LMK1D1208IRHAR [TI]

具有 I²C 的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105;
LMK1D1208IRHAR
型号: LMK1D1208IRHAR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I²C 的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105

文件: 总44页 (文件大小:2172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
LMK1D1208I I2C 可配置低附加抖LVDS 缓冲器  
1 特性  
3 说明  
• 具2 个输入8 个输出的高性LVDS 时钟  
缓冲器系列  
• 输出频率最高可2GHz  
LMK1D1208I 是一款 I2C 可编程 LVDS 时钟缓冲器。  
该器件具有两个输入和八对差分 LVDS 钟输出  
OUT0 OUT7),具有超小延迟可实现时钟分  
配。输入可以为 LVDSLVPECLLVCMOSHCSL  
CML。  
• 电源电压1.8V/2.5V/3.3V ± 5%  
• 通I2C 编程实现器件可配置性  
– 单独的输入和输出启用/禁用  
– 单独的输出振幅选择标准或增强)  
– 组输入多路复用器  
LMK1D1208I 专为驱动 50传输线路而设计。在单端  
模式下驱动输入时对未使用的负输入引脚施加适当的  
偏置电压请参阅9-6。  
I2C 编程使该器件能够配置为单组缓冲区两个输入之  
一分配到八个输出对或双组缓冲区每个输入分配到  
四个输出对每个输出都可以配置为具有标准  
(350mV) 或增强 (500mV) 摆幅。该器件还通过 I2C 编  
程集成了单个输出通道的启用/禁用。LMK1D1208I 具  
有失效防护输入可防止在没有输入信号的情况下输出  
发生振荡并允许在提VDD 之前输入信号。  
• 通IDX 引脚实现四个可编I2C 地址  
• 低附加抖动156.25MHz 12kHz 20MHz 范围  
内的  
RMS 最大值小60fs  
– 超低相位本底噪声-164dBc/Hz典型值)  
• 超低传播延迟< 575ps最大值)  
• 输出偏斜20ps最大值)  
• 通用输入接LVDSLVPECLLVCMOSHCSL  
CML  
该器件可在 1.8V2.5V 3.3V 电源环境下工作其  
特点是温度范围40°C 105°C环境温度。  
• 失效防护输入  
LVDS 基准电压VAC_REF适用于容性耦合输入  
• 工业温度范围40°C 105°C  
• 可用封装  
封装信息  
封装尺寸标称值)  
封装(1)  
器件型号  
(2)  
6mm × 6mm 40 VQFN (RHA)  
LMK1D1208I  
VQFN (40)  
6.00mm × 6.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
• 电信及网络  
• 医疗成像  
• 测试和测量设备  
• 无线通信  
• 专业音频/视频  
ADC CLOCK  
100  
200 MHz  
156.25 MHz  
Oscillator  
LMK1D1208I  
LVDS Buffer  
SDA  
SCL  
IDX1  
IDX0  
FPGA CLOCK  
100  
应用示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS828  
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
9.5 Programming............................................................ 20  
9.6 Register Maps...........................................................21  
10 Application and Implementation................................25  
10.1 Application Information........................................... 25  
10.2 Typical Application.................................................. 25  
10.3 Power Supply Recommendations...........................28  
10.4 Layout..................................................................... 29  
11 Device and Documentation Support..........................31  
11.1 Documentation Support.......................................... 31  
11.2 接收文档更新通知................................................... 31  
11.3 支持资源..................................................................31  
11.4 Trademarks............................................................. 31  
11.5 静电放电警告...........................................................31  
11.6 术语表..................................................................... 31  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics.............................................. 11  
8 Parameter Measurement Information..........................12  
9 Detailed Description......................................................14  
9.1 Overview...................................................................14  
9.2 Functional Block Diagram.........................................14  
9.3 Feature Description...................................................15  
9.4 Device Functional Modes..........................................18  
Information.................................................................... 31  
12.1 Package Option Addendum....................................32  
12.2 Tape and Reel Information......................................34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (February 2022) to Revision A (June 2023)  
Page  
• 将表标题从“器件信息”更改为“封装信息”....................................................................................................1  
Added the Device Comparison table for the LMK1Dxxxx buffer device family...................................................3  
Moved the Power Supply Recommendations and Layout sections to the Application and Implementation  
section.............................................................................................................................................................. 28  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
2
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Comparison  
DEVICE  
OUTPUT  
SWING  
DEVICE  
TYPE  
FEATURES  
PACKAGE  
BODY SIZE  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
Global output enable and swing  
control through pin control  
LMK1D2108  
LMK1D2106  
LMK1D2104  
LMK1D2102  
LMK1D1216  
LMK1D1212  
LMK1D1208P  
LMK1D1208I  
Dual 1:8  
Dual 1:6  
Dual 1:4  
Dual 1:2  
2:16  
VQFN (48)  
7.00 mm × 7.00 mm  
Global output enable and swing  
control through pin control  
VQFN (40)  
VQFN (28)  
VQFN (16)  
VQFN (48)  
VQFN (40)  
VQGN (40)  
VQFN (40)  
6.00 mm × 6.00 mm  
5.00 mm × 5.00 mm  
3.00 mm × 3.00 mm  
7.00 mm × 7.00 mm  
6.00 mm × 6.00 mm  
6.00 mm × 6.00 mm  
6.00 mm × 6.00 mm  
Global output enable and swing  
control through pin control  
Global output enable and swing  
control through pin control  
Global output enable control  
through pin control  
Global output enable control  
through pin control  
2:12  
Individual output enable control  
through pin control  
2:8  
Individual output enable control  
through I2C  
2:8  
Global output enable control  
through pin control  
LMK1D1208  
LMK1D1204P  
LMK1D1204  
2:8  
2:4  
2:4  
350 mV  
350 mV  
350 mV  
VQFN (28)  
VQGN (28)  
VQFN (16)  
5.00 mm × 5.00 mm  
5.00 mm × 5.00 mm  
3.00 mm × 3.00 mm  
Individual output enable control  
through pin control  
Global output enable control  
through pin control  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VDD  
NC  
OUT4_P  
OUT4_N  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
OUT0_N  
OUT0_P  
NC  
OUT5_P  
OUT5_N  
NC  
6mm x 6mm  
40 pin QFN  
IDX1  
IDX0  
NC  
OUT6_P  
OUT6_N  
VDD  
VAC_REF0  
IN0_N  
IN0_P  
VDD  
Thermal Pad  
1
2
3
4
5
6
7
8
9
10  
6-1. LMK1D1208I: RHA Package 40-Pin VQFN (Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
LMK1D1208I  
DIFFERENTIAL/SINGLE-ENDED CLOCK INPUT  
IN0_P, IN0_N  
IN1_P, IN1_N  
I2C PROGRAMMING  
SDA  
12, 13  
8, 9  
I
I
Primary: Differential input pair or single-ended input  
Secondary: Differential input pair or single-ended input.  
5
6
I/O  
I
I2C data  
I2C clock  
SCL  
I2C address bit[0]. This is a 2-level input that is decoded in  
conjunction with pin 15 to set the I2C address. It has internal  
670-kΩpullup.  
IDX0  
IDX1  
15  
16  
I,S,PU  
I,S, PU  
I2C address bit[1]. This is a 2-level input that is decoded in  
conjunction with pin 16 to set the I2C address. It has internal  
670-kΩpullup.  
BIAS VOLTAGE OUTPUT  
Bias voltage output for capacitive coupled inputs. If used, TI  
recommends using a 0.1-µF capacitor to GND on this pin.  
VAC_REF0, VAC_REF1  
14, 10  
O
DIFFERENTIAL CLOCK OUTPUT  
OUT0_P, OUT0_N  
OUT1_P, OUT1_N  
OUT2_P, OUT2_N  
OUT3_P, OUT3_N  
OUT4_P, OUT4_N  
OUT5_P, OUT5_N  
OUT6_P, OUT6_N  
OUT7_P, OUT7_N  
18, 19  
22, 23  
24, 25  
28, 29  
32, 33  
34, 35  
38, 39  
2, 3  
O
O
O
O
O
O
O
O
Differential LVDS output pair number 0  
Differential LVDS output pair number 1  
Differential LVDS output pair number 2  
Differential LVDS output pair number 3  
Differential LVDS output pair number 4  
Differential LVDS output pair number 5  
Differential LVDS output pair number 6  
Differential LVDS output pair number 7  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
LMK1D1208I  
SUPPLY VOLTAGE  
VDD  
11, 20, 40  
P
Device power supply (1.8 V, 2.5 V, or 3.3 V)  
GROUND  
Die Attach Pad. Connect to the printed circuit board (PCB)  
ground plane for heat dissipation.  
DAP  
NO CONNECT  
NC  
DAP  
G
1, 4, 7, 17, 21, 26,  
27, 30, 31, 36, 37  
No connection. Leave floating.  
(1) The definitions below define the I/O type for each pin.  
I = Input  
O = Output  
I / O = Input / Output  
PU = Internal 670-kΩPullup  
S = Hardware Configuration Pin  
P = Power Supply  
G = Ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
20  
50  
MAX  
3.6  
UNIT  
V
VDD  
VIN  
VO  
IIN  
Supply voltage  
Input voltage  
3.6  
V
Output voltage  
VDD + 0.3  
20  
V
Input current  
mA  
mA  
°C  
°C  
IO  
Continuous output current  
Junction temperature  
Storage temperature (2)  
50  
TJ  
135  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Device unpowered  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
2.375  
1.71  
NOM  
3.3  
MAX  
3.465  
2.625  
1.89  
UNIT  
3.3-V supply  
VDD  
Core supply voltage  
Supply voltage ramp  
2.5-V supply  
2.5  
V
1.8-V supply  
1.8  
Supply  
Ramp  
Requires monotonic ramp (10-90% of  
0.1  
20  
ms  
VDD  
)
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
105  
135  
°C  
°C  
40  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
6
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
 
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.4 Thermal Information  
LMK1D1208I  
THERMAL METRIC(1)  
VQFN  
40 PINS  
39.1  
32.4  
20.2  
1
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
20.2  
8.3  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY CHARACTERISTICS  
All-outputs enabled and  
unterminated, f = 0 Hz (AMP_SEL  
=1)  
IDDSTAT  
LMK1D1208I  
55  
75  
mA  
All-outputs enabled, RL = 100 Ω, f  
=100 MHz (AMP_SEL = 0,  
default)  
IDD100M  
IDD100M  
LMK1D1208I  
LMK1D1208I  
95  
mA  
mA  
All-outputs enabled, RL = 100 Ω,  
f =100 MHz, AMP_SEL = 1  
110  
IDX INPUT CHARACTERISTICS (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
Minimum input voltage for a  
logical "1" state  
VIH  
VIL  
IIH  
Input high voltage  
Input low voltage  
Input high current  
0.7 × VCC  
VCC + 0.3  
0.3 × VCC  
30  
V
V
Maximum input voltage for a  
logical "0" state  
0.3  
VDD can be 1.8V/2.5V/3.3V with  
VIH = VDD  
µA  
VDD can be 1.8V/2.5V/3.3V with  
VIH = VDD  
IIL  
Input low current  
µA  
30  
Rpull-up(IDX)  
Input pullup resistor  
670  
kΩ  
I2C INTERFACE CHARACTERISTICS (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
VIH  
VIL  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Input capacitance  
Output low voltage  
0.7 × VCC  
VCC + 0.3  
0.3 × VCC  
30  
V
V
0.3  
IIH  
µA  
µA  
pF  
V
IIL  
30  
CIN_SE  
VOL  
at 25°C  
2
IOL = 3 mA  
0.3  
100  
Standard  
fSCL  
I2C clock rate  
Fast mode  
400  
kHz  
Ultra Fast mode  
SCL high before SDA low  
SCL low after SDA low  
1000  
tSU(START)  
tH(START)  
tW(SCLH)  
START condition setup time  
START condition hold time  
SCL pulse width high  
0.6  
0.6  
0.6  
1.3  
us  
us  
us  
us  
tW(SCLL)  
SCL pulse width low  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
0
TYP  
MAX  
UNIT  
ns  
tSU(SDA)  
tH(SDA)  
tR(IN)  
SDA setup time  
SDA hold time  
SDA valid after SCL low  
0.9  
300  
300  
300  
us  
SDA/SCL input rise time  
SDA/SCL input fall time  
SDA output fall time  
ns  
tF(IN)  
ns  
tF(OUT)  
tSU(STOP)  
tBUS  
CBUS <= 400 pF  
ns  
STOP condition setup time  
Bus free time between STOP and START  
0.6  
1.3  
us  
us  
SINGLE-ENDED LVCMOS/LVTTL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
fIN  
Input frequency  
Clock input  
DC  
0.4  
250  
MHz  
V
Assumes a square wave input  
with two levels  
VIN_S-E  
Single-ended Input Voltage Swing  
3.465  
Input Slew Rate (20% to 80% of the  
amplitude)  
dVIN/dt  
0.05  
V/ns  
IIH  
Input high current  
Input low current  
Input capacitance  
VDD = 3.465 V, VIH = 3.465 V  
VDD = 3.465 V, VIL = 0 V  
at 25°C  
50  
µA  
µA  
pF  
IIL  
30  
CIN_SE  
3.5  
DIFFERENTIAL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
fIN  
Input frequency  
Clock input  
2
2.4  
2.4  
GHz  
VPP  
VICM = 1 V (VDD = 1.8 V)  
VICM = 1.25 V (VDD = 2.5 V/3.3 V)  
0.3  
0.3  
Differential input voltage peak-to-peak  
{2*(VINP-VINN)}  
VIN,DIFF(p-p)  
VIN,DIFF(P-P) > 0.4 V (VDD = 1.8  
V/2.5/3.3 V)  
VICM  
IIH  
Input common mode voltage  
Input high current  
0.25  
2.3  
30  
V
VDD = 3.465 V, VINP = 2.4 V, VINN  
= 1.2 V  
µA  
VDD = 3.465 V, VINP = 0 V, VINN  
1.2 V  
=
IIL  
Input low current  
µA  
pF  
30  
CIN_S-E  
Input capacitance (Single-ended)  
at 25°C  
3.5  
LVDS DC OUTPUT CHARACTERISTICS  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 0  
Differential output voltage magnitude |  
VOUTP - VOUTN  
|VOD|  
|VOD|  
250  
400  
350  
500  
450  
650  
mV  
mV  
|
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
Differential output voltage magnitude |  
VOUTP - VOUTN  
|
Change in differential output voltage  
magnitude. Per output, defined as the  
difference between VOD in logic hi/lo  
states.  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 0  
15  
mV  
mV  
ΔVOD  
ΔVOD  
15  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
Change in differential output voltage  
magnitude  
20  
1.2  
20  
1
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 1.8 V)  
Steady-state common mode output  
voltage  
VOC(SS)  
V
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 2.5 V/3.3 V)  
1.1  
0.8  
1.375  
1
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 1.8 V), AMP_SEL = 1  
Steady-state common mode output  
voltage  
VOC(SS)  
V
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 2.5 V/3.3 V), AMP_SEL  
= 1  
0.9  
1.1  
15  
Change in steady-state common mode  
output voltage. Per output, defined as the  
difference in VOC in logic hi/lo states.  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 0  
mV  
ΔVOC(SS)  
15  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
8
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
Change in steady-state common mode  
output voltage  
20  
mV  
ΔVOC(SS)  
20  
LVDS AC OUTPUT CHARACTERISTICS  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, fOUT = 491.52 MHz  
Vring  
VOS  
Output overshoot and undershoot  
Output AC common mode  
0.1  
VOD  
0.1  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 0  
50  
75  
100  
mVpp  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
VOS  
Output AC common mode  
150  
12  
mVpp  
mA  
IOS  
Short-circuit output current (differential)  
VOUTP = VOUTN  
12  
24  
Short-circuit output current (common-  
mode)  
IOS(cm)  
VOUTP = VOUTN = 0  
24  
mA  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
tPD  
Propagation delay  
Output skew  
0.3  
0.575  
20  
ns  
ps  
Ω(2)  
Skew between outputs with the  
same load conditions (4 and 8  
channel) (3)  
tSK, O  
Skew between outputs on  
different parts subjected to the  
same operating conditions with  
the same input and output  
loading.  
tSK, PP  
Part-to-part skew  
250  
20  
ps  
ps  
50% duty cycle input, crossing  
tSK, P  
Pulse skew  
point-to-crossing-point distortion  
20  
(4)  
fIN = 156.25 MHz with 50% duty-  
cycle, Input slew rate = 1.5V/ns,  
Integration range = 12 kHz 20  
tRJIT(ADD)  
Random additive Jitter (rms)  
50  
60 fs, RMS  
MHz, with output load RLOAD  
=
100 Ω  
PN1kHz  
PN10kHz  
PN100kHz  
PN1MHz  
PNfloor  
143  
152  
157  
160  
164  
Phase Noise for a carrier frequency of  
156.25 MHz with 50% duty-cycle, Input  
slew rate = 1.5V/ns with output load  
RLOAD = 100 Ω  
Phase noise  
dBc/Hz  
fIN = 156.25 MHz. The difference  
in power level at fIN when the  
selected clock is active and the  
unselected clock is static versus  
when the selected clock is inactive  
and the unselected clock is active.  
MUXISO  
Mux Isolation  
80  
dB  
ODC  
tR/tF  
Output duty cycle  
With 50% duty cycle input  
45  
55  
%
Output rise and fall time  
300  
ps  
20% to 80% with RLOAD = 100 Ω  
20% to 80% with RLOAD = 100 Ω  
(AMP_SEL= 1)  
tR/tF  
Output rise and fall time  
300  
1
ps  
us  
Time taken for outputs to go from  
disable state to enable state and  
vice versa. (5) (6)  
ten/disable  
Output Enable and Disable Time  
Outputs are held in high Z mode  
with OUTP = OUTN (max applied  
external voltage is the lesser of  
VDD or 1.89V and minimum  
applied external voltage is 0V  
IleakZ  
Output leakage current in High Z  
50  
uA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.375  
UNIT  
VAC_REF  
Reference output voltage  
VDD = 2.5 V, ILOAD = 100 µA  
0.9  
1.25  
V
POWER SUPPLY NOISE REJECTION (PSNR) VDD = 2.5 V/ 3.3 V  
10 kHz, 100 mVpp ripple injected  
70  
50  
on VDD  
Power Supply Noise Rejection (fcarrier  
156.25 MHz)  
=
PSNR  
dBc  
1 MHz, 100 mVpp ripple injected  
on VDD  
(1) Measured between single-ended/differential input crossing point to the differential output crossing point.  
(2) For the dual bank devices, the inputs are phase aligned and have 50% duty cycle.  
(3) Defined as the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.  
(4) Applies to the dual bank family.  
(5) Time starts after the acknowledge bit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
10  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
7-1 captures the variation of the LMK1D1208I current consumption with input frequency and supply voltage.  
7-2 shows the variation of the differential output voltage (VOD) swept across frequency.  
It is important to note that 7-1 and 7-2 serve as a guidance to the users on what to expect for the range of  
operating frequency supported by LMK1D1208I. These graphs were plotted for a limited number of frequencies  
and load conditions which may not represent the customer system.  
90  
85  
80  
75  
70  
65  
VDD = 1.8 V, TA = -40  
VDD = 1.8 V, TA = 25  
VDD = 1.8 V,TA = 105  
VDD = 2.5 V, TA = -40  
VDD = 2.5 V, TA = 25  
VDD = 2.5 V,TA = 105  
VDD = 3.3 V, TA = -40  
VDD = 3.3 V, TA = 25  
VDD = 3.3 V,TA =105  
60  
55  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
Frequency (MHz)  
7-1. LMK1D1208I Current Consumption vs. Frequency  
380  
370  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
VDD = 1.8 V, TA = -40  
VDD = 1.8 V, TA = 25  
VDD = 1.8 V, Ta = 105  
VDD = 2.5 V, TA = -40  
VDD = 2.5 V, TA = 25  
VDD = 2.5 V, TA = 105  
VDD = 3.3 V, TA = -40  
VDD = 3.3 V, TA = 25  
VDD = 3.3 V, TA = 105  
100  
200  
300  
400  
500  
600 700 800 9001000  
2000  
Frequency (MHz)  
7-2. LMK1D1208I VOD vs. Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
8 Parameter Measurement Information  
Oscilloscope  
100 W  
LVDS  
8-1. LVDS Output DC Configuration During Device Test  
Phase Noise/  
Spectrum Analyzer  
Balun  
LMK1D1208I  
8-2. LVDS Output AC Configuration During Device Test  
V
IH  
V
th  
IN  
V
IL  
IN  
V
th  
8-3. DC-Coupled LVCMOS Input During Device Test  
V
OUTNx  
OUTPx  
OH  
V
OD  
V
OL  
80%  
V
(= 2 x V  
)
20%  
0 V  
OUT,DIFF,PP  
OD  
t
r
t
f
8-4. Output Voltage and Rise/Fall Time  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
12  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
INNx  
INPx  
t
t
t
PLH0  
PHL0  
PHL1  
OUTN0  
OUTP0  
t
PLH1  
OUTN1  
OUTP1  
t
t
PLH2  
PHL2  
OUTN2  
OUTP2  
t
t
PLH7  
PHL7  
OUTN7  
OUTP7  
A. Output skew is calculated as the greater of the following: the difference between the fastest and the slowest tPLHn or the difference  
between the fastest and the slowest tPHLn (n = 0, 1, 2, ..7)  
B. Part-to-part skew is calculated as the greater of the following: the difference between the fastest and the slowest tPLHn or the difference  
between the fastest and the slowest tPHLn across multiple devices (n = 0, 1, 2, ..7)  
8-5. Output Skew and Part-to-Part Skew  
V
ring  
OUTNx  
V
OD  
0 V Differential  
OUTPx  
8-6. Output Overshoot and Undershoot  
V
OS  
GND  
8-7. Output AC Common Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LMK1D1208I is a low-additive jitter, I2C-programmable, LVDS output clock buffer that uses CMOS  
transistors to control the output current. Therefore, proper biasing and termination are required to ensure correct  
operation of the device and to maximize signal integrity. The LMK1D1208I also includes status and control  
registers for configuring the different modes in the device.  
The proper LVDS termination for signal integrity over two 50-Ω lines is 100 Ω between the outputs on the  
receiver end. Either DC-coupled termination or AC-coupled termination can be used for LVDS outputs. TI  
recommends placing a termination resistor close to the receiver. If the receiver is internally biased to a voltage  
different than the output common-mode voltage of the LMK1D1208I, AC coupling must be used.If the LVDS  
receiver has internal 100-Ωtermination, external termination must be omitted.  
9.2 Functional Block Diagram  
VDD  
VDD  
Rpull-up  
IDX0, IDX1  
2
SDA  
SCL  
OUTx_AMP_SEL  
Output Swing  
Control  
I2C Logic  
OUT[0:N/2-1]  
OUT[N/2:N-1]  
IN0  
IN1  
Bank Control  
Reference  
Voltage  
VAC_REF  
GND  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
14  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.3 Feature Description  
The LMK1D1208I is an I2C-programmable, low-additive jitter, LVDS fan-out buffer that can generate up to eight  
copies of two selectable LVPECL, LVDS, HCSL, CML, or LVCMOS inputs. This feature-rich device allows the  
user to have flexibility on the configuration based on their application use-case.  
9.3.1 Fail-Safe Input  
The LMK1D120x family of devices is designed to support fail-safe input operation. This feature allows the user to  
drive the device inputs before VDD is applied without damaging the device. Refer to Specifications for more  
information on the maximum input supported by the device. The device also incorporates an input hysteresis,  
which prevents random oscillation in absence of an input signal, allowing the input pins to be left open.  
9.3.2 Input Stage Configurability  
The LMK1D1208I has an input stage that accepts up to two clock inputs and can be configured as either a 2:1  
mux or as a dual bank. When configured as a 2:1 mux, the LMK1D1208I device can select one of the two clock  
inputs and then distribute it to the eight LVDS output pairs. In the dual bank mode, the LMK1D1208I can assign  
each clock input to fan out four LVDS output pairs per bank. Refer to the Device Functional Modes for how to  
configure the two input stages.  
Unused inputs can be left floating to reduce overall component cost. Both AC and DC coupling schemes can be  
used with the LMK1D1208I to provide greater system flexibility.  
9.3.3 Dual Output Bank  
LMK1D1208I has eight LVDS output pairs which are grouped into two banks, each with four LVDS output pairs.  
The 9-1 outlines this mapping.  
9-1. Output Bank Map  
BANK  
CLOCK OUTPUTS  
0
1
OUT0, OUT1, OUT2, OUT3  
OUT4, OUT5, OUT6, OUT7  
9.3.4 I2C  
The I2C control is used to configure the different features in the LMK1D1208I. These features include individual  
input and output channel enable or disable, input mux select in each bank, bank muting (setting bank outputs to  
logic low), and individual output amplitude control. The I2C logic is also capable of fast mode where the  
frequency is 400 kHz.  
9.3.4.1 I2C Address Assignment  
The I2C address is assigned by the two pins, IDX0 and IDX1. Each IDX pin supports two levels allowing the  
LMK1D1208I to assume four different I2C addresses. See 9-2 for address pin assignment.  
9-2. I2C Address Assignment  
I2C ADDRESS  
IDX1  
IDX0  
0x68  
L
L
L
H
L
0x69  
0x6A  
H
H
0x6B  
H
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.3.5 LVDS Output Termination  
TI recommends that unused outputs are terminated differentially with a 100-Ωresistor for optimum performance.  
Unterminated outputs are also okay, but this will result in a slight degradation in performance (Output AC  
common-mode VOS) in the outputs being used.  
9-1 and 9-2 show how the LMK1D1208I can be connected to LVDS receiver inputs with DC and AC  
coupling, respectively.  
100 W  
LVDS  
LMK1D12XX  
Z = 50 W  
9-1. Output DC Termination  
100 nF  
100 W  
LVDS  
LMK1D12XX  
Z = 50 W  
100 nF  
9-2. Output AC Termination (With the Receiver Internally Biased)  
9.3.6 Input Termination  
The LMK1D1208I inputs can be interfaced with LVDS, LVPECL, HCSL or LVCMOS drivers.  
9-3 and 9-4 show how LVDS drivers can be connected to LMK1D1208I inputs with DC coupling and AC  
coupling, respectively.  
100 W  
LVDS  
LMK1D12XX  
Z = 50 W  
9-3. LVDS Clock Driver Connected to LMK1D1208I Input (DC-Coupled)  
100 nF  
LVDS  
LMK1D12XX  
Z = 50 W  
100 nF  
50 W  
50 W  
V
AC_REF  
9-4. LVDS Clock Driver Connected to LMK1D1208I Input (AC-Coupled)  
9-5 shows how to connect LVPECL inputs to the LMK1D1208I. The series resistors are required to reduce the  
LVPECL signal swing if the signal swing is >1.6 VPP  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
16  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
75 W  
100 nF  
LMK1D12XX  
LVPECL  
Z = 50 W  
100 nF  
50 W  
75 W  
150 W  
150 W  
50 W  
V
AC_REF  
9-5. LVPECL Clock Driver Connected to LMK1D1208I Input  
9-6 shows how to couple a LVCMOS clock input to the LMK1D1208I directly.  
R
S
LVCMOS  
(1.8/2.5/3.3 V)  
LMK1D12XX  
VIH + VIL  
Vth =  
2
9-6. 1.8-V, 2.5-V, or 3.3-V LVCMOS Clock Driver Connected to LMK1D1208I Input  
For unused input, TI recommends grounding both input pins (INP, INN) using 1-kΩresistors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.4 Device Functional Modes  
The outputs of Bank 0 and Bank 1 can be one of three options: logic low, buffered IN0, or buffered IN1. These  
output types should only be attained by maintaining the register setting combination outlined in 9-3. The  
LMK1D1208I registers must be programmed within these possible logic states to ensure proper device  
functionality. Using the device outside the intended logic can result in degraded performance.  
9-3. Register Control Logic Table  
BANKx OUTPUTS BANKx_IN_SEL  
BANKx_MUTE  
IN0_EN  
IN1_EN  
Logic low  
IN0  
X
1
0
1
0
0
X
1
X
X
1
IN1  
X
9.4.1 Input Enable Control  
The LMK1D1208I allows for individual input channel enable or disable through the INx_EN register field. The  
inputs should be disabled when not in use to reduce the power consumption.  
9-4 describes the control of this function. INx_EN is set by register 0x02 (R2). See R2 Register for more  
information on this register.  
9-4. Input Control  
INx_EN  
ACTIVE CLOCK INPUT  
0
INx_P, INx_N disabled  
1
INx_P, INx_N enabled  
9.4.2 Bank Input Selection  
Bank 0 and Bank 1 can choose between the two inputs to fanout four LVDS output pairs each. In the 2:1 input  
mux mode, each bank must select the same clock input to output eight identical clocks. With the dual bank  
mode, each bank can select a different clock input to distribute both inputs separately; this is analogous to  
having two 1:4 buffers. When operating in dual bank mode, TI recommends that Bank 0 not select IN1 and Bank  
1 not select IN0 to avoid crosstalk and degraded performance.  
The BANKx_IN_SEL register field configures this function described in 9-5. BANKx_IN_SEL is set by register  
0x02 (R2). See R2 Register for more information on this register.  
9-5. Bank Input Selection  
BANKx_IN_SEL  
BANK CLOCK INPUT  
BANKx selects IN1_P, IN1_N  
BANKx selects IN0_P, IN0_N  
0
1
9.4.3 Bank Mute Control  
Each bank, Bank 0 or Bank 1, can be individually muted such that the bank outputs are set to logic low (OUTx_P  
is low and OUTx_N is high).  
9-6 describes the control of this function. The BANKx_MUTE register field is set by register 0x02 (R2). See  
R2 Register for more information on this register.  
9-6. Bank Mute Control  
BANKx_MUTE  
BANK CLOCK OUTPUTS  
0
BANKx outputs selected INx  
1
BANKx outputs logic low  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.4.4 Output Enable Control  
The outputs of the LMK1D1208I can be individually enabled or disabled through the OUTx_EN register field. The  
disabled state of the outputs is high impedance as this reduces the power consumption and also prevents back-  
biasing of the devices connected to these outputs. Unused outputs should be disabled to eliminate the need for  
a termination resistor. In the case of enabled unused outputs, TI recommends a 100-Ω termination for optimal  
performance.  
9-7 describes the control of this function. OUTx_EN is set by register 0x00 (R0). See R0 Register for more  
information on this register.  
9-7. Output Control  
OUTx_EN  
CLOCK OUTPUTS  
OUTx_P, OUTx_N disabled in  
Hi-Z state  
0
1
OUTx_P, OUTx_N enabled  
9.4.5 Output Amplitude Selection  
The amplitude of the LMK1D1208I outputs can be individually programmed through the OUTx_AMP_SEL  
register field. The boosted LVDS swing mode can be used in applications which require a higher output swing for  
better noise performance (higher slew rate) or for swing requirements in the receiver that the standard LVDS  
swing cannot meet.  
9-8 describes the control of this function. OUTx_AMP_SEL is set by register 0x01 (R1). See R1 Register for  
more information on this register.  
9-8. Output Amplitude Selection Table  
OUTx_AMP_SEL  
OUTPUT AMPLITUDE (VOD)  
Standard LVDS swing (350 mV)  
Boosted LVDS swing (500 mV)  
0
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.5 Programming  
The LMK1D1208I uses I2C to program the states of its eight output drivers. See I2C for more information on the  
I2C features and address assignment, and Register Maps for the list of programmable registers.  
9-9. Command Code Definition  
BIT  
DESCRIPTION  
0 = Block Read or Block Write operation  
1 = Byte Read or Byte Write operation  
7
(6:0) Register address for Byte operations, or starting register address for Block, operations  
1
7
1
1
8
1
1
S
Peripheral Address  
A
Data Byte  
A
P
R/W  
MSB  
LSB  
MSB  
LSB  
S
Start Condition  
Sr Repeated Start Condition  
1 = Read (Rd); 0 = Write (Wr)  
R/W  
A
Acknowledge (ACK = 0 and NACK =1)  
Stop Condition  
P
Controller-to-Peripheral Transmission  
Peripheral-to-Controller Transmission  
9-7. Generic Programming Sequence  
1
7
1
1
8
1
8
1
1
S
Peripheral Address  
Wr  
A
CommandCode  
A
Data Byte  
A
P
9-8. Byte Write Protocol  
1
1
1
7
1
1
8
7
1
1
A
S
S
Peripheral Address  
Wr  
A
CommandCode  
Peripheral Address  
Rd  
A
1
1
8
Data Byte  
A
P
1
9-9. Byte Read Protocol  
1
7
1
1
8
1
8
1
S
Peripheral Address  
Wr  
A
CommandCode  
A
Byte Count = N  
A
8
1
8
1
8
1
1
Data Byte 0  
A
Data Byte 1  
A
Data Byte N-1  
A
P
9-10. Block Write Protocol  
1
1
1
7
1
1
8
7
1
1
A
S
S
Peripheral Address  
Wr  
A
CommandCode  
Peripheral Address  
Rd  
A
1
1
8
1
1
8
8
Data Byte N-1  
A
P
Data Byte N  
A
A
Data Byte 0  
1
1
1
9-11. Block Read Protocol  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
20  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.6 Register Maps  
9.6.1 LMK1D1208I Registers  
9-10 lists the LMK1D1208I registers. All register locations not listed should be considered as reserved  
locations and the register contents should not be modified.  
TI highly suggests that the user only operates within the logic states listed in 9-3 for optimum performance.  
9-10. LMK1D1208I Registers  
Address  
Acronym  
R0  
Register Fields  
Section  
Go  
0h  
1h  
2h  
5h  
Eh  
Output Enable Control  
R1  
Output Amplitude Control  
Input Enable and Bank Setting Control  
Device/Revision Identification  
I2C Address Readback  
Go  
R2  
Go  
R5  
Go  
R14  
Go  
Complex bit access types are encoded to fit into small table cells. 9-11 shows the codes that are used for  
access types in this section.  
9-11. LMK1D1208I Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Reset/default value in  
hexadecimal  
9.6.1.1 R0 Register (Address = 0h) [reset = 0h]  
R0 is shown in 9-12.  
The R0 register contains bits that enable or disable individual output clock channels [7:0].  
Return to the Summary Table.  
9-12. R0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OUT7_EN  
R/W  
0h  
This bit controls the output enable signal for output channel  
OUT7_P/OUT7_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
6
5
OUT6_EN  
OUT5_EN  
R/W  
R/W  
0h  
0h  
This bit controls the output enable signal for output channel  
OUT6_P/OUT6_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
OUT5_P/OUT5_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9-12. R0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
OUT4_EN  
R/W  
0h  
This bit controls the output enable signal for output channel  
OUT4_P/OUT4_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
3
2
1
0
OUT3_EN  
OUT2_EN  
OUT1_EN  
OUT0_EN  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
This bit controls the output enable signal for output channel  
OUT3_P/OUT3_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
OUT2_P/OUT2_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
OUT1_P/OUT1_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
This bit controls the output enable signal for output channel  
OUT0_P/OUT0_N.  
0h = Output Disabled (Hi-Z)  
1h = Output Enabled  
9.6.1.2 R1 Register (Address = 1h) [reset = 0h]  
R1 is shown in 9-13.  
The R1 register contains bits that set the output amplitude to a standard or boosted LVDS swing.  
Return to the Summary Table.  
9-13. R1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OUT7_AMP_SEL  
R/W  
0h  
This bit sets the output amplitude for output channel OUT7_P/  
OUT7_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
6
5
4
3
OUT6_AMP_SEL  
OUT5_AMP_SEL  
OUT4_AMP_SEL  
OUT3_AMP_SEL  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
This bit sets the output amplitude for output channel OUT6_P/  
OUT6_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
This bit sets the output amplitude for output channel OUT5_P/  
OUT5_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
This bit sets the output amplitude for output channel OUT4_P/  
OUT4_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
This bit sets the output amplitude for output channel OUT3_P/  
OUT3_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9-13. R1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
OUT2_AMP_SEL  
OUT1_AMP_SEL  
OUT0_AMP_SEL  
R/W  
0h  
This bit sets the output amplitude for output channel OUT2_P/  
OUT2_N.  
0h = Standard LVDS swing (350 mV)  
1h = Boosted LVDS swing (500 mV)  
1
0
R/W  
R/W  
0h  
0h  
This bit sets the output amplitude for output channel OUT1_P/  
OUT1_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
This bit sets the output amplitude for output channel OUT0_P/  
OUT0_N.  
0h = Standard LVDS Swing (350 mV)  
1h = Boosted LVDS Swing (500 mV)  
9.6.1.3 R2 Register (Address = 2h) [reset = F1h]  
R2 is shown in 9-14.  
The R2 register contains bits that enable/disable the input channels and control the banks.  
Return to the Summary Table.  
9-14. R2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Reserved  
R/W  
1h  
Register bit can be written to 1.  
Writing a different value than 1 will affect device functionality.  
6
5
Reserved  
R/W  
R/W  
1h  
1h  
Register bit can be written to 1.  
Writing a different value than 1 will affect device functionality.  
BANK1_IN_SEL  
This bit sets the input channel for Bank 1.  
0h = IN1_P/IN1_N  
1h = IN0_P/IN0_N  
4
3
2
1
BANK0_IN_SEL  
BANK1_MUTE  
BANK0_MUTE  
IN1_EN  
R/W  
R/W  
R/W  
R/W  
1h  
0h  
0h  
0h  
This bit sets the input channel for Bank 0.  
0h = IN1_P/IN1_N  
1h = IN0_P/IN0_N  
This bit sets the outputs in Bank 1 to logic low level.  
0h = INx_P/INx_N  
1h = Logic low  
This bit sets the outputs in Bank 0 to logic low level.  
0h = INx_P/INx_N  
1h = Logic low  
This bit controls the input enable signal for input channel IN1_P/  
IN1_N.  
0h = Input Disabled (reduces power consumption)  
1h = Input Enabled  
0
IN0_EN  
R/W  
1h  
This bit controls the input enable signal for input channel IN0_P/  
IN0_N.  
0h = Input Disabled (reduces power consumption)  
1h = Input Enabled  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
9.6.1.4 R5 Register (Address = 5h) [reset = 20h]  
R5 is shown in 9-15.  
The R5 register contains the silicon revision code and the device identification code.  
Return to the Summary Table.  
9-15. R5 Register Field Descriptions  
Bit  
7:4  
3:0  
Field  
Type  
Reset  
Description  
REV_ID  
DEV_ID  
R
2h  
These bits provide the silicon revision code.  
These bits provide the device identification code.  
R
0h  
9.6.1.5 R14 Register (Address = Eh) [reset = 0h]  
R14 is shown in 9-16.  
The R14 register contains the bits that report the current state of the I2C address based on the IDX0 and IDX1  
input pins.  
Return to the Summary Table.  
9-16. R14 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
IDX_RB  
R
0h  
These bits report the I2C address state.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
24  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The LMK1D1208I is a low-additive jitter universal to LVDS fan-out buffer with two selectable inputs. The small  
package, low output skew, and low additive jitter make for a flexible device in demanding applications.  
10.2 Typical Application  
1.8V/ 2.5V/ 3.3V  
FPGA  
IN0_P  
156.25 MHz LVDS  
100  
from Backplane  
IN0_N  
50  
50  
CPU  
100  
156.25 MHz LVCMOS  
Oscillator  
IN1_P  
IN1_N  
PHY  
100  
2.5V  
1 k  
1 k  
ASIC  
100  
SDA  
SCL  
IDX1  
IDX0  
10-1. Fan-Out Buffer for Line Card Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.2.1 Design Requirements  
The LMK1D1208I shown in 10-1 is configured to select two inputs: a 156.25-MHz LVDS clock from the  
backplane at IN0, or a secondary 156.25-MHz LVCMOS 2.5-V oscillator at IN1. The LVDS clock is AC-coupled  
and biased using the integrated reference voltage generator. A resistor divider is used to set the threshold  
voltage correctly for the LVCMOS clock. 0.1-µF capacitors are used to reduce noise on both VAC_REF and IN1_N.  
Either input signal can be then fanned out to desired devices via register control. The configuration example is  
driving four LVDS receivers in a line card application with the following properties:  
The PHY device is capable of DC coupling with an LVDS driver such as the LMK1D1208I. This PHY device  
features internal termination so no additional components are required for proper operation  
The ASIC LVDS receiver features internal termination and operates at the same common-mode voltage as  
the LMK1D1208I. Again, no additional components are required.  
The FPGA requires external AC coupling, but has internal termination. 0.1-µF capacitors are placed to  
provide AC coupling. Similarly, the CPU is internally terminated, and requires only external AC-coupling  
capacitors.  
The unused outputs of the LMK1D1208I can be disabled by clearing the corresponding OUTx_EN register  
through I2C. This results in a lower power consumption.  
10.2.2 Detailed Design Procedure  
See Input Termination for proper input terminations, dependent on single-ended or differential inputs.  
See LVDS Output Termination for output termination schemes depending on the receiver application.  
Unused outputs should be terminated differentially with a 100-Ω resistor or disabled through OUTx_EN register  
control (see 9-7) for optimum performance. Outputs may be left unterminated, but will result in slight  
degradation in performance (Output AC common-mode VOS ) in the outputs being used.  
In this example, the PHY, ASIC, and FPGA or CPU require different schemes. Power-supply filtering and  
bypassing is critical for low-noise applications.  
See Power Supply Recommendations for recommended filtering techniques. A reference layout is provided in  
Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board (SCAU043).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
26  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
10.2.3 Application Curves  
The following graphs show the low additive noise of the LMK1D1208I. The low noise 156.25-MHz source with  
24-fs RMS jitter shown in 10-2 drives the LMK1D1208I, resulting in 46.4-fs RMS when integrated from 12 kHz  
to 20 MHz (10-3). The resultant additive jitter is a low 39.7-fs RMS for this configuration.  
Reference signal is low-noise Rohde and Schwarz SMA100B  
10-2. LMK1D1208I Reference Phase Noise, 156.25 MHz, 24-fs RMS (12 kHz to 20 MHz)  
10-3. LMK1D1208I Output Phase Noise, 156.25 MHz, 46.4-fs RMS (12 kHz to 20 MHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-4 shows the low close-in phase noise of the LMK1D1208I device. The LMK1D1208I has excellent flicker  
noise as a result of superior process technology and design. This enables their use for clock distribution in radar  
systems, medical imaging systems etc which require ultra-low close-in phase noise clocks.  
10-4. LMK1D1208I Output Phase Noise, 100 MHz, 1-kHz Offset: 147 dBc/Hz  
10.3 Power Supply Recommendations  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
jitter or phase noise is critical to applications.  
Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass  
capacitors provide the low impedance path for high-frequency noise and guard the power-supply system against  
the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the  
device and must have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must  
be placed close to the power-supply pins and laid out with short loops to minimize inductance. TI recommends  
adding as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply pins in the package.  
TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip  
power supply that isolates the high-frequency switching noises generated by the clock driver. These beads  
prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with low DC  
resistance, because it is imperative to provide adequate isolation between the board supply and the chip supply,  
as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper  
operation.  
10-5 shows this recommended power-supply decoupling method.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
28  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
Chip  
Supply  
Board  
Supply  
Ferrite Bead  
1µF  
10µF  
0.1µF  
(x3)  
10-5. Power Supply Decoupling  
10.4 Layout  
10.4.1 Layout Guidelines  
For reliability and performance reasons, the die temperature must be limited to a maximum of 135°C.  
The device package has an exposed pad that provides the primary heat removal path to the printed circuit board  
(PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a  
ground plane must be incorporated into the PCB within the footprint of the package. The thermal pad must be  
soldered down to ensure adequate heat conduction to of the package. 10-6 and 10-7 show the  
LMK1D1208I top and bottom PCB layer examples.  
10.4.2 Layout Example  
10-6. Recommended PCB Layout, Top Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
10-7. Recommended PCB Layout Bottom Layer  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
30  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Power Consumption of LVPECL and LVDS Analog Design Journal  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application note  
Texas Instruments, Using Thermal Calculation Tools for Analog Components application note  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
 
 
 
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
12.1 Package Option Addendum  
Packaging Information  
Orderable  
Device  
Package  
Drawing  
Lead/Ball  
Finish(6)  
MSL Peak  
Temp(3)  
Device  
Status(1)  
Package Type  
Pins  
Package Qty  
Eco Plan(2)  
Op Temp (°C)  
Marking(4) (5)  
LMK1D1208IR ACTIVE  
HAR  
VQFN  
RHA  
Green (RoHS& NIPDAU  
no Sb/Br)  
Level-2-260C-1 -40 to 85  
YEAR  
LMK1D1208I  
40  
2500  
LMK1D1208IR ACTIVE  
HAT  
VQFN  
RHA  
250  
Green (RoHS& NIPDAU  
no Sb/Br)  
Level-2-260C-1 -40 to 85  
YEAR  
40  
LMK1D1208I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a  
new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all  
6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high  
temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible)  
as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
32  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
 
 
 
 
 
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
12.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMK1D1208IRHAR  
LMK1D1208IRHAT  
VQFN  
VQFN  
RHA  
RHA  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
13.3  
13.3  
Q2  
Q2  
40  
40  
2500  
250  
6.3  
6.3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS828  
34  
Submit Document Feedback  
Product Folder Links: LMK1D1208I  
 
LMK1D1208I  
ZHCSPZ0A FEBRUARY 2022 REVISED JUNE 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
2500  
250  
Length (mm) Width (mm)  
Height (mm)  
LMK1D1208IRHAR  
LMK1D1208IRHAT  
VQFN  
RHA  
RHA  
367.0  
210.0  
367.0  
185.0  
35.0  
40  
40  
VQFN  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMK1D1208I  
English Data Sheet: SNAS828  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK1D1208IRHAR  
LMK1D1208IRHAT  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
LMK1D  
1208I  
Samples  
Samples  
ACTIVE  
RHA  
NIPDAU  
LMK1D  
1208I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK1D1208IRHAR  
LMK1D1208IRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK1D1208IRHAR  
LMK1D1208IRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040D  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
6.1  
5.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 4.5  
(0.1) TYP  
2.9 0.1  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
2X  
41  
SYMM  
4.5  
1
30  
SEE TERMINAL  
DETAIL  
0.3  
0.2  
0.1  
40X  
40  
31  
SYMM  
C A  
B
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
40X  
0.05  
4225822/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.9)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
(1.2)  
TYP  
41  
SYMM  
(5.8)  
36X (0.5)  
(
0.2) TYP  
VIA  
21  
10  
(R0.05)  
TYP  
11  
20  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225822/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040D  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(R0.05) TYP  
SYMM  
40  
31  
40X (0.6)  
1
30  
4X ( 1.27)  
40X (0.25)  
(0.735) TYP  
(0.735)  
TYP  
41  
SYMM  
(5.8)  
36X (0.5)  
METAL  
TYP  
21  
10  
20  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
76.46% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:15X  
4225822/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY