
0
0
1: PLL1 REF or PLL1 FB (SYS) clock selected by at least  
one mux  
[6:0]  
RSRVD  
RW  
Reserved.  
9.6.2.145 PLL2_CTRL  
The PLL2_CTRL Register supports other PLL2 features. Back to Register Map.  
Table 169. Register - 0xAD  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
Before using PLL2 DLD signal, set this field to 0x3, wait 20  
ms, set to 0x0. Refer to PLL2 DLD flow chart in Figure 41.  
0x0: Clear reset state  
0x1: Reserved  
[5:4]  
[3]  
RESET_PLL2_DLD  
RSRVD  
RW  
-
0
-
0x2: Reserved  
0x3: Reset set  
Reserved.  
Copyright © 2017–2019, Texas Instruments Incorporated  
101  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 169. Register - 0xAD (continued)  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Set this bit when STATUS0_MUX_SEL,  
STATUS1_MUX_SEL, or SYNC_MUX_SEL selects a PLL1  
REF clock or FB (SYS) clock output.  
0: PLL1 REF or PLL1 FB (SYS) clock not selected by any  
mux  
PLL2_TSTMODE_REF_FB_  
EN  
[2]  
RW  
0
1: PLL1 REF or PLL1 FB (SYS) clock selected by at least  
one mux  
Set for modes not using PLL2 VCO.  
0x0: VCO LDO active  
0x1: Reserved  
[1:0]  
PD_VCO_LDO  
RW  
0
0x2: Reserved  
0x3: VCO LDO disabled  
9.6.2.146 STATUS  
The STATUS Register provides access to the following status signals. Return to Register Map.  
Table 170. Register – 0xBE  
BIT NO.  
[7:6]  
[5]  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
RSRVD  
-
-
LOS  
R
R
R
R
R
R
0
0
0
0
0
0
Loss of Source  
[4]  
HOLDOVER_DLD  
HOLDOVER_LOL  
HOLDOVER_LOS  
PLL2_LCK_DET  
PLL1_LCK_DET  
Holdover – Digital Lock Detect  
Holdover – Loss of Lock  
Holdover – Loss of Source  
PLL2 Lock Detect  
[3]  
[2]  
[1]  
[0]  
PLL1 Lock Detect  
9.6.2.147 PLL2_DLD_EN  
The PLL2_DLD_EN Register supports PLL2 DLD EN Feature Back to Register Map.  
Table 171. Register – 0xF6  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:2]  
RSRVD  
RW  
0
Reserved  
Enable for PLL2 DLD  
0: Non PLL2 modes  
1: PLL2 DLD enabled  
[1]  
[0]  
PLL2_DLD_EN  
RSRVD  
RW  
RW  
0
0
Reserved  
9.6.2.148 PLL2_DUAL_LOOP  
The PLL2_DUAL_LOOP Register supports Dual Loop Feature Back to Register Map.  
Table 172. Register – 0xF7  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
R
0
Reserved.  
Dual Loop enable  
0: Non-Dual Loop mode  
1: Dual Loop mode  
[6:5]  
[4:0]  
PLL2_DUAL_LOOP_EN  
RSRVD  
RW  
RW  
0
0
Reserved.  
102  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.149 RESERVED10  
RESERVED. Return to Register Map.  
Table 173. Register – 0xFB  
BIT NO.  
[7:1]  
FIELD  
RSRVD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
-
-
[0]  
Reserved.  
9.6.2.150 CH1_DDLY_BY0  
Register CH1_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 174. Register – 0xFD  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH1_DDLY[7:0]  
RW  
0x0  
9.6.2.151 CH2_DDLY_BY0  
Register CH2_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 175. Register – 0xFF  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH2_DDLY[7:0]  
RW  
0x0  
9.6.2.152 CH34_DDLY_BY0  
Register CH34_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 176. Register – 0x101  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH34_DDLY[7:0]  
RW  
0x0  
9.6.2.153 CH5_DDLY_BY0  
Register CH5_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 177. Register – 0x103  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH5_DDLY[7:0]  
RW  
0x0  
9.6.2.154 CH6_DDLY_BY0  
Register CH6_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 178. Register – 0x105  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH6_DDLY[7:0]  
RW  
0x0  
Copyright © 2017–2019, Texas Instruments Incorporated  
103  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.155 CH78_DDLY_BY0  
Register CH78_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 179. Register – 0x107  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH78_DDLY[7:0]  
RW  
0x0  
9.6.2.156 CH9_DDLY_BY0  
Register CH9_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 180. Register – 0x109  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH9_DDLY[7:0]  
RW  
0x0  
9.6.2.157 CH10_DDLY_BY0  
Register CH10_DDLY_BY0 provides control of the following JESD204B control signals. Return to Register Map.  
Table 181. Register – 0x10B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Sets number of Digital Delay steps for Channel X. The  
channel delays 0 to 255 Clock Distribution Path periods  
compared to other channels.  
[7:0]  
CH10_DDLY[7:0]  
RW  
0x0  
9.6.2.158 OUTCH1_JESD_CTRL  
Register OUTCH1_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 182. Register – 0x10D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH1_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH1_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 1.  
Reserved.  
9.6.2.159 OUTCH2_JESD_CTRL  
Register OUTCH2_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 183. Register – 0x10E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH2_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH2_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 2.  
Reserved.  
104  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.160 OUTCH3_JESD_CTRL  
Register OUTCH3_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 184. Register – 0x110  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH3_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH3_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 3.  
Reserved.  
9.6.2.161 OUTCH4_JESD_CTRL  
Register OUTCH4_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 185. Register – 0x111  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH4_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH4_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 4.  
Reserved.  
9.6.2.162 OUTCH5_JESD_CTRL  
Register OUTCH5_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 186. Register – 0x112  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH5_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH5_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 5.  
Reserved.  
9.6.2.163 OUTCH6_JESD_CTRL  
Register OUTCH6_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 187. Register – 0x115  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH6_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH6_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 6.  
Reserved.  
Copyright © 2017–2019, Texas Instruments Incorporated  
105  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.164 OUTCH7_JESD_CTRL  
Register OUTCH7_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 188. Register – 0x116  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH7_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH7_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 7.  
Reserved.  
9.6.2.165 OUTCH8_JESD_CTRL  
Register OUTCH8_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 189. Register – 0x117  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH8_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH8_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 8.  
Reserved.  
9.6.2.166 OUTCH9_JESD_CTRL  
Register OUTCH9_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 190. Register – 0x119  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH9_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH9_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 9.  
Reserved.  
9.6.2.167 OUTCH10_JESD_CTRL  
Register OUTCH10_JESD_CTRL provides control of the following JESD204B control signals. Return to Register  
Map.  
Table 191. Register – 0x11A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Analog Steps can be programmed from 0 to 15. The  
resulting delay is shown in Figure 34.  
[6:2]  
CH10_ADLY[4:0]  
RW  
0x0  
[1]  
[0]  
CH10_ADLY_EN  
RSRVD  
RW  
-
0
-
Enables Analog Delay for Channel 10.  
Reserved.  
106  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.168 CLKMUXVECTOR  
The CLKMUXVECTOR Register reflects the current status of the RefClk Mux. Return to Register Map.  
Table 192. Register – 0x124  
BIT NO.  
[7:4]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
[3:0]  
CLKMUX[3:0]  
R
0x0  
CLKmux status.  
9.6.2.169 OUTCH1CNTL2  
The OUTCH1CNTRL2 Register controls Output CH1. Return to Register Map.  
Table 193. Register – 0x127  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH1  
[7]  
RW  
0
Bypass CH1 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH1  
[6]  
RW  
0
Bypass CH1 Analog Delay Gating  
[5]  
[4]  
SYNC_EN_CH1  
HS_EN_CH1  
RW  
RW  
RW  
-
0
0
Output CH1 SYNC Enable  
Output CH1 Enable Half-cycle delay  
Slew Rate Setting OUTCH1.  
Reserved.  
[3:2]  
[1:0]  
DRIV_1_SLEW[1:0]  
RSRVD  
0x0  
-
9.6.2.170 OUTCH2CNTL2  
The OUTCH2CNTRL2 Register controls Output CH2. Return to Register Map.  
Table 194. Register – 0x128  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH2  
[7]  
RW  
0
Bypass CH2 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH2  
[6]  
RW  
0
Bypass CH2 Analog Delay Gating  
[5]  
[4]  
SYNC_EN_CH2  
HS_EN_CH2  
RW  
RW  
-
0
0
Output CH2 SYNC Enable  
Output CH2 Enable Half-cycle delay  
Reserved.  
[3:2]  
[1:0]  
RSRVD  
-
DRIV_2_SLEW[1:0]  
RW  
0x0  
Slew Rate Setting OUTCH2.  
9.6.2.171 OUTCH34CNTL2  
The OUTCH34CNTRL2 Register controls Output CH3_4. Return to Register Map.  
Table 195. Register – 0x129  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH3_4  
[7]  
RW  
0
Bypass CH3_4 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH3_4  
[6]  
RW  
0
Bypass CH3_4 Analog Delay Gating  
[5]  
[4]  
SYNC_EN_CH3_4  
HS_EN_CH3_4  
RW  
RW  
RW  
RW  
0
Output CH3_4 SYNC Enable  
Output CH3_4 Enable Half-cycle delay  
Slew Rate Setting OUTCH4.  
0
[3:2]  
[1:0]  
DRIV_4_SLEW[1:0]  
DRIV_3_SLEW[1:0]  
0x0  
0x0  
Slew Rate Setting OUTCH3.  
Copyright © 2017–2019, Texas Instruments Incorporated  
107  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.172 OUTCH5CNTL2  
The OUTCH5CNTRL2 Register controls Output CH5. Return to Register Map.  
Table 196. Register – 0x12A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH5  
[7]  
RW  
0
Bypass CH5 Dynamic Digital Delay Gating  
Bypass CH5 Analog Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH5  
[6]  
RW  
0
[5]  
[4]  
SYNC_EN_CH5  
HS_EN_CH5  
RW  
RW  
-
0
0
Output CH5 SYNC Enable  
Output CH5 Enable Half-cycle delay  
Reserved.  
[3:2]  
[1:0]  
RSRVD  
-
DRIV_5_SLEW[1:0]  
RW  
0x0  
Slew Rate Setting OUTCH5.  
9.6.2.173 OUTCH6CNTL2  
The OUTCH6CNTRL2 Register controls Output CH6. Return to Register Map.  
Table 197. Register – 0x12B  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH6  
[7]  
RW  
0
Bypass CH6 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH6  
[6]  
RW  
0
Bypass CH6 Analog Delay Gating  
[5]  
[4]  
SYNC_EN_CH6  
HS_EN_CH6  
RW  
RW  
RW  
-
0
0
Output CH6 SYNC Enable  
Output CH6 Enable Half-cycle delay  
Slew Rate Setting OUTCH6.  
Reserved.  
[3:2]  
[1:0]  
DRIV_6_SLEW[1:0]  
RSRVD  
0x0  
-
9.6.2.174 OUTCH78CNTL2  
The OUTCH78CNTRL2 Register controls Output CH7_8. Return to Register Map.  
Table 198. Register – 0x12C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH7_8  
[7]  
RW  
0
Bypass CH7_8 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH7_8  
[6]  
RW  
0
Bypass CH7_8 Analog Delay Gating  
[5]  
[4]  
SYNC_EN_CH7_8  
HS_EN_CH7_8  
RW  
RW  
RW  
RW  
0
Output CH7_8 SYNC Enable  
Output CH7_8 Enable Half-cycle delay  
Slew Rate Setting OUTCH8.  
0
[3:2]  
[1:0]  
DRIV_8_SLEW[1:0]  
DRIV_7_SLEW[1:0]  
0x0  
0x0  
Slew Rate Setting OUTCH7.  
9.6.2.175 OUTCH9CNTL2  
The OUTCH9CNTRL2 Register controls Output CH9. Return to Register Map.  
Table 199. Register – 0x12D  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH9  
[7]  
RW  
0
Bypass CH9 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH9  
[6]  
[5]  
RW  
RW  
0
0
Bypass CH9 Analog Delay Gating  
Output CH9 SYNC Enable  
SYNC_EN_CH9  
108  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 199. Register – 0x12D (continued)  
BIT NO.  
[4]  
FIELD  
HS_EN_CH9  
DRIV_9_SLEW[1:0]  
RSRVD  
TYPE  
RW  
RW  
-
RESET  
DESCRIPTION  
Output CH9 Enable Half-cycle delay  
Slew Rate Setting OUTCH9.  
Reserved.  
0
0x0  
-
[3:2]  
[1:0]  
9.6.2.176 OUTCH10CNTL2  
The OUTCH10CNTRL2 Register controls Output CH10. Return to Register Map.  
Table 200. Register – 0x12E  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYSREF_BYP_DYNDIGDLY  
_GATING_CH10  
[7]  
RW  
0
Bypass CH10 Dynamic Digital Delay Gating  
SYSREF_BYP_ANALOGDLY  
_GATING_CH10  
[6]  
RW  
0
Bypass CH10 Analog Delay Gating  
[5]  
[4]  
SYNC_EN_CH10  
HS_EN_CH10  
RSRVD  
RW  
RW  
-
0
0
Output CH10 SYNC Enable  
Output CH10 Enable Half-cycle delay  
Reserved.  
[3:2]  
[1:0]  
-
DRIV_10_SLEW[1:0]  
RW  
0x0  
Slew Rate Setting OUTCH10.  
9.6.2.177 OUTCH1_JESD_CTRL1  
The OUTCH1_JESD_CTRL1 Register controls Output CH1. Return to Register Map.  
Table 201. Register – 0x130  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH1[2:0]  
RW  
0x0  
9.6.2.178 OUTCH2_JESD_CTRL1  
The OUTCH2_JESD_CTRL1 Register controls Output CH2. Return to Register Map.  
Table 202. Register – 0x131  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH2[2:0]  
RW  
0x0  
9.6.2.179 OUTCH3_JESD_CTRL1  
The OUTCH3_JESD_CTRL1 Register controls Output CH3. Return to Register Map.  
Table 203. Register – 0x133  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH3[2:0]  
RW  
0x0  
Copyright © 2017–2019, Texas Instruments Incorporated  
109  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.180 OUTCH4_JESD_CTRL1  
The OUTCH4_JESD_CTRL1 Register controls Output CH4. Return to Register Map.  
Table 204. Register – 0x134  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH4[2:0]  
RW  
0x0  
9.6.2.181 OUTCH5_JESD_CTRL1  
The OUTCH5_JESD_CTRL1 Register controls Output CH5. Return to Register Map.  
Table 205. Register – 0x135  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH5[2:0]  
RW  
0x0  
9.6.2.182 OUTCH6_JESD_CTRL1  
The OUTCH6_JESD_CTRL1 Register controls Output CH6. Return to Register Map.  
Table 206. Register – 0x138  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH6[2:0]  
RW  
0x0  
9.6.2.183 OUTCH7_JESD_CTRL1  
The OUTCH7_JESD_CTRL1 Register controls Output CH7. Return to Register Map.  
Table 207. Register – 0x139  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH7[2:0]  
RW  
0x0  
9.6.2.184 OUTCH8_JESD_CTRL1  
The OUTCH8_JESD_CTRL1 Register controls Output CH8. Return to Register Map.  
Table 208. Register – 0x13A  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH8[2:0]  
RW  
0x0  
110  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.185 OUTCH9_JESD_CTRL1  
The OUTCH9_JESD_CTRL1 Register controls Output CH9. Return to Register Map.  
Table 209. Register – 0x13C  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:3]  
RSRVD  
-
-
Reserved.  
Sets number of Dynamic Digital Delay steps for Output X.  
The Output delays 0 to 5 Clock Distribution Path periods  
compared to other channels.  
[2:0]  
DYN_DDLY_CH9[2:0]  
RW  
0x0  
9.6.2.186 OUTCH10_JESD_CTRL1  
The OUTCH10_JESD_CTRL1 Register controls Output CH10. Return to Register Map.  
Table 210. Register – 0x13D  
BIT NO.  
[7:3]  
FIELD  
RSRVD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
-
[2:0]  
DYN_DDLY_CH10[2:0]  
RW  
0x0  
Output CH10 Dynamic/Individual Digital Delay.  
9.6.2.187 SYSREF_PLS_CNT  
Sysref Pulse Count Configuration. Return to Register Map.  
Table 211. Register – 0x140  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:6]  
RSRVD  
-
-
Reserved.  
OUTCH_SYSREF_PLSCNT[  
5:0]  
Set number of desired sysref pulses. 0 Enables continuous  
sysref.  
[5:0]  
RW  
0x0  
9.6.2.188 SYNCMUX  
The SYNCMUX Register controls the status signal that is routed to the SYNC output. Return to Register Map.  
Table 212. Register – 0x141  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SYNC Integrated Mux Select.  
SYNC_INT_MUX– SYNC Output  
0– PLL1 Lock Detect and PLL2 Lock Detect  
1– PLL1 Lock Detect  
2– PLL2 Lock Detect  
3– CLKINBLK LOS  
4– SPI Output Data  
5– Reserved  
6– Reserved  
7– Reserved  
8– HOLDOVER_EN  
[7:0]  
SYNC_INT_MUX[7:0]  
RW  
0x4  
9– Mirror of SYNC_INPUT  
10– Mirror of CLKINSEL1 INPUT  
11– Reserved  
12– Reserved  
13– PLL2 Reference Clock  
14– Reserved  
15– PLL1 Lock Detect and PLL2 Lock Detect and not PLL1  
Holdover  
16– PLL1 Lock Detect and not PLL1 Holdover  
17– Logic 1  
18– Logic 0  
Copyright © 2017–2019, Texas Instruments Incorporated  
111  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
9.6.2.189 IOTEST_SYNC  
The IOTEST_SYNC Register provides control of the SYNC driver and test features. Return to Register Map.  
Table 213. Register – 0x142  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
RW  
0
Reserved.  
SYNC Output Driver High Impedance. When  
SYNC_OUTPUT_HIZ is set to 1 the SYNC output driver  
stage is disabled.  
[6]  
[5]  
[4]  
SYNC_OUTPUT_HIZ  
SYNC_ENB_INSTAGE  
SYNC_EN_ML_INSTAGE  
RW  
RW  
RW  
1
1
1
SYNC Input Stage Enable BAR. When SYNC_INPUT_ENB  
is 0 the SYNC Input stage is enabled. When  
SYNC_INPUT_ENB is set to 1 the SYNC input stage is  
disabled.  
SYNC Input Stage Enable Multi-level. When  
SYNC_INPUT_ENML is 1 the input stage is configured for  
multi-level mode.  
[3]  
[2]  
RSRVD  
RW  
RW  
0
0
Reserved.  
SYNC Output Data. Set the SYNC output data value when  
SYNC_IOTESTEN is 1.  
SYNC_OUTPUT_DATA  
SYNC Input Y12 Value. Indicates the logic level present on  
the SYNC Y12 pin.  
[1]  
[0]  
SYNC_INPUT_Y12  
SYNC_INPUT_M12  
R
R
0
0
SYNC Input M12 Value. Indicates the logic level present on  
the SYNC M12 pin.  
9.6.2.190 OUTCH_ZDM  
Low Skew Feedback Buffer Settings Back to Register Map.  
Table 214. Register – 0x143  
BIT NO.  
[7:5]  
[4]  
FIELD  
RSRVD  
TYPE  
RESET  
DESCRIPTION  
Reserved.  
-
-
0
-
FBBUF_CH5_EN  
RSRVD  
RW  
-
Enable Channel 5 Zero Delay Mode FBClock Buffer  
Reserved.  
[3:1]  
[0]  
FBBUF_CH6_EN  
RW  
0
Enable Channel 6 Zero Delay Mode FBClock Buffer  
9.6.2.191 PLL2_CTRL3  
The PLL2_CTRL3 Register provides control of PLL2 features. Return to Register Map.  
Table 215. Register – 0x146  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7]  
RSRVD  
-
-
Reserved.  
Enable By-2 Divider in PLL2 Feedback.  
nbypass_div2_fb– PLL2 Feedback by-2 Divider  
0– Divider Off  
[6]  
PLL2_NBYPASS_DIV2_FB  
PLL2_PRESCALER[3:0]  
RW  
RW  
0
1– Divider On  
PLL2 VCO Prescaler Configuration.  
PLL2_PRESCALEr – Effect  
00XX– PLL2 VCO Prescaler DIV3  
01XX– PLL2 VCO Prescaler DIV4  
10XX– PLL2 VCO Prescaler DIV5  
11XX– PLL2 VCO Prescaler DIV6  
[5:2]  
0x0  
PLL2 Feedback MUX control.  
PLL2_FBDIV_MUXSEL– Effect  
[1:0]  
PLL2_FBDIV_MUXSEL[1:0]  
RW  
0x0  
00– Feedback Prescaler Output  
01– Feedback OUTCH6 Output (Zero Delay Mode)  
10– Feedback OUTCH5 Output (Zero Delay Mode)  
112  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
9.6.2.192 PLL1_HOLDOVER_CTRL0  
The PLL1_HOLDOVER_CTRL0 Register selects the GPIO pin to use to force Holdover mode. Return to Register  
Map.  
Table 216. Register – 0x149  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:4]  
RSRVD  
-
-
Reserved.  
PLL1_CLKINSEL1_ML_HOL  
DOVER  
[3]  
[2]  
[1]  
RW  
RW  
RW  
0
0
0
Force holdover by applying mid-level at CLKINSEL1.  
Force holdover by applying high-level at SYNC.  
Force holdover by applying high-level at STATUS1.  
PLL1_SYNC_HOLDOVER  
PLL1_STATUS1_HOLDOVE  
R
PLL1_STATUS0_HOLDOVE  
R
[0]  
RW  
0
Force holdover by applying high-level at STATUS0.  
9.6.2.193 IOCTRL_SYNC_1  
The IOCTRL_SYNC_1 Register provides control of SYNC Input features. Return to Register Map.  
Table 217. Register – 0x14A  
BIT NO.  
[7]  
FIELD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
RSRVD  
-
0x0  
0
[6:2]  
[1]  
SYNC_ANALOGDLY[4:0]  
SYNC_ANALOGDLY_EN  
RW  
RW  
SYNC input Analog Delay.  
Enable Analog Delay at SYNC input.  
SYNC_IN Invert.  
SYNC_INV– Polarity  
0– Not inverted  
1– Inverted  
[0]  
SYNC_INV  
RW  
0
9.6.2.194 OUTCH_TOP_JESD_CTRL  
OUTCH_TOP_JESD_CTRL controls JESD functions for TOP output channels. Return to Register Map.  
Table 218. Register – 0x14B  
BIT NO.  
[7]  
FIELD  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
DESCRIPTION  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
0
[6]  
DYN_DDLY_CH10_EN  
DYN_DDLY_CH9_EN  
RESERVED  
Enable CH10 Dynamic Digital Delay.  
Enable CH9 Dynamic Digital Delay.  
RESERVED  
[5]  
[4]  
[3]  
DYN_DDLY_CH8_EN  
DYN_DDLY_CH7_EN  
DYN_DDLY_CH6_EN  
RESERVED  
Enable CH8 Dynamic Digital Delay.  
Enable CH7 Dynamic Digital Delay.  
Enable CH6 Dynamic Digital Delay.  
RESERVED  
[2]  
[1]  
[0]  
9.6.2.195 OUTCH_BOT_JESD_CTRL  
OUTCH_BOT_JESD_CTRL controls JESD functions for BOTTOM output channels. Return to Register Map.  
Table 219. Register – 0x14C  
BIT NO.  
[7]  
FIELD  
TYPE  
0
RESET  
DESCRIPTION  
RW  
[6]  
DYN_DDLY_CH5_EN  
DYN_DDLY_CH4_EN  
DYN_DDLY_CH3_EN  
RW  
RW  
RW  
0
0
0
Enable CH5 Dynamic Digital Delay.  
Enable CH4 Dynamic Digital Delay.  
Enable CH3 Dynamic Digital Delay.  
[5]  
[4]  
Copyright © 2017–2019, Texas Instruments Incorporated  
113  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Table 219. Register – 0x14C (continued)  
BIT NO.  
[3]  
FIELD  
TYPE  
RW  
RESET  
DESCRIPTION  
RESERVED  
0
0
0
0
RESERVED  
[2]  
DYN_DDLY_CH2_EN  
DYN_DDLY_CH1_EN  
RESERVED  
RW  
Enable CH2 Dynamic Digital Delay.  
Enable CH1 Dynamic Digital Delay.  
RESERVED  
[1]  
RW  
[0]  
RW  
9.6.2.196 OUTCH_JESD_CTRL1  
OUTCH_TOP_JESD_CTRL controls JESD functions for TOP output channels. Return to Register Map.  
Table 220. Register – 0x14E  
BIT NO.  
[7]  
FIELD  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RESET  
DESCRIPTION  
SYSREF_EN_CH10  
SYSREF_EN_CH9  
SYSREF_EN_CH7_8  
SYSREF_EN_CH6  
SYSREF_EN_CH5  
SYSREF_EN_CH3_4  
SYSREF_EN_CH2  
SYSREF_EN_CH1  
0
0
0
0
0
0
0
0
Enable CH10 Sysref feature.  
Enable CH9 Sysref feature.  
Enable CH7_8 Sysref feature.  
Enable CH6 Sysref feature.  
Enable CH5 Sysref feature.  
Enable CH3_4 Sysref feature.  
Enable CH2 Sysref feature.  
Enable CH1 Sysref feature.  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
9.6.2.197 PLL2_CTRL4  
PLL2 CTRL4 Register sets PLL2 configuration. Return to Register Map.  
Table 221. Register – 0x150  
BIT NO.  
[7:4]  
FIELD  
RSRVD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
-
[3]  
PLL2_PFD_DIS_SAMPLE  
RW  
0
Disable PFD Sampling.  
PLL2_PROG_PFD_RESET[2  
:0]  
[2:0]  
RW  
0x0  
Programmable PFD reset.  
9.6.2.198 PLL2_CTRL5  
PLL2 CTRL5 Register sets PLL2 configuration. Return to Register Map.  
Table 222. Register – 0x151  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:5]  
RSRVD  
-
-
Reserved.  
0-> 9.2 kΩ  
1->4.7 kΩ  
[4]  
[3]  
PLL2_RFILT  
RSRVD  
RW  
-
0
-
Reserved.  
PLL2_CP_EN_SAMPLE_BY  
P
[2]  
RW  
RW  
0
Bypass PLL2 Chargepump sampling.  
Set Cap prior Sampling.  
[1:0]  
PLL2_CPROP[1:0]  
0x0  
9.6.2.199 PLL2_CTRL6  
PLL2 CTRL6 Register sets PLL2 configuration. Return to Register Map.  
Table 223. Register – 0x152  
BIT NO.  
FIELD  
TYPE  
RESET  
DESCRIPTION  
[7:4]  
RSRVD  
-
-
Reserved.  
114  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Table 223. Register – 0x152 (continued)  
BIT NO.  
[3]  
FIELD  
TYPE  
RW  
RESET  
0
DESCRIPTION  
PLL2_EN_FILTER  
PLL2_CSAMPLE[2:0]  
Enable PLL2 Chargepump Filter.  
PLL2 Set Cap After sampling.  
[2:0]  
RW  
0x0  
9.6.2.200 PLL2_CTRL7  
PLL2 CTRL7 Register sets PLL2 configuration. Return to Register Map.  
Table 224. Register – 0x153  
BIT NO.  
[7:5]  
FIELD  
RSRVD  
TYPE  
-
RESET  
DESCRIPTION  
Reserved.  
-
[4:0]  
PLL2_CFILT  
RW  
0
0 to 124 pF in 4-pF steps  
Copyright © 2017–2019, Texas Instruments Incorporated  
115  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
To assist customers in frequency planning and design of loop filters Texas Instrument's provides the Clock  
Design Tool and Clock Architect.  
10.1.1 Digital Lock Detect Frequency Accuracy  
The digital lock detect circuit is used to determine PLL1 locked and PLL2 locked. A window size and lock count  
register are programmed to set a ppm frequency accuracy of reference to feedback signals of the PLL for each  
event to occur. When a PLL digital lock event occurs the PLL's digital lock detect is asserted true.  
EVENT  
PLL  
WINDOW SIZE  
LOCK COUNT  
PLL1 Lock  
PLL1  
PLL1_LD_WNDW_SIZE  
PLL1_LOCKDET_CYC_CNT * (1 + (31 * PLL1_LCKDET_BY_32))  
PLL2 Lock  
(Initial)  
PLL2_LD_WNDW_SIZE_INITIAL =  
1 ns  
PLL2  
PLL2  
PLL2_LOCKDET_CYC_CNT_INITIAL  
PLL2_LOCKDET_CYC_CNT  
PLL2 Lock  
PLL2_LD_WNDW_SIZE = 1 ns  
For a digital lock detect event to occur there must be a lock count number of a count frequency during which the  
time/phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the user programmable  
window size. Because there must be at least lock count number of count frequency cycles, a minimum digital  
lock detect assert time can be calculated as lock count / count frequency where count frequency = PLL2 phase  
detector frequency. PLL2 lock time is the sum of the PLL2 Lock (Initial) + PLL2 Lock time.  
By using Equation 1, values for a lock count and window size can be chosen to set the frequency accuracy  
required by the system in ppm before the digital lock detect event occurs:  
1e6 × WINDOW SIZE × COUNT FREQUENCY  
ppm =  
LOCK COUNT  
(1)  
The effect of the lock count value is that it shortens the effective lock window size by dividing the window size by  
lock count.  
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by window  
size, then the lock count value is reset to 0.  
10.1.1.1 Minimum Lock Time Calculation Example  
To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 245.76 MHz,  
PLL2_LOCK_DET_CYC_CNT_INITAL = 32768, and PLL2_LOCK_DET_CYC_CNT = 16384. Then the minimum  
digital lock time assert time of PLL2 is PLL2 Lock time (Initial) + PLL2 Lock time = (32768 / 245.76 MHz) +  
(16384 / 245.76 MHz) = 200 µs.  
116  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
10.2 Typical Application  
Normal use case of the LMK04610 device is as a dual loop jitter cleaner. This section will discuss a design  
example to illustrate the various functional aspects of the LMK04610 device.  
PLL1  
PLL2  
OSCout  
Divider  
External  
VCXO  
OSCout*  
CLKinX  
CLKinX*  
R
N
Device/SYSref  
Clock  
Divider  
Digital Delay  
Analog Delay  
Phase  
Detector  
PLL1  
Integrated  
Loop Filter  
2 inputs  
CLKoutX*  
CLKoutX  
Internal VCO  
R
N
Phase  
Detector  
PLL2  
10 Device/Sysref  
Clocks  
Pre  
Div  
Integrated  
Loop Filter  
2 blocks  
Device/SYSref  
Clock  
Divider  
CLKoutX*  
CLKoutX  
CLKoutX*  
CLKoutX  
Digital Delay  
Analog Delay  
LMK04610  
4 blocks  
Copyright © 2017, Texas Instruments Incorporated  
Figure 60. Simplified Functional Block Diagram for Dual-Loop Mode  
10.2.1 Design Requirements  
Given a remote radio head (RRU) type application which needs to clock some ADCs, DACs, FPGA, SERDES,  
and an LO. The input clock is a recovered clock which needs jitter cleaning. The FPGA clock should have a  
clock output on power up. A summary of clock input and output requirements are as follows:  
Clock Input:  
122.88-MHz recovered clock.  
Clock Outputs:  
1x 245.76-MHz clock for ADC  
2x 983.04-MHz clock for DAC  
2x 122.88-MHz clock for FPGA  
1x 122.88-MHz clock for SERDES  
It is also desirable to have the holdover feature engage if the recovered clock reference is ever lost. The  
following information reviews the steps to produce this design.  
If JESD204B support is also required for the clock outputs, see JEDEC JESD204B for more details.  
10.2.2 Detailed Design Procedure  
Design of all aspects of the LMK04610 are quite involved and software has been written to assist in part  
selection and part programming. Contact TI for optimized loop filter settings based on the system requirement.  
This design procedure gives a quick outline of the process.  
NOTE  
This information is current as of the date of the release of this data sheet. Design tools  
receive continuous improvements to add features and improve model accuracy. Refer to  
software instructions or training for latest features.  
1. Device Selection  
The key to device selection is required VCO frequency given required output frequencies. The device  
must be able to produce the VCO frequency that can be divided down to required output frequencies.  
The software design tools take the VCO frequency range into account for specific devices based on the  
application's required output frequencies.  
To understand the process better, see the Detailed Description which provides more insight into the  
functional blocks and programming options.  
Copyright © 2017–2019, Texas Instruments Incorporated  
117  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
Typical Application (continued)  
2. Device Configuration  
There are many possible permutations of dividers and other registers to get same input and output  
frequencies from a device. However, consider that there are some optimizations and trade-offs. It is possible,  
although not assured, that some crosstalk and mixing could be created when using some divides.  
The optimum setting attempts to maximize phase detector frequency and uses the smallest dividers  
settings.  
For lowest possible in-band PLL noise, maximize phase detector frequency to minimize N divide value.  
As rule of thumb, keeping the phase detector frequency approximately between 10 × PLL loop bandwidth  
and 100 × PLL loop bandwidth. A phase detector frequency less than 5 × PLL bandwidth may be  
unstable and a phase detector frequency > 100 × loop bandwidth may experience increased lock time  
due to cycle slipping. However, for clock generation and jitter cleaning applications, lock time is typically  
not critical and large phase detector frequencies typically result in reduced PLL noise, so cycle-slipping  
during lock is acceptable.  
10.2.2.1 PLL Loop Filter Design  
Contact TI with the application requirements to get the optimized loop filter settings.  
10.2.2.2 Clock Output Assignment  
It is best to consider proximity of each clock output to each other and other PLL circuitry when choosing final  
clock output locations. Here are some guidelines to help achieve best performance when assigning outputs to  
specific CLKout/OSCout pins.  
Group common frequencies together.  
Some clock targets require low close-in phase noise. If possible, use a VCXO based PLL1 output from  
OSCout/OSCout* for such a clock target.  
Some clock targets require excellent noise floor performance. Outputs driven by the internal LC-VCO have  
the best noise floor performance. An example is an ADC or DAC.  
Other device specific configuration. For LMK04610, consider the following:  
Holdover Configuration  
LMK04610 provides the option to have two clock inputs. The clock priority, clock loss detection, holdover, and  
loss recovery can be programmed. See Holdover for more details.  
JESD204B support  
To generate JESD204B compliant clocks, see JEDEC JESD204B for more details.  
Digital delay: phase alignment of the output clocks.  
Analog delay: another method to shift phases of clocks with finer resolution with the penalty of increase noise  
floor.  
10.2.2.3 Calculation Using LCM  
In this example, the LCM (245.76 MHz, 983.04 MHz, 122.88 MHz) = 983.04 MHz. A valid VCO frequency for  
LMK04610 is 5898.24 MHz = 6 × 983.04 MHz. Therefore, the LMK04610 may be used to produce these output  
frequencies.  
10.2.2.4 Device Programming  
The software tool TICS Pro for EVM programming can be used to set up the device in the desired configuration,  
then export a hex register map suitable for use in applications.  
10.2.2.5 Device Selection  
Use the WEBENCH Clock Architect Tool and enter the required frequencies and formats into the tool. To use  
this device, find a solution using the LMK04610.  
118  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Typical Application (continued)  
10.2.2.6 Clock Architect  
When viewing resulting solutions, it is possible to narrow the parts used in the solution by setting a filter. Filtering  
of a specific device can be done by selecting the device from the filter combo box. Also, regular expressions can  
be typed into filter combo box. LMK04610 will only filter for the LMK04610 device.  
10.2.3 Application Curves  
Table 225 lists the application curves for this device.  
Table 225. Table of Graphs  
FIGURE  
LMK04610 CLKout2 Phase Noise  
VCO = 5898.24 MHz  
CLKout2 Frequency = 122.88 MHz  
Figure 2  
HSDS 8 mA  
LMK04610 CLKout2 Phase Noise  
VCO = 5898.24 MHz  
CLKout2 Frequency = 245.76 MHz  
Figure 4  
HSDS 8 mA  
LMK04610 CLKout2 Phase Noise  
VCO Frequency = 5898.24 MHz  
CLKout2 Frequency = 983.04 MHz  
Figure 5  
HSDS 8 mA  
10.3 Do's and Don'ts  
10.3.1 Pin Connection Recommendations  
VCC Pins and Decoupling: all VCC pins must always be connected.  
Unused Clock Outputs: leave unused clock outputs floating and powered down.  
Unused Clock Inputs: unused clock inputs can be left floating.  
Copyright © 2017–2019, Texas Instruments Incorporated  
119  
 
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Recommended Power Supply Connection  
Figure 61 shows the recommended power supply connection using a low-noise LDO and a DC-DC converter.  
LMK0461x  
Clean 3.3V  
VDD_PLL2OSC  
LDO  
3.3V  
VDD_PLL1  
3.3V  
VDD_CORE  
3.3V  
VDD_PLL2CORE  
3.3V  
1.8V  
VDD_OSC  
DC-DC  
1.8V - 3.3V  
VDD_IO  
1.8V - 3.3V  
VDDO_0..7  
1.8V - 3.3V  
Copyright © 2017, Texas Instruments Incorporated  
Figure 61. Recommended Power Supply Connection  
11.2 Current Consumption / Power Dissipation Calculations  
From Table 226 the current consumption can be calculated for any configuration. Data below is typical and not  
assured.  
Table 226. Typical Current Consumption for Selected Functional Blocks  
(TA = 25°C, VCC = 3.3 V)  
POWER  
DISSIPATED  
IN DEVICE  
(mW)  
POWER  
DISSIPATED  
EXTERNALLY  
(mW)  
TYPICAL ICC  
(mA)  
BLOCK  
TEST CONDITIONS  
CORE AND FUNCTIONAL BLOCKS  
PLL1  
PLL1 locked  
14.5  
44  
60  
1.8  
0.1  
1.5  
1.2  
1.5  
0
47.85  
145.2  
198  
3.24  
0.33  
3.24  
2.16  
2.7  
-
-
PLL2  
PLL2 locked  
VCO  
VCO (with VCO divider)  
LOS  
LOS enabled  
PLL1 Regulation  
OSCin Doubler  
Doubler is enabled  
EN_PLL2_REF_2X = 1  
Single-Ended Mode  
Differential Mode  
-
-
Any one of the CLKinX  
is enabled  
CLKinX  
Holdover  
Holdover is enabled  
HOLDOVER_EN = 1  
0
-
-
SYNC_EN = 1  
Required for SYNC and SYSREF functionality  
0
0
120  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
Current Consumption / Power Dissipation Calculations (continued)  
Table 226. Typical Current Consumption for Selected Functional Blocks  
(TA = 25°C, VCC = 3.3 V) (continued)  
POWER  
POWER  
DISSIPATED  
EXTERNALLY  
(mW)  
TYPICAL ICC  
(mA)  
DISSIPATED  
IN DEVICE  
(mW)  
BLOCK  
TEST CONDITIONS  
Enabled  
SYSREF_PD = 0  
0
0
-
Dynamic Digital Delay  
enabled  
SYSREF_DDLY_PD = 0  
3.5  
6.3  
-
SYSREF  
Pulser is enabled  
SYSREF_PLSR_PD = 0  
SYSREF_MUX = 2  
0
0
0
0
SYSREF Pulses mode  
SYSREF Continuous  
mode  
SYSREF_MUX = 3  
0
0
Static Digital Delay  
0
0
0
Static Digital Delay + Half step  
Dynamic Digital Delay  
Analog Delay  
0
Output channel  
3.5  
2.5  
0.2  
6.3  
4.8  
0.36  
Analog Delay per Step  
CLOCK OUTPUT BUFFERS  
HCSL  
50 Ω to Ground termination  
HSDS 4 mA  
19  
5
34.2  
9
-
-
-
-
HSDS  
HSDS 6 mA  
7
12.6  
16.2  
HSDS 8 mA  
9
OSCout BUFFERS  
HCSL  
50 Ω to Ground termination  
19  
9
34.2  
16.2  
9
-
HSDS  
HSDS 8 mA  
LVCMOS Pair  
150 MHz  
150 MHz  
5
-
-
LVCMOS  
LVCMOS Single  
2.5  
4.5  
12 Layout  
12.1 Layout Guidelines  
Power consumption of the LMK0461x family of devices can be high enough to require attention to thermal  
management. For reliability and performance reasons the die temperature should be limited to a maximum of  
125°C.  
The device package has an exposed pad that provides the primary heat removal path to the printed-circuit board  
(PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a  
ground plane must be incorporated into the PCB within the footprint of the package. The exposed pad must be  
soldered down to ensure adequate heat conduction out of the package. Figure 62 shows a recommended land  
and via pattern.  
12.1.1 CLKin and OSCin  
If differential input (preferred) is used route traces tightly coupled. If single-ended, have at least 3 trace width (of  
CLKin or OSCin trace) separation from other RF traces. Place terminations close to IC.  
12.1.2 CLKout  
Normally differential signals must be routed tightly coupled to minimize PCB crosstalk. Trace impedance and  
terminations must be designed accord to output type being used. Unused outputs must be left open and  
programmed to power-down state.  
Copyright © 2017–2019, Texas Instruments Incorporated  
121  
LMK04610  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
www.ti.com.cn  
12.2 Layout Example  
5.6 mm (typ)  
0.5 mm (typ)  
1.22 mm (typ)  
Figure 62. Recommended PCB Layout  
1. CLKin and OSCin path:  
If differential input (preferred), route traces tightly coupled. If single ended, have at least 3 trace width (of  
CLKin/OSCin trace) separation from other RF traces.  
2. CLKouts/OSCout:  
Normally differential signals should be routed tightly coupled to minimize PCB crosstalk. Trace impedance  
must be designed according to 100-Ω differential. For optimal isolation place different clock group signals  
on different layers.  
3. VCXO connection  
Shorter traces are better. Place a resistors and capacitors closer to IC except for a single capacitor and  
associated resistor, if any, next to VCXO. If any, place loop filter components close to VCXO Vtune pin.  
122  
版权 © 2017–2019, Texas Instruments Incorporated  
LMK04610  
www.ti.com.cn  
ZHCSG17B JANUARY 2017REVISED JULY 2019  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
13.1.1.1 时钟设计工具  
如需时钟设计工具,请访问 www.ti.com.cn/tool/cn/clockdesigntool。  
13.1.1.2 时钟架构  
部件选择、环路滤波器设计、仿真。  
如需时钟架构,请访问 www.ti.com/clockarchitect。  
13.1.1.3 TICS Pro  
EVM 编程软件。还可用于生成寄存器映射,以便为特定的应用进行编程。  
如需 TICS Pro,请访问 www.ti.com.cn/tool/cn/TICSPRO-SW。  
13.2 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
123  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04610RTQR  
LMK04610RTQT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTQ  
RTQ  
56  
56  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMK04610  
LMK04610  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK04610RTQR  
LMK04610RTQT  
QFN  
QFN  
RTQ  
RTQ  
56  
56  
2000  
250  
330.0  
178.0  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
2.25  
2.25  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK04610RTQR  
LMK04610RTQT  
QFN  
QFN  
RTQ  
RTQ  
56  
56  
2000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
RTQ0056E  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
8.15  
7.85  
A
B
PIN 1 INDEX AREA  
8.15  
7.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 6.5  
5.7 0.1  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
28  
15  
14  
29  
SYMM  
57  
2X 6.5  
5.7 0.1  
1
42  
52X 0.5  
PIN 1 ID  
0.30  
0.18  
56  
43  
56X  
0.5  
0.3  
0.1  
C A B  
56X  
0.05  
4224191/A 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTQ0056E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(5.7)  
(2.6) TYP  
SEE SOLDER MASK  
DETAIL  
43  
(1.35) TYP  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(2.6) TYP  
(R0.05) TYP  
(1.35) TYP  
57  
SYMM  
(7.8)  
(5.7)  
(
0.2) TYP  
VIA  
14  
29  
28  
15  
SYMM  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224191/A 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTQ0056E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675) TYP  
(1.35) TYP  
43  
56X (0.6)  
56X (0.24)  
56  
1
42  
52X (0.5)  
(1.35) TYP  
(R0.05) TYP  
57  
(0.675) TYP  
(7.8)  
SYMM  
16X (1.15)  
14  
29  
15  
28  
SYMM  
16X (1.15)  
(7.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
65% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224191/A 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMK04610RTQR

具有双 PLL 且符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器 | RTQ | 56 | -40 to 85
TI

LMK04610RTQT

具有双 PLL 且符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器 | RTQ | 56 | -40 to 85
TI

LMK04616

符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器
TI

LMK04616ZCRR

符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器 | ZCR | 144 | -40 to 85
TI

LMK04616ZCRT

符合 JESD204B 标准的超低噪声和低功耗时钟抖动消除器 | ZCR | 144 | -40 to 85
TI

LMK04800

Low-Noise Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04803

具有双级联 PLL 和集成式 1.9GHz VCO 的低噪声时钟抖动消除器
TI

LMK04803B

Low-Noise Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04803BISQ

Low-Noise Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04803BISQ/NOPB

具有双级联 PLL 和集成式 1.9GHz VCO 的低噪声时钟抖动消除器 | NKD | 64 | -40 to 85
TI

LMK04803BISQE/NOPB

具有双级联 PLL 和集成式 1.9GHz VCO 的低噪声时钟抖动消除器 | NKD | 64 | -40 to 85
TI

LMK04803BISQX/NOPB

具有双级联 PLL 和集成式 1.9GHz VCO 的低噪声时钟抖动消除器 | NKD | 64 | -40 to 85
TI