LMP93601 [TI]

用于热电堆传感器的低噪声、高增益、3 通道 AFE;
LMP93601
型号: LMP93601
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于热电堆传感器的低噪声、高增益、3 通道 AFE

传感器
文件: 总44页 (文件大小:3498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
LMP93601 用于热电堆传感器的低噪声,高增益,3 通道模拟前端 (AFE)  
1 特性  
3 说明  
1
高增益、高达 4096 可编程  
LMP93601 是一款经优化的模拟前端 (AFE),此模拟  
前端用于检测热电堆阵列(高达 16 x 16)的占用情  
况,以及热电堆质量流量传感器。 此 AFE 以非常适合  
于监控热电堆传感器的采样速率将出色噪声性能、低偏  
移电压、高增益和低功耗组合在一起。  
低增益误差漂移,< 10ppm/°C  
低偏移电压和漂移;1uV50nV/°C  
低输入偏置电流,1.3nA  
低输入偏移电流,120pA  
针对电平位移的 VCM 输出信号,AVDD/3  
三个差分抗电磁干扰 (EMI) 输入  
16 位三角积分 (Δ∑) 模数转换器  
低噪声性能,有效位数 (ENOB) 15.3 位  
四输出数据速率,高达 1.3kSPS  
针对 ADC 的内部电压基准  
SPI 接口传输速率,20MHz  
掉电检测  
LMP93601 是一款采用超薄四方扁平无引线 (WQFN)-  
24 封装的高精度,16 位,模数转换器 (ADC)。 此器  
件特有三个差分抗 EMI 输入,一个低噪声、高增益可  
编程增益放大器 (PGA),一个电平位移电压源,一个  
内部基准和一个可编程采样速率。 LMP93601 通过一  
SPI 兼容接口实现的很多集成特性和简单控制简化  
了热电堆传感器信号的高精度测量。  
器件信息  
可编程增益放大器 (PGA) 超范围检测  
单独的模拟和数字电源,2.7 5.5V  
低流耗,1.1mA  
部件号  
LMP93601  
封装  
封装尺寸  
WQFN (24)  
5.00mm x 4.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
低功率关断模式,< 0.1µA  
工作温度-25 85°C  
2 应用范围  
热电堆阵列测量  
热电堆流量测量  
桥式传感器接口  
手势识别  
模拟电源与 偏移电压之间的关系图  
4 简化热电堆阵列系统图  
10  
8
 
6
4
2
0
±2  
±4  
Vref  
SPI  
±6  
±25ƒC  
25°C  
85°C  
IR sensor  
AFE  
MCU  
X by Y Array  
LMP93601  
±8  
Digital  
Data  
Analog Data  
±10  
X-Decoder  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
AVDD (V)  
C001  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNAS633  
 
 
 
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 21  
8.5 Programming........................................................... 25  
8.6 Register Maps......................................................... 27  
8.7 Multi Byte Access (Auto Increment) Mode.............. 30  
8.8 Multi-Channel Data Read........................................ 31  
Application and Implementation ........................ 33  
9.1 Application Information............................................ 33  
9.2 Typical Applications ................................................ 33  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化热电堆阵列系统............................................. 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 7  
7.7 Noise Performance ................................................... 8  
7.8 Typical Characteristics............................................ 12  
Detailed Description ............................................ 15  
8.1 Overview ................................................................. 15  
8.2 Functional Block Diagram ....................................... 15  
9
10 Power Supply Recommendations ..................... 36  
11 Layout................................................................... 36  
11.1 Layout Guidelines ................................................. 36  
11.2 Layout Example .................................................... 37  
12 器件和文档支持 ..................................................... 38  
12.1 ....................................................................... 38  
12.2 静电放电警告......................................................... 38  
12.3 术语表 ................................................................... 38  
13 机械封装和可订购信息 .......................................... 38  
8
5 修订历史记录  
Changes from Original (March 2014) to Revision A  
Page  
Added application curves ...................................................................................................................................................... 3  
Changed Handling Ratings format ........................................................................................................................................ 3  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
6 Pin Configuration and Functions  
LMP93601  
24 Pin  
Top View  
VCM  
IN1P  
IN1N  
IN2P  
IN2N  
IN3P  
IN3N  
1
2
3
4
5
6
7
19 IOVDD  
18 SDO  
17 SCLK  
16 IOGND  
15 CSB  
LMP93601  
14 SDI  
13 DRDYB  
Pin Functions  
PIN(1)  
TYPE(I/O)(2)  
DESCRIPTION  
NAME  
NUMBER  
VCM  
1
Analog in/output  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog ground  
Digital input  
Digital input  
Digital input  
Digital input  
Digital output  
Digital input  
Digital input  
Digital IO ground  
Digital input  
Digital output  
Digital IO supply rail  
Digital ground  
Analog ground  
Digital LDO  
Sensor common mode bias voltage  
Input signal positive pin  
Input signal negative pin  
Input signal positive pin  
Input signal negative pin  
Input signal positive pin  
Input signal negative pin  
INP1  
2
INN1  
3
INP2  
4
INN2  
5
INP3  
6
INN3  
7
AGND  
PWDNB  
RSTB  
SYNC  
XCLK  
DRDYB  
SDI  
8
9
Enable, active low  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Master reset, active low  
Sync, active high  
External clock source  
Data ready signal, active low, push-pull  
Serial data input  
CSB  
Chip select, active low  
IOGND  
SCLK  
SDO  
Serial interface clock  
Serial data output; push-pull  
IOVDD  
DGND  
AGND  
XCAP2  
XCAP1  
AVDD  
External Cap2  
External Cap1  
Analog supply rail  
Analog  
Analog  
(1) For best performance, it is recommended that the DAP is connected to AGND (refer to Mechanical, Packaging and Orderable  
Information ). All three “GND” connections (AGND, DGND and IOGND) must be connected to system ground and cannot be left floating.  
(2) There is no pull-up/-down for any digital I/O  
Copyright © 2014, Texas Instruments Incorporated  
3
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
MAX  
6.0  
UNIT  
V
Analog Supply Voltage, AVDD  
Digital Supply Range, IOVDD; ( IOVDD must always be lower than or equal to AVDD supply)  
Voltage between any two analog pins  
6.0  
V
6.0  
V
Voltage between any two digital pins  
6.0  
V
Voltage between XCAP2 and any GND (A, D or IO)  
Input current at any pin  
2.2  
V
-5.0  
+5.0  
125  
mA  
°C  
Junction Temperature  
(1) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
7.2 Handling Ratings  
MIN  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
2000 K  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
500  
(1) JEDEC document JEP155 states that 2000 -V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
MAX  
5.5  
UNIT  
V
Analog Supply Voltage, AVDD  
Fclk  
2.7  
3.6  
2.7  
4.4  
MHz  
V
Digital Supply Voltage, IOVDD  
Supply Ground  
AVDD  
AGND = DGND = IOGND  
-25 85  
Temperature range  
°C  
7.4 Thermal Information  
WQFN  
24 PINS  
SYMBOL  
THERMAL METRIC  
UNIT  
ΘJA  
ΘJC  
ΨJB  
Thermal resistance, junction to ambient  
Thermal resistance, junction to case  
Thermal resistance, junction to board  
37.9  
°C/W  
°C/W  
°C/W  
4.8  
19.4  
4
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
7.5 Electrical Characteristics  
Typical conditions: TA=+25C, AVDD=IOVDD=3.3 V, INP1/INN1 enabled with VICM=AVDD/3. PGA gain=64, PGA over-range  
masked, digital gain=1. SPS select=1057 SPS. fXCLK=4.00 MHz. Conversion power mode. XCAP1=1 uF. XCAP2=0.1 uF.  
SYMBOL  
INPUTS  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Channel1 enabled with a 100 kΩ resistor  
as input, channel 2 disabled with 1 V  
peak-peak , 100 Hz signal as input.  
80  
dB  
Crosstalk across input  
channels  
XTLK  
(1)  
Differential input  
impedance  
10//7  
MΩ//pF  
Zin  
Common mode input  
impedance  
100//4.5  
MΩ//pF(1)  
IB  
Input bias current  
-1.3  
nA  
pA  
Input offset current on  
differential channels  
-200  
Ios  
Maximum of INP1-INN1, .., INP3-INN3  
Maximum of INP1-INN1, .., INP3-INN3  
Input short on chip, PGA 64 DG =1, CH1  
Input short on chip  
Input offset current drift  
on differential channels  
-0.5  
1
pA/C  
uV(2)  
nV/C  
mV  
TCIos  
Vos  
Input referred offset  
voltage  
-15  
+15  
Input referred offset drift  
with temperature  
50  
TCVos  
Programmable gain settings =16; ± 3%  
Programmable gain settings =32; ± 3%  
Programmable gain settings =64; ± 3%  
Programmable gain settings = 128; ± 3%  
PGA bypass  
-64  
-32  
-16  
+64  
+32  
+16  
Input differential range  
for AVDD3V  
Vdiff  
± 8  
±1  
V
0.3  
0.4  
AVDD-  
1.4  
V(3)  
PGA = 64 V/V; CMRR 80 dB  
Input common mode  
range.  
VICM  
BW  
PGA = 64 V/V ; CMRR 72 dB  
-25 C to 85 C  
AVDD-  
1.45  
See  
Figure 16  
Hz  
Channel bandwidth  
Output data rate  
265  
530  
SPS  
ODR  
1057  
1326  
Programmable gain  
settings  
16, 32 , 64  
and 128  
V/V  
PGA  
Bypass mode  
1
V/V  
V/V  
Programmable gain  
settings  
1, 2, 4, 8,  
16 and 32  
Digital Gain  
Programmable gain  
settings (analog and  
digital)  
16 - 4096  
V/V  
Total AFE Gain  
Gain steps  
2 x  
0.3 %  
-0.3 %  
-9  
Gain error  
GE  
PGA bypassed  
GE drift with temperature  
ppm/C  
(1) Value from simulation  
(2) The input referred offset is measure by an on-chip short.  
(3) Temperature limits are ensured by statistical analysis or design  
Copyright © 2014, Texas Instruments Incorporated  
5
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical conditions: TA=+25C, AVDD=IOVDD=3.3 V, INP1/INN1 enabled with VICM=AVDD/3. PGA gain=64, PGA over-range  
masked, digital gain=1. SPS select=1057 SPS. fXCLK=4.00 MHz. Conversion power mode. XCAP1=1 uF. XCAP2=0.1 uF.  
SYMBOL  
ENOB(4)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
15.3  
91  
MAX  
UNIT  
Bits  
dB  
Effective number of bits  
Total harmonic distortion 100 Hz, 50 mVpp differential input, PGA  
(Linearity)  
THD  
16 V/V  
RMS noise in a 1 kHz  
BW  
0.67(5)  
uVrms  
PGA = 64 V/V  
Noise  
1/ƒ noise corner  
1
127  
127  
Hz  
dB(3)  
VICM = 0.3 to AVDD-1.4 V  
80  
72  
Common mode rejection  
ratio (at DC)  
VICM = 0.4 to AVDD-1.45 V, over  
operating temperature range  
-25 C to 85 C  
CMRR  
PSRR  
Supply ; 2.7 to 5.5 V  
80  
72  
120  
120  
dB(3)  
Power supply rejection  
ratio (at DC)  
Supply ; 2.7 to 5.5 V, over operating  
temperature range  
-25 C to 85 C  
VRF = 100 mVPP  
f=400 MHz  
dB  
86  
87  
85  
84  
EMIRR  
EMI rejection ratio  
f=900 MHz  
f=1800 MHz  
f=2400 MHz  
VCM  
V VCM  
Output voltage  
Startup time  
AVDD/3  
10  
V
ms  
Tstrp VCM  
Acc VCM  
TC VCM  
To within 90% of final value  
Accuracy  
0.2  
%
Drift over temperature  
Output current  
Load regulation  
Load range  
0.5  
ppm/C  
mA  
0.5  
I VCM  
0 to 200uA  
4
15  
20  
mV  
Zload VCM  
2.2//100  
MΩ//nF  
SLAVE SPI INTERFACE  
Clock frequency  
DIGITAL INPUT/OUTPUT CHARACTERISTICS  
1
MHz  
0.7x  
IOVDD  
V
V
VIH  
VIL  
Logical “1” Input Voltage  
Logical “0” Input Voltage  
0.3x  
IOVDD  
IOVDD-  
0.150  
VOH  
Isource=300uA  
Isink=300uA  
IOGND  
+0.150  
VOL  
POWER SUPPLY  
AVDD  
Analog supply voltage  
range  
2.7  
5.5  
V
Digital supply voltage  
range  
AVDD  
V(6)  
IOVDD  
AVDD IOVDD  
(4) ENOB is a DC ENOB spec, not the dynamic ENOB that is measured using FFT and SINAD:  
2uV / Gain  
ª
«
¬
º
»
¼
ref  
ENOB   log2  
RMSNoise  
(5) See Table 1 for detailed noise performance  
(6) IOVDD always AVDD and IOVDD minimum is 2.7 V  
6
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Electrical Characteristics (continued)  
Typical conditions: TA=+25C, AVDD=IOVDD=3.3 V, INP1/INN1 enabled with VICM=AVDD/3. PGA gain=64, PGA over-range  
masked, digital gain=1. SPS select=1057 SPS. fXCLK=4.00 MHz. Conversion power mode. XCAP1=1 uF. XCAP2=0.1 uF.  
SYMBOL  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
Shutdown Mode, XCLK off  
Standby Mode  
0.1  
1.9  
2.7  
1
25  
25  
µA  
µA  
µA  
IIOVDD  
Digital on AFE  
Conversion Power Mode  
Conversion Power Mode,  
PGA bypassed  
3
µA  
Shutdown Mode, XCLK off  
Standby Mode  
0.1  
175  
1.1  
1
250  
1.6  
µA  
µA  
IAVDD  
Analog on AFE  
Conversion Power Mode  
mA  
Conversion Power Mode, 230 μA PGA  
bypassed  
230  
µA  
TEMPERATURE RANGE  
Operating  
–25  
85  
°C  
7.6 Timing Requirements  
Under typical conditions with maximum total load capacitance 10 pF.  
MIN  
TYP  
MAX UNIT  
tPH  
tPL  
tSU  
tH  
High Period, SCLK  
Low Period, SCLK  
SDI input setup time  
SDI input hold time  
SDO output hold time  
CSB setup time  
25  
25  
10  
10  
ns  
ns  
ns  
ns  
tOD  
tCSS  
tCSH  
tIAG  
13.5  
ns  
ns  
ns  
ns  
25  
25  
50  
CSB hold time  
CSB high time  
Figure 1. SPI Write Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
7
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
CSB  
1
7
8
9
15  
16  
SCLK  
7-bit register  
address (n)  
R/W  
SDI  
8-bit data read  
from address (n)  
SDO  
Figure 2. SPI Read Timing Diagram  
7.7 Noise Performance  
Table 1. Noise In µVRMS at AVDD= 3.3 V, AGND = 0 V, and Internal Reference = 2.4 VRMS  
ODR (SPS)  
PGA Gain (V/V)  
D-Gain (V/V)  
Vn (uVrms)  
Below the resolution  
of the 16 bit SDM.  
1
Below the resolution  
of the 16 bit SDM.  
2
16  
4
8
0.661  
0.597  
0.578  
0.574  
16  
32  
Below the resolution  
of the 16 bit SDM.  
1
2
4
0.516  
0.396  
0.368  
0.361  
0.362  
0.556  
0.321  
0.287  
0.281  
0.275  
0.277  
0.298  
0.254  
0.247  
0.242  
0.242  
0.240  
32  
8
16  
32  
1
265  
2
4
64  
8
16  
32  
1
2
4
128  
8
16  
32  
8
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Noise Performance (continued)  
Table 1. Noise In µVRMS at AVDD= 3.3 V, AGND = 0 V, and Internal Reference = 2.4 VRMS (continued)  
ODR (SPS)  
PGA Gain (V/V)  
D-Gain (V/V)  
Vn (uVrms)  
Below the resolution  
of the 16 bit SDM.  
1
2
4
0.944  
0.888  
0.831  
0.810  
0.816  
0.509  
0.609  
0.543  
0.517  
0.521  
0.511  
0.569  
0.421  
0.397  
0.396  
0.397  
0.395  
0.377  
0.348  
0.340  
0.341  
0.340  
0.339  
16  
8
16  
32  
1
2
4
32  
64  
8
16  
32  
1
530  
2
4
8
16  
32  
1
2
4
128  
8
16  
32  
Copyright © 2014, Texas Instruments Incorporated  
9
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Noise Performance (continued)  
Table 1. Noise In µVRMS at AVDD= 3.3 V, AGND = 0 V, and Internal Reference = 2.4 VRMS (continued)  
ODR (SPS)  
PGA Gain (V/V)  
D-Gain (V/V)  
Vn (uVrms)  
1.565  
1.517  
1.410  
1.409  
1.398  
1.401  
0.932  
0.903  
0.834  
0.839  
0.829  
0.824  
0.667  
0.596  
0.580  
0.580  
0.579  
0.574  
0.501  
0.481  
0.476  
0.476  
0.473  
0.470  
1
2
4
16  
8
16  
32  
1
2
4
32  
64  
8
16  
32  
1
1057  
2
4
8
16  
32  
1
2
4
128  
8
16  
32  
10  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Noise Performance (continued)  
Table 1. Noise In µVRMS at AVDD= 3.3 V, AGND = 0 V, and Internal Reference = 2.4 VRMS (continued)  
ODR (SPS)  
PGA Gain (V/V)  
D-Gain (V/V)  
Vn (uVrms)  
2.331  
1.743  
1.743  
1.665  
1.648  
1.681  
1.189  
0.975  
0.981  
0.954  
0.941  
0.937  
0.733  
0.677  
0.670  
0.667  
0.660  
0.663  
0.575  
0.546  
0.541  
0.537  
0.540  
0.538  
1
2
4
16  
8
16  
32  
1
2
4
32  
64  
8
16  
32  
1
1326  
2
4
8
16  
32  
1
2
4
128  
8
16  
32  
Copyright © 2014, Texas Instruments Incorporated  
11  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.8 Typical Characteristics  
10  
8
10  
8
6
6
4
4
2
2
0
0
±2  
±4  
±6  
±8  
±10  
±2  
±4  
±6  
±8  
±10  
±25ƒC  
25°C  
85°C  
±25ƒC  
25°C  
85°C  
2.5  
±50  
±50  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0.0  
±50  
±50  
0.5  
1.0  
1.5  
2.0  
2.5  
AVDD (V)  
Vcm (V)  
C001  
C002  
Figure 3. Vos vs AVDD (V)  
Figure 4. Vos vs Vcm (V)  
10  
5
0.20  
0.15  
AVDD=2.7 V  
AVDD=3.3 V  
AVDD=5.5 V  
0.10  
0.05  
0
0.00  
±0.05  
±0.10  
±0.15  
±0.20  
±5  
±10  
AVDD=2.7 V  
AVDD=3.3 V  
AVDD=5.5 V  
0
50  
Temperature (ƒC)  
100  
0
50  
Temperature (ƒC)  
100  
C003  
C004  
Figure 5. Ibias vs Temperature  
Figure 6. Ios vs Temperature  
10  
5
0.20  
0.15  
0.10  
0.05  
0
0.00  
±0.05  
±0.10  
±0.15  
±0.20  
±5  
±10  
VCM=0.6 V  
VCM=1.1 V  
VCM=1.9 V  
VCM=0.6 V  
VCM=1.1 V  
VCM=1.9 V  
0
50  
Temperature (ƒC)  
100  
0
50  
Temperature (ƒC)  
100  
C005  
C006  
Figure 7. Ibias vs Temperature  
Figure 8. Ios vs Temperature  
12  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Typical Characteristics (continued)  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
IAVDD_SD 3.3 V  
IAVDD_SD 5.5 V  
IOVDD_SD 3.3 V  
IOVDD_SD 5.5 V  
0.8  
0.6  
0.4  
0.2  
0.0  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
±25  
±25  
±25  
±25  
±25  
±25  
Temperature (ƒC)  
Temperature (ƒC)  
C007  
C008  
Figure 9. IAVDD vs Temperature  
Figure 10. IOVDD vs Temperature  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
12  
10  
8
IOVDD_2.7 V  
IOVDD_3.3 V  
IOVDD_5.5 V  
6
4
IAVDD_2.7 V  
IAVDD_3.3 V  
IAVDD_5.5 V  
2
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Temperature (ƒC)  
Temperature (ƒC)  
C009  
C010  
Figure 11. I AVDD vs Temperature  
Figure 12. IOVDD vs Temperature  
300  
250  
200  
150  
100  
50  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
IAVDD_Bypass 3.3 V  
IOVDD_Bypass 3.3 V  
IAVDD_STB 3.3 V  
IOVDD_STB 3.3 V  
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Temperature (ƒC)  
Temperature (ƒC)  
C011  
C012  
Figure 13. IAVDD vs Temperature  
Figure 14. IOVDD vs Temperature  
Copyright © 2014, Texas Instruments Incorporated  
13  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
2.0  
1.5  
1.0  
0.5  
0.0  
±0.5  
±1.0  
±1.5  
PGA128  
PGA64  
PGA32  
PGA16  
PGA Bypass  
±2.0  
±25  
0
25  
50  
75  
100  
Temperature (ƒC)  
C013  
Figure 15. GE (%) vs Temperature  
14  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
8 Detailed Description  
8.1 Overview  
The LMP93601 Analog-Front-End is a unique device designed from ground up specifically for interfacing to  
16 x 16 MEMS (Micro-electro-mechanical systems) thermopile arrays, and thermopile mass flow sensors  
with very low output signals in the range of 1 µV to 600 µV. For signal conditioning of thermopile sensors, the  
AFE is required to have very low noise performance, very low offset voltage, very high gain, and low-power  
consumption at sampling rates to process several frames per second.  
The signal chain includes a PGA featuring low offset voltage (0.7 µVrms), low input bias current (–1.3 nA),  
and programmable gain of 1x, 16x, 32x, 64x and 128x. The total gain of the signal path combined with the  
programmable digital gain of the 16-bit Delta-Sigma data converter is up to 4096x.  
The signal chain features excellent total noise performance of below 0.5 uVrms at programmable sampling  
rates of up to 1.3 kSPS, while providing optimal power consumption during full operation (1.1 mA). The  
device features ultra-low shutdown current (0.1 µA), and standby mode current of 250 µA.  
Other features include Low EMI sensitivity due to EMI hardened input stage, Internal reference voltage for  
the ADC, output reference voltage for thermopile sensors (VCM), a brown-out detector for low-battery  
condition, synchronous serial communication (SPI) communication up to 20 MHz, flex routing multiplexer for  
interfacing to multiple flow sensors, and PGA over range detection.  
8.2 Functional Block Diagram  
AVDD  
XCAP2  
XCAP1  
XCAP2  
IOVDD  
PGA Over-range  
Detect  
Brownout  
Detect  
RSTB  
LDO, VREF &  
Comm. Mode  
Generator  
PWDNB  
DRDYB  
SYNC  
Control Unit  
AVDD/3  
VCM  
INP1  
EMIF  
EMIF  
EMIF  
EMIF  
EMIF  
EMIF  
INN1  
INP2  
INN2  
INP3  
INN3  
CSB  
SDO  
SDI  
16-bit û™$'&  
+
û™ꢀ  
Modulator  
FIR  
FLTR  
SPI  
PGA  
-
SCLK  
XCLK  
LMP93601  
AGND  
DGND  
IOGND  
Copyright © 2014, Texas Instruments Incorporated  
15  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Data Format  
The LMP93601 provides 16 bits of data in binary two's complement format. The positive full-scale input produces  
an output code of 7FFFh and the negative full-scale input produces an output code of 8000h. The output clips at  
these codes for signals that exceed full-scale (FS). Table 2 summarizes the ideal output codes for different input  
signals.  
8.3.2 Transfer Function  
The ADC output code in decimal is given by the relation:  
Vdiff uPGA uDGu 216  
codedec  
 
2u Vref  
(1)  
Table 2. Example of ADC Output Code  
CODE (HEX)  
1946  
CODE (DEC)  
PGA (V/V)  
DG (V/V)  
VDIF (V)  
7.404E-3  
6470  
12288  
-12036  
-4  
64  
16  
16  
64  
1
4
1
1
3000  
14.063E-3  
-55.096E-3  
-4.578E-6  
D0FC  
FFFC  
8.3.3 Input Routing Mux  
The LMP93601 offers 5 differential input channel configurations for its 3 differential input pairs:  
For 1-ch system: One of the 3 channels, Ch1, Ch2, or Ch3 is enabled  
For 2-ch system: Ch1 & Ch2 are enabled  
For 3-ch system: Ch1, Ch2, Ch3 are enabled  
8.3.4 Programmable Gain Amplifier  
The PGA provides a high input impedance to interface with signal sources that may have relatively high output  
impedance, such as thermopiles. The Programmable Gain amplifier gain can be programmed to 16, 32 64, and  
128 V/V.  
The maximum differential input voltage (Vdiff) of the PGA is ±64 mV when the programmed analog gain is 16  
V/V. With analog gain programmed to 64V/V the maximum differential input voltage of the PGA is ±16 mV.  
The input common mode voltage range of the PGA is AGND+0.3+Vdiff*Gain/2 to AVDD-1.40-Vdiff*Gain/2.  
The PGA also has an EMIRR filter incorporated. The EMIRR filter is a single pole roll off providing enhanced  
noise immunity for unwanted RF signals.  
8.3.5 PGA Bypass Mode  
The PGA can be bypassed to access the 16 bit Delta-Sigma modulator directly. This mode results in a typical  
gain of 1 V/V at a supply current of typically 230 µA. The input common mode range in the PGA-bypass mode is  
rail to rail and the maximum differential input voltage that can be applied to the Delta-Sigma modulator is ± 1.2  
Vpp differential. The typical noise at 1057 SPS is 20 uVrms. Typical input impedance in the PGA bypass mode is  
1.3 MΩ//7 pF. In the PGA-bypass mode, the PGA and overrange detectors are disabled. To access the PGA-  
bypass mode the following SPI write sequence must be followed in this exact order:  
Table 3. PGA Bypass Mode SPI Write Sequence  
ADDRESS  
0x1  
WRITE  
Program as normal  
Program as normal  
See Table 4 below  
8'h01  
DESCRIPTION  
0x02  
0x03  
0x05  
Mask PGA OR detectors (else the conversion will read 7FFF)  
First write to address 0x60  
0x60  
8'h93  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Table 3. PGA Bypass Mode SPI Write Sequence (continued)  
ADDRESS  
WRITE  
8'h60  
8'h10  
8'h28  
8'h01  
8'h01  
DESCRIPTION  
0x60  
0x63  
0x61  
0x04  
0x00  
Second write to address 0x60  
Override  
PGA bypass and OR detectors shutdown  
Conversion mode  
lock  
Table 4. PGA Bypass Register 0x03 Setting Description  
ADDR [6:0]  
NAME  
# OF BITS  
TYPE  
DEFAULT  
DESCRIPTION  
PGA settings for  
differential channels  
[6:4] Digital 3’b000: 1  
3’b001: 2  
3’b010: 4  
3’b011: 8  
3’b100: 16  
3’b101: 32(default)  
3’b110-111: Reserved  
[1:0] Analog  
0x03  
Config3  
5
R/W  
8’h52  
2’b00: 16  
2’b01: 32  
2’b10: 64 (default)  
2’b11: 128 [7] always 0  
[2] Bypass PGA, bit [1:0]  
would be ignored  
To exit the PGA-bypass mode, a reset is required, either via the RSTB or SPI. Failure to follow this exact  
sequence may result in the device becoming unresponsive, thereby requiring a reset, either via the RSTB or SPI.  
8.3.6 Over-Range Detection  
The PGA has over-range detection and when signals are outside the minimum or maximum allowed signal, an  
out of range condition will be reported as “0x7FFF” for the corresponding channel. A status register provides  
further details of the out of range condition. The overrange detectors are at the output of the PGA and check for  
five conditions:  
PGA positive output low  
PGA negative output low  
PGA positive output high  
PGA negative output high  
PGA differential output high  
The “output high” overrange detectors typically trip at AVDD-1.28 V. Both “output low” overrange detectors  
typically trip at 0.11 V and the differential overrange detector is typically at +1.22 and -1.22 V differential.  
For example, if the input common mode is below 0.11 V and a zero differential voltage (shorted input) is applied,  
both the PGA positive and PGA negative “output low” detectors would trip. Likewise, if the input common mode is  
over AVDD-1.28 and a zero differential voltage (shorted input) is applied, both the PGA positive and PGA  
negative “output high” detectors would trip.  
For the differential output high detector to trip, the output of the PGA has to be greater than 1.22 V or less than  
–1.22 V. At a gain of 64, this would translate to an input referred differential voltage of Vdiff = 1.22/64 = 19 mV  
8.3.7 Analog-To-Digital Converter (ADC)  
The 16 bit Sigma Delta Modulator (SDM) takes the output signal of the PGA and converts this signal into a high  
resolution bit stream that is further processed by the digital filters. The 2.4 V reference for the SDM is internally  
generated and requires a high-performance, low ESR (<0.1 Ω), and Low ESL(<1nH) 1uF (±10%) external bypass  
capacitor for optimal performance on the XCAP1 pin. This reference should not be used to drive external  
circuitry.  
The SDM clock uses a divided-down external clock (XCLK).  
Copyright © 2014, Texas Instruments Incorporated  
17  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
8.3.8 Programmable Digital Filters  
A programmable digital filter behind the SDM reconstructs the signal from the SDM output bit stream. The filter  
consists of programmable filter stages. Each of the stages further filters and decimates the bit stream so that the  
data rate and bandwidth of the signal is reduced and at the same time the resolution is enhanced.  
An example of the filter response when programmed for 265, 530, 1057 or 1326 SPS is shown in Figure 16.  
Figure 16. Bandwidth and Module Noise Performance  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
8.3.9 Common Mode Voltage Generator  
The common mode reference generator (VCM) provides an AVDD/3 reference. It can drive a 100nF (±10%)  
external capacitance with typical ESR/ESL of 0.1 Ω and 1 nH. It can also be used to drive guard traces placed  
around the input PCB traces to reduce PCB leakage currents to the inputs. The VCM can be disabled with the  
Reference Enable register. In case the VCM is disabled, an external common mode voltage that tracks the  
common mode of the input channel(s) needs to be connected to the VCM pin to function as a reference for the  
over-range detection circuitry. In case the VCM is disabled, it is recommended to add an external 10 kΩ series  
resistor.  
8.3.10 Low Drop-Out Regulator (LDO)  
The on chip LDO generates 1.2V for the digital core. A 100nF (+/-10%) external capacitance with low ESR/ESL  
(typical 0.1 ohm and 1 nH) is required on the XCAP2 pin to provide adequate supply bypass for the internal  
digital core. The LDO should not be used to drive external circuitry.  
8.3.11 External Clock  
The LMP93601 does not have an internal oscillator and needs an external clock, XCLK. The XCLK needs to be  
running all the time when the LMP93601 is operating. The SYNC, DRDYB, and RSTB are synchronous to XCLK.  
The LMP93601 operating range for XCLK is 3.6 to 4.4 MHz.  
8.3.12 Operating Modes  
The LMP93601 can be programmed to convert data in continuous-time or single shot modes.  
8.3.13 Data Ready Function (DRDYB)  
DRDYB is an active low output signal. It is asserted when new data is ready to be read and should be used by  
the MCU for data capturing.  
When DRDYB is asserted, the MCU can capture the data any time before the next DRDYB is asserted. The time  
is defined as 1/ODR. Please note that if data is not read within the time period, it will be over-written internally in  
the LMP93601 by the new data.  
For DRDYB de-assertion, it is normally cleared by a data read. In the following example: it is de-asserted on the  
14th SCLK rising edge.  
If data has not been read when the new data is about to be ready, DRDYB will be de-asserted for 15 XCLK  
periods (defined as tDRDYB) so that LMP93601 can re-assert the DRDYB. Once this happens, the µC should wait  
for the next DRDYB assertion before issuing an SPI read protocol.  
DRDYB assertion and de-assertion is synchronous to XCLK and SCLK respectively in normal operation.  
Figure 17. DRDYB Behavior for A Complete Read Operation  
Copyright © 2014, Texas Instruments Incorporated  
19  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
t1/ODRt  
DRDYB  
SDO  
tDRDYB  
ch3  
ch1  
ch2  
ch3  
ch1  
ch2  
ch3  
ch1  
CONV  
DRDYB  
*
*
*
The above example is to show how DRDYB functions if more than 1 channel is enabled. DRDBYB is only issued every round-robin. DRDYB is de-asserted when  
the LMP93601 starts to output data.  
ch1  
ch1  
ch1  
ch1  
ch1  
ch1  
ch1  
ch1  
CONV  
DRDYB  
*
*
*
*
*
*
*
The above example is to show how DRDYB functions if only 1 channel is enabled. DRDYB is de-asserted when the LMP93601 starts to output data.  
Figure 18. DRDYB Behavior for an Incomplete Read Operation  
8.3.14 Synchronous Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) interface allows access to the control registers of the LMP93601. The serial  
interface is a generic 4-wire synchronous interface compatible with SPI type of interfaces used on many  
microcontrollers and DSP controllers. A typical serial interface access cycle is exactly 16 bits long, which  
includes an 8-bit command field (R/WB + 7-bit address) to provide a maximum of 128 direct access addresses,  
and an 8-bit data field.  
LMP93601’s SCLK can be in either idle high or idle low state when CSB is de-asserted. The first incoming data  
on the SCLK rising edge, and all incoming data at SDI is captured on the SCLK rising edge. Outgoing data is  
sourced at SDO on the SCLK falling edge and the MCU can capture data from the LMP93601 on the SCLK  
rising edge.  
8.3.15 Power Management Mode; Standby, Conversion and Shutdown  
The device can be placed in Standby and Conversion mode via the SPI. In Conversion mode, the ADC and PGA  
are operating and converting data. In Standby mode the PGA and ADC are disabled and not converting data. In  
Standby mode the contents of the registers are unaffected, and there is a drastic power reduction. Only the  
internal reference, LDO, VCM driver and the digital are on.  
The reaction time going from Standby mode to Conversion mode is approximately 100 µs.  
The LMP93601 can be put in shutdown mode by taking the PWDNB pin low. In shutdown mode, all internal  
circuitry is disabled and no register settings are maintained. The power consumption is very low (< 0.1 uA).  
Releasing the PWDNB (taking it high) will “wake up” the device and it will return to the default Standby mode.  
Wake up time from shutdown can be up to 10 ms.  
Table 5. Wake Up Time From Low Power Modes  
Mode  
Registers  
Power  
Wake Up Time  
Programmable via  
Shutdown  
Not maintained  
~0.1 µA  
Less than 10 ms to go to  
Standby mode  
PWDNB pin  
20  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Table 5. Wake Up Time From Low Power Modes (continued)  
Mode  
Registers  
Power  
Wake Up Time  
Programmable via  
Standby  
Maintained  
~175 µA  
~100 µs to go to  
conversion mode  
SPI  
Conversion  
Maintained  
1.1 mA  
n/a  
SPI  
8.3.16 Power-On Sequence and Reset (POR) Function  
An internal power on reset is generated after both the internal LDO (to supply the internal digital) and IOVDD  
reach valid values. The internal LDO will reach stable values only after the AVDD has reached at least 2.7 V.  
The device should be powered up with AVDD enabled and stabilized first, then the IOVDD. This allows the  
device to start in the default power up state and ensures that the internal power on reset is generated after both  
the internal LDO (to supply the internal digital) and IOVDD reach valid values. The internal LDO will reach stable  
values only after the AVDD has reached at least 2.7 V for 1 ms. Alternatively, AVDD and IOVDD can be  
connected together, but this can result in an erroneous brown-out condition being reported when the ramp time  
of the supplies is slower than 0.1 V/ms. For example, if the AVDD = IOVDD are linearly ramped from 0 to 3.3 V  
in longer than 330 µs, the brown could possibly trigger and be logged in the status register and the first  
conversion result could read ‘7FFF’. To avoid this erroneous brown-out report, three alternative solutions are  
available:  
a. After the supplies are stable, reset the part (either with the RSTB pin or with a soft reset via SPI). After this  
reset, the part can be programmed and used as intended.  
b. Or, after the supplies are stable, program the part as desired, but before initiating the first conversion, read  
back the status register(s) of the enabled channel(s) to clear the erroneous brown-out status.  
c. Or, wait supplying the XCLK to the part until after the supplies are stable  
8.3.17 Brown-Out Detection Function  
A brown-out detection circuit monitors the AVDD. It triggers an alarm only when AVDD falls below ~2.55 V and  
stays below 2.55 V for more than 16 fxclk cycles. The brown-out detection has a hysteresis of ~65 mV. The  
alarm will result in “0x7FFF” data and the appropriate channel status register(s) can be read to decode the alarm.  
The brown-out error function can be masked via SPI with the “alarm mask” register.  
8.3.18 Reset Function  
The device can be reset to the default (Standby) state via the SPI or taking the RSTB pin low. The reaction time  
from the reset (either via SPI or RSTB pin) to the device getting to Standby mode is on the order of 100 µs. See  
Table 6  
8.4 Device Functional Modes  
8.4.1 Single-Shot Mode  
In Single Shot mode each conversion is triggered by a Start Trigger from the microcontroller unit (MCU) to the  
LMP93601 by pulsing the SYNC pin or via a start SPI command (SYNC is recommended for exact timing  
control). After the LOCK bit is set, the external µC should wait 3 XCLK cycles before it sends a start trigger. This  
is to allow the internal synchronizer enough time to synchronize the SPI write of the LOCK bit into the XCLK  
domain. This assumes the analog has already settled (otherwise, allow ~100 µs to go from standby to conversion  
mode).  
The SYNC has typical setup/hold time of 20 ns with respect to XCLK, as shown in Figure 19.  
Copyright © 2014, Texas Instruments Incorporated  
21  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
thold  
XCLK  
SYNC  
tsetup  
DRDYB  
tvalid  
Figure 19. Single Shot Sync Setup/Hold Time  
22  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Device Functional Modes (continued)  
See Figure 20 for details regarding the Single Shot Flow Chart.  
MCU sets the  
Sensor Select Mux  
Lines  
System Power-Up  
Start Trigger can  
be issuedby  
pulsingthe SYNC  
pinor writingthe  
START Command  
viaSPI  
MCU Issues  
Start Trigger  
Read LMP93601  
Status  
Check if  
DRDYB Falling  
Edge detected by  
MCU?  
No  
LMP93601  
initializationis  
complete  
No  
Device Ready?  
Yes  
Yes  
(1) MCU Switches  
the Sensor Select  
Mux Lines for the  
next conversion  
(2) MCU Issues a  
Read for the  
Note: MCU can  
readthe  
conversiondata  
anytime before  
the next DRDYB  
assertion  
Write  
Configuration  
current conversion  
result  
Lock Configuration  
Figure 20. Single Shot Flow Chart  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.2 Continuous Mode  
In Continuous mode the LMP93601 only requires a single Start Trigger to start. The Start Trigger can start either  
by a SYNC or a Start command via the SPI (SYNC is recommended). After the LOCK bit is set, the external  
MCU should wait 3 XCLK cycles before it sends a start trigger. This allows the internal synchronizer enough time  
to synchronize the SPI write of the LOCK bit into the XCLK domain. This assumes the analog has already settled  
(else allow ~100 µs to go from standby to conversion mode).  
It will convert all enabled channels without requiring another Start Trigger. Figure 21 shows the Continuous Mode  
Flow Chart.  
System Power-Up  
MCU sets the  
Start Trigger can be  
issued by pulsing the  
SYNC pin or writing  
the START Command  
via SPI  
Sensor Select Mux  
Lines  
Read LMP93601  
Status  
MCU Issues  
Start Trigger  
Note: It only needs to  
be provided once.  
Check if  
LMP93601  
initialization is  
complete  
No  
Device Ready?  
Yes  
Note: MCU ensures  
that there is enough  
settling from DRDYB  
to next conversion  
start.  
DRDYB Falling  
Edge detected by  
MCU?  
No  
Yes  
Write  
Configuration  
(1) MCU Switches  
the Sensor Select  
Mux Lines for the  
next conversion  
(2) MCU Issues a  
Read for the  
Note: MCU can read  
the conversion data  
anytime before the  
Lock Configuration  
next DRDYB assertion  
current conversion  
result  
Figure 21. Continuous Mode Flow Chart  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
8.5 Programming  
8.5.1 Window to Capture Data and Status  
SPI Protocols can be asynchronous to XCLK. Data and status read can only happen between the consecutive  
DRDYB falling edges. For example, after DRDYB is asserted by the LMP93601, the MCU has to finish reading  
all data before DRDYB is asserted again.  
For best performance in continuous acquisition mode, it is recommended to read the data within 70 µs after  
DRDYB is asserted in order to keep the SPI activity during conversion to a minimum.  
NOTE  
The de-assertion of DRDYB happens after a data read command is received.  
Prior Ch1  
conversion is  
over-ranged  
Tno_rd  
tTrdt  
Input  
Condition  
Over-range  
ch2  
Good  
ch2  
Good  
ch1  
Good  
ch1  
Good  
ch2  
Good  
ch1  
Good  
ch2  
Good  
ch1  
CONV  
DRDYB  
*
*
**  
Good data  
Over-range data  
Good data  
Good data  
Good data  
Good data  
Ch1 data  
Good data  
Over-range data  
Ch2 data  
Ch1 status  
Status: Good  
Status: over-range  
Status: Good  
Status: Good  
Status: Good  
Ch2 status  
Status: Good  
Status: Good  
Status: over-range  
Data Read  
Status Read  
Ch2 status  
not cleared.  
Ch2 status is cleared since the  
previous status is read and a  
within-range data is converted.  
Ch1 data is over-  
Ch1 status is  
cleared only after  
it is read.  
written but over-  
ranged status is still  
available.  
Ch1 & Ch2  
status is read.  
Ch1 status is cleared after it is read even though the latest data is within range.  
Ch2 status is not cleared since the current status is still over-range. It is cleared only after a within-range data is converted.  
*DRDYB is de-asserted by data read.  
**Since data is not read by the MCU, DRDYB is de-asserted by the LMP93601 automatically so that it can be asserted again  
when the new data is available. In this case, both data & status should not be read by the MCU during the Tno_rd time duration.  
Figure 22. Channel Data Transfer Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
25  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Programming (continued)  
Prior Ch1  
conversion is  
over-ranged  
Input  
Good  
Over-range  
Good  
ch2  
Good  
ch1  
Good  
ch2  
Good  
ch1  
Good  
ch2  
Good  
ch1  
Condition  
ch2  
ch1  
CONV  
*
*
*
DRDYB  
Ch1 data  
Ch2 data  
Over-range data  
Good data  
Good data  
Over-range data  
Good data  
Good data  
Status: over-range (1)  
Status: Good  
Good data  
Good data  
Status: Good  
Status: Good  
Status: over-range (2)  
Status: Good  
Ch1 status  
Ch2 status  
Status: Good  
Status: Good  
Data Read  
Status Read  
Ch1 status is  
cleared only after  
it is read.  
Ch1 status(1) is over-  
written by a different  
over-range status(2).  
Ch1 & Ch2  
status is read.  
If the LMP93601 gets multiple over-ranged data, the latest status is reported.  
*DRDYB is de-asserted by SPI data read.  
Figure 23. Channel Data Transfer Timing Diagram  
8.5.2 Single Byte Access  
WRITE: A single byte write access is a total of 16 SCLK periods during CSB assertion. Incoming data is captured  
on the rising edge of the SCLK. A command byte consists of an R/W bit and a 7-bit address field and R/W = 0  
for write protocols.  
CSB  
1
7
8
16  
9
15  
SCLK  
SDI  
7-bit register  
address (n)  
8-bit data written  
to address (n)  
R/W  
Figure 24. Single Byte Write Access  
READ: Similar to a write, the LMP93601 captures incoming data on the SCLK rising edge. After the 8th rising  
edge, the LMP93601 output data is sourced on the SCLK falling edge and the MCU should capture it on the  
rising edge. R/W = 1 for read protocols.  
26  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Programming (continued)  
CSB  
1
7
8
9
15  
16  
SCLK  
7-bit register  
address (n)  
R/W  
SDI  
8-bit data read  
from address (n)  
SDO  
Figure 25. Single Byte Read Access  
8.6 Register Maps  
Table 6. LMP93601 Internal Registers  
ADDR  
[6:0]  
Name  
# of Bits  
Type  
Default  
Description  
Locked when  
conversion is  
enabled?  
0x00  
0x01  
Lock  
1
R/W(1)  
‘h00  
[0]  
n/a(2)  
0: configuration bits are writeable (default)  
1: configuration bits are read-only (that is, locked)  
unless noted.  
[7:1] always 0  
Config1  
4
R/W(1)  
‘h00  
[7] continuous/single shot:  
Y
0: Continuous – the part will convert all enabled  
channels sequentially in a round-robin manner.  
After all channels are converted, it will repeat the  
round-robin. (default)  
1: Single-Shot - the part will convert all enabled  
channels once in a round-robin manner after  
receiving a start-trigger (SYNC pulse preferred). It  
will wait for the next trigger before converting all  
enabled channels again.  
[2:0] Channel enable  
Channel enable configuration for the 3 channels  
(Ch1-3):  
3’b000: Only Ch1 is enabled(default)  
3’b001: Only Ch2 is enabled  
3’b010: Only Ch3 is enabled  
3’b011: Only Ch1 & Ch2 enabled  
3’b100: Ch1, 2, & 3 enabled  
3’b101, 3’b110, 3’b111: Reserved  
[6:3]: always 0  
(1) R/W = Read or Write  
(2) n/a = not applicable  
Copyright © 2014, Texas Instruments Incorporated  
27  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. LMP93601 Internal Registers (continued)  
ADDR  
[6:0]  
Name  
# of Bits  
Type  
Default  
Description  
Locked when  
conversion is  
enabled?  
0x02  
Config2  
3
R/W(1)  
’h82  
[7] Reference Output Enables for VCM  
0: Disable the corresponding VCM output  
1: Enable the corresponding VCM output  
(default)  
Y
VCM = AVDD/3  
[1:0] SPS select  
Global setting for all enabled channels  
2’b00: 265 sps  
2’b01: 530 sps  
2’b10: 1057 sps(default)  
2’b11: 1326 sps  
[6:2] always 0  
0x03  
Config3  
5
R/W(1)  
’h52  
PGA settings for differential channels. All  
channels will always have the same setting.  
Y
[6:4] Digital  
3’b000: 1  
3’b001: 2  
3’b010: 4  
3’b011: 8  
3’b100: 16  
3’b101: 32(default)  
3’b110-111: Reserved  
[1:0] Analog  
2’b00: 16  
2’b01: 32  
2’b10: 64 (default)  
2’b11: 128  
[7], [3:2] always 0  
[2] , Bypass PGA, bit [1:0] would be ignored.  
See for more details  
0x04  
Config4  
1
R/W(1)  
‘h00  
[0] Power Mode  
Y
0: Standby (default)  
1: Conversion Mode (user still has to write the  
lock bit and then provide a start-trigger before  
conversion starts)  
[7:1] always 0  
28  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Register Maps (continued)  
Table 6. LMP93601 Internal Registers (continued)  
ADDR  
[6:0]  
Name  
# of Bits  
Type  
Default  
Description  
Locked when  
conversion is  
enabled?  
0x05  
Alarm  
mask  
3
R/W(1)  
‘h00  
[7] Brownout Mask  
Y
0: when brown-out is detected, all enabled  
channels’ conversion result will be 0x7FFF  
(default)  
1: when brown-out is detected, the conversion  
result is not affected.  
[6]: Digital Gain Over range Mask  
0: when digital gain over-range is detected for a  
channel, its conversion result will be 0x7FFF  
(default)  
1: when digital gain over-range is detected,  
conversion result is not affected.  
[0] PGA over-range Mask  
0: when any of the PGA over-range is detected  
for a channel, its conversion result will be 0x7FFF  
(default)  
1: when any of the PGA over-range is detected,  
conversion result is not affected  
[5:1] always 0  
0x06  
sdo_cfg  
1
R/W(1)  
‘h00  
[0] SDO always driven mode  
N
0: SDO only driven during the read back frames  
of a SPI read, all other time, SDO is in Hi-Z  
(Default)  
1: SDO always driven mode: SDO driven high by  
LMP93601 except during the read back frame of  
a SPI read  
[7:1] always 0  
[0]: Soft reset  
0x07  
Soft reset  
1
R/W(1)  
‘h00  
N
0: normal (Default)  
1: Reset all registers hence part will be in default  
condition  
To reset via SPI, one should write first a 1 to this  
bit and then a 0.  
[7:1] always 0  
[7] Start  
0x0f  
START  
1
WO(3)  
n/a(2)  
Only writeable  
if LOCK is 1  
This is a write-only location. If written, it will act as  
the trigger to start the conversion sequence.  
In continuous mode, the round robin is triggered  
by a write to this register. The round robin will be  
repeated so only 1 write is needed.  
In Single-Shot mode, the round robin is triggered  
by a write to this register and all enabled  
channels will be converted once. The chip will  
wait for the next write to the START register  
before starting the next round robin conversion.  
NOTE: For accurate timing control, SYNC pulse  
as  
a
start-trigger is preferred since it is  
synchronous to the XCLK domain.  
[6:0] always 0  
(3) WO = Write Only  
Copyright © 2014, Texas Instruments Incorporated  
29  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Register Maps (continued)  
Table 6. LMP93601 Internal Registers (continued)  
ADDR  
[6:0]  
Name  
# of Bits  
Type  
Default  
Description  
Locked when  
conversion is  
enabled?  
NOTE The following status register addresses are mapped in ascending order for easy read-back.  
0x10  
general  
Status  
1
RO(4)  
‘h00  
[0]: when this bit is high, the LMP93601 is ready  
to be programmed.  
n/a(2)  
n/a(2)  
0x11  
Status1  
8
RO(4)  
n/a(2)  
[7:0]: Status for CH1:  
[0] - Digital gain overrange  
[1] - PGA positive output low  
[2] - PGA negative output low  
[3] - PGA positive output high  
[4] - PGA negative output high  
[5] - PGA differential output high  
[6] - Sign of PGA out.  
This alone does not trigger 7FFF error code.  
[7] Brown out  
0x12  
0x13  
Status2  
Status3  
8
8
RO(4)  
RO(4)  
n/a(2)  
n/a(2)  
[7:0] Status for CH2:  
same bit map as CH1 status (above)  
[7:0] Status for CH3:  
n/a(2)  
n/a(2)  
same bit map as CH1 status (above)  
Channel Results:  
When over-range is detected, the corresponding channel result will read back 0x7FFF, unless it is masked.  
When brown-out is detected, the converted channel result will read back 0x7FFF, unless it is masked.  
NOTE The following channel result register addresses are mapped in ascending order for easy read-back.  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x7E  
0x7F  
CH1 LSB  
CH1 MSB  
CH2 LSB  
CH2 MSB  
CH3 LSB  
CH3 MSB  
Chip ID  
8
8
8
8
8
8
8
8
RO(4)  
RO(4)  
RO(4)  
RO(4)  
RO(4)  
RO(4)  
RO(4)  
RO(4)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
8’h73  
8’h00  
CH1 Result[7:0]  
CH1 Result[15:8]  
CH2 Result[7:0]  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
n/a(2)  
CH2 Result[15:8]  
CH3 Result[7:0]  
CH3 Result[15:8]  
LMP93601 chip ID  
LMP93601 Revision ID  
Revision  
ID  
(4) RO = Read Only  
8.7 Multi Byte Access (Auto Increment) Mode  
This interface will support address auto-increment feature. An access cycle may be extended to multiple  
registers simply by keeping the CSB asserted beyond the stated 16 clocks of the standard 16-bit protocol. In this  
mode, CSB must be asserted during 8*(1+N) clock cycles of SCLK, where N is the number of bytes to write or  
read during the access cycle. The auto-incrementing address mode is useful to access a block of registers of  
incrementing addresses.  
WRITE: Example: if 2 bytes of data are sent by the MCU to the LMP93601, both addresses (n) and (n+1) will be  
written at the 16th and 24th rising edges of SCLK respectively. Similarly, if another 8 bits of data is sent, they will  
be written in the next address location.  
30  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Multi Byte Access (Auto Increment) Mode (continued)  
CSB  
1
7
8
9
15  
16  
17  
23  
24  
SCLK  
SDI  
7-bit register  
address (n)  
8-bit data written  
to address (n)  
8-bit data written  
to address(n+1)  
R/W  
Figure 26. Example Multi Byte Write Access  
READ: Example: if a read address is sent from the MCU to the LMP93601, the LMP93601 will first output the  
data at location (n). If another 8 SCLKs are sent, the data at location (n+1) will be output. Similarly, the  
LMP93601 will continue to send the data at the next address location until CSB is de-asserted.  
CSB  
1
7
8
16  
17  
24  
9
15  
23  
SCLK  
7-bit register  
address (n)  
R/W  
SDI  
8-bit data read  
from address (n)  
8-bit data read from  
address (n+1)  
SDO  
Figure 27. Example Multi Byte Read Access  
NOTE  
If a read (or write) is not 8*(1+N) clock cycles, the last byte will not be read or written. For  
example if 20 clocks were used, only the 1st data byte is being written, not the 2nd one.  
8.8 Multi-Channel Data Read  
CH1, CH2 and CH3 results can be read by a single SPI transaction in Little Endian Format:  
Byte Level: Ch1[7:0], Ch1[15:8], Ch2[7:0], Ch2[15:8], Ch3[7:0], Ch3[15:8]…..  
Bit Level: Ch1[7], [6], [5], [4], [3], [2], [1], [0], [15], [14], [13], [12]. [11], [10], [9], [8], Ch2[7]……..  
The overhead is a single byte of command which consists of a READ bit and a 7-bit address field.  
NOTE  
ADC rate is 1326 SPS (max). If all 3 channels are enabled, the conversion rate for each  
channel is 1326 SPS/3 = 426SPS.  
Copyright © 2014, Texas Instruments Incorporated  
31  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Multi-Channel Data Read (continued)  
CSB  
1
8
9
16 17  
24 25  
32  
33  
40  
41  
48  
49  
56  
SCLK  
R + 7-bit Address  
SDI  
Ch1[7:0]  
Ch1[15:8]  
Ch2[7:0]  
Ch2[15:8]  
Ch3[7:0]  
Ch3[15:8]  
SDO  
Figure 28. Example Multi Channel Read Access  
32  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
Micro-electro-mechanical systems (MEMS) thermopile sensor arrays are gaining popularity in building  
automation applications for efficient control of heating, ventilation, and air conditioning (HVAC) system in  
residential and commercial buildings. The sensors are installed in the building rooms for detecting the presence  
and the motion of the occupants in the rooms. Depending on the presence or absence of people in the room, the  
HVAC system is turned on or off respectively. In addition, the thermopile sensor are used for detecting flow of air  
in the in the duct-work system in the buildings.  
A typical MEMS thermopile array sensor consists of a number of thermopile elements arranged in a matrix  
configuration. Each element of the array is accessed by selecting the corresponding XY address in the array  
using internal or external decoder circuits. An output frame consists of differential signals form X by Y elements.  
Each frame is transferred to the analog-front-end via OUTP (positive output) and OUTN (negative output) output  
pins of the sensor in serial format. The analog output signal of the MEMS thermopile sensor is in the micro volt  
range. It needs to be amplified significantly before made available to the input of an ADC for digitization.  
9.2 Typical Applications  
3.3V  
VDD  
DVDD  
RSTB  
PWDNB  
DRDYB  
SYNC  
PGA Over-range  
Detect  
Brownout  
Detect  
GPIO  
GPIO  
INT  
Y_3  
Y_0  
LDO, VREF &  
Comm. mode  
Generator  
Control Unit  
VCM  
AVDD/3  
Vref  
IR sensor  
X by Y Array  
GPIO  
External  
MPU  
INP1  
INN1  
OUTP  
OUTN  
EMIF  
EMIF  
EMIF  
EMIF  
EMIF  
EMIF  
AGND  
CSB  
SDO  
SDI  
CSB  
SDI  
16-bit û™$'&  
+
PGA  
INP2  
INN2  
INP3  
INN3  
û™ꢀ  
FIR  
SPI  
SDO  
Modulator FLTR  
SCLK  
XCLK  
-
X-Decoder  
SCLK  
LMP93601  
GPTM  
GPIO  
GND  
X_3  
X_0  
AGND  
DGND  
IOGND  
Figure 29. LMP93601 Thermopile Array Interface  
9.2.1 Design Requirements  
The application requires a microcontroller (MCU) such as Texas Instruments MSP430x, or TM4C129x series of  
MCUs connected via Synchronous Serial Interface (SPI) to the LMP93601 AFE. As shown in Figure 29, the X  
and Y decoder lines of the thermopile sensor (transducer) needs to be interfaced to the GPIO (General Purpose  
Input Output) pins of the MCU. The LMP93601 would require an external clock signal of 4 MHz (±3%).The timer  
subsystem of the MCU is well suited to generate the clock signal. A timer output pin shall be used to interface  
the output of the MCU timer to the XCLK pin of the LMP93601.  
Copyright © 2014, Texas Instruments Incorporated  
33  
 
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
Typical Applications (continued)  
The device provides a reference voltage output (VCM) source to center the output of the sensor around AVDD/3.  
If the sensor does not provide a reference input pin, the INPx, INNx inputs of the LMP93601 should be  
connected (pulled-up) to VCM output via 2.2 MΩ resistors.  
The data converter of the LMP93601 is an incremental delta-sigma type ADC, the modulator is reset after every  
conversion. Therefore, after each thermopile element is sampled and the ADC modulator goes through a reset,  
there is no possibility of any trace of signal from the previously sampled element.  
To sample each thermopile element in the sensor array, the X and Y decoder signals must be provided over the  
GPIO, then firmware should allow settling of the data on the decoder. The SYNC pin is provided to signal the  
beginning of conversion to LMP93601 ADC. A GPIO of the MCU needs to be interfaced to the SYNC input pin of  
the LMP93601 for this purpose.  
9.2.2 Detailed Design Procedure  
In thermopile array systems, settling time of the signal path plays an important role when higher frame transfer  
rates are desired. A frame is an array of X by Y thermopile elements. While the data from each pixel is being  
transferred out of the sensor in a sequence, the MUX output must settle to the proper voltage from the element  
in the array that is being accessed. The total analog signal path settling time is determined by combined sensor’s  
settling time (tssnsr) and AFE’s settling time (tsafe). The settling time is determined by the sum of capacitances of  
the following: pixel in the array, sensor’s MUX, AFE’s MUX, PCB, AFE’s input stage, and sensor’s resistance.  
To achieve faster settling time, total capacitance in the signal path should be kept as low as possible. Therefore,  
the system designers should take the resistance of the sensor and the related capacitance into consideration to  
achieve optimal performance of the signal path. For example, the pixel-to-pixel settling time should be keep  
below 70 μs to process five frame per second (1326 SPS) using a 16 x 16 array sensor. A simplified thermopile  
array sensor equivalent circuit is shown in Figure 30.  
Sensor MUX  
RS1  
+
Sensor side  
Vs  
CS1  
-
OUTP  
Ccm  
Pixel 1  
R1  
VCM  
Cm  
R2  
Pixel  
RSn  
C1  
OUTN  
+
Vs  
CSn  
Ccm  
-
Pixel n  
Figure 30. Simplified Thermopile Sensor Array  
The value of biasing resistors; R1 and R2, should be much higher than the value of the sensor output resistance  
RSx (that is, R1 = R2 > 10 * RSx).  
34  
Copyright © 2014, Texas Instruments Incorporated  
 
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
Typical Applications (continued)  
The bias current of the sensor and the leakage current of the sensor’s MUX should be considered as well. In  
Figure 31 R1 and R2 need to be matched closely to avoid introduction of differential offset error voltage in the  
signal path due to mismatched current flow through these resistors. Moreover, Ios through RSx needs to be  
calibrated out over temperature. To simplify the circuit in Figure 31 the MUX inside the AFE is not shown.  
Figure 31.  
Copyright © 2014, Texas Instruments Incorporated  
35  
 
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
10 Power Supply Recommendations  
The LMP93601 requires two sources of power, AVDD and IOVDD. These pins can be supplied from the  
same supply rail as the MCU, from separate regulators or from a battery source. However, it is recommend  
that the MCU and the IOVDD share the same supply and the AVDD be supplied from a separate regulator.  
In any case, for proper operation, the supply range must remain within the 2.7 V to 5.5 V limits and IOVDD  
must always be lower than or equal to AVDD supply. It is highly recommended that during power up, the  
AVDD and IOVDD supplies ramp up in a manner to ensure the "IOVDD AVDD" requirement is not violated.  
11 Layout  
11.1 Layout Guidelines  
To achieve high noise performance of the LMP93601, particular attention must be paid to the layout of the input  
signals, inputs INPx and INNx. To avoid introduction of differential noise into the pins, the input traces must lay  
out symmetrically.  
Proper power-supply decoupling is required on both AVDD and IOVDD. The Supply pins should be decoupled  
with at least a 0.1 μF bypass capacitor each. The bypass capacitors should be placed as close to the power-  
supply pins as possible with a low impedance connection. For very sensitive systems, or for systems in harsh  
noise environments, avoiding the use of vias for connecting the bypass capacitor may offer superior bypass and  
noise immunity.  
It is recommended that in the layout, analog components [such as ADCs, amplifiers, references, digital-to-analog  
converters (DACs), and analog MUXs] be separated from digital components [such as microcontrollers, complex  
programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), radio frequency (RF)  
transceivers, universal serial bus (USB) transceivers, and switching regulators]. The best placement for each  
application is unique to the geometries, components, and PCB fabrication capabilities employed. That is, there is  
no single layout that is perfect for every design and careful consideration must always be used when designing  
with any analog component.  
TI recommends placing 47 Ω resistors in series with all digital input and output pins (CS, SCLK, DIN,  
DOUT/DRDY, and DRDY). This resistance smooths sharp transitions, suppresses overshoot, and offers some  
overvoltage protection. Care must be taken to still meet all SPI timing requirements because the additional  
resistors interact with the bus capacitances present on the digital signal lines.  
TI also strongly recommends that digital components, especially RF portions, be kept as far as practically  
possible from analog circuitry in a given system. Additionally, one should minimize the distance that digital  
control traces run through analog areas and avoid placing these traces near sensitive analog components. Digital  
return currents usually flow through a ground path that is as close as possible to the digital path. If a solid ground  
connection to a plane is not available, these currents may find paths back to the source that interfere with analog  
performance. The implications that layout has on the temperature-sensing functions are much more significant  
than for ADC functions.  
The internal ADC reference supply of the LMP93601 requires a 1 µF high performance (low ESR & ESL) cap on  
the XCAP1. This cap must be placed in the immediate proximity of the pin. For best performance it is  
recommended that the DAP be connected to AGND. All three "GND" connections (AGND, DGND, and IOGND)  
must be connected to system ground and cannot be left floating.  
36  
Copyright © 2014, Texas Instruments Incorporated  
LMP93601  
www.ti.com.cn  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
11.2 Layout Example  
XCAP1  
$ꢀVHFWLRQꢀRIꢀ3&%¶Vꢀ  
GND Plain  
XCAP2  
AVDD Filter CAP  
CAP to be placed in close  
proximity of XCAP1 pin  
Symmetrical input  
signal traces  
IO GND  
Digital signal Edge  
Smoothing Resistor  
Grounded DAP  
Figure 32. LMP93601 Layout Example  
版权 © 2014, Texas Instruments Incorporated  
37  
LMP93601  
ZHCSC60A MARCH 2014REVISED SEPTEMBER 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
38  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMP93601NHZR  
LMP93601NHZT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NHZ  
NHZ  
24  
24  
4500 RoHS & Green  
250 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-25 to 85  
-25 to 85  
L93601  
L93601  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP93601NHZR  
LMP93601NHZT  
WQFN  
WQFN  
NHZ  
NHZ  
24  
24  
4500  
250  
330.0  
178.0  
12.4  
12.4  
4.3  
4.3  
5.3  
5.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP93601NHZR  
LMP93601NHZT  
WQFN  
WQFN  
NHZ  
NHZ  
24  
24  
4500  
250  
367.0  
208.0  
367.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
MECHANICAL DATA  
NHZ0024B  
SQA24B (Rev A)  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY