LMK04832 [TI]

具有双环路且符合 JESD204B 标准的超低噪声 3.2GHz、15 路输出时钟抖动清除器;
LMK04832
型号: LMK04832
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双环路且符合 JESD204B 标准的超低噪声 3.2GHz、15 路输出时钟抖动清除器

时钟
文件: 总107页 (文件大小:5738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
带双环路 PLL 且符合 JESD204B 标准的 LMK04832  
超低噪声时钟抖动清除器  
1 特性  
3 说明  
1
最高时钟输出频率:3255MHz  
LMK04832 是一款具有超高性能的时钟调节器,不但  
支持 JEDEC JESD204B,而且与 LMK0482x 器件系  
列引脚兼容。  
多模式:双 PLL、单 PLL 和时钟分配  
超低噪声,2500MHz 时:  
54fs RMS 抖动(12kHz 20MHz)  
64fs RMS 抖动(100Hz 20MHz)  
–157.6dBc/Hz 本底噪声  
PLL2 可以配置 14 个时钟输出以驱动 7 JESD204B  
转换器或其他逻辑器件(使用器件和 SYSREF 时  
钟)。SYSREF 可以通过直流和交流耦合提供。不只  
JESD204B 应用,14 个输出中的每一个输出都可以  
单独配置为用于传统时钟系统的高性能输出。  
超低噪声,3200MHz 时:  
61fs RMS 抖动(12kHz 20MHz)  
67fs RMS 抖动(100Hz 100MHz)  
–156.5dBc/Hz 本底噪声  
LMK04832 可以配置在双 PLL、单 PLL 或时钟分配模  
式下工作(使用或不使用 SYSREF 生成或时钟恢  
复)。PLL2 可以使用内部或外部 VCO 工作。  
PLL2  
–230dBc/Hz PLL FOM  
LMK04832 既具有出色的性能, 又具有 多种特性,如  
功率和性能均衡调节、双 VCO、动态数字延迟和保持  
模式,是提供灵活的高性能时钟树的理想器件。  
–128dBc/Hz PLL 1/f  
相位检测器速率高达 320MHz  
两个集成 VCO2440 2580MHz  
2945 3255MHz  
器件信息(1)  
多达 14 个差动器件时钟  
器件型号  
说明  
封装尺寸(标称值)  
CMLLVPECLLCPECLHSDSLVDS 和  
2xLVCMOS 可编程输出  
LMK04832NKDT  
LMK04832NKDR  
WQFN (64)  
9.00mm x 9.00mm  
最多 1 个缓冲 VCXO/XO 输出  
LVPECLLVDS2xLVCMOS 可编程输出  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
(2) T = 带;R = 卷  
1-1023 CLKout 分频器  
1-8191 SYSREF 分频器  
简化原理图  
SYSREF 时钟 25ps 阶跃模拟延迟  
器件时钟和 SYSREF 数字延迟和动态数字延迟  
PLL1 保持模式  
CLKout10  
CLKout11  
VCXO  
Multiple —clean“  
clocks at different  
frequencies  
LMX2594  
Recovered  
PLL+VCO  
—dirty“ clock or  
clean clock  
CLKin0  
OSCout  
CLKout8  
CLKout9  
FPGA  
Backup  
PLL1 PLL2 零延迟  
Reference  
Clock  
LMK04832  
CLKin1  
CLKout4 &  
CLKout6  
支持 105°C PCB 温度  
(在散热焊盘上测量)  
CLKout5 &  
CLKout7  
CLKout0 &  
CLKout2  
CLKout12,  
CLKout13  
DAC  
ADC  
CLKout1 &  
CLKout3  
2 应用  
Serializer/  
Deserializer  
Copyright © 2017, Texas Instruments Incorporated  
测试和测量  
雷达  
微波回程  
数据转换器时钟  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS688  
 
 
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 29  
8.4 Device Functional Modes........................................ 41  
8.5 Programming........................................................... 44  
8.6 Register Maps ........................................................ 45  
Application and Implementation ........................ 90  
9.1 Application Information............................................ 90  
9.2 Typical Application .................................................. 93  
9.3 Do's and Don'ts....................................................... 97  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements.............................................. 17  
6.7 Timing Diagram....................................................... 17  
9
10 Power Supply Recommendations ..................... 97  
10.1 Current Consumption............................................ 97  
11 Layout................................................................... 98  
11.1 Layout Guidelines ................................................. 98  
11.2 Layout Example .................................................... 98  
12 器件和文档支持 ................................................... 100  
12.1 器件支持 ............................................................. 100  
12.2 社区资源.............................................................. 100  
12.3 ..................................................................... 100  
12.4 静电放电警告....................................................... 100  
12.5 术语表 ................................................................. 100  
13 机械、封装和可订购信息..................................... 100  
6.8 Typical Characteristics – Clock Output AC  
Characteristics ......................................................... 18  
7
8
Parameter Measurement Information ................ 20  
7.1 Charge Pump Current Specification Definitions...... 20  
7.2 Differential Voltage Measurement Terminology ..... 21  
Detailed Description ............................................ 22  
8.1 Overview ................................................................. 22  
8.2 Functional Block Diagram ....................................... 26  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (January 2018) to Revision C  
Page  
将器件状态从预告信息更改为生产数据.............................................................................................................................. 1  
Changes from Revision A (August 2017) to Revision B  
Page  
更新了 特性:抖动、本底噪声、PLL 性能和 VCO ......................................................................................................... 1  
Updated the Electrical Characteristics table .......................................................................................................................... 5  
Updated the Detailed Description section ........................................................................................................................... 22  
Changes from Original (February 2017) to Revision A  
Page  
将器件状态从产品预览更改为预告信息.............................................................................................................................. 1  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
5 Pin Configuration and Functions  
NKD Package  
64-Pin WQFN  
Top View  
Clock Group 0  
Clock Group 3  
Status_LD2  
Vcc10_PLL2  
CPout2  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
CLKout0  
CLKout0*  
CLKout1  
1
2
3
Vcc9_CP2  
OSCin*  
CLKout1*  
RESET/GPO  
SYNC/SYSREF_REQ  
NC  
4
5
OSCin  
6
Vcc8_OSCin  
7
NC  
OSCout*/CLKin2*  
OSCout/CLKin2  
Vcc7_OSCout  
8
LLP-64  
Top down view  
NC  
9
Vcc1_VCO  
LDObyp1  
LDObyp2  
CLKout3  
10  
11  
12  
13  
14  
15  
16  
CLKin0*  
CLKin0  
Vcc6_PLL1  
CLKin1*/Fin*/FBCLKin*  
CLKout3*  
CLKout2  
DAP  
CLKin1/Fin/FBCLKin  
Vcc5_DIG  
CLKout2*  
Clock Group 2  
Clock Group 1  
Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION(1)  
NO.  
1
NAME  
CLKout0  
CLKout0*  
CLKout1  
CLKout1*  
Clock output 0. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
O
O
Programmable  
Programmable  
2
3
Clock output 1. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
4
5
RESET/GPO  
I
I
CMOS  
CMOS  
Device reset input or GPO  
SYNC/SYSREF_  
REQ  
6
Synchronization input or SYSREF_REQ for requesting continuous SYSREF.  
7
8
NC  
Do not connect.  
9
10  
11  
12  
13  
14  
Vcc1_VCO  
LDObyp1  
LDObyp2  
CLKout3  
PWR  
ANLG  
ANLG  
Power supply for VCO and clock distribution.  
LDO Bypass, bypassed to ground with 10-µF capacitor.  
LDO Bypass, bypassed to ground with a 0.1-µF capacitor.  
Clock output 3. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
O
Programmable  
CLKout3*  
(1) See Pin Connection Recommendations for recommended connections.  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION(1)  
NO.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NAME  
CLKout2  
CLKout2*  
Vcc2_CG1  
CS*  
Clock output 2. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
O
Programmable  
PWR  
CMOS  
CMOS  
CMOS  
PWR  
Power supply for clock outputs 2 and 3.  
I
I
Chip Select  
SCK  
SPI Clock  
SDIO  
I/O  
SPI Data  
Vcc3_SYSREF  
CLKout5  
CLKout5*  
CLKout4  
CLKout4*  
Vcc4_CG2  
CLKout6  
CLKout6*  
CLKout7  
CLKout7*  
Status_LD1  
CPout1  
Power supply for SYSREF divider and SYNC.  
Clock output 5. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
O
O
Programmable  
Clock output 4. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
Programmable  
PWR  
Power supply for clock outputs 4, 5, 6 and 7.  
Clock output 6. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
O
O
Programmable  
Clock output 7. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
Programmable  
I/O  
O
Programmable Programmable status pin.  
ANLG  
PWR  
Charge pump 1 output.  
Vcc5_DIG  
CLKin1  
Power supply for the digital circuitry.  
Reference Clock Input Port 1 for PLL1.  
34  
35  
FBCLKin  
Fin1  
I
I
ANLG  
ANLG  
Feedback input for external clock feedback input (0–delay mode).  
External VCO Input or clock distribution input.  
Reference Clock Input Port 1 for PLL1.  
CLKin1*  
FBCLKin*  
Fin1*  
Feedback input for external clock feedback input (0–delay mode).  
External VCO Input or clock distribution input.  
Power supply for PLL1, charge pump 1, holdover DAC  
36  
37  
38  
39  
Vcc6_PLL1  
CLKin0  
PWR  
ANLG  
I
Reference Clock Input Port 0 for PLL1.  
CLKin0*  
Vcc7_OSCout  
OSCout  
PWR  
Power supply for OSCout port.  
Buffered output of OSCin port.  
Reference Clock Input Port 2 for PLL1.  
Buffered output of OSCin port.  
Reference Clock Input Port 2 for PLL1.  
Power supply for OSCin  
40  
41  
I/O  
I/O  
Programmable  
CLKin2  
OSCout*  
CLKin2*  
Programmable  
PWR  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
Vcc8_OSCin  
OSCin  
I
ANLG  
Feedback to PLL1 and reference input to PLL2. AC-coupled.  
OSCin*  
Vcc9_CP2  
CPout2  
PWR  
ANLG  
PWR  
Power supply for PLL2 Charge Pump.  
Charge pump 2 output.  
O
Vcc10_PLL2  
Status_LD2  
CLKout9  
CLKout9*  
CLKout8  
CLKout8*  
Vcc11_CG3  
Power supply for PLL2.  
I/O  
O
Programmable Programmable status pin.  
Clock output 9. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
Programmable  
Clock output 8. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
O
Programmable  
PWR  
Power supply for clock outputs 8, 9, 10, and 11.  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Pin Functions (continued)  
PIN  
I/O  
O
TYPE  
DESCRIPTION(1)  
NO.  
54  
NAME  
CLKout10  
CLKout10*  
CLKout11  
CLKout11*  
Clock output 10. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
Programmable  
Programmable  
55  
56  
Clock output 11. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
O
57  
58  
CLKin_SEL0  
CLKin_SEL1  
CLKout13  
CLKout13*  
CLKout12  
CLKout12*  
Vcc12_CG0  
DAP  
I/O  
I/O  
Programmable Programmable status pin.  
Programmable Programmable status pin.  
59  
60  
Clock output 13. For JESD204B systems suggest SYSREF Clock.  
Programmable formats: CML, LVPECL, LCPECL, LVDS, or 2xLVCMOS.  
O
O
Programmable  
Programmable  
61  
62  
Clock output 12. For JESD204B systems suggest Device Clock.  
Programmable formats: CML, LVPECL, LCPECL, or LVDS.  
63  
64  
PWR  
GND  
Power supply for clock outputs 0, 1, 12, and 13.  
DIE ATTACH PAD, connect to GND.  
DAP  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
MAX  
3.6  
UNIT  
V
(2)  
VCC  
VIN  
TL  
Supply voltage  
Input voltage  
(VCC+0.3)  
260  
V
Lead temperature (solder 4 seconds)  
Junction temperature  
°C  
°C  
TJ  
150  
Differential input current (CLKinX/X*,  
OSCin/OSCin*)  
IIN  
±5  
mA  
MSL  
Tstg  
Moisture sensitivity level  
Storage Temperature  
3
-65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Never to exceed 3.6 V  
6.2 ESD Ratings  
VALUE  
±2000  
±150  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
Machine Model (MM)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
版权 © 2017–2018, Texas Instruments Incorporated  
5
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
-40  
NOM  
25  
MAX  
125  
85  
UNIT  
°C  
TJ  
Junction Temperature  
TA  
Ambient Temperature  
°C  
TPCB  
VCC  
PCB Temperature (measured at thermal pad)  
Supply Voltage  
105  
3.45  
°C  
3.15  
3.3  
V
6.4 Thermal Information  
LMK04832  
THERMAL METRIC(1)  
NKD (WQFN)  
UNIT  
64 PINS  
24.3  
6.1  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
3.5  
ΨJT  
0.1  
ΨJB  
3.5  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RΘJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RΘJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
6.5 Electrical Characteristics  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
CURRENT CONSUMPTION(1)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC_PD  
Power Down Supply Current  
1.5  
3
mA  
4 CML 32 mA clocks in bypass  
3 LVDS clock /12  
4 SYSREF as LCPECL  
3 SYSREF as LVDS  
Supply Current for JESD204B use  
case during JESD204B  
ICC_JESD204B_ALL  
930  
1120 mA  
synchronization VCO = 2949.12 MHz  
(2)  
Dual Loop  
4 CML 32 mA clocks in bypass  
3 LVDS clock /12  
4 SYSREF as LCPECL (low state)  
3 SYSREF as LVDS (low state)  
Supply Current for JESD204B use  
case during JESD204B steady state  
while holding SYSREF as low in DC  
ICC_JESD204B_LOW  
780  
675  
940 mA  
810 mA  
(2)  
coupled configuration.  
Supply Current for JESD204B use  
case during JESD204B steady state  
while setting SYSREF outputs as  
4 CML 32 mA clocks in bypass  
3 LVDS clock /12  
7 SYSREF outputs powered down  
ICC_JESD204B_VCM  
(2)  
Vcm.  
(1) Use the TICS Pro tool to calculate Icc for a specific configuration.  
(2) LCPECL clocks have 120 emitter resistors. OSCout LVPECL clock uses 240 ohm emitter resistors. Other settings include  
CLKoutX_Y_IDL = 0, CLKoutX_Y_ODL = 0, DCLKX_Y_DCC = 0. SCLK_X_Y_ADLY_EN = 0.  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.001  
0.001  
TYP  
MAX UNIT  
CLKin0/0*, CLKin1/1*, and CLKin2/2* INPUT CLOCK SPECIFICATIONS  
Clock Input LOS  
(CLKin0/1/2)  
fCLKinX_LOS  
LOS_EN = 1  
250 MHz  
fCLKin0_PLL1_MOS  
fCLKin1_PLL1_MOS  
fCLKin2_PLL1_MOS  
fCLKin0_PLL1  
CLKin0_OUT_MUX = 2 (PLL1)  
CLKin1_OUT_MUX = 2 (PLL1)  
OSCout_FMT = 0 (Power down)  
CLKin0_OUT_MUX = 2 (PLL1)  
CLKin1_OUT_MUX = 2 (PLL1)  
OSCout_FMT = 0 (Power down)  
MHz  
250 MHz  
MHz  
Clock Input Frequency for PLL1  
Reference (CLKin0/1/2)  
CLKinX_TYPE = 1 (MOS)  
Clock Input Frequency for PLL1  
Reference (CLKin0/1/2)  
CLKinX_TYPE = 0 (Bipolar)  
fCLKin1_PLL1  
0.001  
750 MHz  
fCLKin2_PLL1  
CLKin0_OUT_MUX = 2 (PLL1)  
PLL2R_CLK_MUX = 1 (PLL1 CLKinX)  
fCLKin0_PLL2  
fCLKin1_PLL2  
fCLKin2_PLL2  
fCLKin1_FB  
Clock Input Frequency for PLL2  
Reference (CLKin0/1/2)  
CLKinX_TYPE = 0 (Bipolar)  
CLKin1_OUT_MUX = 2 (PLL1)  
PLL2R_CLK_MUX = 1 (PLL1 CLKinX)  
500 MHz  
OSCout_FMT = 0 (Power down)  
PLL2R_CLK_MUX = 1 (PLL1 CLKinX)  
CLKin1_OUT_MUX = 1 (FB Mux)  
CLKin1_TYPE = 0 (Bipolar)  
Clock Input Frequency for 0-delay  
with external feedback (CLKin1)  
0.001  
0.001  
750 MHz  
CLKin1_OUT_MUX = 0 (Fin)  
CLKin1_TYPE = 0 (Bipolar)  
Clock Input Frequency for external  
VCO or distribution mode (CLKin1)  
fCLKin1_Fin  
3250 MHz  
SLEWCLKin  
Clock Input Slew Rate(3)  
20% to 80%  
0.15  
0.125  
0.25  
0.5  
V/ns  
1.55 |V|  
3.1 Vpp  
VIDCLKin_AC  
VSSCLKin_AC  
Differential Clock Input Voltage(4)  
AC-coupled  
AC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 0 (Bipolar)  
Clock Input Single-ended Input  
Voltage  
VCLKin  
0.5  
2.4 Vpp  
Each pin AC-coupled, CLKin0/1/2  
CLKinX_TYPE = 0 (Bipolar)  
0
55  
20  
|mV|  
|mV|  
|mV|  
DC offset voltage between  
CLKinX/CLKinX* (CLKinX* - CLKinX)  
Each pin AC-coupled, CLKin0/1  
CLKinX_TYPE = 1 (MOS)  
|VCLKinX-offset  
|
Each pin AC-coupled  
CLKinX_TYPE = 1 (MOS)  
DC offset voltage between  
CLKin2/CLKin2* (CLKin2* - CLKin2)  
VCLKinVIH  
VCLKinVIL  
High Input Voltage  
Low Input Voltage  
DC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 1 (MOS)  
2
0
Vcc  
0.4  
V
V
(3) In order to meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all  
input clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input  
slew rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended  
clocks, differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to  
their common mode noise rejection. However, it is also recommended to use the highest possible slew rate for differential clocks to  
achieve optimal phase noise performance at the device outputs.  
(4) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
PLL1 SPECIFICATIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fPD1  
PLL1 Phase Detector Frequency  
40 MHz  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 0  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 1  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 2  
. . .  
50  
150  
250  
PLL1 Charge Pump Source  
Current(5)  
ICPout1SOURCE  
µA  
. . .  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 14  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 15  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 0  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 1  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 2  
. . .  
1450  
1550  
-50  
-150  
-250  
. . .  
ICPout1SINK  
PLL1 Charge Pump Sink Current(5)  
µA  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 14  
VCPout1 = Vcc/2, PLL1_CP_GAIN = 15  
-1450  
-1550  
Charge Pump Sink / Source  
Mismatch  
ICPout1%MIS  
ICPout1%VTUNE  
ICPout1%TEMP  
ICPout1TRI  
VCPout1 = Vcc/2, TA = 25 °C  
1%  
4%  
4%  
10%  
Magnitude of Charge Pump Current  
Variation vs. Charge Pump Voltage  
0.5 V < VCPout1 < VCC - 0.5 V TA = 25 °C  
Charge Pump Current vs.  
Temperature Variation  
Charge Pump TRI-STATE Leakage  
Current  
0.5 V < VCPout1 < VCC - 0.5 V  
5
nA  
PLL1_CP_GAIN = 50 µA  
PLL1_CP_GAIN = 450 µA  
PLL1_CP_GAIN = 1550 µA  
PLL1_CP_GAIN = 50 µA  
PLL1_CP_GAIN = 450 µA  
PLL1_CP_GAIN = 1550 µA  
-113  
-117  
-119  
-217  
-224  
-225  
PLL 1/f Noise at 10 kHz offset.  
Normalized to 1 GHz Output  
Frequency  
dBc/  
Hz  
PN10 kHz(6)  
PN1 Hz(7)  
Normalized Phase Noise  
Contribution  
dBc/  
Hz  
(5) This parameter is programmable  
(6) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10 dB/decade slope. PN10 kHz is normalized to a 10 kHz offset and a 1 GHz carrier frequency. PN10 kHz = LPLL_flicker(10  
kHz) - 20 log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total  
noise, L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and  
a clean crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low-power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
(7) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, LPLL_flat(f), is defined as: PN1  
HZ = LPLL_flat(f) - 20 log(N) - 10 log(fPDX). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1 Hz  
bandwidth and fPDX is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f).  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OSCin INPUT CLOCK SPECIFICATIONS  
fOSCin  
PLL2 Reference Input  
500 MHz  
V/ns  
PLL2 Reference Clock minimum slew  
rate on OSCin(3)  
SLEWOSCin  
20% to 80%  
0.15  
0.2  
0.5  
AC coupled; Single-ended  
(Unused pin AC-coupled to GND)  
VOSCin  
Input Voltage for OSCin or OSCin*  
Differential voltage swing(4)  
2.4 Vpp  
VIDOSCin  
VSSOSCin  
0.2  
0.4  
1.55 |V|  
3.1 Vpp  
AC-coupled  
DC offset voltage between  
OSCin/OSCin* (OSCinX* - OSCinX)  
|VOSCin-offset  
|
Each pin AC-coupled  
20  
|mV|  
EN_PLL2_REF_2X = 1(8)  
OSCin Duty Cycle 40% to 60%  
;
fdoubler_max  
Doubler input frequency  
320 MHz  
PLL2 SPECIFICATIONS  
fPD2  
Phase Detector Frequency  
320 MHz  
µA  
VCPout2 = VCC/2, PLL2_CP_GAIN = 2  
VCPout2 = VCC/2, PLL2_CP_GAIN = 3  
VCPout2 = VCC/2, PLL2_CP_GAIN = 2  
VCPout2 = VCC/2, PLL2_CP_GAIN = 3  
1600  
3200  
PLL2 Charge Pump Source  
Current(5)  
ICPout2 SOURCE  
-1600  
-3200  
ICPout2 SINK  
PLL2 Charge Pump Sink Current(5)  
µA  
Charge Pump Sink / Source  
Mismatch  
ICPout2%MIS  
ICPout2%VTUNE  
ICPout2%TEMP  
ICPout2 TRI  
VCPout2 = Vcc/2, TA = 25 °C  
1%  
4%  
4%  
10%  
0.5 V < VCPout2 < VCC - 0.5 V  
TA = 25 °C  
Magnitude of Charge Pump Current  
Variation vs. Charge Pump Voltage  
Charge Pump Current vs.  
Temperature Variation  
Charge Pump TRI-STATE Leakage  
Current  
0.5 V < VCPout2 < VCC - 0.5 V  
PLL2_CP_GAIN = 3200 µA  
PLL2_CP_GAIN = 3200 µA  
10 nA  
PLL 1/f Noise at 10 kHz offset.  
Normalized to 1 GHz Output  
Frequency  
dBc/  
Hz  
PN10 kHz(6)  
PN1 Hz(7)  
-128  
-230  
Normalized Phase Noise  
Contribution  
dBc/  
Hz  
(8) The EN_PLL2_REF_2X bit enables/disables a frequency doubler mode for the PLL2 OSCin path.  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INTERNAL VCO SPECIFICATIONS  
VCO0  
VCO1  
2440  
2945  
2580  
MHz  
3255  
fVCO  
LMK04832 VCO Tuning Range  
2440 MHz  
2580 MHz  
2945 MHz  
3255 MHz  
-11.8  
-14.5  
-22.9  
-31.4  
VCO0  
VCO1  
MHz/  
V
KVCO  
LMK04832 Vtune Tuning Sensitivity  
After programming for lock, no changes to  
output configuration are permitted to  
assure continuous lock  
Allowable Temperature Drift for  
Continuous Lock(9)  
|ΔTCL|  
125 °C  
1 kHz  
-55  
-86.3  
10 kHz  
VCO0 at  
100 kHz  
2440 MHz  
dBc/  
Hz  
-115.2  
-136.3  
-137.6  
-53.3  
800 kHz  
1 MHz  
1 kHz  
10 kHz  
-85  
VCO0 at  
100 kHz  
2580 MHz  
dBc/  
Hz  
-114.3  
-135.3  
-136.9  
-49.2  
800 kHz  
1 MHz  
1 kHz  
L(f)VCO  
Open-loop phase noise  
10 kHz  
-81.1  
VCO1 at  
100 kHz  
2945 MHz  
dBc/  
Hz  
-111.1  
-133.8  
-135.9  
-46.6  
800 kHz  
1 MHz  
1 kHz  
10 kHz  
-78.9  
VCO1 at  
100 kHz  
3250 MHz  
dBc/  
Hz  
-108.9  
-131.7  
-133.3  
800 kHz  
1 MHz  
(9) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of  
programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over  
the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be  
necessary to reload the appropriate register to ensure it stays in lock. Regardless of what temperature the part was initially programmed  
at, the temperature can never drift outside the frequency range of – 40 °C to 85 °C without violating specifications.  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CLOCK OUTPUT NOISE FLOOR  
L(f)CLKout  
L(f)CLKout  
L(f)CLKout  
L(f)CLKout  
L(f)CLKout  
L(f)CLKout  
LVDS  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
-159.5  
-161.5  
-162.5  
-162.5  
-162  
HSDS 6 mA  
HSDS 8 mA  
LCPECL  
LVPECL 1.6 Vpp  
LVPECL 2 Vpp  
-163  
CML 16 mA, odd  
CLKoutY  
DC bias: 50 to  
Vcc  
L(f)CLKout  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
-162.5  
-162.5  
245.76 MHz Noise Floor  
20 MHz Offset  
dBc/  
Hz  
CML 24 mA, odd  
CLKoutY  
DC bias: 50 to  
Vcc  
L(f)CLKout  
CML 32 mA, odd  
CLKoutY  
DC bias: 50 to  
Vcc  
L(f)CLKout  
L(f)CLKout  
L(f)CLKout  
CLKoutX_Y_ODL=1  
CLKoutX_Y_ODL=1  
CLKoutX_Y_IDL=1  
-163  
-160  
LVCMOS  
CML 16 mA, even  
CLKoutX  
DC bias: 68 nH to  
20 to Vcc  
-155.5  
CML 24 mA, even  
CLKoutX  
DC bias: 68 nH to  
20 to Vcc  
3.2 GHz Noise Floor  
20 MHz Offset  
dBc/  
Hz  
L(f)CLKout  
CLKoutX_Y_IDL=1  
CLKoutX_Y_IDL=1  
-156  
CML 32 mA, even  
CLKoutX  
DC bias: 68 nH to  
20 to Vcc  
L(f)CLKout  
-156.5  
CLKout CLOSED LOOP PHASE NOISE SPECIFICATIONS  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
-125  
-134  
-137  
-154  
-125  
-135  
-137  
-151  
VCO0 SSB Phase Noise 245.76  
dBc/  
Hz  
MHz(10)  
L(f)CLKout  
Doubler disabled  
VCO1 SSB Phase Noise 245.76  
dBc/  
Hz  
MHz(10)  
L(f)CLKout  
Doubler disabled  
(10) Dual Loop, OSCin reference is a 122.88 MHz Crystek 603281 VCXO. Data collected using a MACOM H-183-4 Hybrid Junction for  
differential to single ended converstion. PLL2_CP = 3.2 mA. PLL2 Loop filter is C1i = 60 pF, C1 (external) = 4.7 pF, R2 = 820 Ω  
(external), C2 = 3.9 nF (external), R3 = 2.4 kΩ, C3 = 50 pF, R4 = 200 Ω, C4 = 10 pF. PLL1_CP = 450 µA with a narrow loop  
bandwidth. CLKoutX_Y_IDL = 0, CLKoutX_Y_ODL = 1. Even CLKout with LVPECL20 format using 120-to GND.  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CLKout CLOSED LOOP JITTER SPECIFICATIONS  
PDF = 312.5 MHz  
BW = 12 kHz to 20 MHz  
fs  
rms  
54  
64  
61  
67  
55  
70  
60  
75  
VCO0, fCLKout = 2500 MHz(11)  
Integrated RMS Jitter  
PDF = 312.5 MHz  
BW = 100 Hz to 100 MHz  
fs  
rms  
JCLKout  
PDF = 320 MHz  
BW = 12 kHz to 20 MHz  
fs  
rms  
VCO1, fCLKout = 3200 MHz(11)  
Integrated RMS Jitter  
PDF = 320 MHz  
BW = 100 Hz to 100 MHz  
fs  
rms  
VCO0, fCLKout = 2457.6 MHz  
Integrated RMS Jitter(10)  
PDF = 245.76 MHz (Doubler enabled)  
BW = 12 kHz to 20 MHz  
fs  
rms  
VCO0, fCLKout = 2457.6 MHz  
PDF = 122.88 MHz  
BW = 12 kHz to 20 MHz  
fs  
rms  
Integrated RMS Jitter(10)  
JCLKout  
VCO1, fCLKout = 2949.12 MHz  
PDF = 245.76 (Doubler enabled)  
BW = 12 kHz to 20 MHz  
fs  
rms  
Integrated RMS Jitter(10)  
VCO1, fCLKout = 2949.12 MHz  
Integrated RMS Jitter(10)  
PDF = 122.88 MHz  
BW = 12 kHz to 20 MHz  
fs  
rms  
DEFAULT POWER on RESET CLOCK OUTPUT FREQUENCY  
fOSCout  
CLOCK SKEW(13)  
OSCout default frequency(12)  
500 MHz  
|ps|  
Any even CLKoutX, same format(14)  
Device Clock  
DCLKX_Y_BYP = 1  
Maximum skew CLKoutX to CLKoutX  
FCLK = 1.6 GHz, RL = 100 Ω AC-  
coupled  
|TSKEW  
|
60  
60  
Even to even or odd to odd clock, same  
format(15)  
Device clock  
DCLKX_Y_BYP = 0  
DCLKX_Y_DIV = 12  
Maximum skew for CLKoutX to  
CLKoutX or CLKoutY to CLKoutY  
FCLK = 250 MHz, RL = 100 Ω AC-  
coupled  
|TSKEW  
|
|ps|  
Any output, same format(15)  
Device clock  
DCLKX_Y_BYP = 0  
DCLKX_Y_DIV = 12  
Maximum skew for any CLKoutX or  
Y to any CLKoutX or Y  
FCLK = 250 MHz, RL = 100 Ω AC-  
coupled  
|TSKEW  
|
100  
35  
|ps|  
ps  
Delay from CLKoutX to CLKoutY in  
same pair  
FCLK = 250 MHz, RL = 100 Ω AC-  
coupled  
Same pair of device clocks, same  
format(15)  
|TSKEW  
|
(11) Single Loop, OSCin reference is R&S SMA100B Signal Generator with option SMAB-B711 through Prodyn BIB-100G Balun to  
OSCin. Data collected using a MACOM H-183-4 Hybrid Junction for differential to single ended converstion. PLL2 Loop filter is C1 = 60  
pF, R2 = 470 Ω (external), C2 = 150 nF (external), R3 = 2.4 kΩ, C3 = 50 pF, R4 = 200 Ω, C4 = 10 pF, PLL2_CP = 3.2 mA.  
CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0; Even CLKout with CML 32 mA format using DC bias 68-nH to 20-to Vcc.  
(12) OSCout will oscillate at start-up at the frequency of the VCXO attached to OSCin port.  
(13) Equal loading and identical clock configuration on each clock input and/or output is required for skew, setup, and hold specifications to  
be valid.  
(14) Valid for CML 32 mA, CML 24 mA, CML 16 mA. CML DC bias is 50 ohms to Vcc or 68 nH to 20 to Vcc.  
(15) Valid for HSDS 8 mA, HSDS 6 mA, LVDS. LVPECL20, LVPECL16, LCPECL with 120 emitter resistor to ground.  
12  
Copyright © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CML 32 mA CLOCK OUTPUTS (CLKoutX/Y)  
RL = AC-coupled 100 Ω, 250 MHz  
Odd CLKoutY, CLKoutX_Y_ODL = 1  
DC Bias, 50 ohm to Vcc  
TR / TF  
20% to 80% Output Rise/Fall  
135  
Vcc  
ps  
VOH  
VOL  
VOD  
Output High Voltage  
Output Low Voltage  
V
T = 25 °C, DC measurement  
Termination 50-Ω pull up to Vcc  
Vcc -  
1.66  
Differential Output Voltage  
1660  
|mV|  
DC bias is 50-Ω pull  
up to Vcc  
RL = AC-coupled  
250 MHz(16)  
1070  
100 Ω  
2.5 GHz(17)  
2.5 GHz(18)  
3.2 GHz(17)  
3.2 GHz(18)  
765  
550  
610  
385  
VOD  
Differential Output Voltage  
|mV|  
DC bias is 68-nH to  
20-Ω to Vcc  
RL = AC-coupled  
100 Ω  
CML 24 mA CLOCK OUTPUTS (CLKoutX/Y)  
RL = AC-coupled 100 Ω, 250 MHz  
Odd CLKoutY, CLKoutX_Y_ODL = 1  
DC Bias, 50 ohm to Vcc  
TR / TF  
20% to 80% Output Rise/Fall  
125  
Vcc  
ps  
VOH  
VOL  
VOD  
Output High Voltage  
Output Low Voltage  
V
T = 25 °C, DC measurement  
Termination 50-Ω pull up to Vcc  
Vcc -  
1.26  
Differential Output Voltage  
1260  
|mV|  
DC bias is 50-Ω pull  
up to Vcc  
RL = AC-coupled  
250 MHz(16)  
815  
100 Ω  
2.5 GHz(17)  
2.5 GHz(18)  
3.2 GHz(17)  
3.2 GHz(18)  
595  
445  
480  
330  
VOD  
Differential Output Voltage  
|mV|  
DC bias is 68-nH to  
20-Ω to Vcc  
RL = AC-coupled  
100 Ω  
(16) For even and odd outputs CLKoutX_Y_IDL=0. For even outputs CLKoutX_Y_ODL=X and for odd CLKoutX_Y_ODL=1.  
(17) Even clock outputs (CLKoutX). CLKoutX_Y_IDL=1, CLKoutX_Y_ODL=X.  
(18) Odd clock outputs (CLKoutY). CLKoutX_Y_IDL=X, CLKoutX_Y_ODL=1  
Copyright © 2017–2018, Texas Instruments Incorporated  
13  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CML 16 mA CLOCK OUTPUTS (CLKoutX/Y)  
RL = AC-coupled 100 Ω, 250 MHz  
Odd CLKoutY, CLKoutX_Y_ODL = 1  
DC Bias, 50 ohm to Vcc  
TR / TF  
20% to 80% Output Rise/Fall  
120  
Vcc  
ps  
VOH  
VOL  
VOD  
Output High Voltage  
Output Low Voltage  
V
T = 25 °C, DC measurement  
Termination is 50-Ω pull up to Vcc  
Vcc -  
0.84  
Differential Output Voltage  
840  
|mV|  
DC bias is 50-Ω pull  
up to Vcc  
RL = AC-coupled  
VOD  
250 MHz(16)  
550  
100 Ω  
Differential Output Voltage  
|mV|  
VOD  
VOD  
VOD  
VOD  
2.5 GHz(17)  
2.5 GHz(18)  
3.2 GHz(17)  
3.2 GHz(18)  
400  
325  
325  
250  
DC bias is 68-nH to  
20-Ω to Vcc  
RL = AC-coupled  
100 Ω  
LVPECL CLOCK OUTPUT (CLKoutX/Y, OSCout)  
TR / TF 20% to 80% Output Rise/Fall  
RL = AC-coupled 100 Ω, 250 MHz  
140  
ps  
LVPECL 2000 mVpp CLOCK OUTPUTS (CLKoutX/Y, OSCout)  
VOH  
VOL  
VOD  
Output High Voltage  
Output Low Voltage  
Output Voltage(4)  
VCC - 1  
VCC - 2  
1000  
925  
V
V
DC Measurement  
Termination = 50-Ω to VCC - 2.0 V  
|mV|  
250 MHz(19)  
2.5 GHz(20)  
2.5 GHz(21)  
3.2 GHz(20)  
585  
Em = 120 Ω to  
ground  
Termination = AC-  
coupled 100 Ω  
VOD  
Differential Output Voltage  
545  
|mV|  
415  
3.2 GHz(21)  
370  
LVPECL 1600 mVpp CLOCK OUTPUTS (CLKoutX/Y, OSCout)  
VOH  
VOL  
VOD  
Output High Voltage  
Output Low Voltage  
Output Voltage(4)  
VCC - 1  
V
V
DC Measurement  
Termination = 50-Ω to VCC - 2.0 V  
VCC  
-
1.8  
800  
760  
510  
480  
370  
340  
|mV|  
250 MHz(19)  
2.5 GHz(20)  
2.5 GHz(21)  
3.2 GHz(20)  
Em = 120 Ω to  
ground  
Termination = AC-  
coupled 100 Ω  
VOD  
Differential Output Voltage  
|mV|  
3.2 GHz(21)  
LCPECL CLOCK OUTPUT (CLKoutX/Y, OSCout)  
RL = AC-coupled 100 Ω  
DC bias = 120 Ω to GND  
TR / TF  
20% to 80% Output Rise/Fall  
135  
ps  
VOH  
VOL  
VOD  
Output High Voltage  
Output Low Voltage  
Output Voltage(4)  
1.6  
0.6  
V
V
DC Measurement  
Termination = 50-Ω to 0.5 V  
1000  
|mV|  
HSDS 8 mA CLOCK OUTPUTS (CLKoutX/Y)  
TR / TF 20% to 80% Output Rise/Fall  
RL = 100 Ω, 250 MHz  
170  
ps  
(19) CLKoutX_Y_IDL=X and CLKoutX_Y_ODL=X.  
(20) Even clock outputs (CLKoutX). CLKoutX_Y_IDL=X, CLKoutX_Y_ODL=1.  
(21) Odd clock outputs (CLKoutY). CLKoutX_Y_IDL=X, CLKoutX_Y_ODL=1  
14  
Copyright © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCC  
0.95  
-
VOH  
Output High Voltage  
V
VCC  
1.7  
-
VOL  
Output Low Voltage  
Output Voltage(4)  
V
|mV|  
DC Measurement  
Termination = 50-Ω to VCC - 1.64 V  
VOD  
ΔVOD  
750  
Change in Magnitude of VOD for  
complementary output states  
-115  
115 mV  
HSDS 6 mA CLOCK OUTPUTS (CLKoutX/Y)  
TR / TF  
20% to 80% Output Rise  
RL = 100 Ω, 250 MHz  
170  
ps  
V
VCC  
-
VOH  
Output High Voltage  
0.9  
VCC  
1.5  
-
VOL  
Output Low Voltage  
Output Voltage(4)  
V
|mV|  
DC Measurement  
Termination = 50-Ω to VCC - 1.42 V  
VOD  
ΔVOD  
600  
Change in Magnitude of VOD for  
complementary output states  
-80  
80 mV  
LVDS CLOCK OUTPUTS (CLKoutX/Y, OSCout)  
TR / TF  
VOD  
20% to 80% Output Rise  
Differential Output Voltage  
RL = 100 Ω, 250 MHz  
175  
400  
ps  
|mV|  
Change in Magnitude of VOD for  
complementary output states  
ΔVOD  
VOS  
-60  
60 mV  
T = 25 °C, DC measurement  
AC-coupled to receiver input  
RL = 100-Ω differential termination  
Output Offset Voltage  
1.125  
1.25  
1.375  
V
Change in VOS for complementary  
output states  
ΔVOS  
35 |mV|  
24 mA  
Single-ended output shorted to GND  
T = 25 °C  
Output short circuit current - single-  
ended  
ISA ISB  
-24  
Copyright © 2017–2018, Texas Instruments Incorporated  
15  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, -40 °C < TA < 85 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the Recommended Operating  
Conditions are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS CLOCK OUTPUTS (CLKout8/10/Y, OSCout)  
fCLKout  
Maximum Frequency  
5 pF Load  
1 mA Load  
1 mA Load  
250  
MHz  
V
Vcc -  
0.1  
VOH  
Output High Voltage  
VOL  
Output Low Voltage  
0.1  
V
IOH  
Output High Current (Source)  
Output Low Current (Sink)  
Output Duty Cycle(22) (23)  
VCC = 3.3 V, VO = 1.65 V  
-28  
28  
50  
mA  
mA  
%
IOL  
VCC = 3.3 V, VO = 1.65 V  
DUTYCLK  
VCC/2 to VCC/2, FCLK = 100 MHz, T = 25°C  
DIGITAL OUTPUTS (CLKin_SELX, Status_LDX, and RESET/GPO)  
IOH = -500 µA  
CLKin_SELX_TYPE = 3 or 4  
Status_LDX_TYPE = 3 or 4  
RESET_TYPE = 3 or 4  
VCC  
0.4  
-
VOH  
High-Level Output Voltage  
Low-Level Output Voltage  
V
V
IOL = 500 µA  
CLKin_SELX_TYPE = 3, 4, or 6  
Status_LDX_TYPE = 3, 4, or 6  
RESET_TYPE = 3, 4, or 6  
VOL  
0.4  
DIGITAL OUTPUTS (SDIO)  
IOH = -500 µA; During SPI read.  
SDIO_RDBK_TYPE = 0  
VCC  
0.4  
-
VOH  
VOL  
High-Level Output Voltage  
Low-Level Output Voltage  
V
V
IOL = 500 µA; During SPI read.  
SDIO_RDBK_TYPE = 0 or 1  
0.4  
0.5  
DIGITAL INPUTS (CLKinX_SEL, RESET/GPO, SYNC, SCK, SDIO, and CS*)  
VIH  
VIL  
High-Level Input Voltage  
Low-Level Input Voltage  
1.2  
V
V
DIGITAL INPUT (CLKinX_SEL)  
CLKin_SELX_TYPE = 0 (High Impedance)  
CLKin_SELX_TYPE = 1 (Pull up)  
-5  
-5  
5
5
IIH  
High-Level Input Current VIH = VCC  
µA  
CLKin_SELX_TYPE = 2 (Pull-down)  
CLKin_SELX_TYPE = 0 (High Impedance)  
CLKin_SELX_TYPE = 1 (Pull up)  
10  
-5  
80  
5
IIL  
Low-Level Input Current VIL = 0 V  
-40  
-5  
-5 µA  
5
CLKin_SELX_TYPE = 2 (Pull-down)  
DIGITAL INPUT (RESET/GPO)  
IIH High-Level Input Current VIH = VCC  
RESET_TYPE = 2 (Pull-down)  
RESET_TYPE = 0 (High Impedance)  
RESET_TYPE = 1 (Pull up)  
10  
-5  
80 µA  
5
IIL  
Low-Level Input Current VIL = 0 V  
-40  
-5  
-5 µA  
5
RESET_TYPE = 2 (Pull-down)  
DIGITAL INPUT (SYNC)  
IIH  
IIL  
High-Level Input Current  
Low-Level Input Current  
VIH = VCC  
VIL = 0 V  
25 µA  
-5  
5
µA  
DIGITAL INPUTS (SCK, SDIO, CS*)  
IIH  
IIL  
High-Level Input Current  
Low-Level Input Current  
VIH = VCC  
VIL = 0 V  
-5  
-5  
5
5
µA  
µA  
(22) For OSCout when driven by OSCin, assumes OSCin has 50% input duty cycle.  
(23) For any device clock with an odd divide value, assumes selected clock output has DCLKX_Y_DCC = 1 to enable duty cycle correction.  
16  
Copyright © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
6.6 Timing Requirements  
DIGITAL INPUT TIMING  
Setup time for SDI edge to SCLK rising edge  
Hold time for SDI edge to SCLK rising edge  
Period of SCLK  
MIN  
20  
NOM  
MAX  
UNIT  
ns  
tdS  
tdH  
10  
200(1)  
ns  
tSCLK  
tHIGH  
tLOW  
tcS  
ns  
High width of SCLK  
60  
ns  
Low width of SCLK  
60  
ns  
Setup time for CS* falling edge to SCLK rising edge  
Hold time for CS* rising edge from SCLK rising edge  
SCLK falling edge to valid read back data  
20  
ns  
tcH  
20  
ns  
tdV  
60  
ns  
(1) 5 MHz  
6.7 Timing Diagram  
Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK  
signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed.  
A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete the CS* signal  
should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is  
sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this  
programming.  
4-cwire mode read back has same timing as SDIO pin.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
SDIO  
(WRITE)  
A12 to A0,  
D7 to D2  
R/W  
A14  
A13  
D1  
D0  
tdS  
tdH  
SCLK  
tcH  
tcS  
tHIGH  
tLOW  
tSCLK  
SDIO  
(Read)  
D7 to  
D2  
D1  
D0  
tdV  
CS*  
1. SPI Timing Diagram  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
6.8 Typical Characteristics – Clock Output AC Characteristics  
Jitter from 100 Hz to 100 MHz = 63.6 fs rms.  
Output is CLKout4 as CML 32 mA with 68-nH to 20-Ω DC bias.  
Other settings are CLKout4_5_IDL = 1 and CLKout4_5_BYP = 1.  
PLL2 Loop Filter R2 = 470 Ω, C2 = 150 nF, Charge Pump = 3200 µA.  
Reference is R&S SMA100B Signal Generator with option SMAB - B711 through Prodyn BIB-100G Balun to  
OSCin.  
2. PLL2 with VCO1 Performance at 2500 MHz With 312.5-MHz OSCin/Phase Detector Frequency  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Typical Characteristics – Clock Output AC Characteristics (接下页)  
Jitter from 100 Hz to 100 MHz = 67 fs rms.  
Output is CLKout4 as CML 32 mA with 68-nH to 20-Ω DC bias.  
Other settings are CLKout4_5_IDL = 1 and CLKout4_5_BYP = 1.  
PLL2 Loop Filter R2 = 470 Ω, C2 = 150 nF, Charge Pump = 3200 µA.  
Reference is R&S SMA100B Signal Generator with option SMAB - B711 through Prodyn BIB-100G Balun to  
OSCin.  
3. PLL2 with VCO1 Performance at 3200 MHz With 320-MHz OSCin/Phase Detector Frequency  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Charge Pump Current Specification Definitions  
I1 = Charge Pump Sink Current at VCPout = VCC - ΔV  
I2 = Charge Pump Sink Current at VCPout = VCC/2  
I3 = Charge Pump Sink Current at VCPout = ΔV  
I4 = Charge Pump Source Current at VCPout = VCC - ΔV  
I5 = Charge Pump Source Current at VCPout = VCC/2  
I6 = Charge Pump Source Current at VCPout = ΔV  
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.  
7.1.1 Charge Pump Output Current Magnitude Variation vs Charge Pump Output Voltage  
7.1.2 Charge Pump Sink Current vs Charge Pump Output Source Current Mismatch  
7.1.3 Charge Pump Output Current Magnitude Variation vs Ambient Temperature  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
7.2 Differential Voltage Measurement Terminology  
The differential voltage of a differential signal can be described by two different definitions causing confusion  
when reading data sheets or communicating with other engineers. This section will address the measurement  
and description of a differential signal so that the reader will be able to understand and distinguish between the  
two different definitions when used.  
The first definition used to describe a differential signal is the absolute value of the voltage potential between the  
inverting and noninverting signal. The symbol for this first measurement is typically VID or VOD depending on if an  
input or output voltage is being described.  
The second definition used to describe a differential signal is to measure the potential of the noninverting signal  
with respect to the inverting signal. The symbol for this second measurement is VSS and is a calculated  
parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its  
differential pair. VSS can be measured directly by oscilloscopes with floating references, otherwise this value can  
be calculated as twice the value of VOD as described in the first description.  
4 illustrates the two different definitions side-by-side for inputs and 5 illustrates the two different definitions  
side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the noninverting and  
inverting signals toggle between with respect to ground. VSS input and output definitions show that if the inverting  
signal is considered the voltage potential reference, the noninverting signal voltage potential is now increasing  
and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the differential  
signal can be measured.  
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).  
VID Definition  
Noninverting Clock  
VSS Definition for Input  
VA  
VB  
2 × VID  
VID  
Inverting Clock  
VID = | VA VB  
|
VSS = 2 × VID  
GND  
4. Two Different Definitions for  
Differential Input Signals  
VOD Definition  
VSS Definition for Output  
Non-Inverting Clock  
VA  
VB  
2·VOD  
VOD  
Inverting Clock  
VOD = | VA - VB  
|
VSS = 2·VOD  
GND  
5. Two Different Definitions for  
Differential Output Signals  
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for  
more information.  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
 
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LMK04832 device is very flexible to meet many application requirements. Use cases include dual loop, dual  
loop 0-delay nested, dual loop 0-delay cascaded, single loop, single loop 0-delay, and clock distribution.  
The device may be used in JESD204B systems by providing a device clock and SYSREF to target devices,  
however traditional (non-JESD204B) systems are possible by programming pairs of outputs to share the clock  
divider or any mix of JESD204B and traditional.  
8.1.1 Differences to LMK0482x  
The LMK04832 is pin-to-pin compatible with LMK0482x. The LMK04832 can be substituted directly into an  
existing LMK0482x hardware design. However, if a CML output is to be used on LMK04832, then 50-Ω pullups to  
VCC are required. For higher amplitude on high frequency CML outputs, use 68 nH on each output pin to a  
common to 20 ohms to Vcc. The LMK04832 does support LVPECL20 and LVPECL16 modes, but best  
performance is achieved with CML outputs in bypass mode. Division of up to 1023 is supported by DCLKx_DIV  
and each output clock can be a DEVCLK or a SYSREF. In addition, some programming updates are required  
from LMK04828 to LMK04832, particularly for controlling the clock output groups.  
8.1.2 Jitter Cleaning  
The dual loop PLL architecture of the LMK04832 provides the lowest jitter performance over a wide range of  
output frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external  
reference clock and uses an external VCXO to provide a frequency accurate, low phase noise reference clock for  
the second stage frequency multiplication PLL (PLL2).  
PLL1 typically uses a narrow loop bandwidth (typically 10 Hz to 200 Hz) to retain the frequency accuracy of the  
reference clock input signal while at the same time suppressing the higher offset frequency phase noise that the  
reference clock may have accumulated along its path or from other circuits. This cleaned reference clock  
provides the reference input to PLL2.  
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically 50  
kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high offset frequency  
phase noise profile of the internal VCO and the good low offset frequency phase noise of the reference VCXO.  
Ultra-low jitter is achieved by allowing the phase noise of the external VCXO to dominate the final output phase  
noise at low offset frequencies and the phase noise of the internal VCO to dominate the final output phase noise  
at high offset frequencies. This results in best overall phase noise and jitter performance.  
8.1.3 JEDEC JESD204B Support  
The LMK04832 provides support for JEDEC JESD204B. The LMK04832 clocks up to 7 JESD204B targets using  
7 device clocks and 7 SYSREF clocks.  
The LMK04832 allows every clock output to be configured as a device clock or SYSREF clock.  
8.1.4 Clock Inputs  
CLKin1 can be used as a reference for dual loop, single loop, or clock distribution mode,  
providing flexibility configuring the device for different operation modes from one clock  
input..  
8.1.4.1 Three Redundant PLL1 Reference Inputs  
The LMK04832 has up to three reference clock inputs for PLL1. They are CLKin0, CLKin1, and CLKin2.  
Automatic or manual switching can occur between the inputs.  
CLKin0, CLKin1, and CLKin2 each have their own PLL1 R dividers allowing clock switching references of  
different frequencies.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Overview (接下页)  
CLKin1 is shared for use as an external 0-delay feedback (FBCLKin), or for use with an external VCO (Fin).  
CLKin2 is shared for use as OSCout. To use CLKin2 as an input power down OSCout, see VCO_MUX,  
OSCout_MUX, OSCout_FMT.  
Fast manual switching between reference clocks and holdover is possible with external pins CLKin_SEL0 and  
CLKin_SEL1.  
8.1.4.2 PLL2 Reference Inputs  
In dual loop configurations, the PLL2 reference is from OSCin. However, in single PLL2 loop operation, it is also  
possible to use any of the three CLKins of PLL1 as a reference to PLL2.  
8.1.4.3 Clock Distribution Reference Input  
For clock distribution mode, a reference signal is applied to the Fin1 pins for clock distribution. CLKin0 can be  
used to distribute a SYSREF signal through the device. In this use case, CLKin0 is re-clocked by CLKin1.  
8.1.5 VCXO Buffered Output  
The LMK04832 provides OSCout, which by power-on default is a buffered copy of the PLL1 feedback and PLL2  
reference input at OSCin. This reference input is typically a low noise VCXO or XO. This output can be used to  
clock external devices such as microcontrollers, FPGAs, CPLDs, and so forth, before the LMK04832 is  
programmed.  
The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS.  
The VCXO buffered output can be synchronized to the VCO clock distribution outputs by using Cascaded 0-  
Delay Mode.  
8.1.6 Frequency Holdover  
The LMK04832 supports holdover operation to keep the clock outputs on frequency with minimum drift when the  
reference is lost until a valid reference clock signal is re-established.  
8.1.7 Internal VCOs  
The LMK04832 has two internal VCOs. The output of the selected VCO is routed to the Clock Distribution Path.  
This same selection is also fed back to the PLL2 phase detector through a prescaler and N-divider.  
8.1.8 External VCO Mode  
The Fin1 input allows an external VCO to be used with PLL2 of the LMK04832. Using Fin1 input for external  
VCO prevents use of CLKin1 for other purposes.  
8.1.9 Clock Distribution  
The LMK04832 features a total of 14 PLL2 clock outputs driven from the internal or external VCO.  
All clock outputs have programmable output types. They can be programmed to CML, LVPECL, LVDS, HSDS, or  
LCPECL. All odd clock outputs plus CLKout8 and CLKout10 may be programmed to LVCMOS.  
If OSCout is included in the total number of clock outputs the LMK04832 is able to distribute up to 15 differential  
clocks. OSCout may be a buffered version of OSCin, DCLKout6, DCLKout8, or SYSREF. Its output format is  
programmable to LVDS, LVPECL, or LVCMOS.  
The following sections discuss specific features of the clock distribution channels that allow the user to control  
various aspects of the output clocks.  
8.1.9.1 Clock Divider  
The LMK04832 has 7 clock dividers. In a traditional clocking system each divider can drive two outputs. The  
divider range is 1 to 1023. Duty cycle correction may be enabled for the output. When the divider is used even  
clocks may not output CML.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Overview (接下页)  
In a JESD204B system, one clock output is a device clock driven from the clock divider and the other paired  
clock is from the SYSREF divider. For connectivity flexibility, either the even or odd clock output may be driven  
by the clock divider or be the SYSREF output.  
8.1.9.2 High Performance Divider Bypass Mode  
Even clock outputs (CLKoutX) of the LMK04832 may bypass the clock divider to achieve the best possible noise  
floor and output swing. In this mode, the only usable output format is CML.  
8.1.9.3 SYSREF Clock Divider  
The SYSREF divider supports a divide range of 8 to 8191 (even and odd). There is no duty cycle correction for  
the SYSREF divider. The SYSREF output may be routed to all clock outputs.  
8.1.9.4 Device Clock Delay  
The device clocks support digital delay for phase adjustment of the clock outputs.  
The digital delay allows outputs to be delayed from 8 to 1023 VCO cycles. The delay step can be as small as  
half the period of the clock distribution path. For example, a 3.2-GHz VCO frequency results in 156.25-ps steps.  
The digital delay value takes effect on the clock output phase after a SYNC event.  
8.1.9.5 Dynamic Digital Delay  
The device clock dividers support a dynamic digital delay feature which allows the clock to be delayed by one full  
device clock cycle. With a single programming, an adjustment of up to 255 one cycle delays may occur. When  
making a multi-step adjustment, the adjustments are periodically applied to reduce impact to the clock.  
Dynamic phase adjustments of half a clock distribution cycle are possible by half step.  
The SYSREF digital delay value is reused for dynamic digital delay. To achieve a one cycle delay program the  
SYSREF digital delay value to one greater than half the SYSREF divide value.  
8.1.9.6 SYSREF Delay: Global and Local  
The SYSREF divider includes a digital delay block which allows a global phase shift with respect to the device  
clocks.  
Each clock output pair includes a local SYSREF analog and digital delay for unique phase adjustment of each  
SYSREF clock.  
The local analog delay allows for approximately 21-ps steps. Turning-on analog delay adds an additional 124ps  
of delay in the clock path. The digital delay step can be as small as half the period of the clock distribution path.  
For example, a 3.2-GHz VCO frequency results in 156.25-ps steps.  
The local digital delay and half step allows a SYSREF output to be delayed from 1.5 to 11 clock distribution path  
cycles.  
8.1.9.7 Programmable Output Formats  
All LMK04832 clock outputs can be programmed to an LVDS, HSDS, LVPECL, or LCPECL output type. Odd  
clock outputs in addition to CLKout8 and CLKout10 may also be programmed to LVCMOS. All odd clock outputs  
can also be programmed to CML. When in bypass mode the even clock output may only be CML.  
The OSCout can be programmed to an LVDS, LVPECL, or LVCMOS output type.  
Any HSDS output type can be programmed to 6-mA or 8-mA amplitude levels.  
Any LVPECL output type can be programmed to 1600-mVpp or 2000-mVpp amplitude levels. The 2000-mVpp  
LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000-mVpp differential  
swing for compatibility with many data converters and is also known as 2VPECL.  
LCPECL allows for DC-coupling SYSREF to low voltage JESD204B targets.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Overview (接下页)  
8.1.9.8 Clock Output Synchronization  
Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital  
delay.  
The SYNC event must occur for digital delay values to take effect.  
8.1.10 0-Delay  
The LMK04832 supports two types of 0-delay.  
1. Cascaded 0-delay  
2. Nested 0-delay  
Cascaded 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL2 input clock  
(OSCin) to the phase of a clock selected by the feedback mux. The 0-delay feedback uses internal feedback  
from the CLKout6, CLKout8, or SYSREF. The 0-delay feedback can also be from an external feedback through  
the FBCLKin port. The FB_MUX selects the feedback source. Because OSCin has a fixed deterministic phase  
relationship to the feedback clock, OSCout will also have a fixed deterministic phase relationship to the feedback  
clock. In this mode, PLL1 input clock (CLKinX) also has a fixed deterministic phase relationship to PLL2 input  
clock (OSCin); this results in a fixed deterministic phase relationship between all clocks from CLKinX to the clock  
outputs.  
Nested 0-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL1 input clock  
(CLKinX) to the phase of a clock selected by the feedback mux. The 0-delay feedback uses internal feedback  
from the CLKout6, CLKout8, or SYSREF. The 0-delay feedback can also be from an external feedback through  
the FBCLKin port. The FB_MUX selects the feedback source.  
Without using 0-delay mode, there will be n possible fixed phase relationships from clock input to clock output  
depending on the clock output divide value.  
Using an external 0-delay feedback reduces the number of available clock inputs by one.  
8.1.11 Status Pins  
The LMK04832 provides status pins which can be monitored for feedback or in some cases used for input  
depending upon device programming. For example:  
The CLKin_SEL0 pin may indicate the LOS (loss-of-signal) for CLKin0.  
The CLKin_SEL1 pin may be an input for selecting the active clock input.  
The Status_LD1 pin may indicate if the device is locked.  
The Status_LD2 pin may indicate if PLL2 is locked.  
The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL  
lock detect signals, PLL1 Vtune railing, readback, and so forth. Refer to the Register Maps section of this data  
sheet for more information.  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.2 Functional Block Diagram  
6 illustrates the high level LMK04832 block diagram.  
CLKin0 R  
Divider  
(1 to 16,383)  
CLKin0  
_DEMUX  
CLKin  
MUX  
CLKin0  
CLKin0*  
Phase  
Detector  
PLL1  
CLKin0  
CLKin1 R  
Divider  
CPout1  
N1 Divider  
(1 to 16,383)  
(1 to 16,383)  
CLKin2 R  
Divider  
(1 to 16,383)  
CLKin1/Fin/  
FBCLKin  
CLKin1*/Fin*/  
CLKin1  
_DEMUX  
CLKin1  
FB Mux  
Holdover  
FBCLKin*  
PLL1  
_NCLK  
_MUX  
CLKout6  
CLKout8  
SYSREF Div  
FB_  
MUX  
OSCout/  
CLKin2  
OSCout*/  
CLKin2*  
SPI  
Selectable  
2X  
PLL2  
_REF  
PLL2  
_RCLK  
_MUX  
R2 Divider  
(1 to 4,095)  
_2X_EN  
Internal Dual  
Core VCO  
OSCin  
Phase  
Detector  
PLL2  
OSCin*  
PLL2  
_NCLK  
_MUX  
N2 Divider  
(1 to 262,143)  
RESET/GPO  
Status_LD1  
Status_LD2  
N2 Prescaler  
(2 to 8)  
Device  
Control  
SYNC  
CLKin_SEL0  
CLKin_SEL1  
Clock Distribution Path  
VCO_  
MUX  
SCLK  
SDIO  
CS*  
CLKin1  
Control  
Registers  
SPI  
SYSREF/SYNC Control  
Divider  
(8 to 8191)  
SYSREF/SYNC  
Distribution Path  
D
SYNC  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKout12  
CLKout12*  
CLKin0  
Pulser  
CLKout13  
CLKout13*  
Div (1 to 1023)  
A. Delay  
Dig. Delay  
Dig. Delay  
CLKout0  
CLKout0*  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKout10  
CLKout10*  
CLKout1  
CLKout1*  
CLKout11  
CLKout11*  
Div (1 to 1023)  
A. Delay  
Dig. Delay  
Dig. Delay  
CLKout2  
CLKout2*  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKout8  
CLKout8*  
CLKout3  
CLKout3*  
CLKout9  
CLKout9*  
Div (1 to 1023)  
A. Delay  
Dig. Delay  
Dig. Delay  
CLKout4  
CLKout4*  
Dig. Delay  
Dig. Delay  
Div (1 to 1023)  
A. Delay  
CLKout6  
CLKout6*  
CLKout5  
CLKout5*  
CLKout7  
CLKout7*  
Copyright © 2017, Texas Instruments Incorporated  
6. High Level LMK04832 Block Diagram  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Functional Block Diagram (接下页)  
CLKout0, 2, 4, 6, 8, 10, 12  
CLKoutX_  
CLKoutX_Y_PD  
DCLKX_Y_PD  
Device Clock (DCLK)  
FMT  
DCLKX  
_BYP  
DCLKX_Y_DDLY_PD  
CML  
DCLKX_Y  
VCO  
_POL  
DCLKX_Y_ DCLKX_Y_  
CLKoutX_  
SRC_MUX  
DCLKX_Y_  
HS  
DDLY  
DIV  
DCC  
DCLKX_Y_  
DCC  
(8 to 1023)  
(1 to 1023)  
DDLYdX_Y_EN  
DCLKout6/8 to FB_MUX  
CLKoutX_Y_ODL  
SYNC_  
DIS_DCLKX_Y  
CLKoutX_Y_IDL  
SYSREF_GBL_PD  
SDCLKoutY_DIS_MODE  
SYSREF Clock (SCLK)  
SCLKX_Y_PD  
SCLKX_Y  
_ADLY_EN  
SYSREF/SYNC  
SCLKX_Y_  
DDLY  
SCLKX_Y  
_HS  
Analog  
DLY  
CLKoutY_  
SRC_MUX  
CLKoutY_  
FMT  
SYSREF_CLR  
CLKout1, 3, 5, 7, 9, 11, 13  
X = Odd Numbers  
Y = Even Numbers  
Legend  
SPI Register  
SYSREF/SYNC Clock  
VCO/Distribution Clock  
Copyright © 2017, Texas Instruments Incorporated  
7. Device and SYSREF Clock Output Block  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Functional Block Diagram (接下页)  
SPI Register: SYNC_EN  
Must Be Set To Enable Any  
SYNC/SYSREF Functionality  
CLKin0  
CLKin0_  
DEMUX  
PLL1  
D
SYNC_PLL1_DLD  
PLL1_DLD  
SYNC_PLL2_DLD  
PLL2_DLD  
SYSREF_REQ_EN  
SYNC  
SYNC  
_MODE  
SYSREF_  
MUX  
SYNC  
_POL  
D
PULSER MODE  
SYSREF_PULSE_CNT  
Pulser  
VCO0  
SYSREF_PLSR_PD  
VCO1 VCO  
_MUX  
SYSREF  
DDLY  
SYSREF  
Divider  
SYNC/SYSREF  
External  
VCO  
SYSREF_PD  
SYSREF_DDLY_PD  
DCLKout6  
DCLKout8  
OSCin  
OSCout  
_MUX  
SYNC_  
DISSYSREF  
FB_MUX  
OSCout  
CLKin1  
CLKin1  
FB_MUX  
PLL1  
CLKin1_  
DEMUX  
DCLKout0, 2, 4, 6, 8, 10, 12  
Clock  
VCO Frequency  
DDLY  
(4 to 32) (1 to 32)  
Divider  
Analog  
DLY  
Output  
DCC  
Distribution Path  
Buffer  
SYNC_  
DISX  
SYSREF/SYNC  
Digital  
DLY  
Analog  
DLY  
Output  
Buffer  
Legend  
SYSREF_CLR  
SYSREF/SYNC Clock  
VCO/Distribution Clock  
SPI Register  
SDCLKout1, 3, 5, 7, 9, 11, 13  
Copyright © 2017, Texas Instruments Incorporated  
8. SYNC/SYSREF Clocking Paths  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.3 Feature Description  
8.3.1 Synchronizing PLL R Dividers  
In some cases, it is necessary to synchronize PLL R dividers to enable determinism of clocks outputs to inputs.  
This typically is required when the fraction Total PLL N divide / Total PLL R divide does not reduce to N / 1  
8.3.1.1 PLL1 R Divider Synchronization  
It is possible to use the CLKin0 or SYNC pin to synchronize the PLL1 R divider. In either case, the PLL1 R  
divider is armed for reset, then the rising sync edge arrives from either SYNC pin or CLKin0. After the PLL1 R  
divider is armed, PLL1 is unlocked until the synchronization edge arrives and allows the divider to operate and  
the PLL to lock. The procedure to synchronize PLL1 R is as follows:  
1. Setup device for synchronizing PLL1 R:  
PLL1R_SYNC_EN = 0x1  
PLL1R_SYNC_SRC = 0x1 (SYNC pin) or 0x2 (CLKin0)  
CLKin0_DEMUX = 0x2 (PLL1)  
CLKin1_DEMUX = 0x2 (PLL1)  
CLKin0_TYPE = 0x1 (MOS) for DC-coupled or CLKin0_TYPE = 0x0 (Bipolar) for AC-coupled  
2. Arm PLL1 R divider for synchronization  
PLL1R_RST = 1, then 0.  
PLL1 is unlocked.  
3. Send rising edge on SYNC pin or CLKin0.  
PLL1 R divider is released from reset and PLL1 relocks.  
It is necessary to meet a setup and hold time when CLKin0 or SYNC pin goes high to ensure deterministic reset  
of the PLL1 R divider.  
The SYNC_POL bit has no effect on SYNC polarity for PLL1 R synchronization.  
8.3.1.2 PLL2 R Divider Synchronization  
The SYNC pin must be used to synchronized the PLL2 R divider. When PLL2R_SYNC_EN = 1, as long as the  
SYNC pin is held high, the PLL2 R divider is held in reset. When the SYNC pin is returned low, the divider is  
allowed to continue dividing. While PLL2R_SYNC_EN = 1 and SYNC pin is high PLL2 is unlocked.  
It is necessary to meet a setup and hold time when SYNC pin goes low to ensure deterministic reset of the PLL2  
R divider.  
The SYNC_POL bit has no effect on SYNC polarity for PLL2 R synchronization.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2 SYNC/SYSREF  
The SYNC and SYSREF signals share the same SYNC/SYSREF Clock Distribution path. To properly use SYNC  
and/or SYSREF for JESD204B it is important to understand the SYNC/SYSREF system. 7 illustrates the  
detailed diagram of a clock output block with SYNC circuitry included. 8 illustrates the interconnects and  
highlights some important registers used in controlling the device for SYNC/SYSREF purposes.  
To reset or synchronize a divider, the following conditions must be met:  
1. SYNC_EN must be set. This ensures proper operation of the SYNC circuitry.  
2. SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC/SYSREF  
signal.  
If SYSREF block is being used, the SYSREF_PD bit must be clear.  
If the SYSREF Pulser is being used, the SYSREF_PLSR_PD bit must be clear.  
For each CLKoutX or CLKoutY being used for SYSREF, the respective SCLKX_Y_PD bit must be  
cleared.  
3. DCLKX_Y_DDLY_PD and SYSREF_DDLY_PD bits must be clear to power up the digital delay circuitry used  
during SYNC to cause deterministic phase between the device clock dividers and the global SYSREF  
divider.  
4. The SYNC_DISX bit must be clear to allow SYNC/SYSREF signal to divider circuit. The SYSREF_MUX  
register selects the SYNC source which resets the SYSREF/CLKoutX dividers provided the corresponding  
SYNC_DISX bit is clear.  
5. Other bits which impact the operation of SYNC such as SYNC_1SHOT_EN may be set as desired.  
6. After these dividers are synchronized, the DCLKX_Y_DDLY_PD and SYSREF_DDLY_PD bits may be set to  
save current. Clearing them to power up may disrupt the output clock phase.  
1 illustrates the some possible combinations of SYSREF_MUX and SYNC_MODE.  
1. Some Possible SYNC Configurations  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
No SYNC will occur.  
SYNC Disabled  
0
0
CLKin0_DEMUX 0  
Basic SYNC functionality, SYNC pin polarity is  
selected by SYNC_POL.  
To achieve SYNC through SPI, toggle the  
SYNC_POL bit.  
Pin or SPI SYNC  
1
0
CLKin0_DEMUX 0  
Differential input  
SYNC  
X
2
0 or 1  
2
CLKin0_DEMUX = 0  
Differential CLKin0 now operates as SYNC input.  
Produce SYSREF_PULSE_CNT programmed  
number of pulses on pin transition. SYNC_POL can  
be used to cause SYNC through SPI.  
JESD204B Pulser  
on pin transition.  
SYSREF_PULSE_CNT  
sets pulse count  
JESD204B Pulser  
on SPI  
programming.  
SYSREF_PULSE_CNT  
sets pulse count  
Programming SYSREF_PULSE_CNT register starts  
sending the number of pulses.  
3
1
2
1
SYSREF operational,  
SYSREF Divider as  
required for training frame for non-JESD converters such as LM97600.  
size.  
Allows precise SYNC for n-bit frame training patterns  
Re-clocked SYNC  
When SYNC pin is asserted, continuous SYSERF  
External SYSREF  
request  
SYSREF_REQ_EN = 1  
Pulser powered up  
pulses occur. Turning on and off of the pulses is  
synchronized to prevent runt pulses from occurring on  
SYSREF.  
0
2
3
SYSREF_PD = 0  
SYSREF_DDLY_PD = 0  
Continuous  
SYSREF  
X
Continuous SYSREF signal.  
SYSREF_PLSR_PD = 1  
(1)  
(1) SCLKX_Y_PD = 0 as required per SYSREF output. This applies to any SYNC or SYSREF output on SCLKX_Y when SCLKX_Y_MUX =  
1 (SYSREF output)  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Feature Description (接下页)  
1. Some Possible SYNC Configurations (接下页)  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
Re-clocked  
SYSREF  
distribution  
SYSREF_DDLY_PD = 1  
SYSREF_PLSR_PD = 1  
SYSREF_PD = 1.  
Fan-out of CLKin0 reclocked to the clock distribution  
path.  
0
0
Because the SYNC/SYSREF signal is reclocked by the Clock Distribution Path, an active  
clock must be present on the Clock Distribution Path (either from VCO or CLKin1/Fin pins  
in distribution mode) for SYNC to take effect.  
Any device clock divider or the SYSREF divider which does not have the SYNC_DISX bit  
or SYNC_DISSYSREF bit set will reset while SYNC/SYSREF Distribution Path is high.  
This is especially important for the SYSREF divider which has the ability to reset itself if  
the SYNC_DISSYSREF = 0! Be sure to set SYNC_DISX/SYNC_DISSYSREF bits as  
required.  
While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC procedure requires to  
first program Divide-by-4 and then back to Divide-by-2 or Divide-by-3 before doing SYNC.  
8.3.3 JEDEC JESD204B  
8.3.3.1 How to Enable SYSREF  
2 summarizes the bits needed to make SYSREF functionality operational.  
2. SYSREF Bits  
REGIS  
TER  
FIELD  
VALUE  
DESCRIPTION  
0x140  
SYSREF_PD  
0
0
1
Must be clear, power-up SYSREF circuitry including the SYSREF divider.  
SYSREF_DDLY_  
PD  
Must be clear to power-up digital delay circuitry. Must be powered up during initial SYNC to ensure  
deterministic timing to other clock dividers.  
0x140  
0x143  
SYNC_EN  
Must be set, enable SYNC.  
Do not hold local SYSREF DDLY block in reset except at start.  
Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set  
SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital delay. Once cleared,  
SYSREF_CLR must be cleared to allow SYSREF to operate.  
0x143  
SYSREF_CLR  
1 0  
Enabling JESD204B operation involves synchronizing all the clock dividers with the SYSREF divider, then  
configuring the actual SYSREF functionality.  
8.3.3.1.1 Setup of SYSREF Example  
The following procedure is a programming example for a system which is to operate with a 3000-MHz VCO  
frequency. Use CLKout0 and CLKout2 to drive converters at 1500 MHz. Use CLKout4 to drive an FPGA at 150  
MHz. Synchronize the converters and FPGA using a two SYSREF pulses at 10 MHz.  
1. Program registers 0x000 to 0x555 (refer to Recommended Programming Sequence). Key to prepare  
for SYSREF operations:  
a. Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0  
b. Setup output dividers as per example: DCLK0_1_DIV and DCLK2_3_DIV = 2 for frequency of 1500 MHz.  
DCLK4_5_DIV = 20 for frequency of 150 MHz.  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
c. Setup output dividers as per example: SYSREF_DIV = 300 for 10 MHz SYSREF  
d. Setup SYSREF: SYSREF_PD  
=
0, SYSREF_DDLY_PD  
=
0, DCLK0_1_DDLY_PD  
=
0,  
DCLK2_3_DDLY_PD = 0, DCLK4_5_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0,  
SYSREF_PULSE_CNT = 1 (2 pulses). SCLK0_1_PD = 0, SCLK2_3_PD = 0, SCLK4_5_PD = 0  
e. Clear Local SYSREF DDLY: SYSREF_CLR = 1.  
2. Establish deterministic phase relationships between SYSREF and Device Clock for JESD204B:  
a. Set device clock and SYSREF divider digital delays: DCLK0_1_DDLY, DCLK2_3_DDLY,  
DCLK4_5_DDLY, and SYSREF_DDLY.  
b. Set device clock digital delay half steps: DCLK0_1_HS, DCLK2_3_HS, DCLK4_5_HS.  
c. Set SYSREF clock digital delay as required to achieve known phase relationships: SCLK0_1_DDLY,  
SCLK2_3_DDLY, and SCLK4_5_DDLY. If half step adjustments are required SCLK0_1_HS,  
SCLK2_3_HS, and SCLK4_5_HS.  
d. To allow SYNC to affect dividers: SYNC_DIS0  
SYNC_DISSYSREF = 0  
= 0, SYNC_DIS2 = 0, SYNC_DIS4 = 0,  
e. Perform SYNC by toggling SYNC_POL = 1 then SYNC_POL = 0.  
3. Now that dividers are synchronized, disable SYNC from resetting these dividers. It is not desired for  
SYSREF to reset it's own divider or the dividers of the output clocks.  
a. Prevent SYNC (SYSREF) from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1,  
SYNC_DISSYSREF = 1.  
4. Release reset of local SYSREF digital delay.  
a. SYSREF_CLR = 0. Note this bit needs to be set for only 15 clock distribution path clocks after  
SYSREF_PD = 0.  
5. Set SYSREF operation.  
a. Allow pin SYNC event to start pulser: SYNC_MODE = 2.  
b. Select pulser as SYSREF signal: SYSREF_MUX = 2.  
6. Complete! Now asserting the SYNC pin, or toggling SYNC_POL will result in a series of 2 SYSREF pulses.  
8.3.3.1.2 SYSREF_CLR  
The local digital delay of the SCLKX_Y_DDLY is implemented as a shift buffer. To ensure no unwanted pulses  
occur at this SYSREF output at start-up, when using SYSREF, requires clearing the buffers by setting  
SYSREF_CLR = 1 for 15 VCO clock cycles. After a reset, this bit is set, so it must be cleared before SYSREF  
output is used.  
If the SYSREF pulser is used. It is also required to set SYSREF_CLR = 1 for 15 VCO clock cycles after the  
SYSREF pulser is powered up.  
8.3.3.2 SYSREF Modes  
8.3.3.2.1 SYSREF Pulser  
This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming.  
This implements the gapped periodic functionality of the JEDEC JESD204B specification.  
When in SYSREF Pulser mode, programming the field SYSREF_PULSE_CNT in register 0x13E will result in the  
pulser sending the programmed number of pulses.  
8.3.3.2.2 Continuous SYSREF  
This mode allows for continuous output of the SYSREF clock.  
Continuous operation of SYSREF is not recommended due to crosstalk from the SYSREF  
clock to device clock. JESD204B is designed to operate with a single burst of pulses to  
initialize the system at start-up, after which it is theoretically not required to send another  
SYSREF because the system will continue to operate with deterministic phases.  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.3.3.2.3 SYSREF Request  
This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses  
using the SYNC/SYSREF_REQ pin.  
Setup the mode by programming SYSREF_REQ_EN = 1 and SYSREF_MUX = 2 (Pulser). The pulser does not  
need to be powered for this mode of operation.  
When the SYSREF_REQ pin is asserted, the SYSREF_MUX will synchronously be set to continuous mode  
providing continuous pulses at the SYSREF frequency until the SYSREF_REQ pin is unasserted and the final  
SYSREF pulse will complete sending synchronously.  
8.3.4 Digital Delay  
Digital (coarse) delay allows a group of outputs to be delayed by 8 to 1023 clock distribution path cycles. The  
delay step can be as small as half the period of the clock distribution path cycle by using the DCLKX_Y_HS bit.  
There are two different ways to use the digital delay:  
1. Fixed digital delay  
2. Dynamic digital delay  
In both delay modes, the regular clock divider is substituted with an alternative divide value.  
8.3.4.1 Fixed Digital Delay  
Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs will be LOW  
for a while during the SYNC event. Applications that cannot accept clock breakup when adjusting digital delay  
during application run time should use dynamic digital delay to adjust phase.  
8.3.4.1.1 Fixed Digital Delay Example  
Assuming the device already has the following initial configurations, and the application should delay CLKout2 by  
one VCO cycle compared to CLKout0.  
VCO frequency = 2949.12 MHz  
CLKout0 = 368.64 MHz (DCLK0_1_DIV = 8, CLKout0_SRC_MUX = 0 (Device Clock))  
CLKout2 = 368.64 MHz (DCLK2_3_DIV = 8, CLKout2_SRC_MUX = 0 (Device Clock))  
The following steps should be followed  
1. Set DCLK0_1_DDLY = 8 and DCLK2_3_DDLY = 9. Static delay for each clock.  
2. Set DCLK0_1_DDLY_PD = 0 and DCLK2_3_DDLY_PD = 0. Power up the digital delay circuit.  
3. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the outputs to be synchronized.  
4. Perform SYNC by asserting, then unasserting SYNC. Either by using SYNC_POL bit or the SYNC pin.  
5. Now that the SYNC is complete, to save power it is allowable to power down DCLK0_1_DDLY_PD = 1  
and/or DCLK2_3_DDLY_PD = 1.  
6. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1. Prevent the output from being synchronized, very important for  
steady-state operation when using JESD204B.  
No CLKout during SYNC  
CLKout0  
368.64 MHz  
CLKout2  
368.64 MHz  
SYNC event  
1 VCO cycle delay  
9. Fixed Digital Delay Example  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.3.4.2 Dynamic Digital Delay  
Dynamic digital delay allows the phase of clocks to be changed with respect to each other with little impact to the  
clock signal.  
For the device clock dividers this is accomplished by substituting the regular clock divider with an alternate divide  
value of one larger than the regular divider for one cycle. This substitution will occur a number of times equal to  
the value programmed into the DDLYd_STEP_CNT field for all outputs with DDLYdX_EN = 1.  
For the SYSREF divider an alternate divide value will be substituted for the regular divide value. This substitution  
will occur  
a
number of times equal to the value programmed into the DDLYd_STEP_CNT if  
DDLYd_SYSREF_EN = 1. To achieve one cycle delay as is done for the device clock dividers, set the  
SYSREF_DDLY value to one greater than SYSREF_DIV+SYSREF_DIV/2. For example, for a SYSREF divider of  
100, to achieve 1 cycle delay, SYSREF_DIV = 100 + 50 + 1 = 151.  
While using the Dynamic Digital Delay feature, CLKin_OVERRIDE must be set to 0.  
By programming a larger alternate divider (delay) value, the phase of the adjusted outputs are delayed with  
respect to the other clocks.  
By programming a smaller alternate divider (delay) value, the phase of the adjusted outputs are advanced  
with respect to the other clocks.  
8.3.4.3 Single and Multiple Dynamic Digital Delay Example  
In this example, two separate adjustments are made to the device clocks. In the first adjustment, a single delay  
of 1 VCO cycle occurs between CLKout2 and CLKout0. In the second adjustment, two delays of 1 VCO cycle  
occur between CLKout2 and CLKout0. At this point in the example, CLKout2 is delayed 3 VCO cycles behind  
CLKout0.  
Assuming the device already has the following initial configurations:  
VCO frequency: 2949.12 MHz  
CLKout0 = 368.64 MHz, DCLK0_1_DIV = 8  
CLKout2 = 368.64 MHz, DCLK2_3_DIV = 8  
The following steps illustrate the example above:  
1. Set DCLK2_3_DDLY = 4. First part of delay for CLKout2.  
2. Set DCLK2_3_DDLY_PD = 0. Enable the digital delay for CLKout2.  
3. Set DDLYd0_EN = 0 and DDLYd2_EN = 1. Enable dynamic digital delay for CLKout2 but not CLKout0.  
4. Set DDLYd_STEP_CNT = 1. This begins the first adjustment.  
Before step 4, CLKout2 clock edge is aligned with CLKout0.  
After step 4, CLKout2 counts nine clock distribution path cycles to the next rising edge, one greater than the  
divider value, effectively delaying CLKout2 by one VCO cycle with respect to CLKout0. This is the first  
adjustment.  
5. Set DDLYd_STEP_CNT = 2. This begins the second adjustment.  
Before step 5, CLKout2 clock edge was delayed 1 clock distribution path cycle from DCLKout0.  
After step 5, CLKout2 counts nine clock distribution path cycles twice, each time one greater than the divide  
value, effectively delaying CLKout2 by two clock distribution path cycles with respect to CLKout0. This is the  
second adjustment.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
VCO  
2949.12 MHz  
CLKout0  
368.64 MHz  
CLKout2  
368.64 MHz  
First  
Adjustment  
DCLK2_3_DIV + 1  
CLKout2  
368.64 MHz  
Second  
Adjustment  
DCLK2_3_DIV + 1  
DCLK2_3_DIV + 1  
10. Single and Multiple Adjustment Dynamic Digital Delay Example  
8.3.5 SYSREF to Device Clock Alignment  
To ensure proper JESD204B operation, the timing relationship between the SYSREF and the Device clock must  
be adjusted for optimum setup and hold time as shown in 11. The global SYSREF digital delay  
(SYSREF_DDLY), local SYSREF digital delay (SCLKX_Y_DDLY), local SYSREF half step (SCLKX_Y_HS), and  
local SYSREF analog delay (SCLKX_Y_ADLY, SCLK2_3_ADLY_EN) can be adjusted to provide the required  
setup and hold time between SYSREF and Device Clock. It is also possible to adjust the device clock digital  
delay (DCLKX_Y_DDLY) and half step (DCLK0_1_HS, DCLK0_1_DCC) to adjust phase with respect to  
SYSREF.  
11. SYSREF to Device Clock Timing alignment  
Depending on the DCLKout_X path settings, local SCLK_X_Y_DDLY might need adjustment factor. Following  
equation can be used to calculate the required Digital Delay Values to align SYSREF to the corresponding  
DCLKout:  
SYSREF_DDLY = DCLKX_Y_DDLY - 1 + DCLK_DIV_ADJUST + DCLK_HS_ADJUST - SCLK_X_Y_DDLY  
(1)  
SYSREF_DDLY > 7; SCLK_X_Y_DDLY > 1.  
3. DCLK_DIV_ADJUST  
DCLKX_Y_DIV  
DCLK_DIV_ADJUST  
>6  
6
0
-1  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
3. DCLK_DIV_ADJUST (接下页)  
DCLKX_Y_DIV  
DCLK_DIV_ADJUST  
5
4
3
0
(1)  
3
-2  
-2  
(1)  
2
(1) Refer to the SYNC requirement SYNC/SYSREF  
4. DCLK_HS_ADJUST  
DCLK & HS  
DCLK_HS_ADJUST  
0
1
0
1
For example, DCLKX_Y_DIV = 32, DCLKX_Y_DDLY = 10,DCC&HS = 1;  
SYSREF_DDLY=10 - 1 + 0 + 1 - 2 = 8  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.3.6 Input Clock Switching  
Manual, pin select, and automatic are three different kinds clock input switching modes can be selected  
according to the combination of bits as illustrated in 12.  
Input Clock Select  
It is required for CLKin1  
to be selected for  
distribution mode.  
CLKin_SEL_  
AUTO_EN  
Yes  
No  
Recommend using  
CLKin_SEL_MANUAL  
Active CLKin is set Auto  
Mode State Machine  
CLKin_SEL_  
PIN_EN  
Yes  
No  
Active CLKin is set by  
CLKin_SEL_MANUAL  
CLKin_SEL_  
PIN_POL  
Yes  
No  
Active CLKin is set by  
CLKin_SEL# and Status_LD1  
pins, inverted.  
Active CLKin is set by  
CLKin_SEL# and Status_LD1  
pins.  
12. CLKinX Input Reference  
The following sections provide information about how the active input clock is selected and what causes a  
switching event in the various clock input selection modes.  
8.3.6.1 Input Clock Switching - Manual Mode  
When CLKin_SEL_AUTO_EN  
= 0 and CLKin_SEL_PIN_EN = 0, the active CLKin is selected by  
CLKin_SEL_MANUAL. Programming a value of 0, 1, or 2 to CLKin_SEL_MANUAL causes CLKin0, CLKin1, or  
CLKin2, respectively, to be the selected active input clock. In this mode, the EN_CLKinX bits are overriden such  
that the CLKinX buffer operates even if CLKinX is disabled with EN_CLKinX = 0.  
If holdover is entered in this mode by setting CLKin_SEL_MANUAL = 3, then the device will re-lock to the  
selected CLKin upon holdover exit.  
8.3.6.2 Input Clock Switching - Pin Select Mode  
When CLKin_SEL_AUTO_EN = 0 and CLKin_SEL_PIN_EN = 1, the active CLKin is selected by the  
CLKin_SEL# and Status_LD1 pins.  
Configuring Pin Select Mode  
The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input  
for pin select mode.  
The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input  
for pin select mode.  
The polarity of the clock input select pins can be inverted with the CLKin_SEL_PIN_POL bit.  
The pin select mode overrides the EN_CLKinX bits such that the CLKinX buffer operates even if CLKinX is  
disabled with EN_CLKinX = 0. To switch as fast as possible, keep the clock input buffers enabled (EN_CLKinX =  
1) that could be switched to.  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
 
 
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.3.6.3 Input Clock Switching - Automatic Mode  
When CLKin_SEL_AUTO_EN = 1, LOS_EN = 1, and HOLDOVER_EXIT_MODE = 0 (Exit based on LOS), the  
active clock is selected in priority order with CLKin0 being the highest priority, CLKin1 second, and CLKin2 third.  
For a clock input to be eligible to be switched to, it must be enabled using EN_CLKinX. The LOS_TIMEOUT  
should also be set to a frequency below the input frequency.  
To ensure LOS is valid for AC-coupled inputs, the MOS mode must be set for the CLKin and no termination is  
allowed to be between the pins unless DC blocked, for example, no 100-Ω termination across CLKin0 and  
CLKin0* pins on IC side of AC-coupling capacitors.  
8.3.7 Digital Lock Detect  
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference  
path (R) and the feedback path (N) of the PLL. When the time error, which is phase error, between the two  
signals is less than a specified window size (ε) a lock detect count increments. When the lock detect count  
reaches a user specified value, PLL1_DLD_CNT or PLL2_DLD_CNT, lock detect is asserted true. Once digital  
lock detect is true, a single phase comparison outside the specified window will cause digital lock detect to be  
asserted false. This is illustrated in 13.  
NO  
NO  
PLLX  
Lock Detected = False  
Lock Count = 0  
YES  
YES  
Increment  
PLLX Lock Count  
PLLX  
Lock Detected = True  
PLLX Lock Count =  
PLLX_DLD_CNT  
START  
Phase Error < g  
Phase Error < g  
YES  
NO  
13. Digital Lock Detect Flowchart  
This incremental lock detect count feature functions as a digital filter to ensure that lock detect is not asserted for  
only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial  
phase lock.  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be  
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.  
8.3.7.1 Calculating Digital Lock Detect Frequency Accuracy  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Exiting  
Holdover for more info.  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.3.8 Holdover  
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock  
reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed  
tuning voltage is set on CPout1 to operate PLL1 in open loop.  
8.3.8.1 Enable Holdover  
Program HOLDOVER_EN = 1 to enable holdover mode.  
Holdover mode can be configured to set the CPout1 voltage upon holdover entry to a fixed user defined voltage  
(EN_MAN_DAC = 1) or a tracked voltage (EN_MAN_DAC = 0).  
8.3.8.1.1 Fixed (Manual) CPout1 Holdover Mode  
By programming MAN_DAC_EN = 1, then the MAN_DAC value will be set on the CPout1 pin during holdover.  
The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value,  
then re-program MAN_DAC value to a user desired value based on information from previous DAC read backs.  
This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.  
8.3.8.1.2 Tracked CPout1 Holdover Mode  
By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 is set on the CPout1  
pin during holdover. When the DAC has acquired the current CPout1 voltage, the DAC_Locked signal is set  
which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or PLL2_LD_MUX,  
respectively.  
Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector  
frequency divided by (DAC_CLK_MULT × DAC_CLK_CNTR).  
The DAC update rate should be programmed for 100 kHz to ensure DAC holdover accuracy.  
The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024-  
kHz PLL1 phase detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the  
device to look-back and set CPout1 at a previous good CPout1 tuning voltage values before the event which  
caused holdover to occur.  
The current voltage of DAC value can be read back using RB_DAC_VALUE, see RB_DAC_VALUE.  
8.3.8.2 During Holdover  
PLL1 is run in open-loop mode.  
PLL1 charge pump is set to TRI-STATE.  
PLL1 DLD is unasserted.  
The HOLDOVER status is asserted  
During holdover, if PLL2 was locked prior to entry of holdover mode, PLL2 DLD continues to be asserted.  
CPout1 voltage is set to:  
a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).  
a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).  
PLL1 attempts to lock with the active clock input.  
The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the  
PLL1_DLD_MUX or PLL2_DLD_MUX register to Holdover Status.  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.3.8.3 Exiting Holdover  
Holdover mode can be exited in one of two ways.  
Manually, by programming the device from the host.  
Automatically, when the LOS signal unasserts for a clock that provides a valid input to PLL1.  
8.3.8.4 Holdover Frequency Accuracy and DAC Performance  
When in holdover mode, PLL1 runs in open loop and the DAC sets the CPout1 voltage. If fixed CPout1 mode is  
used, then the output of the DAC is dependant upon the MAN_DAC register. If tracked CPout1 mode is used,  
then the output of the DAC is approximately the same voltage at the CPout1 pin before holdover mode was  
entered. When using Tracked mode and MAN_DAC_EN = 1, the DAC value during holdover is loaded with the  
programmed value in MAN_DAC and not the tracked value.  
When in Tracked CPout1 mode, the DAC has a worst-case tracking error of ±2 LSBs once PLL1 tuning voltage  
is acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode  
caused by the DAC tracking accuracy is ±6.4 mV × Kv, where Kv is the tuning sensitivity of the VCXO in use.  
Therefore, the accuracy of the system when in holdover mode in ppm is:  
± 6.4 mV × Kv × 1e6  
Holdover accuracy (ppm) =  
VCXO Frequency  
(2)  
As an example, consider a system with a 19.2-MHz clock input, a 153.6-MHz VCXO with a Kv of 17 kHz/V. The  
accuracy of the system in holdover in ppm is:  
±0.71 ppm = ±6.4 mV × 17 kHz/V × 1e6 / 153.6 MHz  
(3)  
It is important to account for this frequency error when determining the allowable frequency error window to  
cause holdover mode to exit.  
8.3.9 PLL2 Loop Filter  
PLL2 has an integrated loop filter of C1i = 60 pF, R3 = 2400 Ω, C3 = 50 pF, R4 = 200 Ω and C4 = 10 pF as  
shown in 14. Loop filter components C1, C2, and R2 can be solved using TI software. See 器件支持 for more  
information.  
14. PLL2 On-Chip Loop Filter  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.4 Device Functional Modes  
The following section describes the settings to enable various modes of operation for the LMK04832.  
The LMK04832 is a flexible device that can be configured for many different use cases. The following simplified  
block diagrams help show the user the different use cases of the device.  
8.4.1 DUAL PLL  
8.4.1.1 Dual Loop  
15 illustrates the typical use case of the LMK04832 in dual loop mode. In dual loop mode, the reference to  
PLL1 is from CLKin0, CLKin1, or CLKin2. An external VCXO is used to provide feedback for the first PLL and a  
reference to the second PLL. This first PLL cleans the jitter with the VCXO by using a narrow loop bandwidth.  
The VCXO may be buffered through the OSCout port. The VCXO is used as the reference to PLL2 and may be  
doubled using the frequency doubler. The internal VCO drives up to seven divide/delay blocks which drive up to  
14 clock outputs.  
Hitless switching and holdover functionality are optionally available when the input reference clock is lost.  
Holdover works by forcing a DAC voltage to the tuning voltage of the VCXO.  
It is also possible to use an external VCO in place of PLL2's internal VCO. In this case one less CLKin is  
available as a reference as CLKin1 is used for external Fin input.  
PLL1  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
External  
VCXO  
Up to 14  
Device or  
SYSREF  
Clocks  
OSCout*  
CLKinX  
CLKinX*  
Up to 3  
inputs  
CPout2  
R
N
Phase  
Detector  
PLL1  
7 blocks  
External  
Loop Filter  
Dual Internal  
VCOs  
R
Device Clock  
Divider  
Digital Delay  
Phase  
CLKoutX  
CLKoutX*  
Detector  
PLL2  
Input  
Buffer  
N
7 blocks  
SYSREF  
Digital Delay  
Analog Delay  
CLKoutY  
CLKoutY*  
Global SYSREF  
Divider and DDLY  
LMK04832  
Copyright © 2017, Texas Instruments Incorporated  
15. Simplified Functional Block Diagram for Dual Loop Mode  
8.4.1.2 Dual Loop With Cascaded 0-Delay  
16 illustrates the use case of cascaded 0-delay dual loop mode. This configuration differs from dual loop  
mode 15 in that the feedback for PLL2 is driven by a clock output instead of the VCO output directly.  
It is also possible to use an external VCO in place of the internal VCO of the PLL2, but one less CLKin is  
available as a reference and the external 0-delay feedback is not available.  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
PLL1  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
External  
VCXO  
Up to 14  
Device or  
SYSREF  
Clocks  
OSCout*  
CLKinX  
CLKinX*  
Up to 3  
inputs  
CPout2  
R
N
Phase  
Detector  
PLL1  
7 blocks  
External  
Loop Filter  
Dual Internal  
VCOs  
R
Device Clock  
Divider  
Digital Delay  
Phase  
CLKoutX  
CLKoutX*  
Detector  
PLL2  
Input  
Buffer  
N
7 blocks  
SYSREF  
Digital Delay  
Analog Delay  
CLKoutY  
CLKoutY*  
Global SYSREF  
Divider and DDLY  
Internal or external loopback, user programmable  
LMK04832  
Copyright © 2017, Texas Instruments Incorporated  
16. Simplified Functional Block Diagram for Cascaded 0-Delay Dual Loop Mode  
8.4.1.3 Dual Loop With Nested 0-Delay  
17 illustrates the use case of nested 0-delay dual loop mode. This configuration is similar to the dual PLL in 图  
15 except that the feedback to the first PLL is driven by a clock output. The PLL2 reference OSCin is not  
deterministic to the CLKin or feedback clock.  
PLL1  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
External  
VCXO  
Up to 14  
Device or  
SYSREF  
Clocks  
OSCout*  
CLKinX  
CLKinX*  
Up to 3  
inputs  
CPout2  
R
N
Phase  
Detector  
PLL1  
7 blocks  
External  
Loop Filter  
Dual Internal  
VCOs  
R
Device Clock  
Divider  
Digital Delay  
Phase  
CLKoutX  
CLKoutX*  
Detector  
PLL2  
Input  
Buffer  
N
7 blocks  
SYSREF  
Digital Delay  
Analog Delay  
CLKoutY  
CLKoutY*  
Global SYSREF  
Divider and DDLY  
Internal or external loopback, user programmable  
LMK04832  
Copyright © 2017, Texas Instruments Incorporated  
17. Simplified Functional Block Diagram for Nested 0-Delay Dual Loop Mode  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Device Functional Modes (接下页)  
8.4.2 Single PLL  
8.4.2.1 PLL2 Single Loop  
18 illustrates the use case of PLL2 single loop mode. When used with a high-frequency clean reference  
performance as good as dual loop mode may be achieved. Traditionally the OSCin is used as a reference to  
PLL2, but it is also possible to use CLKinX as a reference to PLL2.  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
OSCout*  
Up to 4  
inputs  
Up to 14  
Device or  
SYSREF  
Clocks  
CPout2  
7 blocks  
Dual Internal  
VCOs  
OSCin  
OSCin*  
R
N
Device Clock  
Divider  
Digital Delay  
Phase  
Detector  
PLL2  
CLKoutX  
CLKoutX*  
Input  
Buffer  
7 blocks  
CLKinX  
CLKinX*  
SYSREF  
Digital Delay  
Analog Delay  
CLKoutY  
CLKoutY*  
Global SYSREF  
Divider and DDLY  
LMK04832  
Copyright © 2017, Texas Instruments Incorporated  
18. Simplified Functional Block Diagram for Single Loop Mode  
8.4.2.2 PLL2 With External VCO  
Adding an external VCO is possible using the CLKin1/Fin input port. The input may be single-ended or  
differential. At high frequency the input impedance to Fin is low, a resistive pad is recommended for matching.  
External VCO  
PLL2  
Up to 1 OSCout  
External  
OSCout  
Loop Filter  
OSCout*  
Up to 3  
inputs  
Up to 14  
Device or  
SYSREF  
Clocks  
CLKin1/Fin  
CLKin1*/Fin*  
CPout2  
7 blocks  
OSCin  
OSCin*  
R
N
Device Clock  
Divider  
Digital Delay  
Phase  
Detector  
PLL2  
CLKoutX  
CLKoutX*  
Input  
Buffer  
7 blocks  
CLKinX  
CLKinX*  
SYSREF  
CLKoutY  
CLKoutY*  
Digital Delay  
Analog Delay  
Global SYSREF  
Divider and DDLY  
LMK04832  
Copyright © 2017, Texas Instruments Incorporated  
19. Simplified Functional Block Diagram for Single Loop Mode With External VCO  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.3 Distribution Mode  
20 illustrates the use case of distribution mode. As in all the other use cases, OSCin to OSCout can be used  
as a buffer to OSCin or from clock distribution path via CLKout6, CLKout8, or the SYSREF divider.  
At high frequency, the input impedance to Fin is low and a resistive pad is recommended for matching.  
OSCin  
OSCout  
OSCin*  
OSCout*  
7 blocks  
CLKout6/8  
Device Clock  
Divider  
Digital Delay  
CLKin1/Fin  
CLKin1*/Fin*  
CLKoutX  
CLKoutX*  
Up to 14  
Device or  
SYSREF  
Clocks  
7 blocks  
SYSREF  
Digital Delay  
Analog Delay  
CLKoutY  
CLKoutY*  
Global SYSREF  
Divider and DDLY  
CLKin0  
CLKin0*  
LMK04832  
Copyright © 2017, Texas Instruments Incorporated  
20. Simplified Functional Block Diagram for Distribution Mode  
8.5 Programming  
The LMK04832 device is programmed using 24-bit registers. Each register consists of a 1-bit command field  
(R/W), a 15-bit address field (A14 to A0) and a 8-bit data field (D7 to D0). The contents of each register is  
clocked in MSB first (R/W), and the LSB (D0) last. During programming, the CS* signal is held low. The serial  
data is clocked in on the rising edge of the SCK signal. After the LSB is clocked in, the CS* signal goes high to  
latch the contents into the shift register. It is recommended to program registers in numeric order (for example,  
0x000 to 0x555 with exceptions noted in the Recommended Programming Sequence). Each register consists of  
one or more fields which control the device functionality. See the Electrical Characteristics section and 1 for  
timing details.  
8.5.1 Recommended Programming Sequence  
Registers are generally programmed in numeric order with 0x000 being the first and 0x555 being the last register  
programmed. The recommended programming sequence from POR involves:  
1. Program register 0x000 with RESET = 1.  
2. Program defined registers from 0x000 to 0x165.  
3. If PLL2 is used, program 0x173 with PLL2_PD and PLL2_PRE_PD clear to allow PLL2 to lock after PLL2_N  
is programmed.  
4. Continue programming defined registers from 0x166 to 0x555.  
When using the internal VCO, PLL2_N registers 0x166, 0x167, and 0x168 must be  
programmed after other PLL2 dividers are programed to ensure proper VCO frequency  
calibration. This is also true for PLL2_N_CAL registers 0x163, 0x164, 0x165 when  
PLL2_NCLK_MUX = 1. So if any divider such as PLL2_R is altered to change the VCO  
frequency, the VCO calibration must be run again by programming PLL2_N.  
Power up PLL2 by setting PLL2_PRE_PD = 0 and PLL2_PD = 0 in register 0x173 before  
programming PLL2_N.  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6 Register Maps  
8.6.1 Register Map for Device Programming  
5 provides the register map for device programming. Any register can be read from the same data address it  
is written to.  
5. LMK04832 Register Map  
ADDRESS  
DATA[7:0]  
[14:0]  
23:8  
7
6
5
4
3
2
1
0
SPI_3WIRE  
_DIS  
0x000  
RESET  
0
0
0
0
0
0
POWER  
DOWN  
0x002  
0
0
0
0
0
0
0
0x003  
0x004  
0x005  
0x006  
0x00C  
0x00D  
0x100  
0x101  
ID_DEVICE_TYPE  
ID_PROD[15:8]  
ID_PROD[7:0]  
ID_MASKREV  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
DCLK0_1_DIV[7:0]  
DCLK0_1_DDLY[7:0]  
CLKout0_1_OD  
L
DCLK0_1_DDL  
Y_PD  
0x102  
0x103  
0x104  
0x105  
CLKout0_1_PD  
CLKout0_1_IDL  
DCLK0_1_DDLY[9:8]  
DCLK0_1_BYP DCLK0_1_DCC DCLK0_1_POL  
SCLK0_1_DIS_MODE SCLK0_1_POL  
SCLK0_1_ADLY  
DCLK0_1_DIV[9:8]  
CLKout0_SRC_  
MUX  
0
0
1
0
DCLK0_1_PD  
SCLK0_1_PD  
DCLK0_1_HS  
SCLK0_1_HS  
CLKout1_SRC_  
MUX  
SCLK0_1_ADL  
Y_EN  
0
0
0
0
0x106  
0x107  
0x108  
0x109  
0
0
SCLK0_1_DDLY  
CLKout0_FMT  
CLKout1_FMT  
DCLK2_3_DIV[7:0]  
DCLK2_3_DDLY[7:0]  
DCLK2_3_DDL  
CLKout2_3_OD  
L
0x10A  
0x10B  
0x10C  
0x10D  
CLKout2_3_PD  
CLKout2_3_IDL  
DCLK2_3_DDLY[9:8]  
DCLK2_3_BYP DCLK2_3_DCC DCLK2_3_POL  
SCLK2_3_DIS_MODE SCLK2_3_POL  
SCLK2_3_ADLY  
DCLK2_3_DIV[9:8]  
Y_PD  
CLKout2_SRC_  
MUX  
0
0
1
0
DCLK2_3_PD  
DCLK2_3_HS  
SCLK2_3_HS  
CLKout3_SRC_  
MUX  
SCLK2_3_PD  
SCLK2_3_ADL  
Y_EN  
0
0
0
0
0x10E  
0x10F  
0x110  
0x111  
0
0
SCLK2_3_DDLY  
CLKout2_FMT  
CLKout3_FMT  
DCLK4_5_DIV[7:0]  
DCLK4_5_DDLY[7:0]  
DCLK4_5_DDL  
CLKout4_5_OD  
L
0x112  
0x113  
0x114  
0x115  
CLKout4_5_PD  
CLKout4_5_IDL  
DCLK4_5_DDLY[9:8]  
DCLK4_5_BYP DCLK4_5_DCC DCLK4_5_POL  
SCLK4_5_DIS_MODE SCLK4_5_POL  
SCLK4_5_ADLY  
DCLK4_5_DIV[9:8]  
Y_PD  
CLKout4_SRC_  
MUX  
0
0
1
0
DCLK4_5_PD  
DCLK4_5_HS  
SCLK4_5_HS  
CLKout5_SRC_  
MUX  
SCLK4_5_PD  
SCLK4_5_ADL  
Y_EN  
0
0
0
0
0x116  
0x117  
0x118  
0x119  
0
0
SCLK4_5_DDLY  
CLKout4_FMT  
CLKout5_FMT  
DCLK6_7_DIV[7:0]  
DCLK6_7_DDLY[7:0]  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Register Maps (接下页)  
5. LMK04832 Register Map (接下页)  
ADDRESS  
[14:0]  
DATA[7:0]  
23:8  
7
6
5
4
3
2
1
0
CLKout6_7_OD  
L
DCLK6_7_DDL  
Y_PD  
0x11A  
CLKout6_7_PD  
CLKout6_7_IDL  
DCLK6_7_DDLY[9:8]  
DCLK6_7_BYP DCLK6_7_DCC DCLK6_7_POL  
SCLK6_7_DIS_MODE SCLK6_7_POL  
SCLK6_7_ADLY  
DCLK6_7_DIV[9:8]  
CLKout6_SRC_  
MUX  
0x11B  
0x11C  
0x11D  
0
0
1
0
DCLK6_7_PD  
SCLK6_7_PD  
DCLK6_7_HS  
SCLK6_7_HS  
CLKout7_SRC_  
MUX  
SCLK6_7_ADL  
Y_EN  
0
0
0
0
0x11E  
0x11F  
0x120  
0x121  
0
0
SCLK6_7_DDLY  
CLKout6_FMT  
CLKout7_FMT  
DCLK8_9_DIV[7:0]  
DCLK8_9_DDLY[7:0]  
DCLK8_9_DDL  
CLKout8_9_OD  
L
0x122  
0x123  
0x124  
0x125  
CLKout8_9_PD  
CLKout8_9_IDL  
DCLK8_9_DDLY[9:8]  
DCLK8_9_BYP DCLK8_9_DCC DCLK8_9_POL  
SCLK8_9_DIS_MODE SCLK8_9_POL  
SCLK8_9_ADLY  
DCLK8_9_DIV[9:8]  
Y_PD  
CLKout8_SRC_  
MUX  
0
0
1
0
DCLK8_9_PD  
DCLK8_9_HS  
SCLK8_9_HS  
CLKout9_SRC_  
MUX  
SCLK8_9_PD  
SCLK8_9_ADL  
Y_EN  
0
0
0
0
0x126  
0x127  
0x128  
0x129  
0
0
SCLK8_9_DDLY  
CLKout8_FMT  
CLKout9_FMT  
DCLK10_11_DIV[7:0]  
DCLK10_11_DDLY[7:0]  
CLKout10_11_P CLKout10_11_ CLKout10_11_I DCLK10_11_D  
0x12A  
0x12B  
0x12C  
0x12D  
DCLK10_11_DDLY[9:8]  
DCLK10_11_DIV[9:8]  
D
ODL  
DL  
DLY_PD  
CLKout10_SRC  
_MUX  
DCLK10_11_BY DCLK10_11_D  
DCLK10_11_P  
OL  
0
1
DCLK10_11_PD  
DCLK10_11_HS  
SCLK10_11_HS  
P
CC  
SCLK10_11_DIS_MODE  
SCLK10_11_ADLY  
CLKout11_SRC  
_MUX  
SCLK10_11_P  
OL  
0
0
SCLK10_11_PD  
SCLK10_11_AD  
LY_EN  
0
0
0
0
0x12E  
0x12F  
0x130  
0x131  
0
0
SCLK10_11_DDLY  
CLKout10_FMT  
CLKout11_FMT  
DCLK12_13_DIV[7:0]  
DCLK12_13_DDLY[7:0]  
CLKout12_13_P CLKout12_13_ CLKout12_13_I DCLK12_13_D  
0x132  
0x133  
0x134  
0x135  
DCLK12_13_DDLY[9:8]  
DCLK12_13_DIV[9:8]  
D
ODL  
DL  
DLY_PD  
CLKout12_SRC  
_MUX  
DCLK12_13_BY DCLK12_13_D  
DCLK12_13_P  
OL  
0
1
DCLK12_13_PD  
DCLK12_13_HS  
SCLK12_13_HS  
P
CC  
SCLK12_13_DIS_MODE  
SCLK12_13_ADLY  
SCLK12_13_DDLY  
CLKout13_SRC  
_MUX  
SCLK12_13_P  
OL  
0
0
SCLK12_13_PD  
SCLK12_13_AD  
LY_EN  
0
0
0
0
0x136  
0x137  
0x138  
0
0
CLKout13_FMT  
VCO_MUX  
CLKout12_FMT  
OSCout_FMT  
0
0
0
OSCout_MUX  
SYSREF_REQ_  
EN  
0x139  
0
0
0
0
SYNC_BYPASS  
0
SYSREF_MUX  
0x13A  
0x13B  
0x13C  
0x13D  
0x13E  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
0
0
0
0
0
0
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
0
0
SYSREF_PULSE_CNT  
46  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Register Maps (接下页)  
5. LMK04832 Register Map (接下页)  
ADDRESS  
[14:0]  
DATA[7:0]  
23:8  
7
6
5
4
3
2
1
0
PLL2_RCLK_  
MUX  
PLL2_NCLK_  
MUX  
0x13F  
0
PLL1_NCLK_MUX  
FB_MUX  
FB_MUX_EN  
SYSREF_GBL_  
PD  
SYSREF_DDLY SYSREF_PLSR  
0x140  
PLL1_PD  
VCO_LDO_PD  
DDLYd12_EN  
VCO_PD  
OSCin_PD  
SYSREF_PD  
DDLYd4_EN  
_PD  
_PD  
DDLYd_  
SYSREF_EN  
0x141  
0x142  
0x143  
DDLYd10_EN  
DDLYd8_EN  
DDLYd6_EN  
DDLYd2_EN  
DDLYd0_EN  
DDLYd_STEP_CNT  
SYNC_1SHOT_  
EN  
SYNC_PLL2_  
DLD  
SYNC_PLL1_  
DLD  
SYSREF_CLR  
SYNC_POL  
SYNC_EN  
SYNC_MODE  
SYNC_DISSYS  
REF  
0x144  
0x145  
0x146  
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
0
SYNC_DIS2  
0
SYNC_DIS0  
0
PLL1R_SYNC_  
EN  
PLL2R_SYNC_  
EN  
0
PLL1R_SYNC_SRC  
CLKin_SEL_PIN CLKin_SEL_PIN  
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
CLKin2_TYPE  
CLKin1_TYPE  
CLKin0_TYPE  
_EN  
_POL  
CLKin_SEL_  
AUTO_  
REVERT_EN  
CLKin_SEL_  
AUTO_EN  
0x147  
CLKin_SEL_MANUAL  
CLKin1_DEMUX  
CLKin0_DEMUX  
0x148  
0x149  
0x14A  
0x14B  
0
0
0
0
CLKin_SEL0_MUX  
CLKin_SEL1_MUX  
RESET_MUX  
CLKin_SEL0_TYPE  
CLKin_SEL1_TYPE  
RESET_TYPE  
SDIO_RDBK_  
TYPE  
0
HOLDOVER_  
FORCE  
LOS_TIMEOUT  
LOS_EN  
TRACK_EN  
MAN_DAC_EN  
MAN_DAC[9:8]  
0x14C  
0x14D  
0x14E  
0x14F  
MAN_DAC[7:0]  
0
0
DAC_TRIP_LOW  
DAC_TRIP_HIGH  
DAC_CLK_MULT  
DAC_CLK_CNTR  
HOLDOVER_ LOS_EXTERNA  
CLKin_OVERRI  
DE  
HOLDOVER_  
EXIT_MODE  
HOLDOVER_  
VTUNE_DET  
CLKin_SWITCH  
_CP_TRI  
HOLDOVER_  
EN  
0x150  
0
0
PLL1_DET L_INPUT  
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0x15B  
0x15C  
0x15D  
0x15E  
0x15F  
0x160  
0x161  
0
0
0
0
0
HOLDOVER_DLD_CNT[13:8]  
HOLDOVER_DLD_CNT[7:0]  
CLKin0_R[13:8]  
0
0
0
0
CLKin0_R[7:0]  
CLKin1_R[7:0]  
CLKin2_R[7:0]  
PLL1_N[7:0]  
CLKin1_R[13:8]  
CLKin2_R[13:8]  
PLL1_N[13:8]  
PLL1_WND_SIZE  
PLL1_CP_TRI  
PLL1_CP_POL  
PLL1_CP_GAIN  
PLL1_DLD_CNT[13:8]  
0
0
0
0
0
0
PLL1_DLD_CNT[7:0]  
0
HOLDOVER_EXIT_NADJ  
PLL1_LD_TYPE  
PLL2_R  
PLL1_LD_MUX  
0
0
PLL2_R  
PLL2_REF_2X_  
EN  
0x162  
PLL2_P  
0
0
OSCin_FREQ  
PLL2_XTAL_EN  
0x163  
0x164  
0x165  
0
0
0
0
0
PLL2_N_CAL[17:16]  
PLL2_N_CAL[15:8]  
PLL2_N_CAL[7:0]  
版权 © 2017–2018, Texas Instruments Incorporated  
47  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Register Maps (接下页)  
5. LMK04832 Register Map (接下页)  
ADDRESS  
[14:0]  
DATA[7:0]  
23:8  
7
6
5
4
3
2
1
0
0x166  
0x167  
0x168  
0x169  
0x16A  
0x16B  
0x16C  
0x173  
0x177  
0
0
0
0
0
0
PLL2_N[17:16]  
PLL2_N[15:8]  
PLL2_N[7:0]  
0
0
PLL2_WND_SIZE  
PLL2_CP_GAIN  
PLL2_CP_POL  
PLL2_CP_TRI  
PLL2_DLD_EN  
0
PLL2_DLD_CNT[13:8]  
PLL2_DLD_CNT[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PLL2_PRE_PD  
PLL2_PD  
PLL1R_RST  
CLR_PLL1_LD_ CLR_PLL2_LD_  
0x182  
0x183  
0
0
0
0
0
0
0
0
0
0
LOST  
LOST  
RB_PLL1_DLD_  
LOST  
RB_PLL2_DLD_  
LOST  
RB_PLL1_DLD  
RB_PLL2_DLD  
RB_CLKin2_  
SEL  
RB_CLKin1_  
SEL  
RB_CLKin0_  
SEL  
RB_CLKin2_  
LOS  
RB_CLKin1_  
LOS  
RB_CLKin0_  
LOS  
0x184  
0x185  
0x188  
0x555  
RB_DAC_VALUE[9:8]  
RB_DAC_VALUE[7:0]  
RB_DAC_RAIL RB_DAC_HIGH RB_DAC_LOW  
SPI_LOCK  
RB_  
HOLDOVER  
RB_DAC_  
LOCKED  
0
X
X
48  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2 Device Register Descriptions  
The following section details the fields of each register, the Power-On-Reset Defaults, and specific descriptions  
of each bit.  
In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as  
X or Y. In these cases, the X represents even numbers from 0 to 12 and the Y represents odd numbers from 1 to  
13. In the case where X and Y are both used in a bit name, then Y = X + 1.  
8.6.2.1 System Functions  
8.6.2.1.1 RESET, SPI_3WIRE_DIS  
This register contains the RESET function and the ability to turn off 3-wire SPI mode. To use a 4-wire SPI mode,  
selecting SPI Read back in one of the output MUX settings. For example CLKin0_SEL_MUX or RESET_MUX. It  
is possible to have 3-wire and 4-wire readback at the same time.  
6. Register 0x000  
BIT  
7
NAME  
RESET  
NA  
POR DEFAULT  
DESCRIPTION  
0: Normal operation  
1: Reset (automatically cleared)  
0
0
6:5  
Reserved  
Disable 3-wire SPI mode.  
0: 3 Wire Mode enabled  
1: 3 Wire Mode disabled  
4
SPI_3WIRE_DIS  
NA  
0
3:0  
NA  
Reserved  
8.6.2.1.2 POWERDOWN  
This register contains the POWERDOWN function.  
7. Register 0x002  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:1  
NA  
0
Reserved  
0: Normal operation  
1: Power down device.  
0
POWERDOWN  
0
8.6.2.1.3 ID_DEVICE_TYPE  
This register contains the product device type. This is read only register.  
8. Register 0x003  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:0  
ID_DEVICE_TYPE  
6
PLL product device type.  
版权 © 2017–2018, Texas Instruments Incorporated  
49  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.1.4 ID_PROD  
These registers contain the product identifier. This is a read only register.  
9. ID_PROD Field Registers  
MSB  
LSB  
0x004[7:0] / ID_PROD[15:8]  
0x005[7:0] / ID_PROD[7:0]  
10. Registers 0x004 and 0x005  
REGISTER  
0x004  
BIT  
7:0  
7:0  
FIELD NAME  
ID_PROD[15:8]  
ID_PROD[7:0]  
POR DEFAULT  
209 (0xD1)  
99 (0x63)  
DESCRIPTION  
MSB of the product identifier.  
LSB of the product identifier.  
0x005  
8.6.2.1.5 ID_MASKREV  
This register contains the IC version identifier. This is a read only register.  
11. Register 0x006  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:0  
ID_MASKREV  
112 (0x70)  
IC version identifier for LMK04832.  
8.6.2.1.6 ID_VNDR  
These registers contain the vendor identifier. This is a read only register.  
12. ID_VNDR Field Registers  
MSB  
LSB  
0x00C[7:0] / ID_VNDR[15:8]  
0x00D[7:0] / ID_VNDR[7:0]  
13. Registers 0x00C, 0x00D  
REGISTER BIT  
NAME  
POR DEFAULT  
81 (0x51)  
DESCRIPTION  
0x00C  
0x00D  
7:0  
7:0  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
MSB of the vendor identifier.  
LSB of the vendor identifier.  
4 (0x04)  
50  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls  
8.6.2.2.1 DCLKX_Y_DIV  
The device clock divider can drive up to two outputs, an even (X) and an odd (Y) clock output. Divide is a 10 bit  
number and split across two registers.  
14. DCLKX_Y_DIV Field Registers  
MSB  
LSB  
0x0102[1:0] = DCLK0_1_DIV[9:8]  
0x010A[1:0] = DCLK2_3_DIV[9:8]  
0x0112[1:0] = DCLK4_5_DIV[9:8]  
0x011A[1:0] = DCLK6_7_DIV[9:8]  
0x0122[1:0] = DCLK8_9_DIV[9:8]  
0x012A[1:0] = DCLK10_11_DIV[9:8]  
0x0132[1:0] = DCLK12_13_DIV[9:8]  
0x100[7:0] = DCLK0_1_DIV[7:0]  
0x108[7:0] = DCLK2_3_DIV[7:0]  
0x110[7:0] = DCLK4_5_DIV[7:0]  
0x118[7:0] = DCLK6_7_DIV[7:0]  
0x120[7:0] = DCLK8_9_DIV[7:0]  
0x128[7:0] = DCLK10_11_DIV[7:0]  
0x130[7:0] = DCLK12_13_DIV[7:0]  
15. Registers 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130  
0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
REGISTER BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x102,  
0x10A,  
0x112,  
0x11A,  
0x122,  
DCLKX_Y_DIV sets the divide value for the clock output, the divide  
may be even or odd. Both even or odd divides output a 50% duty  
cycle clock if duty cycle correction (DCC) is enabled.  
1:0  
DCLKX_Y_DIV[9:8]  
X_Y = 0_1 2  
X_Y = 2_3 4  
X_Y = 4_5 8  
X_Y = 6_7 8  
X_Y = 8_9 8  
X_Y = 10_11 8  
X_Y = 12_13 2  
Field Value  
0 (0x00)  
Divider Value  
Reserved  
0x12A, 0x132  
(1)  
1 (0x01)  
1
0x100,  
0x108,  
0x110,  
0x118,  
0x120,  
2 (0x02)  
2
...  
...  
7:0  
DCLKX_Y_DIV[7:0]  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
0x128, and  
0x130  
(1) Duty cycle correction must also be enabled, DCLKX_Y_DCC = 1.  
版权 © 2017–2018, Texas Instruments Incorporated  
51  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.2.2 DCLKX_Y_DDLY  
This register controls the digital delay for the device clock outputs.  
16. DCLKX_Y_DDLY Field Registers  
MSB  
LSB  
0x0102[2:3] = DCLK0_1_DDLY[9:8]  
0x010A[2:3] = DCLK2_3_DDLY[9:8]  
0x0112[2:3] = DCLK4_5_DDLY[9:8]  
0x011A[2:3] = DCLK6_7_DDLY[9:8]  
0x0122[2:3] = DCLK8_9_DDLY[9:8]  
0x012A[2:3] = DCLK10_11_DDLY[9:8]  
0x0132[2:3] = DCLK12_13_DDLY[9:8]  
0x101[7:0] = DCLK0_1_DDLY[7:0]  
0x109[7:0] = DCLK2_3_DDLY[7:0]  
0x111[7:0] = DCLK4_5_DDLY[7:0]  
0x119[7:0] = DCLK6_7_DDLY[7:0]  
0x121[7:0] = DCLK8_9_DDLY[7:0]  
0x129[7:0] = DCLK10_11_DDLY[7:0]  
0x131[7:0] = DCLK12_13_DDLY[7:0]  
17. Registers 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131  
0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
REGISTER BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Static digital delay which takes effect after a SYNC.  
0x102,  
0x10A,  
0x112,  
0x11A,  
0x122,  
Field Value  
0 (0x00)  
1 (0x01)  
...  
Delay Values  
Reserved  
2:3 DCLKX_Y_DDLY[9:8]  
Reserved  
0x12A, 0x132  
...  
10 (0x0A)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
...  
Reserved  
0x101,  
0x109,  
0x111,  
0x119,  
0x121,  
8
9
7:0 DCLKX_Y_DDLY[7:0]  
...  
0x129, 0x131  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
Depending on the DCLK divide value, there may be an adjustment in phase delay required. 18 illustrate the  
impact of different divide values on the final digital delay.  
18. Digital Delay Adjustment based on Divide Values  
Divide Value  
Digital delay Adjustment  
2, 3  
-2(1)  
4, 7 to 1023  
0
5
6
+3  
+1  
(1) Before SYNC, program divider to Divide-by-4, then back to Divide-by-2 or Divide-by-3 to ensure '-2' delay relationship.  
For example, 19 illustrates a system with clock outputs having divide values /2,/4,/5 and /6 to share a common  
edge.  
19. Digital Delay Adjustment Illustration  
Divide Value  
Programmed DDLY  
Actual DDLY  
2
4
5
6
13  
11  
8
11  
11  
11  
11  
10  
52  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.2.3 CLKoutX_Y_PD, CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKX_Y_DDLY_PD, DCLKX_Y_DDLY[9:8],  
DCLKX_Y_DIV[9:8]  
20. Registers 0x102, 0x10A, 0x112, 0x11A, 0x122, 0x12A, 0x132  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Power down the clock group defined by X and Y.  
0: Enabled  
7
CLKoutX_Y_PD  
1
1: Power down entire clock group including both CLKoutX and CLKoutY.  
Sets output drive level for clocks. This has no impact for the even clock output  
in bypass mode.  
0: Normal operation  
6
CLKoutX_Y_ODL  
0
1: Higher current consumption and lower noise floor.  
Sets input drive level for clocks.  
0: Normal operation  
1: Higher current consumption and lower noise floor.  
5
4
CLKoutX_Y_IDL  
0
0
Powerdown the device clock digital delay circuitry.  
0: Enabled  
DCLKX_Y_DDLY_PD  
1: Power down static digital delay for device clock divider.  
3:2  
1:0  
DCLKX_Y_DDLY[9:8]  
DCLKX_Y_DIV[9:8]  
0
0
MSB of static digital delay, see DCLKX_Y_DDLY.  
MSB of device clock divide value, see 15.  
版权 © 2017–2018, Texas Instruments Incorporated  
53  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.2.4 CLKoutX_SRC_MUX, CLKoutX_Y_PD, DCLKX_Y_BYP, DCLKX_Y_DCC, DCLKX_Y_POL, DCLKX_Y_HS  
These registers control the analog delay properties for the device clocks.  
21. Registers 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133  
BIT  
7
NAME  
NA  
POR DEFAULT  
DESCRIPTION  
0
1
Reserved  
Reserved  
6
NA  
Select CLKoutX clock source. Source must also be powered up.  
5
4
CLKoutX_SRC_MUX  
CLKoutX_Y_PD  
0
0
0: Device Clock  
1: SYSREF  
Power down the clock group defined by X and Y.  
0: Enabled  
1: Power down enter clock group X_Y.  
Enable high performance bypass path for even clock outputs.  
0: CLKoutX not in high performance bypass mode. CML is not valid for  
CLKoutX_FMT.  
3
2
DCLKX_BYP  
0
0
1: CLKoutX in high performance bypass mode. Only CML clock format is valid.  
Duty cycle correction for device clock divider. Required for half step.  
0: No duty cycle correction.  
DCLKX_Y_DCC  
1: Duty cycle correction enabled.  
Invert polarity of device clock output. This also applies to CLKoutX in high  
performance bypass mode. Polarity invert is a method to get a half-step phase  
adjustment in high performance bypass mode or /1 divide value.  
0: Normal polarity  
1
0
DCLKX_Y_POL  
DCLKX_Y_HS  
0
0
1: Invert polarity  
Sets the device clock half step value. Must be set to zero (0) for a divide of 1.  
No effect if DCLKX_Y_DCC = 0.  
0: No phase adjustment  
1: Adjust device clock phase -0.5 clock distribution path cycles.  
54  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.2.5 CLKoutY_SRC_MUX, SCLKX_Y_PD, SCLKX_Y_DIS_MODE, SCLKX_Y_POL, SCLKX_Y_HS  
These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay,  
and half step.  
22. Registers 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Select CLKoutX clock source. Source must also be powered up.  
5
4
CLKoutY_SRC_MUX  
SCLKX_Y_PD  
0
1
0: Device Clock  
1: SYSREF  
Power down the SYSREF clock output circuitry.  
0: SYSREF enabled  
1: Power down SYSREF path for clock pair.  
Set disable mode for clock outputs controlled by SYSREF. Some cases will  
assert when SYSREF_GBL_PD = 1.  
Field Value  
0 (0x00)  
Disable Mode  
Active in normal operation  
1 (0x01)  
If SYSREF_GBL_PD = 1, the output is  
a logic low, otherwise it is active.  
3:2  
SCLKX_Y_DIS_MODE  
0
2 (0x02)  
If SYSREF_GBL_PD = 1, the output is  
a nominal Vcm voltage for odd clock  
channels(1) and low for even clocks.  
Otherwise outputs are active.  
3 (0x03)  
Output is a nominal Vcm voltage(1)  
Sets the polarity of clock on SCLKX_Y when SYSREF clock output is selected  
with CLKoutX_MUX or CLKoutY_MUX.  
0: Normal  
1: Inverted  
1
0
SCLKX_Y_POL  
SCLKX_Y_HS  
0
0
Sets the local SYSREF clock half step value.  
0: No phase adjustment  
1: Adjust device SYSREF phase -0.5 clock distribution path cycles.  
(1) If LVPECL mode is used with emitter resistors to ground, the output Vcm will be approximately 0 V, each pin will be approximately 0 V.  
If CML mode is used with pullups to VCC, the output VCM will be approximately VCC V, each pin will be approximately VCC V.  
版权 © 2017–2018, Texas Instruments Incorporated  
55  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.2.6 SCLKX_Y_ADLY_EN, SCLKX_Y_ADLY  
These registers set the analog delay parameters for the SYSREF outputs.  
23. Registers 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Enables analog delay for the SYSREF output.  
0: Disabled  
1: Enabled  
SCLKX_Y  
_ADLY_EN  
5
0
SYSREF analog delay in approximately 21 ps steps. Selecting analog delay  
adds an additional 125 ps in propagation delay. Range is 125 ps to 608 ps.  
Field Value  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
...  
Delay Value  
125 ps  
146 ps (+21 ps from 0x00)  
167 ps (+42 ps from 0x00)  
188 ps (+63 ps from 0x00)  
...  
SCLKX_Y  
_ADLY  
4:0  
0
14 (0xE)  
15 (0xF)  
587 ps (+462 ps from 0x00)  
608 ps (+483 ps from 0x00)  
8.6.2.2.7 SCLKX_Y_DDLY  
24. Registers 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:4  
NA  
0
Reserved  
Set digital delay value for SYSREF clock ( minimum 8  
)
3:0  
SCLKX_Y_DDLY  
0
56  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.2.8 CLKoutY_FMT, CLKoutX_FMT  
The difference in the tables is that some of the clock outputs have inverted CMOS polarity settings.  
25. Registers 0x107 (CLKout0_1), 0x11F (CLKout6_7), 0x12F (CLKout10_11)  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Set CLKoutY clock format  
Field Value  
0 (0x00)  
Output Format  
Powerdown  
1 (0x01)  
LVDS  
2 (0x02)  
HSDS 6 mA  
3 (0x03)  
HSDS 8 mA  
4 (0x04)  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
5 (0x05)  
6 (0x06)  
7:4  
CLKoutY_FMT  
0
7 (0x07)  
CML 16 mA  
8 (0x08)  
CML 24 mA  
9 (0x09)  
CML 32 mA  
10 (0x0A)  
CMOS (Off/Inv)  
CMOS (Norm/Off)  
CMOS (Inv/Inv)  
CMOS (Inv/Norm)  
CMOS (Norm/Inv)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
CMOS (Norm/Norm)  
Set CLKoutX clock format  
Output Format  
DCLKX_BYP = 0  
Output Format  
DCLKX_BYP = 1  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Powerdown  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CML 16 mA  
CML 24 mA  
CML 32 mA  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
3:0  
CLKoutX_FMT  
0
Reserved  
Reserved  
Reserved  
CMOS (Off/Inv)(1)  
CMOS (Norm/Off)(1)  
CMOS (Inv/Inv)(1)  
CMOS (Inv/Norm)(1)  
CMOS (Norm/Inv)(1)  
CMOS (Norm/Norm)(1)  
(1) Only valid for CLKout10.  
版权 © 2017–2018, Texas Instruments Incorporated  
57  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
26. Registers 0x10F (CLKout2_3), 0x117 (CLKout4_5), 0x127 (CLKout8_9), 0x137 (CLKout12_13)  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Set CLKoutY clock format  
Field Value  
0 (0x00)  
Output Format  
Powerdown  
1 (0x01)  
LVDS  
2 (0x02)  
HSDS 6 mA  
HSDS 8 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7:4  
CLKoutY_FMT  
0
7 (0x07)  
CML 16 mA  
8 (0x08)  
CML 24 mA  
9 (0x09)  
CML 32 mA  
10 (0x0A)  
CMOS (Off/Norm)  
CMOS (Inv/Off)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
CMOS (Norm/Norm)  
CMOS (Norm/Inv)  
CMOS (Inv/Norm)  
CMOS (Inv/Inv)  
15 (0x0F)  
Set CLKoutX clock format  
Output Format  
DCLKX_BYP = 0  
Output Format  
DCLKX_BYP = 1  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Powerdown  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CML 16 mA  
CML 24 mA  
CML 32 mA  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
3:0  
CLKoutX_FMT  
0
Reserved  
Reserved  
Reserved  
CMOS (Off/Norm)(1)  
CMOS (Inv/Off)(1)  
CMOS (Norm/Norm)(1)  
CMOS (Norm/Inv)(1)  
CMOS (Inv/Norm)(1)  
CMOS (Inv/Inv)(1)  
(1) Only valid for CLKout8.  
58  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.3 SYSREF, SYNC, and Device Config  
8.6.2.3.1 VCO_MUX, OSCout_MUX, OSCout_FMT  
27. Register 0x138  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
Selects clock distribution path source from VCO0, VCO1, or CLKin (external  
VCO)  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
VCO Selected  
VCO 0  
6:5  
VCO_MUX  
2
0
VCO 1  
Fin1 / CLKin1 (external VCO)  
Reserved  
Select the source for OSCout:  
0: Buffered OSCin  
4
OSCout_MUX  
1: Feedback Mux  
Selects the output format of OSCout. When powered down, these pins may be  
used as CLKin2.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
OSCout Format  
Power down (CLKin2)  
LVDS  
Reserved  
Reserved  
LVPECL 1600 mVpp  
LVPECL 2000 mVpp  
LVCMOS (Norm / Inv)  
LVCMOS (Inv / Norm)  
LVCMOS (Norm / Norm)  
LVCMOS (Inv / Inv)  
LVCMOS (Off / Norm)  
LVCMOS (Off / Inv)  
LVCMOS (Norm / Off)  
LVCMOS (Inv / Off)  
LVCMOS (Off / Off)  
3:0  
OSCout_FMT  
4
版权 © 2017–2018, Texas Instruments Incorporated  
59  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.3.2 SYSREF_REQ_EN, SYNC_BYPASS, SYSREF_MUX  
This register sets the source for the SYSREF outputs. Refer to 8 and SYNC/SYSREF.  
28. Register 0x139  
BIT  
7:6  
5
NAME  
NA  
POR DEFAULT  
DESCRIPTION  
0
0
Reserved  
Reserved  
NA  
Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for  
continuous pulses. When using this feature enable pulser and set  
SYSREF_MUX = 2 (Pulser).  
4
SYSREF_REQ_EN  
0
Bypass SYNC polarity invert and other circuitry.  
0: Normal  
1: SYNC signal is bypassed  
3
2
SYNC_BYPASS  
NA  
0
0
Reserved  
Selects the SYSREF source.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
SYSREF Source  
Normal SYNC  
1:0  
SYSREF_MUX  
0
Re-clocked  
SYSREF Pulser  
SYSREF Continuous  
60  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.3.3 SYSREF_DIV  
These registers set the value of the SYSREF output divider.  
29. SYSREF_DIV[12:0]  
MSB  
LSB  
0x13A[4:0] = SYSREF_DIV[12:8]  
0x13B[7:0] = SYSREF_DIV[7:0]  
30. Registers 0x13A and 0x13B  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x13A  
7:5  
NA  
0
Reserved  
Divide value for the SYSREF outputs.  
Field Value  
0 to 7 (0x00 to 0x07)  
8 (0x08)  
Divide Value  
0x13A  
0x13B  
4:0  
7:0  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
12  
0
Reserved  
8
9
9 (0x09)  
...  
...  
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
8.6.2.3.4 SYSREF_DDLY  
These registers set the delay of the SYSREF digital delay value.  
31. SYSREF Digital Delay Register Configuration, SYSREF_DDLY[12:0]  
MSB  
LSB  
0x13D[7:0] / SYSREF_DDLY[7:0]  
0x13C[4:0] / SYSREF_DDLY[12:8]  
32. Registers 0X13C and 0X13D  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x13C  
7:5  
NA  
0
Reserved  
Sets the value of the SYSREF digital delay.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Delay Value  
0x13C  
0x13D  
4:0  
7:0  
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
0
8
Reserved  
8
9
9 (0x09)  
...  
...  
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
版权 © 2017–2018, Texas Instruments Incorporated  
61  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.3.5 SYSREF_PULSE_CNT  
This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See SYSREF_REQ_EN,  
SYNC_BYPASS, SYSREF_MUX for further description of SYSREF's outputs.  
Programming the register causes the specified number of pulses to be output if "SYSREF Pulses" is selected by  
SYSREF_MUX and SYSREF functionality is powered up.  
33. Register 0x13E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:2  
NA  
0
Reserved  
Sets the number of SYSREF pulses generated when not in continuous mode.  
See SYSREF_REQ_EN, SYNC_BYPASS, SYSREF_MUX for more information  
on SYSREF modes.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Number of Pulses  
1 pulse  
1:0  
SYSREF_PULSE_CNT  
3
2 pulses  
4 pulses  
8 pulses  
8.6.2.3.6 PLL2_RCLK_MUX, PLL2_NCLK_MUX, PLL1_NCLK_MUX, FB_MUX, FB_MUX_EN  
This register controls the feedback feature.  
34. Register 0x13F  
BIT  
7
NAME  
PLL2_RCLK_MUX  
NA  
POR DEFAULT  
DESCRIPTION  
Selects the source for PLL2 reference.  
0
0
0
0: OSCin  
1: Currently selected CLKin.  
6
Reserved  
Selects the input to the PLL2 N Divider  
0: PLL2 Prescaler  
5
PLL2_NCLK_MUX  
1: Feedback Mux  
Selects the input to the PLL1 N Divider.  
0: OSCin  
1: Feedback Mux  
4:3  
2:1  
0
PLL1_NCLK_MUX  
0
0
0
2: PLL2 Prescaler  
When in 0-delay mode, the feedback mux selects the clock output to be fed  
back into the PLL1 N Divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Source  
CLKout6  
FB_MUX  
CLKout8  
SYSREF Divider  
External  
When using 0-delay, FB_MUX_EN must be set to 1 power up the feedback  
mux.  
0: Feedback mux powered down  
1: Feedback mux enabled  
FB_MUX_EN  
62  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.3.7 PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_PD, SYSREF_DDLY_PD,  
SYSREF_PLSR_PD  
This register contains power down controls for OSCin and SYSREF functions.  
35. Register 0x140  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Power down PLL1  
0: Normal operation  
1: Power down  
7
PLL1_PD  
1
Power down VCO_LDO  
0: Normal operation  
1: Power down  
6
5
4
VCO_LDO_PD  
VCO_PD  
1
1
0
Power down VCO  
0: Normal operation  
1: Power down  
Power down the OSCin port.  
0: Normal operation  
1: Power down  
OSCin_PD  
Power down individual SYSREF outputs depending on the setting of  
SCLKX_Y_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows  
many SYSREF outputs to be controlled through a single bit.  
0: Normal operation  
3
2
SYSREF_GBL_PD  
SYSREF_PD  
0
0
1: Activate Power down Mode  
Power down the SYSREF circuitry and divider. If powered down, SYSREF  
output mode cannot be used. SYNC cannot be provided either.  
0: SYSREF can be used as programmed by individual SYSREF output  
registers.  
1: Power down  
Power down the SYSREF digital delay circuitry.  
0: Normal operation, SYSREF digital delay may be used. Must be powered up  
during SYNC for deterministic phase relationship with other clocks.  
1: Power down  
1
0
SYSREF_DDLY_PD  
SYSREF_PLSR_PD  
0
0
Powerdown the SYSREF pulse generator.  
0: Normal operation  
1: Powerdown  
8.6.2.3.8 DDLYdSYSREF_EN, DDLYdX_EN  
This register enables dynamic digital delay for enabled device clocks and SYSREF when DDLYd_STEP_CNT is  
programmed.  
36. Register 0x141  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Enables dynamic digital delay on  
SYSREF outputs  
7
DDLYd _SYSREF_EN  
0
Enables dynamic digital delay on  
DCLKout12  
6
5
4
3
2
1
0
DDLYd12_EN  
DDLYd10_EN  
DDLYd8_EN  
DDLYd6_EN  
DDLYd4_EN  
DDLYd2_EN  
DDLYd0_EN  
0
0
0
0
0
0
0
Enables dynamic digital delay on  
DCLKout10  
Enables dynamic digital delay on  
DCLKout8  
0: Disabled  
1: Enabled  
Enables dynamic digital delay on  
DCLKout6  
Enables dynamic digital delay on  
DCLKout4  
Enables dynamic digital delay on  
DCLKout2  
Enables dynamic digital delay on  
DCLKout0  
版权 © 2017–2018, Texas Instruments Incorporated  
63  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.3.9 DDLYd_STEP_CNT  
This register sets the number of dynamic digital delay adjustments occur. Upon programming, the dynamic digital  
delay adjustment begins for each clock output with dynamic digital delay enabled. Dynamic digital delay can only  
be started by SPI.  
Other registers must be set: SYNC_MODE = 3  
37. Register 0x142  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Sets the number of dynamic digital delay adjustments that will occur.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
Dynamic Digital Delay Adjustments  
No Adjust  
1 step  
7:0  
DDLYd_STEP_CNT  
0
2 steps  
3 steps  
...  
254 (0xFE)  
255 (0xFF)  
254 steps  
255 steps  
64  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.3.10 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD,  
SYNC_MODE  
This register sets general SYNC parameters such as polarization, and mode. Refer to 8 for block diagram.  
Refer to 1 for using SYNC_MODE for specific SYNC use cases.  
38. Register 0x143  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Except during SYSREF Setup Procedure (see SYNC/SYSREF), this bit should  
7
SYSREF_CLR  
0
always be programmed to 0. While this bit is set, extra current is used. Refer to  
.
SYNC one shot enables edge sensitive SYNC.  
0: SYNC is level sensitive and outputs will be held in SYNC as long as SYNC  
is asserted.  
6
SYNC_1SHOT_EN  
0
1: SYNC is edge sensitive, outputs will be SYNCed on rising edge of SYNC.  
This results in the clock being held in SYNC for a minimum amount of time.  
Sets the polarity of the SYNC pin.  
0: Normal  
1: Inverted  
5
4
SYNC_POL  
SYNC_EN  
0
0
Enables the SYNC functionality.  
0: Disabled  
1: Enabled  
0: Off  
3
2
SYNC_PLL2_DLD  
SYNC_PLL1_DLD  
0
0
1: Assert SYNC until PLL2 DLD = 1  
0: Off  
1: Assert SYNC until PLL1 DLD = 1  
Sets the method of generating a SYNC event.  
Field Value  
SYNC Generation  
Prevent SYNC Pin, SYNC_PLL1_DLD  
flag, or SYNC_PLL2_DLD flag from  
generating a SYNC event.  
0 (0x00)  
SYNC event generated from SYNC pin  
or if enabled the SYNC_PLL1_DLD  
flag or SYNC_PLL2_DLD flag.  
1 (0x01)  
2 (0x02)  
1:0  
SYNC_MODE  
1
For use with pulser - SYNC/SYSREF  
pulses are generated by pulser block  
via SYNC Pin or if enabled  
SYNC_PLL1_DLD flag or  
SYNC_PLL2_DLD flag.  
For use with pulser - SYNC/SYSREF  
pulses are generated by pulser block  
when programming register 0x13E  
(SYSREF_PULSE_CNT) is written to  
(see ).  
3 (0x03)  
版权 © 2017–2018, Texas Instruments Incorporated  
65  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.3.11 SYNC_DISSYSREF, SYNC_DISX  
SYNC_DISX will prevent a clock output from being synchronized or interrupted by a SYNC event or when  
outputting SYSREF.  
39. Register 0x144  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Prevent the SYSREF clocks from becoming synchronized during a SYNC  
event. If SYNC_DISSYSREF is enabled it will continue to operate normally  
during a SYNC event.  
7
SYNC_DISSYSREF  
0
6
5
4
3
2
1
0
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0
0
0
0
0
0
0
Prevent the device clock output from becoming synchronized during a SYNC  
event or SYSREF clock. If SYNC_DIS bit for a particular output is enabled  
then it will continue to operate normally during a SYNC event or SYSREF  
clock.  
8.6.2.3.12 PLL1R_SYNC_EN, PLL1R_SYNC_SRC, PLL2R_SYNC_EN  
These bits are used when synchronizing PLL1 and PLL2 R dividers. Refer to Synchronizing PLL R Dividers for  
more information.  
40. Register 0x145  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
Enable synchronization for PLL1 R divider  
0: Not enabled  
6
PLL1R_SYNC_EN  
0
1: Enabled  
Select the source for PLL1 R divider synchronization  
Field Value  
Definition  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Reserved  
SYNC Pin  
CLKin0  
5:4  
PLL1R_SYNC_SRC  
0
Reserved  
Enable synchronization for PLL2 R divider. Synchronization for PLL2 R always  
comes from the SYNC pin.  
0: Not enabled  
1: Enabled  
3
PLL2R_SYNC_EN  
NA  
0
0
2:0  
Reserved  
66  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.4 (0x146 - 0x149) CLKin Control  
8.6.2.4.1 CLKin_SEL_PIN_EN, CLKin_SEL_PIN_POL, CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE,  
CLKin1_TYPE, CLKin0_TYPE  
This register has CLKin enable and type controls. See Input Clock Switching for more info on how clock input  
selection works.  
41. Register 0x146  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Enables pin control according to 12.  
7
CLKin_SEL_PIN_EN  
0
Inverts the CLKin polarity for use in pin select mode.  
6
5
4
3
CLKin_SEL_PIN_POL  
CLKin2_EN  
0
0
1
1
0: Active High  
1: Active Low  
Enable CLKin2 to be used during auto-switching.  
0: Not enabled for auto mode  
1: Enabled for auto clock switching mode  
Enable CLKin1 to be used during auto-switching.  
0: Not enabled for auto mode  
1: Enabled for auto clock switching mode  
CLKin1_EN  
Enable CLKin0 to be used during auto-switching.  
0: Not enabled for auto mode  
CLKin0_EN  
1: Enabled for auto clock switching mode  
2
1
CLKin2_TYPE  
CLKin1_TYPE  
0
0
There are two buffer types for CLKin0,  
1, and 2: bipolar and CMOS. Bipolar is  
recommended for differential inputs  
like LVDS or LVPECL. CMOS is  
recommended for DC-coupled single  
ended inputs.  
When using bipolar, CLKinX and  
CLKinX* must be AC-coupled.  
When using CMOS, CLKinX and  
CLKinX* may be AC or DC-coupled if  
the input signal is differential. If the  
input signal is single-ended the used  
input may be either AC or DC-coupled  
and the unused input must AC  
grounded.  
0: Bipolar  
1: MOS  
0
CLKin0_TYPE  
0
8.6.2.4.2 CLKin_SEL_AUTO_REVERT_EN, CLKin_SEL_AUTO_EN, CLKin_SEL_MANUAL, CLKin1_DEMUX,  
CLKin0_DEMUX  
42. Register 0x147  
BIT  
7
NAME  
POR DEFAULT  
DESCRIPTION  
When in auto clock switching mode. If active clock is detected on higher priority  
clock, the clock input is immediately switched. Highest priority input is lowest  
numbered active clock input.  
CLKin_SEL_  
AUTO_REVERT_EN  
0
0
6
CLKin_SEL_AUTO_EN  
CLKin_SEL_MANUAL  
Enables pin control according to 12.  
Selects the clock input when in manual mode according to 12.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
CLKin0  
5:4  
3:2  
1
0
CLKin1  
CLKin2  
Holdover  
Selects where the output of the CLKin1 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin1 Destination  
Fin  
CLKin1_DEMUX  
Feedback Mux (0-delay mode)  
PLL1  
Off  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
42. Register 0x147 (接下页)  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Selects where the output of the CLKin0 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin0 Destination  
SYSREF Mux  
1:0  
CLKin0_DEMUX  
3
Reserved  
PLL1  
Off  
8.6.2.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE  
This register has CLKin_SEL0 controls.  
43. Register 0x148  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This set the output value of the CLKin_SEL0 pin. This register only applies if  
CLKin_SEL0_TYPE is set to an output mode  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin0 LOS  
CLKin0 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL0_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL0 pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
description of input  
mode.  
1 (0x01)  
Input with pullup resistor  
Input with pulldown  
resistor  
2 (0x02)  
3 (0x03)  
4 (0x04)  
2:0  
CLKin_SEL0_TYPE  
2
Output (push-pull)  
Output modes; the  
CLKin_SEL0_MUX  
register for description of  
outputs.  
Output inverted (push-  
pull)  
5 (0x05)  
6 (0x06)  
Reserved  
Output (open-drain)  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE  
This register has CLKin_SEL1 controls and register readback SDIO pin type.  
44. Register 0x149  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
Sets the SDIO pin to open drain when during SPI readback in 3 wire mode.  
6
SDIO_RDBK_TYPE  
1
0: Output, push-pull  
1: Output, open drain.  
This set the output value of the CLKin_SEL1 pin. This register only applies if  
CLKin_SEL1_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin1 LOS  
CLKin1 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL1_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL1 pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
description of input  
mode.  
1 (0x01)  
Input with pullup resistor  
Input with pulldown  
resistor  
2 (0x02)  
3 (0x03)  
4 (0x04)  
2:0  
CLKin_SEL1_TYPE  
2
Output (push-pull)  
Output modes; see the  
CLKin_SEL1_MUX  
register for description of  
outputs.  
Output inverted (push-  
pull)  
5 (0x05)  
6 (0x06)  
Reserved  
Output (open-drain)  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.5 RESET_MUX, RESET_TYPE  
This register contains control of the RESET pin.  
45. Register 0x14A  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This sets the output value of the RESET pin. This register only applies if  
RESET_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
Reserved  
5:3  
RESET_MUX  
0
2 (0x02)  
CLKin2 Selected  
DAC Locked  
DAC Low  
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
This sets the IO type of the RESET pin.  
Field Value  
0 (0x00)  
Configuration  
Function  
Input  
1 (0x01)  
Input with pullup resistor  
Reset Mode  
Reset pin high = Reset  
Input with pulldown  
resistor  
2 (0x02)  
3 (0x03)  
4 (0x04)  
2:0  
RESET_TYPE  
2
Output (push-pull)  
Output inverted (push-  
pull)  
Output modes; see the  
RESET_MUX register for  
description of outputs.  
5 (0x05)  
6 (0x06)  
Reserved  
Output (open-drain)  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.6 (0x14B - 0x152) Holdover  
8.6.2.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]  
This register contains the holdover functions.  
46. Register 0x14B  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This controls the amount of time in which no activity on a CLKin forces a clock  
switch event.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Timeout  
5 MHz typical  
25 MHz typical  
100 MHz typical  
200 MHz typical  
7:6  
LOS_TIMEOUT  
0
Enables the LOS (Loss-of-Signal) timeout control. Valid for MOS clock inputs.  
5
4
LOS_EN  
0
0
0: Disabled  
1: Enabled  
Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover  
mode. After device reset, tracking starts at DAC code = 512.  
Tracking can be used to monitor PLL1 voltage in any mode.  
0: Disabled  
TRACK_EN  
1: Enabled, will only track when PLL1 is locked.  
This bit forces holdover mode. When holdover mode is forced, if  
MAN_DAC_EN = 1, then the DAC will set the programmed MAN_DAC value.  
Otherwise the tracked DAC value will set the DAC voltage.  
0: Disabled  
HOLDOVER  
_FORCE  
3
0
1: Enabled.  
This bit enables the manual DAC mode.  
2
MAN_DAC_EN  
MAN_DAC[9:8]  
1
2
0: Automatic  
1: Manual  
1:0  
See MAN_DAC for more information on the MAN_DAC settings.  
版权 © 2017–2018, Texas Instruments Incorporated  
71  
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.6.2 MAN_DAC  
These registers set the value of the DAC in holdover mode when used manually.  
47. MAN_DAC[9:0]  
MSB  
LSB  
0x14B[1:0]  
0x14C[7:0]  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
See LOS_TIMEOUT, LOS_EN, TRACK_EN,  
0x14B  
7:2  
HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8] for  
information on these bits.  
Sets the value of the manual DAC when in manual DAC  
mode.  
Field Value  
0 (0x00)  
DAC Value  
0x14B  
0x14C  
1:0  
7:0  
MAN_DAC[9:8]  
MAN_DAC[7:0]  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
8.6.2.6.3 DAC_TRIP_LOW  
This register contains the high value at which holdover mode is entered.  
48. Register 0x14D  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET is  
enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_LOW  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
72  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH  
This register contains the multiplier for the DAC clock counter and the low value at which holdover mode is  
entered.  
49. Register 0x14E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the  
DAC value is tracked.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
DAC Multiplier Value  
4
7:6  
DAC_CLK_MULT  
0
64  
1024  
16384  
Voltage from Vcc at which holdover is entered if HOLDOVER_VTUNE_DET is  
enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_HIGH  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
8.6.2.6.5 DAC_CLK_CNTR  
This register contains the value of the DAC when in tracked mode.  
50. Register 0x14F  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This with DAC_CLK_MULT set the rate at which the DAC is updated. The  
update rate is = DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Value  
0
1
2
7:0  
DAC_CLK_CNTR  
127  
3
...  
253 (0xFD)  
254 (0xFE)  
255 (0xFF)  
253  
254  
255  
版权 © 2017–2018, Texas Instruments Incorporated  
73  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.6.6 CLKin_OVERRIDE, HOLDOVER_EXIT_MODE, HOLDOVER_PLL1_DET, LOS_EXTERNAL_INPUT,  
HOLDOVER_VTUNE_DET, CLKin_SWITCH_CP_TRI, HOLDOVER_EN  
This register has controls for enabling clock in switch events.  
51. Register 0x150  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
When manual clock select is enabled, then CLKin_SEL_MANUAL = 0/1/2  
selects a manual clock input. CLKin_OVERRIDE = 1 will force that clock input.  
CLKin_OVERRIDE = 1 is used with clock distribution mode for best  
performance.  
CLKin  
_OVERRIDE  
6
0
0: Normal, no override.  
1: Force select of only CLKin0/1/2 as specified by CLKin_SEL_MANUAL in  
manual mode. Dynamic digital delay will not operate.  
0: Exit based on LOS status. If clock is active by LOS, then begin exit.  
1: Exit based on PLL1 DLD. When the PLL1 phase detector confirming valid  
clock.  
HOLDOVER_  
EXIT_MODE  
5
4
0
0
This enables the HOLDOVER when PLL1 lock detect signal transitions from  
high to low.  
0: PLL1 DLD does not cause a clock switch event  
1: PLL1 DLD causes a clock switch event  
HOLDOVER  
_PLL1_DET  
Use external signals for LOS status instead of internal LOS circuitry.  
CLKin_SEL0 pin is used for CLKin0 LOS, CLKin_SEL1 pin is used for CLKin1  
LOS, and Status_LD1 is used for CLKin2 LOS. For any of these pins to be  
valid, the corresponding _TYPE register must be programmed as an input.  
0: Disabled  
3
2
LOS_EXTERNAL_INPUT  
0
0
1: Enabled  
Enables the DAC Vtune rail detector. When the DAC achieves a specified  
Vtune, if this bit is enabled, the current clock input is considered invalid and an  
input clock switch event is generated.  
0: Disabled  
HOLDOVER_  
VTUNE_DET  
1: Enabled  
Enable clock switching with tri-stated charge pump.  
0: Not enabled.  
1: PLL1 charge pump tri-states during clock switching.  
1
0
CLKin_SWITCH_CP_TRI  
HOLDOVER_EN  
0
0
Sets whether holdover mode is active or not.  
0: Disabled  
1: Enabled  
74  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.6.7 HOLDOVER_DLD_CNT  
52. HOLDOVER_DLD_CNT[13:0]  
MSB  
LSB  
0x151[5:0] / HOLDOVER_DLD_CNT[13:8]  
0x152[7:0] / HOLDOVER_DLD_CNT[7:0]  
This register has the number of valid clocks of PLL1 PDF before holdover is exited.  
53. Registers 0x151 and 0x152  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x151  
7:6  
NA  
0
Reserved  
The number of valid clocks of PLL1 PDF before holdover  
mode is exited.  
HOLDOVER  
_DLD_CNT[13:8]  
Field Value  
0 (0x00)  
Count Value  
0x151  
0x152  
5:0  
7:0  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
HOLDOVER  
_DLD_CNT[7:0]  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
版权 © 2017–2018, Texas Instruments Incorporated  
75  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.7 (0x153 - 0x15F) PLL1 Configuration  
8.6.2.7.1 CLKin0_R  
54. CLKin0_R[13:0]  
MSB  
LSB  
0x153[5:0] / CLKin0_R[13:8]  
0x154[7:0] / CLKin0_R[7:0]  
These registers contain the value of the CLKin0 divider.  
55. Registers 0x153 and 0x154  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x153  
7:6  
NA  
0
Reserved  
The value of PLL1 N counter when CLKin0 is selected.  
Field Value  
0 (0x00)  
Divide Value  
0x153  
0x154  
5:0  
7:0  
CLKin0_R[13:8]  
CLKin0_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
120  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
8.6.2.7.2 CLKin1_R  
56. CLKin1_R[13:0]  
MSB  
LSB  
0x156[7:0] / CLKin1_R[7:0]  
0x155[5:0] / CLKin1_R[13:8]  
These registers contain the value of the CLKin1 R divider.  
57. Registers 0x155 and 0x156  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x155  
7:6  
NA  
0
Reserved  
The value of PLL1 N counter when CLKin1 is selected.  
Field Value  
0 (0x00)  
Divide Value  
0x155  
0x156  
5:0  
7:0  
CLKin1_R[13:8]  
CLKin1_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
76  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.7.3 CLKin2_R  
58. CLKin2_R[13:0]  
MSB  
0x157[5:0] / CLKin2_R[13:8]  
LSB  
0x158[7:0] / CLKin2_R[7:0]  
59. Registers 0x157 and 0x158  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x157  
7:6  
NA  
0
Reserved  
The value of PLL1 N counter when CLKin2 is selected.  
Field Value  
0 (0x00)  
Divide Value  
0x157  
0x158  
5:0  
CLKin2_R[13:8]  
CLKin2_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
8.6.2.7.4 PLL1_N  
60. PLL1_N[13:0]  
MSB  
LSB  
0x159[5:0] / PLL1_N[13:8]  
0x15A[7:0] / PLL1_N[7:0]  
These registers contain the N divider value for PLL1.  
61. Registers 0x159 and 0x15A  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x159  
7:6  
NA  
0
Reserved  
The value of PLL1 N counter.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
0x159  
0x15A  
5:0  
7:0  
PLL1_N[13:8]  
PLL1_N[7:0]  
0
Not Valid  
1
2
120  
...  
4,095 (0xFFF)  
4,095  
版权 © 2017–2018, Texas Instruments Incorporated  
77  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN  
This register controls the PLL1 phase detector.  
62. Register 0x15B  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
PLL1_WND_SIZE sets the window size used for digital lock detect for PLL1. If  
the phase error between the reference and feedback of PLL1 is less than  
specified time, then the PLL1 lock counter increments.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
4 ns  
7:6  
PLL1_WND_SIZE  
3
9 ns  
19 ns  
43 ns  
This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into  
TRI-STATE.  
0: PLL1 CPout1 is active  
1: PLL1 CPout1 is at TRI-STATE  
5
4
PLL1_CP_TRI  
PLL1_CP_POL  
0
1
PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use  
positive slope.  
A positive slope VCXO increases output frequency with increasing voltage. A  
negative slope VCXO decreases output frequency with increasing voltage.  
0: Negative Slope VCO/VCXO  
1: Positive Slope VCO/VCXO  
This bit programs the PLL1 charge pump output current level.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
...  
Gain  
50 µA  
150 µA  
250 µA  
350 µA  
450 µA  
...  
3:0  
PLL1_CP_GAIN  
4
14 (0x0E)  
15 (0x0F)  
1450 µA  
1550 µA  
78  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.7.6 PLL1_DLD_CNT  
63. PLL1_DLD_CNT[13:0]  
MSB  
0x15C[5:0] / PLL1_DLD_CNT[13:8]  
LSB  
0x15D[7:0] / PLL1_DLD_CNT[7:0]  
This register contains the value of the PLL1 DLD counter.  
64. Registers 0x15C and 0x15D  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x15C  
7:6  
NA  
0
Reserved  
The reference and feedback of PLL1 must be within the  
window of phase error as specified by PLL1_WND_SIZE for  
this many phase detector cycles before PLL1 digital lock  
detect is asserted.  
PLL1_DLD  
_CNT[13:8]  
0x15C  
0x15D  
5:0  
7:0  
32  
Field Value  
0 (0x00)  
Delay Value  
Reserved  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL1_DLD  
_CNT[7:0]  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
8.6.2.7.7 HOLDOVER_EXIT_NADJ  
65. Register 0x15E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:5  
NA  
0
Reserved  
When holdover exists, PLL1 R counter and PLL1 N  
counter are reset. HOLDOVER_EXIT_NADJ is a 2s  
complement number which provides a relative timing  
offset between PLL1 R and PLL1 N divider.  
4:0  
HOLDOVER_EXIT_NADJ  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
79  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.7.8 PLL1_LD_MUX, PLL1_LD_TYPE  
This register configures the PLL1 LD pin.  
66. Register 0x15F  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This sets the output value of the Status_LD1 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
PLL1 DLD  
PLL2 DLD  
1 (0x01)  
2 (0x02)  
3 (0x03)  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL1_LD_MUX  
1
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
DAC High  
11 (0x0B)  
PLL1_N  
12 (0x0C)  
PLL1_N/2  
13 (0x0D)  
PLL2_N  
14 (0x0E)  
PLL2_N/2  
15 (0x0F)  
PLL1_R  
16 (0x10)  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the IO type of the Status_LD1 pin.  
Field Value  
TYPE  
0 (0x00)  
1 (0x01)  
Input for External CLKin2 LOS  
Input for External CLKin2 LOS (pullup)  
Input for External CLKin2 LOS  
(pulldwn)  
2:0  
PLL1_LD_TYPE  
6
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
Output (open-drain)  
(1) Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
80  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.8 (0x160 - 0x16E) PLL2 Configuration  
8.6.2.8.1 PLL2_R  
67. PLL2_R[11:0]  
MSB  
LSB  
0x160[3:0] / PLL2_R[11:8]  
0x161[7:0] / PLL2_R[7:0]  
This register contains the value of the PLL2 R divider.  
68. Registers 0x160 and 0x161  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x160  
7:4  
NA  
0
Reserved  
Valid values for the PLL2 R divider.  
Field Value  
0 (0x00)  
Divide Value  
0x160  
0x161  
3:0  
7:0  
PLL2_R[11:8]  
PLL2_R[7:0]  
0
2
Not Valid  
1 (0x01)  
1
2
2 (0x02)  
3 (0x03)  
3
...  
...  
4,094 (0xFFE)  
4,095 (0xFFF)  
4,094  
4,095  
版权 © 2017–2018, Texas Instruments Incorporated  
81  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.8.2 PLL2_P, OSCin_FREQ, PLL2_REF_2X_EN  
This register sets other PLL2 functions.  
69. Register 0x162  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
The PLL2 N Prescaler divides the output of the VCO as selected by  
Mode_MUX1 and is connected to the PLL2 N divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Value  
8
2
2
3
4
5
6
7
7:5  
PLL2_P  
2
The frequency of the PLL2 reference input to the PLL2 Phase Detector  
(OSCin/OSCin* port) must be programmed in order to support proper operation  
of the frequency calibration routine which locks the internal VCO to the target  
frequency.  
Field Value  
0 (0x00)  
OSCin Frequency  
0 to 63 MHz  
4:2  
OSCin_FREQ  
3
1 (0x01)  
>63 MHz to 127 MHz  
>127 MHz to 255 MHz  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
>255 MHz to 500 MHz  
Reserved  
5 (0x05) to 7(0x07)  
1
0
NA  
0
1
Reserved  
Enabling the PLL2 reference frequency doubler allows for higher phase  
detector frequencies on PLL2 than would normally be allowed with the given  
VCXO frequency.  
Higher phase detector frequencies reduces the PLL2 N values which makes  
the design of wider loop bandwidth filters possible.  
0: Doubler Disabled  
PLL2_REF_2X_EN  
1: Doubler Enabled  
82  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.8.3 PLL2_N_CAL  
PLL2_N_CAL[17:0]  
PLL2 never uses 0-delay during frequency calibration. These registers contain the value of the PLL2 N divider  
used with PLL2 pre-scaler during calibration for cascaded 0-delay mode. Once calibration is complete, PLL2 will  
use PLL2_N value. Cascaded 0-delay mode occurs when PLL2_NCLK_MUX = 1.  
70. PLL2_N_CAL[17:0]  
MSB  
LSB  
0x163[1:0] / PLL2_N_CAL[17:16]  
0x164[7:0] / PLL2_N_CAL[15:8]  
0x165[7:0] / PLL2_N_CAL[7:0]  
71. Registers 0x163, 0x164, and 0x165  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x163  
7:2  
NA  
0
Reserved  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
0x163  
0x164  
0x165  
1:0  
7:0  
7:0  
PLL2_N _CAL[17:16]  
PLL2_N_CAL[15:8]  
PLL2_N_CAL[7:0]  
0
Not Valid  
1
2
0
...  
12  
262,143 (0x3FFFF)  
262,143  
8.6.2.8.4 PLL2_N  
This register disables frequency calibration and sets the PLL2 N divider value. Programming register 0x168  
starts a VCO calibration routine if PLL2_FCAL_DIS = 0.  
72. PLL2_N[17:0]  
MSB  
LSB  
0x166[1:0] / PLL2_N[17:16]  
0x167[7:0] / PLL2_N[15:8]  
0x168[7:0] / PLL2_N[7:0]  
73. Registers 0x166, 0x167, and 0x168  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x166  
7:3  
NA  
0
Reserved  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
0x166  
1:0  
7:0  
7:0  
PLL2_N[17:16]  
0
Not Valid  
1
0x167  
0x168  
PLL2_N[15:8]  
PLL2_N[7:0]  
0
2
...  
12  
262,143 (0x3FFFF)  
262,143  
版权 © 2017–2018, Texas Instruments Incorporated  
83  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI  
This register controls the PLL2 phase detector.  
74. Register 0x169  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
NA  
0
Reserved  
PLL2_WND_SIZE sets the window size used for digital lock detect for PLL2. If  
the phase error between the reference and feedback of PLL2 is less than  
specified time, then the PLL2 lock counter increments.  
Maximum Phase Detector  
Field Value  
Frequency / Window Size  
6:5  
PLL2_WND_SIZE  
2
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Reserved  
320 MHz / 1 ns  
240 MHz / 1.8 ns  
160 MHz / 2.6 ns  
This bit programs the PLL2 charge pump output current level. The table below  
also illustrates the impact of the PLL2 TRISTATE bit in conjunction with  
PLL2_CP_GAIN.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
Reserved  
Reserved  
1600 µA  
3200 µA  
4:3  
PLL2_CP_GAIN  
3
PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO  
requires the negative charge pump polarity to be selected. Many VCOs use  
positive slope.  
A positive slope VCO increases output frequency with increasing voltage. A  
negative slope VCO decreases output frequency with increasing voltage.  
2
PLL2_CP_POL  
0
Field Value  
Description  
0
1
Negative Slope VCO/VCXO  
Positive Slope VCO/VCXO  
PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump.  
1
0
PLL2_CP_TRI  
PLL2_DLD_EN  
0
0
0: Disabled  
1: TRI-STATE  
PLL2 DLD circuitry is enabled when the PLL2 DLD is used to provide an output  
to a lock detect status pin. PLL2_DLD_EN allows enabling the PLL2 DLD  
circuitry without needing to provide PLL2 DLD to a status pin. This enables  
PLL2 DLD status to be read back using SPI while allowing the Status pins to  
be used for other purposes.  
0: PLL2 DLD circuitry is on only of PLL2 DLD or PLL1 + PLL2 DLD signal is  
output from a Status_LD_MUX.  
1: PLL2 DLD circuitry is forced on.  
84  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.8.6 PLL2_DLD_CNT  
75. PLL2_DLD_CNT[13:0]  
MSB  
0x16A[5:0] / PLL2_DLD_CNT[13:8]  
LSB  
0x16B[7:0] / PLL2_DLD_CNT[7:0]  
This register has the value of the PLL2 DLD counter.  
76. Registers 0x16A and 0x16B  
REGISTER  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0x16A  
7
NA  
0
Reserved  
The reference and feedback of PLL2 must be within the  
window of phase error as specified by PLL2_WND_SIZE for  
PLL2_DLD_CNT cycles before PLL2 digital lock detect is  
asserted.  
PLL2_DLD  
_CNT[13:8]  
0x16A  
0x16B  
5:0  
7:0  
32  
Field Value  
0 (0x00)  
Divide Value  
Not Valid  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL2_DLD_CNT  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
版权 © 2017–2018, Texas Instruments Incorporated  
85  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.8.7 PLL2_LD_MUX, PLL2_LD_TYPE  
This register sets the output value of the Status_LD2 pin.  
77. Register 0x16E  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
This sets the output value of the Status_LD2 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
PLL1 DLD  
PLL2 DLD  
1 (0x01)  
2 (0x02)  
3 (0x03)  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL2_LD_MUX  
0
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
DAC High  
11 (0x0B)  
PLL1_N  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
15 (0x0F)  
PLL1_R  
16 (0x10)  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the IO type of the Status_LD2 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL2_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
(1) Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
86  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.9 (0x16F - 0x555) Misc Registers  
8.6.2.9.1 PLL2_PRE_PD, PLL2_PD  
78. Register 0x173  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7
N/A  
0
Reserved  
Powerdown PLL2 prescaler  
0: Normal Operation  
1: Powerdown  
6
PLL2_PRE_PD  
1
Powerdown PLL2  
0: Normal Operation  
1: Powerdown  
5
PLL2_PD  
N/A  
1
4:0  
16  
Reserved  
8.6.2.9.2 PLL1R_RST  
Refer to PLL1 R Divider Synchronization for more information on synchronizing PLL1 R divider.  
79. Register 0x177  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
When set, PLL1 R divider will be held in reset. PLL1 will never lock with  
PLL1R_RST = 1. This bit is used in when synchronizing the PLL1 R divider.  
0: PLL1 R divider normal operation.  
5
PLL1R_RST  
NA  
0
0
1: PLL1 R divider held in reset.  
4:0  
Reserved  
版权 © 2017–2018, Texas Instruments Incorporated  
87  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
8.6.2.9.3 CLR_PLL1_LD_LOST, CLR_PLL2_LD_LOST  
80. Register 0x182  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:2  
NA  
0
Reserved  
To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0.  
0: RB_PLL1_LD_LOST will be set on next falling PLL1 DLD edge.  
1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow  
RB_PLL1_LD_LOST to become set again.  
1
0
CLR_PLL1_LD_LOST  
CLR_PLL2_LD_LOST  
0
0
To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0.  
0: RB_PLL2_LD_LOST will be set on next falling PLL2 DLD edge.  
1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow  
RB_PLL2_LD_LOST to become set again.  
8.6.2.9.4 RB_PLL1_LD_LOST, RB_PLL1_LD, RB_PLL2_LD_LOST, RB_PLL2_LD  
For PLL2 DLD read back to be valid, either PLL2 DLD or PLL1 + PLL2 DLD signal must be output from the  
status pins, or PLL2_DLD_EN bit must be set = 1.  
81. Register 0x183  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:4  
N/A  
0
Reserved  
This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD  
is low.  
3
2
1
RB_PLL1_LD_LOST  
RB_PLL1_LD  
0
0
0
Read back 0: PLL1 DLD is low.  
Read back 1: PLL1 DLD is high.  
This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD  
is low.  
RB_PLL2_LD_LOST  
PLL1_LD_MUX or PLL2_LD_MUX must select setting 2 (PLL2 DLD) for valid  
reading of this bit.  
Read back 0: PLL2 DLD is low.  
0
RB_PLL2_LD  
0
Read back 1: PLL2 DLD is high.  
88  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
8.6.2.9.5 RB_DAC_VALUE (MSB), RB_CLKinX_SEL, RB_CLKinX_LOS  
This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs  
are shared with the RB_DAC_VALUE. See RB_DAC_VALUE section.  
82. Register 0x184  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
RB_DAC_VALUE[9:8]  
See RB_DAC_VALUE section.  
Read back 0: CLKin2 is not selected for input to PLL1.  
Read back 1: CLKin2 is selected for input to PLL1.  
5
4
RB_CLKin2_SEL  
RB_CLKin1_SEL  
Read back 0: CLKin1 is not selected for input to PLL1.  
Read back 1: CLKin1 is selected for input to PLL1.  
Read back 0: CLKin0 is not selected for input to PLL1.  
Read back 1: CLKin0 is selected for input to PLL1.  
3
2
1
RB_CLKin0_SEL  
N/A  
Read back 1: CLKin1 LOS is active.  
Read back 0: CLKin1 LOS is not active.  
RB_CLKin1_LOS  
Read back 1: CLKin0 LOS is active.  
Read back 0: CLKin0 LOS is not active.  
0
RB_CLKin0_LOS  
8.6.2.9.6 RB_DAC_VALUE  
Contains the value of the DAC for user readback.  
83. RB_DAC_VALUE[9:0]  
MSB  
LSB  
0x185 [7:0] / RB_DAC_VALUE[7:0]  
0x184 [7:6] / RB_DAC_VALUE[9:8]  
84. Registers 0x184 and 0x185  
REGISTER  
BIT  
NAME  
POR DEFAULT  
RB_DAC_  
VALUE[9:8]  
0x184  
7:6  
2
DAC value is 512 on power on reset, if PLL1 locks upon  
power-up the DAC value will change.  
RB_DAC_  
VALUE[7:0]  
0x185  
7:0  
0
8.6.2.9.7 RB_HOLDOVER  
85. Register 0x188  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
7:5  
N/A  
Reserved  
Read back 0: Not in HOLDOVER.  
Read back 1: In HOLDOVER.  
4
RB_HOLDOVER  
N/A  
3:0  
Reserved  
8.6.2.9.8 SPI_LOCK  
Prevents SPI registers from being written to, except for 0x555.  
This register cannot be read back.  
86. Register 0x555  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
0: Registers unlocked.  
1 to 255: Registers locked.  
7:0  
SPI_LOCK  
0
版权 © 2017–2018, Texas Instruments Incorporated  
89  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
To assist customers in frequency planning and design of loop filters, Texas Instruments provides Clock Architect  
and PLLatinum Sim and on ti.com.  
9.1.1 Digital Lock Detect Frequency Accuracy  
The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window  
size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals  
of the PLL for each event to occur. When a PLL digital lock event occurs, the digital lock detect of thePLL is  
asserted true. When the holdover exit event occurs, the device will exit holdover mode when  
HOLDOVER_EXIT_MODE = 1 (Exit based on DLD).  
87. Digital Lock Detect Related Fields  
EVENT  
PLL  
PLL1  
PLL2  
PLL1  
WINDOW SIZE  
PLL1_WND_SIZE  
PLL2_WND_SIZE  
PLL1_WND_SIZE  
LOCK COUNT  
PLL1_DLD_CNT  
PLL1 Locked  
PLL2 Locked  
Holdover exit  
PLL2_DLD_CNT  
HOLDOVER_DLD_CNT  
For a digital lock detect event to occur, there must be a lock count number of phase detector cycles of PLLX  
during which the time and phase error of the PLLX_R reference and PLLX_N feedback signal edges are within  
the user programmable window size. Because there must be at least one lock count phase detector event before  
a lock event occurs, a minimum digital lock event time can be calculated as lock count / fPDX where X = 1 for  
PLL1 or 2 for PLL2.  
By using 公式 4, values for a lock count and window size can be chosen to set the frequency accuracy required  
by the system in ppm before the digital lock detect event occurs:  
1e6 × PLLX_WND_SIZE × fPDX  
ppm =  
PLLX_DLD_CNT  
(4)  
The effect of the lock count value is that it shortens the effective lock window size by dividing the window size by  
lock count.  
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by window  
size, then the lock count value is reset to 0.  
9.1.1.1 Minimum Lock Time Calculation Example  
To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 40 MHz and  
PLL2_DLD_CNT = 10,000. Then, the minimum lock time of PLL2 will be 10,000 / 40 MHz = 250 µs.  
90  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
9.1.2 Driving CLKin AND OSCin Inputs  
9.1.2.1 Driving CLKin and OSCin PINS With a Differential Source  
CLKin and OSCin pins can be driven by differential signals. TI recommends setting the input mode to bipolar  
(CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK04832 internally biases the input  
pins so the differential interface should be AC-coupled. The recommended circuits for driving the CLKin pins with  
either LVDS or LVPECL are shown in 21 and 22.  
CLKinX  
0.1 mF  
100-W Trace  
(Differential)  
LMK04832  
Input  
LVDS  
0.1 mF  
CLKinX*  
Copyright © 2017, Texas Instruments Incorporated  
21. CLKinX/X* or OSCin Termination for an LVDS Reference Clock Source  
CLKinX  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
100-W Trace  
(Differential)  
LVPECL  
Ref Clk  
LMK04832  
Input  
CLKinX*  
Copyright © 2017, Texas Instruments Incorporated  
22. CLKinX/X* or OSCin Termination for an LVPECL Reference Clock Source  
Finally, a reference clock source that produces a differential sine wave output can drive the CLKin pins using the  
following circuit. Note: the signal level must conform to the requirements for the CLKin pins listed in the Electrical  
Characteristics.  
CLKinX  
0.1 mF  
100-W Trace  
(Differential)  
LMK04832  
Input  
0.1 mF  
CLKinX*  
Differential  
Sinewave Clock  
Source  
Copyright © 2017, Texas Instruments Incorporated  
23. CLKinX/X* or OSCin Termination for a Differential Sinewave Reference Clock Source  
版权 © 2017–2018, Texas Instruments Incorporated  
91  
 
 
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
9.1.2.2 Driving CLKin Pins With a Single-Ended Source  
The CLKin and OSCin pins of the LMK04832 can be driven using a single-ended reference clock source, for  
example, either a sine wave source or an LVCMOS/LVTTL source. CLKin supports both AC coupling or DC  
coupling. OSCin must use AC coupling. In the case of the sine wave source that is expecting a 50-Ω load, TI  
recommends using AC coupling as shown in 24 with a 50-Ω termination.  
The signal level must conform to the requirements for the CLKin or OSCin pins listed in  
the Electrical Characteristics.  
To support LOS functionality, CLKinX_BUF_TYPE must be set to MOS mode  
(CLKinX_BUF_TYPE = 1) when AC-coupled. When AC coupling, if the 100-Ω termination  
is placed on the IC side of the blocking capacitors, then the LOS functionality will not be  
valid.  
0.1 mF  
50-W Trace  
CLKinX  
50 W  
LMK04832  
Clock Source  
CLKinX*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
24. CLKinX/X* Single-Ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode  
(CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC -oupled,  
MOS-mode clock inputs given in the Electrical Characteristics. If AC coupling is used, the CLKinX_BUF_TYPE  
should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at the input pins must  
meet the specifications for AC-coupled, bipolar mode clock inputs given in the Electrical Characteristics. In this  
case, some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC-  
coupling capacitor is sufficient.  
50-W Trace  
CLKinX  
LMK04832  
LVCMOS/LVTTL  
Clock Source  
CLKinX*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
25. DC-Coupled LVCMOS/LVTTL Reference Clock  
9.1.3 OSCin Doubler for Best Phase Noise Performance  
PLL2 OSCin input path includes an on-chip Frequency Doubler. To have the best phase noise performance, it is  
recommended to maximize the PLL2 phase detector frequency. For example, using 122.88MHz VCXO , PLL2  
phase detector frequency can be increased to 245.76MHz by setting PLL2_REF_2X_EN. Doubler path is a high  
performance path for OSCin clock. For configuration where doubler cannot be used, it is recomended to use  
Doubler and PLL2_RDIV=2. To have deterministic phase relationship between input clock and output clocks, 0-  
delay modes should be used (nested 0-delay mode for dual loop configuration instead of cascaded 0-delay  
mode).  
92  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
9.2 Typical Application  
This design example highlights using the available tools to design loop filters and create programming map for  
LMK04832.  
CLKout10  
CLKout11  
VCXO  
Multiple —clean“  
clocks at different  
frequencies  
LMX2594  
Recovered  
—dirty“ clock or  
clean clock  
PLL+VCO  
CLKin0  
OSCout  
CLKout8  
CLKout9  
FPGA  
Backup  
Reference  
Clock  
LMK04832  
CLKin1  
CLKout4 &  
CLKout6  
CLKout5 &  
CLKout7  
CLKout0 &  
CLKout2  
CLKout12,  
CLKout13  
DAC  
ADC  
CLKout1 &  
CLKout3  
Serializer/  
Deserializer  
Copyright © 2017, Texas Instruments Incorporated  
26. Typical Application  
9.2.1 Design Requirements  
Clocks outputs:  
1x 245.76-MHz clock for JESD204B ADC, LVPECL.  
This clock requires the best performance in this example.  
2x 2949.12-MHz clock for JESD204B DAC, CML.  
1x 122.88-MHz clock for JESD204B FPGA block, LVDS  
3x 10.24-MHz SYSREF for ADC (LVPECL), DAC (LVPECL), FPGA (LVDS).  
2x 122.88-MHz clock for FPGA, LVDS  
For best performance, the highest possible phase detector frequency is used at PLL2. As such, a 122.88-MHz  
VCXO is used.  
9.2.2 Detailed Design Procedure  
This information is current as of the date of the release of this datasheet. Design tools  
receive continuous improvements to add features and improve model accuracy. Refer to  
the software instructions or training for latest features.  
9.2.2.1 Device Selection  
Enter the required frequencies into the tools. In this design, the LMK04832 VCO0 and LMK04832 VCO1 both  
meet the design requirements. VCO0 offers a relatively improved VCO performance over VCO1. In this case,  
choose LMK04832_VCO0 for improved RMS jitter in the 12-kHz to 20-MHz integration range.  
9.2.2.1.1 Clock Architect  
Under the advanced tab of 时钟架构, filtering of specific parts can be done using regular expressions in the Part  
Filter box. [LMK04832.*] will filter for only the LMK04832 device (without brackets). More detailed filters can be  
given such as the entire part name LMK04832_VCO0 to force an LMK04832 using VCO0 solution if one is  
available.  
版权 © 2017–2018, Texas Instruments Incorporated  
93  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Typical Application (接下页)  
9.2.2.2 Device Configuration and Simulation  
The tools automatically configure the simulation to meet the input and output frequency requirements given, and  
make assumptions about other parameters to give some default simulations. However, the user may chose to  
make adjustments for more accurate simulations to their application. For example:  
Entering the VCO Gain of the external VCXO or possible external VCO used device.  
Adjust the charge pump current to help with loop filter component selection. Lower charge pump currents  
result in smaller components but may increase impacts of leakage and at the lowest values reduce PLL  
phase nosie performance.  
Clock Architect allows loading a custom phase noise plot for reference or VCXO block. Typically, a custom  
phase noise plot is entered for CLKin to match the reference phase noise to device; a phase noise plot for the  
VCXO can additionally be provided to match the performance of VCXO used. For improved accuracy in  
simulation and optimum loop filter design, be sure to load these custom noise profiles for use in application.  
PLLatinum 仿真 can also be used to design and simulate a loop filter.  
9.2.2.3 Device Programming  
Using the clock design tools configuration the TICS Pro software is manually updated with this information to  
meet the required application.  
Frequency planning for assignment of outputs:  
To minimize crosstalk perform frequency planning / CLKout assignments to keep common frequencies on  
outputs close together.  
It is best to place common device clock output frequencies on outputs sharing the same VCC group. For  
example, these outputs share Vcc4_CG2. Refer to Pin Configuration and Functions to see the VCC groupings  
the clock outputs.  
In this example, the 245.76-MHz ADC output needs the best performance. CLKout2 on the LMK04832 provides  
the best noise floor / performance. The 245.76 MHz is placed on CLKout2 with 10.24-MHz SYSREF on CLKout3.  
For best performance the input and output drive level bits may be set. Best noise floor performance is  
achieved with CLKout2_3_IDL = 1 and CLKout2_3_ODL = 1.  
The CLKoutX_Y_ODL bit has no impact on even clock outputs in high performance bypass mode.  
In this example, the 983.04-MHz DAC output is placed on CLKout4 and CLKout6 with 10.24-MHz SYSREF on  
paired CLKout5 and CLKout7 outputs.  
These outputs share Vcc4_CG2.  
In this example, the 122.88-MHz FPGA JESD204B output is placed on CLKout10 with 10.24-MHz SYSREF on  
paired CLKout11 output.  
Additionally, the 122.88-MHz FPGA non-JESD204B outputs are placed on CLKout8 and CLKout9.  
When frequency planning, consider PLL2 as a clock output at the phase detector frequency. As such, these  
122.88-MHz outputs have been placed on the outputs close to the PLL2 and Charge Pump power supplies.  
Once the device programming is completed as desired in the TICS Pro software, it is possible to export the  
register settings from the Register tab for use in application.  
94  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Typical Application (接下页)  
9.2.3 Application Curves  
The phase noise plots collected with loop filter values of C1 = open, C2 = 150 nF, R2 = 470 Ω.  
27. CLKout0 = 245.76 MHz, VCO = 2457.6 MHz  
CLKout0_1_IDL = 1, CLKout0_1_ODL = 1  
LVPECL20 With 240-Ω Emitter Resistors  
28. CLKout0 = 245.76 MHz, VCO = 2949.12 MHz  
CLKout0_1_IDL = 1, CLKout0_1_ODL = 1  
LVPECL20 With 240-Ω Emitter Resistors  
30. CLKout2 = 983.04-MHz, VCO = 2949.12 MHz  
CLKout2_3_IDL = 1, CLKout2_3_ODL = 1  
LVPECL16 With 120-Ω Emitter Resistors  
29. CLKout2 = 491.52-MHz, VCO = 2949.12 MHz  
CLKout2_3_IDL = 1, CLKout2_3_ODL = 1  
LVPECL16 With 120-Ω Emitter Resistors  
版权 © 2017–2018, Texas Instruments Incorporated  
95  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
Typical Application (接下页)  
32. CLKout4 = 2949.12, VCO = 2949.12 MHz  
31. CLKout4 = 2457.6, VCO = 2457.6 MHz  
CLKout4_5_IDL = 1, CLKout4_5_ODL = 1  
CLKout4_5_IDL = 1, CLKout4_5_ODL = 0  
LVPECL, 68 nH Inductor - 20 Ω Resistor  
CML 32mA, 68 nH Inductor - 20 Ω Resistor  
34. CLKout9 = 122.88 MHz, VCO = 2949.12 MHz, HSDS 8  
33. CLKout3 = 122.88 MHz, VCO = 2949.12 MHz  
CLKout2_3_IDL = 1, CLKout2_3_ODL = 1  
With 120-Ω Emitter Resistors  
mA  
CLKout8_9_IDL = 1, CLKout8_9_ODL = 1  
96  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Typical Application (接下页)  
36. Direct VCXO Measurement  
Open-Loop, Holdover Mode Set  
35. OSCout, 122.88 MHz, LVCMOS (Norm/Inv)  
Normal Output Measured, Inverse 50-Ω Termination  
9.3 Do's and Don'ts  
9.3.1 Pin Connection Recommendations  
VCC Pins and Decoupling: all VCC pins must always be connected.  
Unused Clock Outputs: leave unused clock outputs floating and powered down.  
Unused Clock Inputs: unused clock inputs can be left floating.  
10 Power Supply Recommendations  
10.1 Current Consumption  
TI recommends using the TICS Pro software to calculate the current consumption estimate based on  
programmed configuration.  
版权 © 2017–2018, Texas Instruments Incorporated  
97  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Thermal Management  
Power consumption of the LMK04832 can be high enough to require attention from thermal management. For  
reliability and performance reasons the die temperature should be limited to a maximum of 125°C. That is, as an  
estimate, TA (ambient temperature) plus device power consumption times RθJA should not exceed 125°C.  
11.2 Layout Example  
CLKouts/OSCouts œ Differential signals should be  
For any pins not connected, ensure that  
the exposed copper is of the same area as  
other pins to contribute to healthy  
solderdown joint  
routed tightly coupled to minimize PCB crosstalk.  
For LVPECL/LCPECL/CML place components  
resistors close to IC.  
For CLKout Vccs in JESD204B application,  
place ferrite beads then 1 µF capacitor. The  
1 µF capacitor supports low frequency  
SYSREF switching/turning on.  
OSCout shares pins with CLKin2 and is  
programmable for input or output  
For CLKout Vccs in traditional applications,  
place ferrite bead on top layer close to pins  
to choke high frequency noise from via.  
CLKin and OSCin œ If differential input (preferred)  
route traces tightly coupled. If single ended, have at  
least 3 trace width (of CLKin/OSCin trace) separation  
from other RF traces.  
Charge pump output œ shorter traces are  
better. Place all resistors and caps close to IC.  
Place terminations close to IC.  
CLKin2 and OSCout share pins and is programmable  
for input or output.  
37. LMK04832 Layout Example, Top Layer  
98  
版权 © 2017–2018, Texas Instruments Incorporated  
LMK04832  
www.ti.com.cn  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
Layout Example (接下页)  
A flexible termination / PCB layout for  
either CML requiring a pull-up to Vcc or  
LVPECL/LCPECL requiring a pull-down to  
ground, or for any other format is the H  
configuration as illustrated in layout above  
and schematic below. R1/R2 allow  
connection to Vcc or ground. When using  
CML with inductors (in position R3 and R4),  
R1 allows the use of an additional series  
resistor.  
Expose copper under the PCB to  
provide direct copper to air interface  
to dissipate heat  
Provide areas of connect copper to  
allow heat to escape from directly  
below PCB. Do not let components  
block all thermal escape from  
ground pad.  
Vcc  
38. LMK04832 Layout Example, Bottom Layer  
版权 © 2017–2018, Texas Instruments Incorporated  
99  
LMK04832  
ZHCSIA3C FEBRURAY 2017REVISED MAY 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
12.1.1.1 时钟架构  
部件选择、环路滤波器设计、仿真。  
如需运行在线时钟架构工具,请访问 www.ti.com.cn/clockarchitect。  
12.1.1.2 PLLatinum 仿真  
支持环路滤波设计和仿真。所有仿真均针对单环路。要执行双环路仿真,必须加载第一次 PLL 仿真的结果作为第二  
PLL 仿真的基准。  
要下载 PLLatinum 仿真工具,请转到 www.ti.com.cn/tool/cn/PLLATINUMSIM-SW  
12.1.1.3 TICS Pro  
EVM 编程软件。还可用于生成寄存器映射,以便进行编程和计算当前功耗估计值。  
如需 TICS Pro,请访问 www.ti.com.cn/tool/cn/TICSPRO-SW。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。数据如有变更,恕不另行通知,也不会对此文档进行修订。  
100  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04832NKDR  
LMK04832NKDT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
K04832NKD  
K04832NKD  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMK04832-SEP

耐辐射且符合 JESD204C 标准的 30krad 超低噪声 3.2GHz、15 路输出时钟抖动清除器
TI

LMK04832-SP

耐辐射加固保障 (RHA)、超低噪声、3.2GHz、15 路输出时钟抖动清除器
TI

LMK04832MPAPSEP

耐辐射且符合 JESD204C 标准的 30krad 超低噪声 3.2GHz、15 路输出时钟抖动清除器 | PAP | 64 | -55 to 125
TI

LMK04832NKDR

具有双环路且符合 JESD204B 标准的超低噪声 3.2GHz、15 路输出时钟抖动清除器 | NKD | 64 | -40 to 85
TI

LMK04832NKDT

具有双环路且符合 JESD204B 标准的超低噪声 3.2GHz、15 路输出时钟抖动清除器 | NKD | 64 | -40 to 85
TI

LMK04832PAP/EM

耐辐射且符合 JESD204C 标准的 30krad 超低噪声 3.2GHz、15 路输出时钟抖动清除器 | PAP | 64 | 25 to 25
TI

LMK04832W/EM

耐辐射加固保障 (RHA)、超低噪声、3.2GHz、15 路输出时钟抖动清除器 | HBE | 64 | 25 to 25
TI

LMK04906

Ultra Low Noise Clock Jitter Cleaner/Multiplier with 6 Programmable Outputs
TI

LMK04906BISQ

Ultra Low Noise Clock Jitter Cleaner/Multiplier with 6 Programmable Outputs
TI

LMK04906BISQ/NOPB

带 6 路可编程输出的超低噪声时钟抖动消除器/倍频器 | NKD | 64 | -40 to 85
TI

LMK04906BISQE

Ultra Low Noise Clock Jitter Cleaner/Multiplier with 6 Programmable Outputs
TI

LMK04906BISQE/NOPB

Ultra Low Noise Clock Jitter Cleaner/Multiplier with 6 Programmable Outputs 64-WQFN -40 to 85
TI