LMP7712MM/NOPB [TI]

具有关断功能的双通道、17MHz、低噪声、低偏置电流、CMOS 输入、精密放大器 | DGS | 10 | -40 to 125;
LMP7712MM/NOPB
型号: LMP7712MM/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有关断功能的双通道、17MHz、低噪声、低偏置电流、CMOS 输入、精密放大器 | DGS | 10 | -40 to 125

放大器 光电二极管
文件: 总26页 (文件大小:1017K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
Single and Dual Precision, 17 MHz, Low Noise, CMOS Input Amplifiers  
Check for Samples: LMP7711  
1
FEATURES  
DESCRIPTION  
The LMP7711/LMP7712 are single and dual low  
noise, low offset, CMOS input, rail-to-rail output  
precision amplifiers with a high gain bandwidth  
product and an enable pin. The LMP7711/LMP7712  
are part of the LMP™ precision amplifier family and  
are ideal for a variety of instrumentation applications.  
23  
Unless Otherwise Noted, Typical Values at VS  
= 5V.  
Input Offset Voltage ±150 μV (Max)  
Input Bias Current 100 fA  
Input Voltage Noise 5.8 nV/Hz  
Gain Bandwidth Product 17 MHz  
Supply Current (LMP7711) 1.15 mA  
Supply Current (LMP7712) 1.30 mA  
Supply Voltage Range 1.8V to 5.5V  
THD+N @ f = 1 kHz 0.001%  
Utilizing a CMOS input stage, the LMP7711/LMP7712  
achieve an input bias current of 100 fA, an input  
referred voltage noise of 5.8 nV/Hz, and an input  
offset voltage of less than ±150 μV. These features  
make the LMP7711/LMP7712 superior choices for  
precision applications.  
Consuming only 1.15 mA of supply current, the  
LMP7711 offers a high gain bandwidth product of 17  
MHz, enabling accurate amplification at high closed  
loop gains.  
Operating Temperature Range 40°C to 125°C  
Rail-to-rail Output Swing  
Space Saving SOT Package (LMP7711)  
10-pin VSSOP Package (LMP7712)  
The LMP7711/LMP7712 have a supply voltage range  
of 1.8V to 5.5V, which makes these ideal choices for  
portable low power applications with low supply  
voltage requirements. In order to reduce the already  
low power consumption the LMP7711/LMP7712 have  
an enable function. Once in shutdown, the  
LMP7711/LMP7712 draw only 140 nA of supply  
current.  
APPLICATIONS  
Active Filters and Buffers  
Sensor Interface Applications  
Transimpedance Amplifiers  
The LMP7711/LMP7712 are built with TI's advanced  
VIP50 process technology. The LMP7711 is offered  
in a 6-pin SOT package and the LMP7712 is offered  
in a 10-pin VSSOP.  
TYPICAL PERFORMANCE  
Offset Voltage Distribution  
Input Referred Voltage Noise  
100  
25  
V
V
= 5V  
S
V = 5.5V  
S
= V /2  
S
CM  
20 UNITS TESTED: 10,000  
V
= 2.5V  
S
15  
10  
5
10  
1
0
-200  
1k  
1
10  
100  
10k  
100k  
-100  
0
100  
200  
FREQUENCY (Hz)  
OFFSET VOLTAGE (mV)  
Figure 1.  
Figure 2.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
LMP is a trademark of Texas Instruments.  
2
3
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2013, Texas Instruments Incorporated  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
ESD Tolerance(3)  
Human Body Model  
Machine Model  
2000V  
200V  
Charge-Device Model  
1000V  
VIN Differential  
±0.3V  
Supply Voltage (VS = V+ – V)  
Voltage on Input/Output Pins  
Storage Temperature Range  
Junction Temperature(4)  
Soldering Information  
6.0V  
V+ +0.3V, V0.3V  
65°C to 150°C  
+150°C  
Infrared or Convection (20 sec)  
235°C  
Wave Soldering Lead Temp. (10 sec)  
260°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state electrical specifications  
under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings.  
Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device  
performance.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of  
JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).  
(4) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) - TA)/θJA. All numbers apply for packages soldered directly onto a PC Board.  
OPERATING RATINGS(1)  
Temperature Range(2)  
Supply Voltage (VS = V+ – V)  
40°C to 125°C  
1.8V to 5.5V  
2.0V to 5.5V  
170°C/W  
0°C TA 125°C  
40°C TA 125°C  
6-Pin SOT  
(2)  
Package Thermal Resistance (θJA  
)
10-Pin VSSOP  
236°C/W  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state electrical specifications  
under particular test conditions which ensure specific performance limits. This assumes that the device is within the Operating Ratings.  
Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device  
performance.  
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) - TA)/θJA. All numbers apply for packages soldered directly onto a PC Board.  
2
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
2.5V ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, all limits are ensured for TA = 25°C, V+ = 2.5V, V= 0V ,VO = VCM = V+/2, VEN = V+. Boldface limits  
apply at the temperature extremes.  
Symbol  
Parameter  
Input Offset Voltage  
Conditions  
Min(1)  
Typ(2)  
Max(1)  
Units  
VOS  
±20  
±180  
μV  
±480  
TC VOS Input Offset Voltage Temperature  
Drift(3)(4)  
LMP7711  
LMP7712  
–1.75  
–1  
±4  
μV/°C  
IB  
Input Bias Current  
VCM = 1.0V(5)(4)  
40°C TA 85°C  
40°C TA 125°C  
0.05  
1
25  
pA  
0.05  
0.006  
100  
100  
98  
1
100  
IOS  
Input Offset Current  
VCM = 1.0V(4)  
0.5  
50  
pA  
dB  
CMRR Common Mode Rejection Ratio  
PSRR Power Supply Rejection Ratio  
0V VCM 1.4V  
83  
80  
2.0V V+ 5.5V  
85  
80  
V= 0V, VCM = 0  
dB  
V
1.8V V+ 5.5V  
85  
V= 0V, VCM = 0  
CMVR Common Mode Voltage Range  
CMRR 80 dB  
CMRR 78 dB  
0.3  
–0.3  
1.5  
1.5  
AVOL  
Open Loop Voltage Gain  
LMP7711, VO = 0.15 to 2.2V  
88  
82  
98  
92  
RL = 2 kto V+/2  
LMP7712, VO = 0.15 to 2.2V  
84  
80  
RL = 2 kto V+/2  
dB  
LMP7711, VO = 0.15 to 2.2V  
92  
88  
114  
95  
RL = 10 kto V+/2  
LMP7712, VO = 0.15 to 2.2V  
90  
86  
RL = 10 kto V+/2  
VOUT  
Output Voltage Swing  
High  
RL = 2 kto V+/2  
RL = 10 kto V+/2  
RL = 2 kto V+/2  
RL = 10 kto V+/2  
25  
70  
77  
20  
60  
66  
mV from  
either rail  
Output Voltage Swing  
Low  
30  
70  
73  
15  
60  
62  
IOUT  
Output Current  
Supply Current  
Sourcing to V−  
VIN = 200 mV(6)  
36  
30  
52  
mA  
mA  
Sinking to V+  
7.5  
5.0  
15  
VIN = 200 mV(6)  
IS  
LMP7711  
Enable Mode VEN 2.1  
0.95  
1.10  
0.03  
1.30  
1.65  
LMP7712 (per channel)  
Enable Mode VEN 2.1  
1.50  
1.85  
Shutdown Mode (per channel)  
1
4
μA  
VEN 0.4  
SR  
Slew Rate  
AV = +1, Rising (10% to 90%)  
AV = +1, Falling (90% to 10%)  
8.3  
V/μs  
10.3  
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using the  
Statistical Quality Control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(3) Offset voltage average drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.  
(4) This parameter is specified by design and/or characterization and is not tested in production.  
(5) Positive current corresponds to current flowing into the device.  
(6) The short circuit test is a momentary open loop test.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
2.5V ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise noted, all limits are ensured for TA = 25°C, V+ = 2.5V, V= 0V ,VO = VCM = V+/2, VEN = V+. Boldface limits  
apply at the temperature extremes.  
Symbol  
GBW  
en  
Parameter  
Gain Bandwidth  
Conditions  
Min(1)  
Typ(2)  
14  
Max(1)  
Units  
MHz  
Input Referred Voltage Noise Density  
f = 400 Hz  
f = 1 kHz  
f = 1 kHz  
6.8  
nV/Hz  
5.8  
in  
Input Referred Current Noise Density  
Turn-on Time  
0.01  
140  
pA/Hz  
ns  
ton  
toff  
VEN  
Turn-off Time  
1000  
2 - 2.5  
0 - 0.5  
1.5  
ns  
Enable Pin Voltage Range  
Enable Mode  
2.1  
V
Shutdown Mode  
VEN = 2.5V(5)  
VEN = 0V(5)  
0.4  
3.0  
0.1  
IEN  
Enable Pin Input Current  
μA  
0.003  
0.003  
THD+N Total Harmonic Distortion + Noise  
f = 1 kHz, AV = 1, RL = 100 kΩ  
VO = 0.9 VPP  
%
f = 1 kHz, AV = 1, RL = 600Ω  
0.004  
VO = 0.9 VPP  
5V ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, all limits are ensured for TA = 25°C, V+ = 5V, V= 0V, VCM = V+/2, VEN = V+. Boldface limits apply at  
the temperature extremes.  
Symbol  
Parameter  
Input Offset Voltage  
Conditions  
Min(1)  
Typ(2)  
Max(1)  
Units  
VOS  
±10  
±150  
μV  
±450  
TC VOS Input Offset Voltage Temperataure  
Drift(3)(4)  
LMP7711  
LMP7712  
–1.75  
–1  
±4  
μV/°C  
IB  
Input Bias Current  
VCM = 2.0V(5)(4)  
40°C TA 85°C  
40°C TA 125°C  
0.1  
1
25  
pA  
0.1  
0.01  
100  
100  
98  
1
100  
IOS  
Input Offset Current  
VCM = 2.0V(4)  
0.5  
50  
pA  
dB  
CMRR Common Mode Rejection Ratio  
PSRR Power Supply Rejection Ratio  
0V VCM 3.7V  
85  
82  
2.0V V+ 5.5V  
85  
80  
V= 0V, VCM = 0  
dB  
V
1.8V V+ 5.5V  
85  
V= 0V, VCM = 0  
CMVR Common Mode Voltage Range  
CMRR 80 dB  
CMRR 78 dB  
0.3  
–0.3  
4
4
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using the  
Statistical Quality Control (SQC) method.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped  
production material.  
(3) Offset voltage average drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.  
(4) This parameter is specified by design and/or characterization and is not tested in production.  
(5) Positive current corresponds to current flowing into the device.  
4
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
5V ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise noted, all limits are ensured for TA = 25°C, V+ = 5V, V= 0V, VCM = V+/2, VEN = V+. Boldface limits apply at  
the temperature extremes.  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ(2)  
Max(1)  
Units  
AVOL  
Open Loop Voltage Gain  
LMP7711, VO = 0.3 to 4.7V  
88  
82  
107  
RL = 2 kto V+/2  
LMP7712, VO = 0.3 to 4.7V  
84  
80  
90  
114  
95  
RL = 2 kto V+/2  
dB  
LMP7711, VO = 0.3 to 4.7V  
92  
88  
RL = 10 kto V+/2  
LMP7712, VO = 0.3 to 4.7V  
90  
86  
RL = 10 kto V+/2  
VOUT  
Output Voltage Swing  
High  
RL = 2 kto V+/2  
32  
70  
77  
RL = 10 kto V+/2  
22  
60  
66  
mV from  
either rail  
Output Voltage Swing  
Low  
RL = 2 kto V+/2  
(LMP7711)  
42  
70  
73  
RL = 2 kto V+/2  
50  
75  
(LMP7712)  
78  
RL = 10 kto V+/2  
20  
60  
62  
IOUT  
Output Current  
Supply Current  
Sourcing to V−  
VIN = 200 mV(6)  
46  
38  
66  
mA  
Sinking to V+  
10.5  
6.5  
23  
VIN = 200 mV(6)  
IS  
LMP7711  
Enable Mode VEN 4.6  
1.15  
1.30  
0.14  
1.40  
1.75  
mA  
LMP7712 (per channel)  
Enable Mode VEN 4.6  
1.70  
2.05  
Shutdown Mode VEN 0.4  
1
4
μA  
(per channel)  
SR  
Slew Rate  
AV = +1, Rising (10% to 90%)  
AV = +1, Falling (90% to 10%)  
6.0  
7.5  
9.5  
11.5  
17  
V/μs  
MHz  
GBW  
en  
Gain Bandwidth  
Input Referred Voltage Noise Density  
f = 400 Hz  
f = 1 kHz  
f = 1 kHz  
7.0  
nV/Hz  
5.8  
in  
Input Referred Current Noise Density  
Turn-on Time  
0.01  
114  
pA/Hz  
ns  
ton  
toff  
VEN  
Turn-off Time  
800  
ns  
Enable Pin Voltage Range  
Enable Mode  
Shutdown Mode  
VEN = 5V(7)  
4.6  
4.5 – 5  
0 – 0.5  
5.6  
V
0.4  
10  
IEN  
Enable Pin Input Current  
μA  
VEN = 0V(7)  
0.005  
0.001  
0.2  
THD+N Total Harmonic Distortion + Noise  
f = 1 kHz, AV = 1, RL = 100 kΩ  
VO = 4 VPP  
%
f = 1 kHz, AV = 1, RL = 600Ω  
0.004  
VO = 4 VPP  
(6) The short circuit test is a momentary open loop test.  
(7) Positive current corresponds to current flowing into the device.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
CONNECTION DIAGRAM  
6
5
+
1
+
V
OUTPUT  
1
2
3
10  
9
V
OUT A  
-IN A  
OUT B  
-
EN  
+
2
3
-
V
-
+
+IN A  
-IN B  
+IN B  
EN B  
8
7
6
-
+
-
4
4
5
V
-IN  
+IN  
EN A  
Figure 3. 6-Pin SOT - Top View  
See Package Number DDC  
Figure 4. 10-Pin VSSOP-Top View  
See Package Number DGS  
6
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Offset Voltage Distribution  
TCVOS Distribution (LMP7711)  
25  
20  
25  
20  
V
V
= 2.5V  
S
-40°C Ç T Ç 125èC  
A
= V /2  
CM  
S
V
V
= 2.5V, 5V  
S
UNITS TESTED:10,000  
= V /2  
CM  
S
UNITS TESTED:  
10,000  
15  
10  
5
15  
10  
5
0
-200  
0
-100  
0
100  
200  
-4  
-3  
-2  
TCV  
-1  
0
1
2
(mV/°C)  
OFFSET VOLTAGE (mV)  
OS  
Figure 5.  
Figure 6.  
Offset Voltage Distribution  
TCVOS Distribution (LMP7712)  
25  
25  
-40°C Ç T Ç 125°C  
A
V
V
= 5V  
S
V
= 2.5V, 5V  
S
= V /2  
CM  
S
20  
20 UNITS TESTED: 10,000  
V
= V /2  
CM  
S
UNITS TESTED:  
10,000  
15  
10  
5
15  
10  
5
0
0
-200  
-100  
0
100  
200  
-4  
-3  
-2  
(mV/°C)  
-1  
0
OFFSET VOLTAGE (mV)  
TCV  
OS  
Figure 7.  
Figure 8.  
Offset Voltage vs. VCM  
Offset Voltage vs. VCM  
200  
200  
150  
100  
50  
V
S
= 1.8V  
V
S
= 2.5V  
150  
100  
50  
-40°C  
-40°C  
25°C  
25°C  
0
0
125°C  
-50  
-50  
125°C  
-100  
-150  
-200  
-100  
-150  
-200  
-0.3  
0
0.3  
0.9  
1.2  
1.5  
0.6  
(V)  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1  
(V)  
-0.3  
V
CM  
V
CM  
Figure 9.  
Figure 10.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Offset Voltage vs. VCM  
Offset Voltage vs. Supply Voltage  
200  
150  
100  
50  
200  
V
= 5V  
S
150  
100  
-40°C  
25°C  
-40°C  
25°C  
50  
0
0
125°C  
125°C  
-50  
-50  
-100  
-150  
-200  
-100  
-150  
-200  
1.5  
2.5  
3.5  
4.5  
5.5  
6
-0.3  
0.7  
1.7  
2.7  
(V)  
3.7  
4.7  
V
S
(V)  
V
CM  
Figure 11.  
Figure 12.  
CMRR vs. Frequency  
Offset Voltage vs. Temperature  
150  
100  
120  
100  
V
S
= 2.5V  
50  
0
V
= 2.5V  
S
80  
60  
V
= 5V  
S
LMP7711  
-50  
40  
20  
-100  
-150  
V
= 5V  
S
LMP7712  
-200  
0
10  
10k  
100  
1k  
100k  
1M  
-40 -20  
0
20 40 60 80 100 120 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 13.  
Figure 14.  
Input Bias Current Over Temperature  
Input Bias Current Over Temperature  
1000  
50  
40  
30  
V
S
= 5V  
V
S
= 5V  
25°C  
500  
0
20  
10  
125°C  
-500  
-1000  
-1500  
-2000  
-2500  
-3000  
-40°C  
0
-10  
-20  
85°C  
-30  
-40  
-50  
0
1
2
3
4
0
1
2
3
4
V
(V)  
V
CM  
(V)  
CM  
Figure 15.  
Figure 16.  
8
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Supply Current vs. Supply Voltage (LMP7711)  
Supply Current vs. Supply Voltage (LMP7712)  
2
2
125°C  
1.6  
1.6  
125°C  
25°C  
25°C  
1.2  
1.2  
-40°C  
0.8  
0.8  
-40°C  
0.4  
0
0.4  
0
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
V
V
S
S
Figure 17.  
Figure 18.  
Supply Current vs. Supply Voltage (Shutdown)  
Crosstalk Rejection Ratio (LMP7712)  
160  
140  
1.8  
1.6  
125°C  
1.4  
120  
100  
80  
60  
40  
20  
0
1.2  
1
0.8  
0.6  
25°C  
0.4  
0.2  
-40°C  
4.5  
0
1M  
10M  
1k  
10k  
100k  
100M  
1.5  
2.5  
3.5  
5.5  
FREQUENCY (Hz)  
V
(V)  
S
Figure 19.  
Figure 20.  
Supply Current vs. Enable Pin Voltage (LMP7711)  
Supply Current vs. Enable Pin Voltage (LMP7711)  
1.5  
2.4  
V
= 2.5V  
125°C  
V
= 5V  
S
S
125°C  
1.3  
1.1  
0.9  
1.9  
25°C  
25°C  
1.4  
0.9  
-40°C  
0.7  
0.5  
-40°C  
-40°C  
0.3  
0.1  
0.4  
125°C  
-0.1  
-0.1  
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
4
5
ENABLE PIN VOLTAGE (V)  
ENABLE PIN VOLTAGE (V)  
Figure 21.  
Figure 22.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Supply Current vs. Enable Pin Voltage (LMP7712)  
Supply Current vs. Enable Pin Voltage (LMP7712)  
1.7  
2.4  
125°C  
V
= 2.5V  
S
V
= 5V  
S
1.5  
1.3  
1.1  
125°C  
1.9  
25°C  
1.4  
0.9  
25°C  
0.9  
0.7  
0.5  
0.3  
0.1  
-0.1  
-40°C  
-40°C  
-40°C  
25°C  
125°C  
0.4  
-0.1  
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
4
5
ENABLE PIN VOLTAGE (V)  
ENABLE PIN VOLTAGE (V)  
Figure 23.  
Figure 24.  
Sourcing Current vs. Supply Voltage  
Sinking Current vs. Supply Voltage  
80  
35  
30  
25  
20  
15  
125°C  
70  
125°C  
60  
50  
25°C  
-40°C  
25°C  
40  
30  
10  
5
-40°C  
20  
10  
0
0
1.5  
2.5  
3.5  
V (V)  
4.5  
5.5  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
V
S
S
Figure 25.  
Figure 26.  
Sourcing Current vs. Output Voltage  
Sinking Current vs. Output Voltage  
30  
25  
70  
125°C  
125°C  
60  
50  
40  
30  
20  
20  
15  
10  
-40°C  
25°C  
25°C  
-40°C  
5
0
10  
0
0
1
2
3
4
5
0
1
2
3
4
5
V
(V)  
OUT  
V
(V)  
OUT  
Figure 27.  
Figure 28.  
10  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Output Swing High vs. Supply Voltage  
Output Swing Low vs. Supply Voltage  
50  
50  
40  
30  
R
L
= 10 kW  
R =10 kW  
L
40  
30  
25°C  
125°C  
-40°C  
20  
10  
0
20  
10  
0
125°C  
-40°C  
25°C  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
V
V
S
S
Figure 29.  
Figure 30.  
Output Swing High vs. Supply Voltage  
Output Swing Low vs. Supply Voltage  
50  
50  
40  
30  
R
= 2 kW  
L
-40°C  
40  
30  
125°C  
25°C  
125°C  
25°C  
20  
10  
0
20  
10  
0
-40°C  
R
= 2 kW  
L
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
V
V
S
S
Figure 31.  
Figure 32.  
Output Swing High vs. Supply Voltage  
Output Swing Low vs. Supply Voltage  
150  
120  
90  
150  
120  
90  
R = 600W  
L
R
= 600W  
L
25°C  
125°C  
125°C  
25°C  
-40°C  
60  
30  
0
60  
30  
0
-40°C  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
V
V
S
S
Figure 33.  
Figure 34.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Open Loop Frequency Response  
Open Loop Frequency Response  
120  
100  
120  
120  
100  
80  
120  
100  
80  
PHASE  
PHASE  
100  
C
L
= 20 pF  
80  
60  
80  
60  
C
L
= 50 pF  
60  
60  
GAIN  
C
L
= 100 pF  
40  
20  
0
40  
20  
0
40  
20  
0
40  
20  
0
GAIN  
C
= 20 pF  
= 50 pF  
L
-20  
-40  
-20  
-40  
-60  
-20  
-40  
-60  
-20  
-40  
C
L
C
= 100 pF  
L
R
= 600W, 10 kW, 10 MW  
L
-60  
-60  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35.  
Figure 36.  
Phase Margin vs. Capacitive Load  
Phase Margin vs. Capacitive Load  
50  
50  
R
L
= 600W  
40  
30  
40  
30  
R
L
= 600W  
R
L
= 10 kW  
R
L
= 10 kW  
R
L
= 10 MW  
20  
20  
10  
0
R
L
= 10 MW  
10  
0
V
= 2.5V  
V
= 5V  
S
S
10  
100  
1000  
10  
100  
1000  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
Figure 37.  
Figure 38.  
Overshoot and Undershoot vs. Capacitive Load  
Slew Rate vs. Supply Voltage  
70  
12  
UNDERSHOOT%  
60  
FALLING EDGE  
11  
10  
50  
OVERSHOOT %  
40  
30  
20  
9
8
7
RISING EDGE  
10  
0
0
20  
40  
80  
100 120  
60  
1.5  
2.5  
3.5  
4.5  
5.5  
6
CAPACITIVE LOAD (pF)  
V
(V)  
S
Figure 39.  
Figure 40.  
12  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Small Signal Step Response  
Large Signal Step Response  
V
= 20 mV  
PP  
V
= 1 V  
IN  
IN  
PP  
f = 1 MHz, A = +1  
f = 200 kHz, A = +1  
V
V
V
= 2.5V, C = 10 pF  
L
V
= 2.5V, C = 10 pF  
L
S
S
200 ns/DIV  
800 ns/DIV  
Figure 41.  
Figure 42.  
Small Signal Step Response  
Large Signal Step Response  
V
= 20 mV  
PP  
IN  
V
= 1 V  
PP  
IN  
f = 200 kHz, A = +1  
f = 1 MHz, A = +1  
V
V
V
= 5V, C = 10 pF  
L
V
= 5V, C = 10 pF  
S
S
L
200 ns/DIV  
800 ns/DIV  
Figure 43.  
Figure 44.  
THD+N vs. Output Voltage  
THD+N vs. Output Voltage  
0
0
V
= 1.8V  
V
= 5.5V  
S
S
f = 1 kHz  
f = 1 kHz  
-20  
-40  
-20  
-40  
A
= +2  
A
= +2  
V
V
-60  
-80  
R
L
= 600W  
-60  
-80  
R
L
= 600W  
-100  
-120  
-140  
-100  
R
= 100 kW  
L
R
= 100 kW  
L
-120  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
OUTPUT AMPLITUDE (V  
)
PP  
OUTPUT AMPLITUDE (V  
)
PP  
Figure 45.  
Figure 46.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
THD+N vs. Frequency  
THD+N vs. Frequency  
0.006  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
V
A
= 1.8V  
= 0.9 V  
= +2  
V
V
A
= 5V  
S
O
V
S
O
V
= 4 V  
= +2  
PP  
PP  
0.005  
0.004  
0.003  
0.002  
0.001  
0
R
L
= 600W  
R
L
= 600W  
R
= 100 kW  
L
R
L
= 100 kW  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 47.  
Figure 48.  
PSRR vs. Frequency  
Time Domain Voltage Noise  
120  
100  
V
V
= ±2.5V  
S
V
= 5.5V, -PSRR  
S
= 0.0V  
CM  
V
= 1.8V, -PSRR  
S
80  
60  
40  
20  
V
= 5.5V, +PSRR  
S
V
= 1.8V, +PSRR  
S
0
1 s/DIV  
10k  
1M  
10  
1k  
100k  
10M  
100  
FREQUENCY (Hz)  
Figure 49.  
Figure 50.  
Input Referred Voltage Noise vs. Frequency  
Closed Loop Frequency Response  
100  
5
225  
V
= 5V  
S
V
= 5.5V  
S
180  
4
3
2
R
= 2 kW  
L
L
135  
90  
C
= 20 pF  
V
A
= 2 V  
= +1  
O
V
PP  
V
= 2.5V  
S
1
0
45  
10  
0
-45  
-90  
-135  
-1  
-2  
-3  
-4  
-5  
PHASE  
GAIN  
-180  
1
-225  
1k  
1
10  
100  
10k  
100k  
100 k  
1M  
100  
1k  
10k  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 51.  
Figure 52.  
14  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise noted: TA = 25°C, VS = 5V, VCM = VS/2, VEN = V+.  
Closed Loop Output Impedance vs. Frequency  
100  
10  
1
0.1  
0.01  
100M  
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
Figure 53.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMP7711  
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
APPLICATION NOTES  
LMP7711/LMP7712  
The LMP7711/LMP7712 are single and dual, low noise, low offset, rail-to-rail output precision amplifiers with a  
wide gain bandwidth product of 17 MHz and low supply current. The wide bandwidth makes the  
LMP7711/LMP7712 ideal choices for wide-band amplification in portable applications. The low supply current  
along with the enable feature that is built-in on the LMP7711/LMP7712 allows for even more power efficient  
designs by turning the device off when not in use.  
The LMP7711/LMP7712 are superior for sensor applications. The very low input referred voltage noise of only  
5.8 nV/Hz at 1 kHz and very low input referred current noise of only 10 fA/ Hz mean more signal fidelity and  
higher signal-to-noise ratio.  
The LMP7711/LMP7712 have a supply voltage range of 1.8V to 5.5V over a wide temperature range of 0°C to  
125°C. This is optimal for low voltage commercial applications. For applications where the ambient temperature  
might be less than 0°C, the LMP7711/LMP7712 are fully operational at supply voltages of 2.0V to 5.5V over the  
temperature range of 40°C to 125°C.  
The outputs of the LMP7711/LMP7712 swing within 25 mV of either rail providing maximum dynamic range in  
applications requiring low supply voltage. The input common mode range of the LMP7711/LMP7712 extends to  
300 mV below ground. This feature enables users to utilize this device in single supply applications.  
The use of a very innovative feedback topology has enhanced the current drive capability of the  
LMP7711/LMP7712, resulting in sourcing currents as much as 47 mA with a supply voltage of only 1.8V.  
The LMP7711 is offered in the space saving SOT package and the LMP7712 is offered in a 10-pin VSSOP.  
These small packages are ideal solutions for applications requiring minimum PC board footprint.  
Texas Instruments is heavily committed to precision amplifiers and the market segments they serves. Technical  
support and extensive characterization data is available for sensitive applications or applications with a  
constrained error budget.  
CAPACITIVE LOAD  
The unity gain follower is the most sensitive configuration to capacitive loading. The combination of a capacitive  
load placed directly on the output of an amplifier along with the output impedance of the amplifier creates a  
phase lag which in turn reduces the phase margin of the amplifier. If phase margin is significantly reduced, the  
response will be either underdamped or the amplifier will oscillate.  
The LMP7711/LMP7712 can directly drive capacitive loads of up to 120 pF without oscillating. To drive heavier  
capacitive loads, an isolation resistor, RISO in Figure 54, should be used. This resistor and CL form a pole and  
hence delay the phase lag or increase the phase margin of the overall system. The larger the value of RISO, the  
more stable the output voltage will be. However, larger values of RISO result in reduced output swing and  
reduced output current drive.  
Figure 54. Isolating Capacitive Load  
INPUT CAPACITANCE  
CMOS input stages inherently have low input bias current and higher input referred voltage noise. The  
LMP7711/LMP7712 enhance this performance by having the low input bias current of only 50 fA, as well as, a  
very low input referred voltage noise of 5.8 nV/Hz. In order to achieve this a larger input stage has been used.  
This larger input stage increases the input capacitance of the LMP7711/LMP7712. Figure 55 shows typical input  
common mode input capacitance of the LMP7711/LMP7712.  
16  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
 
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
25  
20  
V
S
= 5V  
15  
10  
5
0
0
1
2
3
4
V
CM  
(V)  
Figure 55. Input Common Mode Capacitance  
This input capacitance will interact with other impedances such as gain and feedback resistors, which are seen  
on the inputs of the amplifier to form a pole. This pole will have little or no effect on the output of the amplifier at  
low frequencies and under DC conditions, but will play a bigger role as the frequency increases. At higher  
frequencies, the presence of this pole will decrease phase margin and also causes gain peaking. In order to  
compensate for the input capacitance, care must be taken in choosing feedback resistors. In addition to being  
selective in picking values for the feedback resistor, a capacitor can be added to the feedback path to increase  
stability.  
The DC gain of the circuit shown in Figure 56 is simply R2/R1.  
C
F
R
2
R
1
-
+
C
IN  
V
+
-
IN  
+
V
OUT  
-
R2  
R1  
VOUT  
VIN  
-
AV =  
-
=
Figure 56. Compensating for Input Capacitance  
For the time being, ignore CF. The AC gain of the circuit in Figure 56 can be calculated as follows:  
VOUT  
-R2/R1  
(s) =  
VIN  
s2  
s
«
«
1 +  
+
A0 R1  
A0  
«
«
CIN R2  
R1 + R2  
(1)  
This equation is rearranged to find the location of the two poles:  
2
«
4 A0CIN  
R2  
1
1
-1  
1
1
-
P1,2  
=
+
ê
+
«
R1  
R2  
R
R2  
2CIN  
1
(2)  
17  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LMP7711  
 
 
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
As shown in Equation 2, as the values of R1 and R2 are increased, the magnitude of the poles are reduced,  
which in turn decreases the bandwidth of the amplifier. Figure 57 shows the frequency response with different  
value resistors for R1 and R2. Whenever possible, it is best to chose smaller feedback resistors.  
15  
A
= -1  
V
10  
5
0
-5  
R
1,  
R
2
= 30 kW  
-10  
-15  
-20  
-25  
R
R
= 10 kW  
1,  
2
R
1,  
R
2
= 1 kW  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 57. Closed Loop Frequency Response  
As mentioned before, adding a capacitor to the feedback path will decrease the peaking. This is because CF will  
form yet another pole in the system and will prevent pairs of poles, or complex conjugates from forming. It is the  
presence of pairs of poles that cause the peaking of gain. Figure 58 shows the frequency response of the  
schematic presented in Figure 56 with different values of CF. As can be seen, using a small value capacitor  
significantly reduces or eliminates the peaking.  
20  
R , R = 30 kW  
1
2
C
F
= 0 pF  
A
= -1  
V
10  
0
C
= 5 pF  
F
-10  
-20  
-30  
-40  
C
= 2 pF  
F
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 58. Closed Loop Frequency Response  
TRANSIMPEDANCE AMPLIFIER  
In many applications, the signal of interest is a very small amount of current that needs to be detected. Current  
that is transmitted through a photodiode is a good example. Barcode scanners, light meters, fiber optic receivers,  
and industrial sensors are some typical applications utilizing photodiodes for current detection. This current  
needs to be amplified before it can be further processed. This amplification is performed using a current-to-  
voltage converter configuration or transimpedance amplifier. The signal of interest is fed to the inverting input of  
an op amp with a feedback resistor in the current path. The voltage at the output of this amplifier will be equal to  
the negative of the input current times the value of the feedback resistor. Figure 59 shows a transimpedance  
amplifier configuration. CD represents the photodiode parasitic capacitance and CCM denotes the common-mode  
capacitance of the amplifier. The presence of all of these capacitances at higher frequencies might lead to less  
stable topologies at higher frequencies. Care must be taken when designing a transimpedance amplifier to  
prevent the circuit from oscillating.  
18  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
 
 
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
With a wide gain bandwidth product, low input bias current and low input voltage and current noise, the  
LMP7711/LMP7712 are ideal for wideband transimpedance applications.  
C
F
R
F
I
IN  
C
-
CM  
+
-
+
V
OUT  
C
D
V
B
CIN = CD + CCM  
VOUT  
- R  
=
F
IIN  
Figure 59. Transimpedance Amplifier  
A feedback capacitance CF is usually added in parallel with RF to maintain circuit stability and to control the  
frequency response. To achieve a maximally flat, 2nd order response, RF and CF should be chosen by using  
Equation 3  
CIN  
CF =  
GBWP * 2 p RF  
(3)  
Calculating CF from Equation 3 can sometimes result in capacitor values which are less than 2 pF. This is  
especially the case for high speed applications. In these instances, its often more practical to use the circuit  
shown in Figure 60 in order to allow more sensible choices for CF. The new feedback capacitor, CF, is (1+  
RB/RA) CF. This relationship holds as long as RA << RF.  
R
A
R
B
C
F
R
F
-
+
IF RA < < RF  
«
RB  
1 +  
C Å =  
F
CF  
RA  
«
Figure 60. Modified Transimpedance Amplifier  
SENSOR INTERFACE  
The LMP7711/LMP7712 have low input bias current and low input referred noise, which make them ideal choices  
for sensor interfaces such as thermopiles, Infra Red (IR) thermometry, thermocouple amplifiers, and pH electrode  
buffers.  
Thermopiles generate voltage in response to receiving radiation. These voltages are often only a few microvolts.  
As a result, the operational amplifier used for this application needs to have low offset voltage, low input voltage  
noise, and low input bias current. Figure 61 shows a thermopile application where the sensor detects radiation  
from a distance and generates a voltage that is proportional to the intensity of the radiation. The two resistors, RA  
and RB, are selected to provide high gain to amplify this signal, while CF removes the high frequency noise.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMP7711  
 
 
LMP7711  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
www.ti.com  
THERMOPILE  
+
-
+
V
-
+
= KI  
IN  
R
B
V
OUT  
-
IR RADIATION  
INTENSITY, I  
R
A
C
F
V
R
A
OUT  
I =  
K(R  
R )  
B
A +  
Figure 61. Thermopile Sensor Interface  
PRECISION RECTIFIER  
Rectifiers are electrical circuits used for converting AC signals to DC signals. Figure 62 shows a full-wave  
precision rectifier. Each operational amplifier used in this circuit has a diode on its output. This means for the  
diodes to conduct, the output of the amplifier needs to be positive with respect to ground. If VIN is in its positive  
half cycle then only the output of the bottom amplifier will be positive. As a result, the diode on the output of the  
bottom amplifier will conduct and the signal will show at the output of the circuit. If VIN is in its negative half cycle  
then the output of the top amplifier will be positive, resulting in the diode on the output of the top amplifier  
conducting and, delivering the signal on the amplifier's output to the circuits output.  
For R2/ R1 2, the resistor values can be found by using the equation shown in Figure 62. If R2/ R1 = 1, then R3  
should be left open, no resistor needed, and R4 should simply be shorted.  
R
2
V
IN  
R
1
+
V
V
OUT  
-
-
-
V
R
R
3
4
R
R
R
R
4
3
2
1
= 1 +  
+
V
-
10 kW  
V
Figure 62. Precision Rectifier  
20  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMP7711  
 
 
LMP7711  
www.ti.com  
SNOSAP4F SEPTEMBER 2005REVISED MAY 2013  
REVISION HISTORY  
Changes from Revision E (May 2013) to Revision F  
Page  
Changed layout of National Data Sheet to TI format. ......................................................................................................... 20  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMP7711  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMP7711MK/NOPB  
LMP7711MKE/NOPB  
LMP7711MKX/NOPB  
LMP7712MM/NOPB  
LMP7712MME/NOPB  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DGS  
DGS  
6
6
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
AC3A  
AC3A  
AC3A  
AD3A  
AD3A  
SN  
SN  
SN  
SN  
6
3000 RoHS & Green  
1000 RoHS & Green  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
10  
10  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP7711MK/NOPB  
LMP7711MKE/NOPB  
LMP7711MKX/NOPB  
SOT-  
23-THIN  
DDC  
DDC  
DDC  
6
6
6
1000  
250  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
SOT-  
23-THIN  
SOT-  
3000  
23-THIN  
LMP7712MM/NOPB  
LMP7712MME/NOPB  
VSSOP  
VSSOP  
DGS  
DGS  
10  
10  
1000  
250  
178.0  
178.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP7711MK/NOPB  
LMP7711MKE/NOPB  
LMP7711MKX/NOPB  
LMP7712MM/NOPB  
LMP7712MME/NOPB  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
VSSOP  
DDC  
DDC  
DDC  
DGS  
DGS  
6
6
1000  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
6
3000  
1000  
250  
10  
10  
VSSOP  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY