LMR33620CQRNXTQ1 [TI]

3.8V 至 36V、2A 同步降压转换器 | RNX | 12 | -40 to 125;
LMR33620CQRNXTQ1
型号: LMR33620CQRNXTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.8V 至 36V、2A 同步降压转换器 | RNX | 12 | -40 to 125

开关 输出元件 转换器
文件: 总52页 (文件大小:4704K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
LMR33620-Q1 3.8V 36V2A 同步降压转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等140°C +125°CTA  
提供功能安全  
LMR33620-Q1 稳压器符合汽车标准是一款简单易用  
的同步降压直流/直流转换器可提供出色的效率适  
用于条件严苛的应用。LMR33620-Q1 能够使用高达  
36V 输入电压驱动高达 2A 负载电流。  
LMR33620-Q1 以超小的解决方案尺寸提供出色的轻负  
载效率和输出精度。电源正常状态标志和精密使能端等  
特性有助于实现灵活而又易用的解决方案适用于广泛  
的应用。LMR33620-Q1 在轻负载条件下自动折返频率  
以提高效率。此器件通过集成技术省去了大部分外部组  
并提供专为实现简单 PCB 布局而设计的引脚排列  
方式。保护特性包括热关断、输入欠压锁定、逐周期电  
流限制和断续短路保护。LMR33620-Q1 可采用具有可  
湿性侧面12 3mm × 2mm VQFN 封装。  
可帮助进行功能安全系统设计的文档  
• 专用于条件严苛的汽车应用  
– 输入电压范围3.8V 36V  
– 输出电压范围1V 24V  
– 输出电流2A  
75mΩ/50mΩRDS-ON MOSFET  
– 峰值电流模式控制  
– 最短导通时间很短68ns  
– 频率400kHz1.4MHz2.1MHz  
– 集成补偿网络  
EMI 和开关噪声  
器件信息  
封装(1)  
{13}Hotrod{14} 封装  
– 并行输入电流路径  
器件型号  
封装尺寸标称值)  
LMR33620-Q1  
VQFN (12)  
3.00mm × 2.00mm  
• 可在所有负载下进行高效电源转换  
– 峰值效> 95%  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
5μA 的低关断静态电流  
25μA 的低工作静态电流  
• 使LMR33620-Q1 并借WEBENCH® Power  
Designer 创建定制设计方案  
2 应用  
信息娱乐系统与仪表组USB 充电  
远程信息处理控制单元  
BOOT  
VIN  
CIN  
VIN  
EN  
CBOOT  
L1  
VOUT  
COUT  
SW  
PGND  
VCC  
PG  
FB  
RFBT  
CVCC  
RFBB  
AGND  
简化版原理图  
超少组件示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB27  
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 19  
8.3 What to Do and What Not to Do............................... 32  
9 Power Supply Recommendations................................33  
10 Layout...........................................................................34  
10.1 Layout Guidelines................................................... 34  
10.2 Layout Example...................................................... 36  
11 Device and Documentation Support..........................37  
11.1 Device Support........................................................37  
11.2 Documentation Support.......................................... 37  
11.3 支持资源..................................................................37  
11.4 接收文档更新通知................................................... 37  
11.5 Trademarks............................................................. 37  
11.6 静电放电警告...........................................................38  
11.7 术语表..................................................................... 38  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 修订历史记录.....................................................................2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Characteristics.................................................8  
6.7 System Characteristics............................................... 9  
6.8 Typical Characteristics..............................................10  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................12  
4 修订历史记录  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2018) to Revision B (March 2019)  
Page  
• 在整个数据表中添加WSON 信息................................................................................................................... 1  
Changed block diagram to fix drawing error..................................................................................................... 11  
Changes from Revision * (June 2018) to Revision A (November 2018)  
Page  
• 首次发布量产数据数据表.................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Device Comparison Table  
DEVICE OPTION  
LMR33620AQRNX  
LMR33620BQRNX  
LMR33620CQRNX  
PACKAGE  
FREQUENCY  
400 kHz  
RATED CURRENT  
OUTPUT VOLTAGE  
2 A  
2 A  
2 A  
RNX (12-pin VQFN)  
3 × 2 × 0.85 mm  
1400 kHz  
2100 kHz  
Adjustable  
RNX (12-pin VQFN)  
3 × 2 × 0.85 mm  
LMR33620CQ5RNX  
LMR33620CQ3RNX  
LMR33620AQ5RNX  
2100 kHz  
2100 kHz  
400 kHz  
2 A  
2 A  
2 A  
5-V fixed  
3.3-V fixed  
5-V fixed  
RNX (12-pin VQFN)  
3 × 2 × 0.85 mm  
RNX (12-pin VQFN)  
3 × 2 × 0.85 mm  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMR33620-Q1  
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
SW  
12  
1
2
11 PGND  
PGND  
10 VIN  
VIN  
9
8
EN  
PG  
3
4
NC  
BOOT  
6
7
5
FB  
AGND  
VCC  
5-1. 12-Pin VQFN RNX Package (Top View)  
5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1, 11  
2, 10  
3
Power ground terminal. Connect to system ground and AGND. Connect to a bypass capacitor with short wide  
traces.  
PGND  
VIN  
G
P
Input supply to regulator. Connect a high-quality bypass capacitor(s) directly to this pin and PGND.  
On the VQFN package, connect the SW pin to NC on the PCB. This simplifies the connection from the CBOOT  
capacitor to the SW pin. This pin has no internal connection to the regulator.  
NC  
Boot-strap supply voltage for internal high-side driver. Connect a high-quality 100-nF capacitor from this pin to  
the SW pin. On the VQFN package connect the SW pin to NC on the PCB. This simplifies the connection from  
the CBOOT capacitor to the SW pin.  
4
BOOT  
P
Internal 5-V LDO output. Used as supply to internal control circuits. Do not connect to external loads. Can be  
used as logic supply for power-good flag. Connect a high quality 1-µF capacitor from this pin to GND.  
5
6
7
VCC  
AGND  
FB  
P
G
A
Analog ground for regulator and system. Ground reference for internal references and logic. All electrical  
parameters are measured with respect to this pin. Connect to system ground on PCB.  
Feedback input to regulator. Connect to tap point of feedback voltage divider. DO NOT FLOAT. DO NOT  
GROUND. With the fixed output voltage version, connect this input directly to VOUT near the output capacitor.  
Open drain power-good flag output. Connect to suitable voltage supply through a current limiting resistor. High  
= power OK, low = power bad. Flag pulls low when EN = Low. Can be left open when not used.  
8
PG  
EN  
SW  
A
A
P
9
Enable input to regulator. High = ON, low = OFF. Can be connected directly to VIN; DO NOT FLOAT.  
Regulator switch node. Connect to power inductor. On the VQFN package the SW pin must be connected to  
NC on the PCB. This simplifies the connection from the CBOOT capacitor to the SW pin.  
12  
A = Analog, P = Power, G = Ground  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range(1)  
PARAMETER  
MIN  
0.3  
0.3  
0.3  
0
MAX  
38  
UNIT  
VIN to PGND  
EN to AGND(2)  
FB to AGND  
VIN + 0.3  
5.5  
V
PG to AGND(2)  
22  
AGND to PGND  
0.3  
Voltages  
0.3  
0.3  
3.5  
0.3  
0.3  
40  
55  
SW to PGND  
VIN + 0.3  
38  
SW to PGND less than 100-ns transients  
BOOT to SW  
V
5.5  
VCC to AGND(4)  
5.5  
TJ  
Junction temperature(3)  
Storage temperature  
150  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V  
(3) Operating at junction temperatures greater than 125°C, although possible, degrades the lifetime of the device.  
(4) Under some operating conditions the VCC LDO voltage may increase beyond 5.5V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002 (1)  
HBM ESD Classification Level 2  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over the recommended operating temperature range of 40 °C to 125 °C (unless otherwise noted) (1)  
MIN  
3.8  
0
MAX  
UNIT  
VIN to PGND  
EN (2)  
36  
VIN  
18  
24  
2
Input voltage  
V
PG(2)  
0
(3)  
Adjustable output voltage  
Output current  
VOUT  
1
V
A
IOUT  
0
(1) Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure specific  
performance limits. For ensured specifications, see 6.5.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
(3) The maximum output voltage can be extended to 95% of VIN; contact TI for details. Under no conditions should the output voltage be  
allowed to fall below zero volts.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMR33620-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.4 Thermal Information  
The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design  
purposes. These values were calculated in accordance with JESD 51-7, and simulated on a 4-layer JEDEC board. They do  
not represent the performance obtained in an actual application. For design information see Maximum Ambient Temperature  
section.  
LMR336x0  
THERMAL METRIC(1) (2)  
RNX (VQFN)  
12 PINS  
72.5(2)  
35.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJT  
23.5  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design purposes. These  
values were calculated in accordance with JESD 51-7, and simulated on a 4-layer JEDEC board. They do not represent the  
performance obtained in an actual application. For design information see Maximum Ambient Temperature section.  
6.5 Electrical Characteristics  
Limits apply over the operating junction temperature (TJ) range of 40°C to +125°C, unless otherwise stated. Minimum and  
maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric  
norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply:  
VIN = 12 V, VEN = 4 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE  
Minimum operating input  
voltage  
VIN  
3.8  
34  
10  
V
Non-switching input current;  
measured at VIN pin (2)  
IQ  
VFB = 1.2 V  
EN = 0  
24  
5
µA  
µA  
Shutdown quiescent current;  
measured at VIN pin  
ISD  
ENABLE  
VEN-VCC-H  
EN input level required to turn  
on internal LDO  
Rising threshold  
Falling threshold  
Rising threshold  
1
V
V
V
EN input level required to turn  
off internal LDO  
VEN-VCC-L  
VEN-H  
0.3  
1.2  
EN input level required to start  
switching  
1.231  
1.26  
VEN-HYS  
ILKG-EN  
INTERNAL SUPPLIES  
Hysteresis below VEN-H  
Hysteresis below VEN-H; falling  
VEN = 3.3 V  
100  
0.2  
mV  
nA  
Enable input leakage current  
Internal LDO output voltage  
appearing at the VCC pin  
VCC  
4.75  
5
5.25  
V
V
6 V VIN 36 V  
Bootstrap voltage  
undervoltage lock-out  
threshold(3)  
VBOOT-UVLO  
2.2  
VOLTAGE REFERENCE (FB PIN)  
VFB  
VFB  
Feedback voltage; ADJ option  
0.985  
3.26  
1
1.015  
3.36  
V
V
Feedback voltage; 3.3-V fixed  
option  
3.3 V fixed output voltage option  
5 V fixed output voltage option  
FB = 1 V  
3.3  
Feedback voltage; 5-V fixed  
option  
VFB  
IFB  
4.95  
5
5.095  
50  
V
Current into FB pin; ADJ  
option  
0.2  
nA  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Limits apply over the operating junction temperature (TJ) range of 40°C to +125°C, unless otherwise stated. Minimum and  
maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric  
norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply:  
VIN = 12 V, VEN = 4 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current into FB pin; 3.3-V  
fixed option  
IFB  
IFB  
3.3 V fixed output voltage option, FB = 3.3 V  
1.6  
2
µA  
Current into FB pin; 5-V fixed  
option  
5 V fixed output voltage option, FB = 5 V  
2.9  
3.5  
µA  
CURRENT LIMITS(4)  
ISC  
High-side current limit  
Low-side current limit  
LMR33620  
LMR33620  
2.9  
3.5  
2.45  
0.54  
4
A
A
A
ILIMIT  
1.95  
2.9  
IPEAK-MIN  
Minimum peak inductor current LMR33620  
Zero current detector  
threshold  
IZC  
-0.106  
A
SOFT START  
tSS  
Internal soft-start time  
2.9  
4
6
ms  
POWER GOOD (PG PIN)  
Power-good upper threshold -  
rising  
VPG-HIGH-UP  
VPG-HIGH-DN  
VPG-LOW-UP  
VPG-LOW-DN  
% of FB voltage  
% of FB voltage  
% of FB voltage  
% of FB voltage  
105%  
103%  
92%  
107%  
105%  
94%  
110%  
108%  
97%  
Power-good upper threshold -  
falling  
Power-good lower threshold -  
rising  
Power-good lower threshold -  
falling  
90%  
92%  
95%  
Power-good upper threshold -  
rising Fixed output voltage  
option  
VPG-HIGH-UP (fixed  
output option)  
% of FB voltage  
% of FB voltage  
% of FB voltage  
% of FB voltage  
104%  
102%  
91%  
106%  
104%  
93%  
110%  
108%  
97%  
Power-good upper threshold -  
falling Fixed output voltage  
option  
VPG-HIGH-DN (fixed  
output option)  
Power-good lower threshold -  
rising Fixed output voltage  
option  
VPG-LOW-UP (fixed  
output option)  
Power-good lower threshold -  
falling Fixed output voltage  
option  
VPG-LOW-DN (fixed  
output option)  
89%  
60  
91%  
95%  
170  
Power-good glitch filter  
delay(1)  
tPG  
µs  
VIN = 12 V, VEN = 4 V  
VEN = 0 V  
76  
35  
150  
60  
RPG  
Power-good flag RDSON  
Minimum input voltage for  
proper PG function  
VIN-PG  
50-µA, EN = 0 V  
2
V
V
VPG  
PG logic low output  
50-µA, EN = 0 V, VIN = 2V  
0.2  
OSCILLATOR  
Switching frequency  
Switching frequency  
Switching frequency  
"A" Version  
340  
1.2  
1.8  
400  
1.4  
2.1  
460  
1.6  
2.3  
kHz  
MHz  
MHz  
ƒSW  
ƒSW  
ƒSW  
"B" Version  
"C" Version, RNX package  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMR33620-Q1  
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Limits apply over the operating junction temperature (TJ) range of 40°C to +125°C, unless otherwise stated. Minimum and  
maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric  
norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply:  
VIN = 12 V, VEN = 4 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MOSFETS  
High-side MOSFET ON-  
resistance  
RDS-ON-HS  
RNX package  
RNX package  
75  
50  
145  
95  
mΩ  
mΩ  
Low-side MOSFET ON-  
resistance  
RDS-ON-LS  
(1) See Power-Good Flag Output for details.  
(2) This is the current used by the device open loop. It does not represent the total input current of the system when in regulation.  
(3) When the voltage across the CBOOT capacitor falls below this voltage, the low side MOSFET is turned on to recharge CBOOT  
.
(4) The current limit values in this table are tested, open loop, in production. They may differ from those found in a closed loop application.  
6.6 Timing Characteristics  
Limits apply over the operating junction temperature (TJ) range of 40°C to +125°C, unless otherwise stated. Minimum and  
maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric  
norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply: VIN  
= 12 V, VEN = 4 V.  
MIN  
NOM  
MAX  
UNIT  
tON-MIN  
tOFF-MIN  
tON-MAX  
Minimum switch on-time  
Minimum switch off-time  
Maximum switch on-time  
RNX package  
RNX package  
68  
80  
ns  
52  
70  
ns  
7
9
µs  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.7 System Characteristics  
The following specifications apply to a typical applications circuit, with nominal component values. Specifications in the  
typical (TYP) column apply to TJ = 25°C only. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the  
case of typical components over the temperature range of TJ = 40°C to 125°C. These specifications are not ensured by  
production testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Operating input voltage range  
VOUT = 3.3 V, IOUT= 0 A  
3.8  
36  
V
VOUT = 5 V, VIN = 7 V to 36 V, IOUT = 0 A to  
max. load  
2.5%  
1.5%  
2.5%  
1.5%  
1.5%  
1.5%  
1.5%  
1.5%  
Output voltage regulation for VOUT = 5  
V(1)  
VOUT = 5 V, VIN = 7 V to 36 V, IOUT = 1 A to  
max. load  
VOUT  
VOUT = 3.3 V, VIN = 3.8 V to 36 V, IOUT = 0 A  
to max. load  
Output voltage regulation for VOUT = 3.3  
V(1)  
VOUT = 3.3 V, VIN = 3.8 V to 36 V, IOUT = 1 A  
to max. load  
VIN = 12 V, VOUT = 3.3 V, IOUT = 0 A,  
RFBT = 1 MΩ  
ISUPPLY  
Input supply current when in regulation  
25  
µA  
VOUT = 5 V, IOUT = 1A  
Dropout at 1% of regulation,  
ƒSW = 140 kHz  
VDROP  
150  
mV  
Dropout voltage; (VIN VOUT  
)
DMAX  
VHC  
Maximum switch duty cycle(2)  
VIN = VOUT = 12 V, IOUT = 1 A  
98%  
0.4  
FB pin voltage required to trip short-circuit  
hiccup mode  
V
tHC  
tD  
Time between current-limit hiccup burst  
Switch voltage dead time  
94  
2
ms  
ns  
°C  
°C  
Shutdown temperature  
Recovery temperature  
165  
148  
TSD  
Thermal shutdown temperature  
(1) Deviation is with respect to VIN =12 V, IOUT = 1 A.  
(2) In dropout the switching frequency drops to increase the effective duty cycle. The lowest frequency is clamped at approximately: ƒMIN  
=
1 / (tON-MAX + tOFF-MIN). DMAX = tON-MAX /(tON-MAX + tOFF-MIN).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMR33620-Q1  
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics  
Unless otherwise specified the following conditions apply: TA = 25°C and VIN = 12 V  
36  
34  
32  
30  
28  
26  
24  
22  
20  
12  
11  
10  
9
8
7
6
5
4
-40C  
25C  
-40C  
25C  
3
2
1
125C  
125C  
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
Input Voltage (V)  
C005  
C003  
VFB = 1.2 V  
EN = 0 V  
6-1. Non-Switching Input Supply Current  
6-2. Shutdown Supply Current  
600  
590  
580  
570  
560  
550  
540  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
530  
-40C  
520  
25C  
UP  
DN  
510  
125C  
500  
0
5
10  
15  
20  
25  
30  
35  
40  
0
20  
40  
60  
80  
100 120 140  
œ40 œ20  
Input Voltage (V)  
Temperature (C)  
C007  
C006  
VOUT = 0 V  
ƒS = 400 kHz  
See 8-35  
6-4. Precision Enable Thresholds  
6-3. Short-Circuit Output Current  
700  
650  
600  
550  
500  
-40C  
DN  
UP  
450  
400  
25C  
0
125C  
INPUT VOLTAGE (1V/Div)  
0
5
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
C008  
IOUT = 1 mA  
See 8-35  
IOUT = 0 A  
VOUT = 5 V  
See 8-35  
6-5. UVLO Thresholds  
ƒSW = 400 kHz  
6-6. IPEAK-MIN  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMR33620-Q1 is a synchronous peak-current-mode buck regulator designed for a wide variety of  
automotive applications. Advanced high speed circuitry allows the device to regulate from an input voltage of 20  
V, while providing an output voltage of 3.3 V at a switching frequency of 2.1 MHz. The innovative architecture  
allows the device to regulate a 3.3-V output from an input of only 3.8 V. The regulator automatically switches  
modes between PFM and PWM depending on load. At heavy loads, the device operates in PWM at a constant  
switching frequency. At light loads, the mode changes to PFM with diode emulation allowing DCM. This reduces  
the input supply current and keeps efficiency high. The device features internal loop compensation which  
reduces design time and requires fewer external components than externally compensated regulators.  
The LMR33620-Q1 is available in an ultra-miniature VQFN package with wettable flanks. This package features  
extremely small parasitic inductance and resistance, enabling very high efficiency while minimizing switch node  
ringing and dramatically reducing EMI. The VIN/PGND pin layout is symmetrical on either side of the VQFN  
package. This allows the input current magnetic fields to partially cancel, resulting in reduce EMI generation.  
7.2 Functional Block Diagram  
VCC  
VIN  
INT. REG.  
BIAS  
OSCILLATOR  
BOOT  
ENABLE  
LOGIC  
HS CURRENT  
SENSE  
EN  
1.0V  
Reference  
PWM  
COMP.  
ERROR  
AMPLIFIER  
+
-
CONTROL  
LOGIC  
DRIVER  
SW  
+
-
FB  
LS CURRENT  
SENSE  
PFM MODE  
CONTROL  
PG  
POWER GOOD  
CONTROL  
AGND PGND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMR33620-Q1  
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power-Good Flag Output  
The power-good flag function (PG output pin) of the LMR33620-Q1 can be used to reset a system  
microprocessor whenever the output voltage is out of regulation. This open-drain output goes low under fault  
conditions, such as current limit and thermal shutdown, as well as during normal start-up. A glitch filter prevents  
false flag operation for short excursions of the output voltage, such as during line and load transients. The timing  
parameters of the glitch filter are found in 6.5. Output voltage excursions lasting less than tPG do not trip the  
power-good flag. Power-good operation can best be understood by reference to 7-1 and 7-2. Note that  
during initial power up, a delay of about 4 ms (typical) is inserted from the time that EN is asserted to the time  
that the power-good flag goes high. This delay only occurs during start-up and is not encountered during normal  
operation of the power-good function.  
The power-good output consists of an open-drain NMOS, requiring an external pullup resistor to a suitable logic  
supply. It can also be pulled up to either VCC or VOUT, through a 100-kΩ resistor, as desired. If this function is  
not needed, the PG pin must be left floating. When EN is pulled low, the flag output is also forced low. With EN  
low, power good remains valid as long as the input voltage is 2 V (typical). Limit the current into the power-  
good flag pin to less than 5 mA D.C. The maximum current is internally limited to about 35 mA when the device  
is enabled and about 65 mA when the device is disabled. The internal current limit protects the device from any  
transient currents that can occur when discharging a filter capacitor connected to this output.  
VOUT  
VPG-HIGH_UP (107%)  
VPG-HIGH-DN  
(105%)  
VPG-LOW-UP  
(95%)  
VPG-LOW-DN (93%)  
PG  
High = Power Good  
Low = Fault  
7-1. Static Power-Good Operation  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Glitches do not cause false operation nor reset timer  
VOUT  
V
PG-LOW-UP (95%)  
PG-LOW-DN (93%)  
V
< tPG  
PG  
tPG  
7-2. Power-Good-Timing Behavior  
tPG  
tPG  
7.3.2 Enable and Start-up  
Start-up and shutdown are controlled by the EN input. This input features precision thresholds, allowing the use  
of an external voltage divider to provide an adjustable input UVLO (see 8.2.2.10). Applying a voltage of ≥  
VEN-VCC_H causes the device to enter standby mode, powering the internal VCC, but not producing an output  
voltage. Increasing the EN voltage to VEN-H fully enables the device, allowing it to enter start-up mode and start  
the soft-start period. When the EN input is brought below VEN-H by VEN-HYS, the regulator stops running and  
enters standby mode. Further decrease in the EN voltage to below VEN-VCC-L completely shuts down the device.  
This behavior is shown in 7-3. The EN input can be connected directly to VIN if this feature is not needed.  
This input must not be allowed to float. The values for the various EN thresholds can be found in 6.5.  
The LMR33620-Q1 uses a reference-based soft start that prevents output voltage overshoots and large inrush  
currents as the regulator is starting up. A typical start-up waveform is shown in 7-4, indicating typical timings.  
The rise time of the output voltage is about 4 ms (see the 6.5).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
EN  
VEN-H  
VEN-H œ VEN-HYS  
VEN-VCC-H  
VEN-VCC-L  
VCC  
5V  
0
VOUT  
VOUT  
0
7-3. Precision Enable Behavior  
EN, 4V/Div  
VOUT, 2V/Div  
PG, 5V/Div  
Inductor Current, 2A/Div  
2ms/Div  
7-4. Typical Start-up Behavior VIN = 12 V, VOUT = 5 V, IOUT = 2 A  
7.3.3 Current Limit and Short Circuit  
The LMR33620-Q1 incorporates both peak and valley inductor current limit to provide protection to the device  
from overloads and short circuits and limit the maximum output current. Valley current limit prevents inductor  
current runaway during short circuits on the output, while both peak and valley limits work together to limit the  
maximum output current of the converter. Cycle-by-cycle current limit is used for overloads, while hiccup mode is  
used for sustained short circuits. Finally, a zero current detector is used on the low-side power MOSFET to  
implement DEM at light loads (see the Glossary). The typical value of this current limit is found under IZC in 节  
6.5.  
When the device is overloaded, the valley of the inductor current may not reach below ILIMIT (see 6.5) before  
the next clock cycle. When this occurs, the valley current limit control skips that cycle, causing the switching  
frequency to drop. Further overload causes the switching frequency to continue to drop, and the inductor ripple  
current to increase. When the peak of the inductor current reaches the high-side current limit, ISC (see 6.5),  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
the switch duty cycle is reduced and the output voltage falls out of regulation. This represents the maximum  
output current from the converter and is given approximately by 方程1.  
ILIMIT +ISC  
IOUT  
=
max  
2
(1)  
If, during current limit, the voltage on the FB input falls below about 0.4 V due to a short circuit, the device enters  
into hiccup mode. In this mode, the device stops switching for tHC (see 6.7), or about 94 ms and then goes  
through a normal re-start with soft start. If the short-circuit condition remains, the device runs in current limit for  
about 20 ms (typical) and then shuts down again. This cycle repeats, as shown in 7-5 as long as the short-  
circuit-condition persists. This mode of operation helps reduce the temperature rise of the device during a hard  
short on the output. The output current is greatly reduced during hiccup mode. Once the output short is removed  
and the hiccup delay is passed, the output voltage recovers normally as shown in 7-6.  
Short Removed  
Short Applied  
VOUT, 2V/Div  
Inductor Current, 1A/Div  
Inductor Current,  
1A/Div  
50ms/Div  
50ms/Div  
7-5. Inductor Current Burst in Short-Circuit  
7-6. Short-Circuit Transient and Recovery  
Mode  
7.3.4 Undervoltage Lockout and Thermal Shutdown  
The LMR33620-Q1 incorporates an undervoltage-lockout feature on the output of the internal LDO (at the VCC  
pin). When VCC reaches about 3.7 V, the device is ready to receive an EN signal and start up. When VCC falls  
below about 3 V, the device shuts down, regardless of EN status. Because the LDO is in dropout during these  
transitions, the above values roughly represent the input voltage levels during the transitions.  
Thermal shutdown is provided to protect the regulator from excessive junction temperature. When the junction  
temperature reaches about 165°C, the device shuts down; re-start occurs when the temperature falls to about  
148°C.  
7.4 Device Functional Modes  
7.4.1 Auto Mode  
In auto mode, the device moves between PWM and PFM as the load changes. At light loads, the regulator  
operates in PFM. At higher loads, the mode changes to PWM. The load current for which the device moves from  
PFM to PWM can be found in 8.2.3. The output current at which the device changes modes depends on the  
input voltage, inductor value, and the nominal switching frequency. For output currents above the curve, the  
device is in PWM mode. For currents below the curve, the device is in PFM. The curves apply for a nominal  
switching frequency of 400 kHz and the BOM shown in 8-3. At higher switching frequencies, the load at which  
the mode change occurs is greater. For applications where the switching frequency must be known for a given  
condition, the transition between PFM and PWM must be carefully tested before the design is finalized.  
In PWM mode, the regulator operates as a constant frequency converter using PWM to regulate the output  
voltage. While operating in this mode, the output voltage is regulated by switching at a constant frequency and  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMR33620-Q1  
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
modulating the duty cycle to control the power to the load. This provides excellent line and load regulation and  
low output voltage ripple.  
In PFM, the high-side MOSFET is turned on in a burst of one or more pulses to provide energy to the load. The  
duration of the burst depends on how long it takes the inductor current to reach IPEAK-MIN. The periodicity of  
these bursts is adjusted to regulate the output, while diode emulation (DEM) is used to maximize efficiency (see  
the Glossary). This mode provides high light-load efficiency by reducing the amount of input supply current  
required to regulate the output voltage at light loads. PFM results in very good light-load efficiency, but also  
yields larger output voltage ripple and variable switching frequency. Also, a small increase in output voltage  
occurs at light loads. The actual switching frequency and output voltage ripple depends on the input voltage,  
output voltage, and load. Typical switching waveforms in PFM and PWM are shown in 7-7 and 7-8.  
See 8.2.3 for output voltage variation with load in auto mode.  
SW,  
5V/Div  
SW,  
5V/Div  
VOUT,  
10mV/Div  
VOUT,  
10mV/Div  
Inductor  
Current,  
1A/Div  
Inductor  
Current,  
0.5A/Div  
2µs/Div  
50µs/Div  
7-7. Typical PFM Switching Waveforms VIN = 12 7-8. Typical PWM Switching Waveforms VIN = 12  
V, VOUT = 5 V, IOUT = 10 mA  
V, VOUT = 5 V, IOUT = 2 A, ƒS = 400 kHz  
7.4.2 Dropout  
The dropout performance of any buck regulator is affected by the RDSON of the power MOSFETs, the DC  
resistance of the inductor, and the maximum duty cycle that the controller can achieve. As the input voltage level  
approaches the output voltage, the off-time of the high-side MOSFET starts to approach the minimum value (see  
6.6). Beyond this point, the switching can become erratic, and the output voltage falls out of regulation. To  
avoid this problem, the LMR33620-Q1 automatically reduces the switching frequency to increase the effective  
duty cycle and maintain regulation. In this data sheet, the dropout voltage is defined as the difference between  
the input and output voltage when the output has dropped by 1% of its nominal value. Under this condition, the  
switching frequency has dropped to its minimum value of about 140 kHz. Note that the 0.4 V short circuit  
detection threshold is not activated when in dropout mode. Typical dropout characteristics can be found in 图  
7-9, 7-10, 7-11, and 7-12.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6
5.5  
5
0.3  
0.25  
0.2  
0.15  
0.1  
4.5  
4
0A  
1A  
2A  
0.05  
0
3.3V  
5V  
3.5  
3
4
0
0.5  
1
1.5  
2
2.5  
4.5  
5
5.5  
6
6.5  
7
Output Current (A)  
C001  
Input Voltage (V)  
C002  
7-10. Typical Dropout Voltage versus Output  
Current in Frequency Foldback ƒSW = 140 kHz  
7-9. Overall Dropout Characteristic VOUT = 5 V  
2.4  
2.2  
2
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.2  
0
1A  
2A  
1A  
2A  
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5 10  
Input Voltage (V)  
Input Voltage (V)  
C029  
C028  
7-11. Typical Switching Frequency in Dropout  
7-12. Typical Switching Frequency in Dropout  
Mode VOUT = 3.3 V, fSW = 2.1 MHz  
Mode VOUT = 5 V, fSW = 2.1 MHz  
7.4.3 Minimum Switch On-Time  
Every switching regulator has a minimum controllable on-time dictated by the inherent delays and blanking times  
associated with the control circuits. This imposes a minimum switch duty cycle and, therefore, a minimum  
conversion ratio. The constraint is encountered at high input voltages and low output voltages. To help extend  
the minimum controllable duty cycle, the LMR33620-Q1 automatically reduces the switching frequency when the  
minimum on-time limit is reached. This way the converter can regulate the lowest programmable output voltage  
at the maximum input voltage. An estimate for the approximate input voltage, for a given output voltage, before  
frequency foldback occurs is found in 方程式 2. The values of tON and fSW can be found in 6.5. As the input  
voltage is increased, the switch on-time (duty-cycle) reduces to regulate the output voltage. When the on-time  
reaches the limit, the switching frequency drops, while the on-time remains fixed. This relationship is highlighted  
in 7-13 for a nominal switching frequency of 2.1 MHz.  
VOUT  
V
Ç
IN  
tON fSW  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMR33620-Q1  
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
1A  
2A  
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38  
Input Voltage (V)  
C027  
7-13. Switching Frequency versus Input Voltage VOUT = 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LMR33620-Q1 step-down DC-to-DC converter is typically used to convert a higher DC voltage to a lower  
DC voltage with a maximum output current of 2 A. The following design procedure can be used to select  
components for the LMR33620-Q1. Alternately, the WEBENCH Design Tool can be used to generate a complete  
design. This tool utilizes an iterative design procedure and has access to a comprehensive database of  
components. This allows the tool to create an optimized design and allows the user to experiment with various  
options.  
备注  
In this data sheet, the effective value of capacitance is defined as the actual capacitance under D.C.  
bias and temperature; not the rated or nameplate values. Use high-quality, low-ESR, ceramic  
capacitors with an X5R or better dielectric throughout. All high value ceramic capacitors have a large  
voltage coefficient in addition to normal tolerances and temperature effects. Under D.C. bias the  
capacitance drops considerably. Large case sizes and/or higher voltage ratings are better in this  
regard. To help mitigate these effects, multiple capacitors can be used in parallel to bring the minimum  
effective capacitance up to the required value. This can also ease the RMS current requirements on a  
single capacitor. A careful study of bias and temperature variation of any capacitor bank should be  
made in order to ensure that the minimum value of effective capacitance is provided.  
8.2 Typical Application  
8-1 shows a typical application circuit for the LMR33620-Q1. This device is designed to function over a wide  
range of external components and system parameters. However, the internal compensation is optimized for a  
certain range of external inductance and output capacitance. As a quick start guide, 8-1 provide typical  
component values for a range of the most common output voltages. The values given in the table are typical.  
Other values can be used to enhance certain performance criterion as required by the application. When using  
the fixed output voltage version, connect the FB input directly to VOUT. Note that for the VQFN package, the  
input capacitors are split and placed on either side of the package; see 8.2.2.6 for more details.  
L
VOUT  
VIN  
6 V to 36 V  
SW  
VIN  
EN  
10 µH  
5 V  
2 A  
CIN  
CHF  
220 nF  
CBOOT  
10 µF  
COUT  
4x 22 µF  
BOOT  
0.1 µF  
RFBT  
CFF  
PG  
100 kΩ  
PG  
100 kΩ  
VCC  
FB  
CVCC  
1 µF  
PGND  
AGND  
RFBB  
24.9 kΩ  
8-1. Example Application Circuit (400 kHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMR33620-Q1  
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8.2.1 Design Requirements  
8-1 provides the parameters for our detailed design procedure example:  
8-1. Detailed Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
12 V (6 V to 36 V)  
5 V  
Output voltage  
Maximum output current  
Switching frequency  
0 A to 2 A  
400 kHz  
8-2. Typical External Component Values  
COUT (RATED  
L (µH) CAPACITANC  
E)  
ƒSW  
(kHz)  
VOUT (V)  
CIN + CHF  
CBOOT  
CVCC  
CFF  
RFBT (Ω)  
RFBB (Ω)  
400  
1400  
2100  
400  
3.3  
3.3  
3.3  
5
10  
2.2  
1.2  
10  
4 × 22 µF  
2 × 22 µF  
2 × 22 µF  
4 × 22 µF  
2 × 22 µF  
2 × 22 µF  
4 × 22 µF  
4 × 10 µF  
4 × 10 µF  
100 k  
100 k  
100 k  
100 k  
100 k  
100 k  
100 k  
100 k  
100 k  
43.2 k  
43.2 k  
43.2 k  
24.9 k  
24.9 k  
24.9 k  
9.09 k  
9.09 k  
9.09 k  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
10 µF + 220 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
100 nF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
open  
open  
open  
open  
open  
open  
open  
open  
open  
1400  
2100  
400  
5
2.2  
1.5  
27  
5
12  
12  
12  
1400  
2100  
4.7  
3.3  
8.2.2 Detailed Design Procedure  
The following design procedure applies to 8-1 and 8-1.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMR33620-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Choosing the Switching Frequency  
The choice of switching frequency is a compromise between conversion efficiency and overall solution size.  
Lower switching frequency implies reduced switching losses and usually results in higher system efficiency.  
However, higher switching frequency allows the use of smaller inductors and output capacitors, and hence a  
more compact design. For this example, 400 kHz was chosen.  
8.2.2.3 Setting the Output Voltage  
The output voltage of the LMR33620-Q1 is externally adjustable using a resistor divider network. The range of  
recommended output voltage is found in 6.3. The divider network is comprised of RFBT and RFBB, and closes  
the loop between the output voltage and the converter. The converter regulates the output voltage by holding the  
voltage on the FB pin equal to the internal reference voltage, VREF. The resistance of the divider is a  
compromise between excessive noise pick-up and excessive loading of the output. Smaller values of resistance  
reduce noise sensitivity but also reduce the light-load efficiency. The recommended value for RFBT is 100 kΩ;  
with a maximum value of 1 MΩ. If a 1 MΩ is selected for RFBT, then a feedforward capacitor must be used  
across this resistor to provide adequate loop phase margin (see 8.2.2.9). Once RFBT is selected, 方程式 3 is  
used to select RFBB. VREF is nominally 1 V (see 6.5 for limits).  
RFBT  
RFBB  
=
»
ÿ
VOUT  
VREF  
-1  
Ÿ
(3)  
For this 5-V example, RFBT = 100 kΩand RFBB = 24.9 kΩare chosen.  
8.2.2.3.1 Fixed Output Voltage Option  
With the fixed output voltage version, the feed-back divider is internal to the device. Therefore, an external  
divider is not needed and the FB input is connected directly to VOUT. The total resistance of the internal divider is  
about 2 MΩ (see 6.5). The large value of the divider reduces the loading on the output and helps to reduce  
the no-load input current of the system. For those applications that require the lowest no-load input current,  
without resorting to large value feed-back resistors, the fixed output voltage option is a good solution. 8-2 and  
8-3 show the no-load and light load input supply current for the fixed option, using the BOM from 8-3 and  
with RFBT = 0 Ωand RFBB = open. 8-4 and 8-5 show the same characteristics for the 3.3-V fixed option.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
28  
27  
26  
25  
24  
23  
22  
21  
20  
0.01  
0.001  
0.0001  
8V  
12V  
18V  
5V  
0.00001  
0.00001  
0.0001  
0.001  
0.01  
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
C001  
Input Voltage (V)  
C004  
8-3. Input Supply Current vs Output Current for  
8-2. No-load Input Supply Current for 5-V Fixed  
5-V Fixed Output Option  
Output Option  
28  
27  
26  
25  
24  
23  
22  
21  
0.01  
0.001  
0.0001  
5V  
12V  
18V  
3.3V  
35  
0.00001  
20  
0.00001  
0.0001  
0.001  
0.01  
5
10  
15  
20  
25  
30  
40  
Output Current (A)  
C002  
Input Voltage (V)  
C003  
8-5. Input Supply Current vs Output Current for  
8-4. No-load Input Supply Current for 3.3-V  
3.3-V Fixed Output Option  
Fixed Output Option  
8.2.2.4 Inductor Selection  
The parameters for selecting the inductor are the inductance and saturation current. The inductance is based on  
the desired peak-to-peak ripple current and is normally chosen to be in the range of 20% to 40% of the  
maximum output current. Experience shows that the best value for inductor ripple current is 30% of the  
maximum load current. Note that when selecting the ripple current for applications with much smaller maximum  
load than the maximum available from the device, the maximum device current should be used. 方程式 4 can be  
used to determine the value of inductance. The constant K is the percentage of inductor current ripple. For this  
example, K = 0.3 was chosen and an inductance was found; the next standard value of 10 µH was selected.  
(
V
IN - VOUT  
)
VOUT  
L =  
fSW K IOUTmax  
V
IN  
(4)  
Ideally, the saturation current rating of the inductor must be at least as large as the high-side switch current limit,  
SC (see 6.5). This ensures that the inductor does not saturate even during a short circuit on the output. When  
I
the inductor core material saturates, the inductance falls to a very low value, causing the inductor current to rise  
very rapidly. Although the valley current limit, ILIMIT, is designed to reduce the risk of current run-away, a  
saturated inductor can cause the current to rise to high values very rapidly. This can lead to component damage;  
do not allow the inductor to saturate. Inductors with a ferrite core material have very hard saturation  
characteristics, but usually have lower core losses than powdered iron cores. Powered iron cores exhibit a soft  
saturation, allowing for some relaxation in the current rating of the inductor. However, they have more core  
losses at frequencies typically above 1 MHz. In any case, the inductor saturation current must not be less than  
the device low-side current limit, ILIMIT (see the 6.5). The maximum inductance is limited by the minimum  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
current ripple required for the current mode control to perform correctly. As a rule-of-thumb, the minimum  
inductor ripple current must be no less than about 10% of the device maximum rated current under nominal  
conditions.  
VOUT  
LMIN í 0.36 ∂  
fSW  
(5)  
8.2.2.5 Output Capacitor Selection  
The value of the output capacitor and the ESR of the capacitor determine the output voltage ripple and load  
transient performance. The output capacitor bank is usually limited by the load transient requirements, rather  
than the output voltage ripple. 方程式 6 can be used to estimate a lower bound on the total output capacitance  
and an upper bound on the ESR, which is required to meet a specified load transient.  
K2  
12  
»
ÿ
DIOUT  
fSW ∂ DVOUT K  
COUT  
í
(
1- D  
)
(
1+ K  
)
+
(
2 - D  
)
Ÿ
Ÿ
(
2 + K  
)
∂ DVOUT  
ESR Ç  
K2  
1
»
ÿ
2∂ DIOUT 1+ K +  
1+  
÷
÷
Ÿ
12  
(1- D)  
«
◊Ÿ  
VOUT  
D =  
V
IN  
(6)  
where  
• ΔVOUT = output voltage transient  
• ΔIOUT = output current transient  
K = ripple factor from 8.2.2.4  
Once the output capacitor and ESR have been calculated, 方程式 7 can be used to check the peak-to-peak  
output voltage ripple; Vr.  
1
Vr @ DIL ESR2 +  
2
(
8fSW COUT  
)
(7)  
The output capacitor and ESR can then be adjusted to meet both the load transient and output ripple  
requirements.  
For this example, a ΔVOUT 250 mV for an output current step of ΔIOUT = 2 A is required. 方程式 6 gives a  
minimum value of 45 µF and a maximum ESR of 0.11 Ω. Assuming a 20% tolerance and a 10% bias de-rating,  
you arrive at a minimum capacitance of 63 µF. This can be achieved with a bank of 4 × 22-µF, 16-V ceramic  
capacitors in the 1210 case size. More output capacitance can be used to improve the load transient response.  
Ceramic capacitors can easily meet the minimum ESR requirements. In some cases, an aluminum electrolytic  
capacitor can be placed in parallel with the ceramics to help build up the required value of capacitance. In  
general, use a capacitor of at least 10 V for output voltages of 3.3 V or less and a capacitor of 16 V or more for  
output voltages of 5 V and above.  
In practice, the output capacitor has the most influence on the transient response and loop phase margin. Load  
transient testing and Bode plots are the best way to validate any given design and must always be completed  
before the application goes into production. In addition to the required output capacitance, a small ceramic  
placed on the output can help reduce high frequency noise. Small case size ceramic capacitors in the range of 1  
nF to 100 nF can be very helpful in reducing voltage spikes on the output caused by inductor and board  
parasitics.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMR33620-Q1  
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
The maximum value of total output capacitance must be limited to about 10 times the design value, or 1000 µF,  
whichever is smaller. Large values of output capacitance can adversely affect the start-up behavior of the  
regulator as well as the loop stability. If values larger than noted here must be used, then a careful study of start-  
up at full load and loop stability must be performed.  
8.2.2.6 Input Capacitor Selection  
The ceramic input capacitors provide a low impedance source to the regulator in addition to supplying the ripple  
current and isolating switching noise from other circuits. A minimum of 10 µF of ceramic capacitance is required  
on the input of the LMR33620-Q1. This must be rated for at least the maximum input voltage that the application  
requires; preferably twice the maximum input voltage. This capacitance can be increased to help reduce input  
voltage ripple and maintain the input voltage during load transients. In addition, a small case size, 220-nF  
ceramic capacitor must be used at the input, as close as possible to the regulator. This provides a high  
frequency bypass for the control circuits internal to the device. For this example, a 4.7-µF, 50-V, X7R (or better)  
ceramic capacitor is chosen. The 220 nF must also be rated at 50 V with an X7R dielectric. The VQFN (RNX)  
package provides two input voltage pins and two power ground pins on opposite sides of the package. This  
allows the input capacitors to be split, and placed optimally with respect to the internal power MOSFETs, thus  
improving the effectiveness of the input bypassing. In this example, a single 4.7-µF and two 100-nF ceramic  
capacitors at each VIN/PGND location.  
Many times, it is desirable to use an electrolytic capacitor on the input in parallel with the ceramics. This is  
especially true if long leads/traces are used to connect the input supply to the regulator. The moderate ESR of  
this capacitor can help damp any ringing on the input supply caused by the long power leads. The use of this  
additional capacitor also helps with momentary voltage dips caused by input supplies with unusually high  
impedance.  
Most of the input switching current passes through the ceramic input capacitor or capacitors. The approximate  
worst case RMS value of this current can be calculated from 方程式 8 and must be checked against the  
manufacturers' maximum ratings.  
IOUT  
IRMS  
@
2
(8)  
8.2.2.7 CBOOT  
The LMR33620-Q1 requires a bootstrap capacitor connected between the BOOT pin and the SW pin. This  
capacitor stores energy that is used to supply the gate drivers for the power MOSFETs. A high-quality ceramic  
capacitor of 100 nF and at least 10 V is required.  
8.2.2.8 VCC  
The VCC pin is the output of the internal LDO used to supply the control circuits of the regulator. This output  
requires a 1-µF, 16-V ceramic capacitor connected from VCC to GND for proper operation. In general, avoid  
loading this output with any external circuitry. However, this output can be used to supply the pullup for the  
power-good function (see 7.3.1). A value of 100 kΩis a good choice in this case. The nominal output voltage  
on VCC is 5 V; see 6.5 for limits. Do not short this output to ground or any other external voltage.  
8.2.2.9 CFF Selection  
In some cases, a feedforward capacitor can be used across RFBT to improve the load transient response or  
improve the loop-phase margin. This is especially true when values of RFBT > 100 kΩ are used. Large values of  
RFBT, in combination with the parasitic capacitance at the FB pin, can create a small signal pole that interferes  
with the loop stability. A CFF can help to mitigate this effect. 方程式 9 can be used to estimate the value of CFF.  
The value found with 方程式 9 is a starting point; use lower values to determine if any advantage is gained by  
the use of a CFF capacitor. The Optimizing Transient Response of Internally Compensated DC-DC Converters  
with Feed-forward Capacitor Application Report is helpful when experimenting with a feedforward capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VOUT COUT  
VREF  
VOUT  
CFF  
<
120 RFBT  
(9)  
8.2.2.10 External UVLO  
In some cases, an input UVLO level different than that provided internal to the device is needed. This can be  
accomplished by using the circuit shown in 8-6. The input voltage at which the device turns on is designated  
VON while the turnoff voltage is VOFF. First, a value for RENB is chosen in the range of 10 kΩto 100 kΩand then  
方程10 is used to calculate RENT and VOFF  
.
VIN  
RENT  
EN  
RENB  
8-6. Setup for External UVLO Application  
VON  
÷
RENT  
=
- 1 RENB  
÷
VEN -H  
«
VEN -HYS  
VEN -H  
÷
÷
VOFF = VON 1-  
«
(10)  
where  
VON = VIN turnon voltage  
VOFF = VIN turnoff voltage  
8.2.2.11 Maximum Ambient Temperature  
As with any power conversion device, the LMR33620-Q1 dissipates internal power while operating. The effect of  
this power dissipation is to raise the internal temperature of the converter above ambient. The internal die  
temperature (TJ) is a function of the ambient temperature, the power loss, and the effective thermal resistance,  
RθJA, of the device and PCB combination. The maximum internal die temperature for the LMR33620-Q1 must  
be limited to 125°C. This establishes a limit on the maximum device power dissipation and therefore the load  
current. 方程式 11 shows the relationships between the important parameters. It is easy to see that larger  
ambient temperatures (TA) and larger values of RθJA reduce the maximum available output current. The  
converter efficiency can be estimated by using the curves provided in this data sheet. If the desired operating  
conditions cannot be found in one of the curves, then interpolation can be used to estimate the efficiency.  
Alternatively, the EVM can be adjusted to match the desired application requirements and the efficiency can be  
measured directly. The correct value of RθJA is more difficult to estimate. As stated in the Semiconductor and IC  
Package Thermal Metrics Application Report, the value of RθJA given in 6.4 is not valid for design purposes  
and must not be used to estimate the thermal performance of the application. The values reported in that table  
were measured under a specific set of conditions that are rarely obtained in an actual application.  
(
TJ - TA  
RqJA  
)
h
1- h  
1
IOUT  
=
MAX  
(
)
VOUT  
(11)  
where  
η= efficiency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMR33620-Q1  
 
 
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
The effective RθJA is a critical parameter and depends on many factors such as power dissipation, air  
temperature/flow, PCB area, copper heat-sink area, number of thermal vias under the package, and adjacent  
component placement, just to mention just a few. Due to the ultra-miniature size of the VQFN (RNX) package, a  
DAP is not available. This means that this package exhibits a somewhat large value RθJA. A typical example of  
R
θJA vs copper board area can be found in 8-7. The copper area given in the graph is for each layer; the top  
and bottom layers are 2 oz. copper each, while the inner layers are 1 oz. A typical curve of maximum output  
current vs. ambient temperature is shown in 8-8. This data was taken with a device/PCB combination giving  
an RθJA of about 50°C/W. It must be remembered that the data given in these graphs are for illustration  
purposes only, and the actual performance in any given application depends on all of the previously mentioned  
factors.  
70  
65  
60  
55  
50  
45  
40  
2.5  
2
1.5  
1
0.5  
0
RNX, 4L  
60  
0
10  
20  
30  
40  
50  
70  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
Copper Area (cm2)  
C005  
Ambient Termperature (°C)  
C007  
VIN = 12 V  
VOUT = 5 V  
R
θJA = 50°C/W  
ƒSW = 400 kHz  
8-7. RθJA versus Copper Board Area for the  
8-8. Maximum Output Current versus Ambient  
VQFN (RNX) Package  
Temperature  
Use the following resources as a guide to optimal thermal PCB design and estimating RθJA for a given  
application environment:  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 12 V, TA = 25°C. The circuit is shown in 8-35,  
with the appropriate BOM from 8-3.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8V  
8V  
12V  
24V  
36V  
12V  
24V  
36V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
C007  
C008  
VOUT = 5 V  
400 kHz  
RNX Package  
VOUT = 3.3 V  
400 kHz  
RNX Package  
8-9. Efficiency  
8-10. Efficiency  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8V  
5V  
12V  
24V  
36V  
12V  
24V  
36V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
C018  
C019  
VOUT = 5 V  
400 kHz  
RNX Package  
VOUT = 3.3 V  
400 kHz  
RNX Package  
8-11. Efficiency  
8-12. Efficiency  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
8V  
5V  
12V  
24V  
36V  
12V  
24V  
36V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
C022  
C021  
VOUT = 5 V  
1.4 MHz  
RNX Package  
VOUT = 3.3 V  
1.4 MHz  
RNX Package  
8-13. Efficiency  
8-14. Efficiency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5V  
8V  
12V  
24V  
36V  
12V  
24V  
36V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
C023  
C020  
VOUT = 3.3 V  
2.1 MHz  
RNX Package  
VOUT = 5 V  
2.1 MHz  
RNX Package  
8-16. Efficiency  
8-15. Efficiency  
5.055  
34  
32  
30  
28  
26  
24  
22  
20  
8V  
5.05  
5.045  
5.04  
5.035  
5.03  
5.025  
5.02  
5.015  
5.01  
5.005  
5
12V  
24V  
36V  
5V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
5
10  
15  
20  
25  
30  
35  
40  
Output Current (A)  
Input Voltage (V)  
C011  
C016  
VOUT = 5 V  
VOUT = 5 V  
IOUT = 0 A  
RFBT = 1 MΩ  
8-17. Line and Load Regulation  
8-18. Input Supply Current  
0.25  
10000  
1000  
100  
10  
0.2  
0.15  
0.1  
X
PWM  
PFM  
8V  
X
0.05  
1
12V  
18V  
5V  
35  
0
0
0.1  
5
10  
15  
20  
25  
30  
40  
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
Input Voltage (V)  
Output Current (A)  
C005  
C025  
VOUT = 5 V  
VOUT = 5 V  
ƒSW = 400 kHz  
ƒSW = 2100 kHz  
8-19. Mode Change Thresholds  
8-20. Switching Frequency versus Output  
Current  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VOUT,  
300mV/Div  
VOUT,  
300mV/Div  
Output Current,  
0.5A/Div  
Output Current,  
0.5A/Div  
100µs/Div  
100µs/Div  
VIN = 12 V  
VOUT = 5 V  
IOUT = 0 A to 2 A  
VIN = 12 V  
tf = tr = 2 µs  
VOUT = 5 V  
tf = tr = 2 µs  
IOUT = 1 A to 2 A  
8-21. Load Transient  
8-22. Load Transient  
3.345  
3.34  
34  
32  
30  
28  
26  
24  
22  
20  
5V  
12V  
24V  
36V  
3.335  
3.33  
3.325  
3.32  
3.315  
3.31  
3.3V  
35  
3.305  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
5
10  
15  
20  
25  
30  
40  
Output Current (A)  
Input Voltage (V)  
C012  
C015  
VOUT = 3.3 V  
VOUT = 3.3 V  
IOUT = 0 A  
RFBT = 1 MΩ  
8-23. Line and Load Regulation  
8-24. Input Supply Current  
0.35  
10000  
1000  
100  
10  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
X
PWM  
5V  
PFM  
X
1
12V  
18V  
3.3V  
35  
0.1  
0
5
10  
15  
20  
25  
30  
40  
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
Input Voltage (V)  
Output Current (A)  
C006  
C026  
VOUT = 3.3 V  
VOUT = 3.3 V  
L = 1.2 µH  
ƒSW = 400 kHz  
ƒSW = 2100 kHz  
8-25. Mode Change Thresholds  
8-26. Switching Frequency versus Output  
Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMR33620-Q1  
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VOUT,  
300mV/Div  
VOUT,  
300mV/Div  
Output Current,  
0.5A/Div  
Output Current,  
0.5A/Div  
100µs/Div  
100µs/Div  
VIN = 12 V  
VOUT = 3.3 V  
IOUT = 0 A to 2 A  
VIN = 12 V  
VOUT = 3.3 V  
tf = tr = 2 µs  
IOUT = 1 A to 2 A  
tf = tr = 2 µs  
8-27. Load Transient  
8-28. Load Transient  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
RNX package  
RNX package  
ƒSW = 400 kHz  
ƒSW = 400 kHz  
8-29. Conducted EMI  
8-30. Radiated EMI Biconical Antenna  
(Horizontal)  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
RNX package  
RNX package  
ƒSW = 400 kHz  
ƒSW = 400 kHz  
8-31. Radiated EMI Biconical Antenna (Vertical)  
8-32. Radiated EMI Log-periodic Antenna  
(Horizontal)  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
RNX package  
RNX package  
ƒSW = 400 kHz  
ƒSW = 400 kHz  
8-33. Radiated EMI Log-periodic Antenna  
8-34. Radiated EMI Rod Antenna  
(Vertical)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMR33620-Q1  
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
L
VOUT  
VIN  
SW  
VIN  
EN  
U1  
CBOOT  
CIN  
CHF  
COUT  
BOOT  
0.1 µF  
RFBT  
PG  
100 kΩ  
PG  
100 kΩ  
VCC  
FB  
CVCC  
1 µF  
PGND  
AGND  
RFBB  
8-35. Circuit for Application Curves  
8-3. BOM for Typical Application Curves RNX Package(1)  
VOUT  
3.3 V  
3.3 V  
3.3 V  
5 V  
FREQUENCY  
RFBB  
COUT  
CIN + CHF  
L
U1  
400 kHz  
4 × 22 µF  
4 × 22 µF  
4 × 22 µF  
4 × 22 µF  
4 × 22 µF  
4 × 22 µF  
2 × 4.7 µF + 2 × 100 nF  
2 × 4.7 µF + 2 × 100 nF  
2 × 4.7 µF + 2 × 100 nF  
2 × 4.7 µF + 2 × 100 nF  
2 × 4.7 µF + 2 × 100 nF  
2 × 4.7 µF + 2 × 100 nF  
LMR33620ARNX  
LMR33620BRNX  
LMR33620CRNX  
LMR33620ARNX  
LMR33620BRNX  
LMR33620CRNX  
43.3 kΩ  
43.3 kΩ  
43.3 kΩ  
24.9 kΩ  
24.9 kΩ  
24.9 kΩ  
4.7 µH, 28 mΩ  
2.2 µH, 11.4 mΩ  
2.2 µH, 11.4 mΩ  
6.8 µH, 14 mΩ  
2.2 µH, 11.4 mΩ  
2.2 µH, 11.4 mΩ  
1400 KHz  
2100 kHz  
400 kHz  
5 V  
1400 KHz  
2100 kHz  
5 V  
(1) The values in this table were selected to enhance certain performance criteria and may not represent typical values.  
8.3 What to Do and What Not to Do  
Don't: Exceed the Absolute Maximum Ratings.  
Don't: Exceed the ESD Ratings.  
Don't: Exceed the Recommended Operating Conditions.  
Don't: Allow the EN input to float.  
Don't: Allow the output voltage to exceed the input voltage, nor go below ground.  
Don't: Use the value of RθJA given in the Thermal Information table to design your application. Use the  
information in the Maximum Ambient Temperature section.  
Do: Follow all the guidelines and suggestions found in this data sheet before committing the design to  
production. TI application engineers are ready to help critique your design and PCB layout to help make your  
project a success (see 11.3).  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The characteristics of the input supply must be compatible with 6.1 and 6.3 found in this data sheet. In  
addition, the input supply must be capable of delivering the required input current to the loaded regulator. The  
average input current can be estimated with 方程12, where ηis the efficiency.  
VOUT IOUT  
IIN  
=
VIN ∂ h  
(12)  
If the regulator is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse  
effect on the operation of the regulator. The parasitic inductance, in combination with the low-ESR, ceramic input  
capacitors, can form an under damped resonant circuit, resulting in overvoltage transients at the input to the  
regulator. The parasitic resistance can cause the voltage at the VIN pin to dip whenever a load transient is  
applied to the output. If the application is operating close to the minimum input voltage, this dip can cause the  
regulator to momentarily shutdown and reset. The best way to solve these kind of issues is to reduce the  
distance from the input supply to the regulator and/or use an aluminum or tantalum input capacitor in parallel  
with the ceramics. The moderate ESR of these types of capacitors help damp the input resonant circuit and  
reduce any overshoots. A value in the range of 20 µF to 100 µF is usually sufficient to provide input damping and  
help to hold the input voltage steady during large load transients.  
Sometimes, for other system considerations, an input filter is used in front of the regulator. This can lead to  
instability, as well as some of the effects mentioned above, unless it is designed carefully. The user guide  
AN-2162 Simple Success With Conducted EMI From DCDC Converters provides helpful suggestions when  
designing an input filter for any switching regulator.  
In some cases, a transient voltage suppressor (TVS) is used on the input of regulators. One class of this device  
has a snap-back characteristic (thyristor type). The use of a device with this type of characteristic is not  
recommended. When the TVS fires, the clamping voltage falls to a very low value. If this voltage is less than the  
output voltage of the regulator, the output capacitors discharge through the device back to the input. This  
uncontrolled current flow can damage the device.  
The input voltage must not be allowed to fall below the output voltage. In this scenario, such as a shorted input  
test, the output capacitors discharges through the internal parasitic diode found between the VIN and SW pins of  
the device. During this condition, the current can become uncontrolled, possibly causing damage to the device. If  
this scenario is considered likely, then a Schottky diode between the input supply and the output should be used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMR33620-Q1  
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The PCB layout of any DC/DC converter is critical to the optimal performance of the design. Bad PCB layout can  
disrupt the operation of an otherwise good schematic design. Even if the converter regulates correctly, bad PCB  
layout can mean the difference between a robust design and one that cannot be mass produced. Furthermore,  
the EMI performance of the regulator is dependent on the PCB layout, to a great extent. In a buck converter, the  
most critical PCB feature is the loop formed by the input capacitor or input capacitors, and power ground, as  
shown in 10-1. This loop carries large transient currents that can cause large transient voltages when reacting  
with the trace inductance. These unwanted transient voltages will disrupt the proper operation of the converter.  
Because of this, the traces in this loop must be wide and short, and the loop area as small as possible to reduce  
the parasitic inductance. 10-2 shows a recommended layout for the critical components of the LMR33620-Q1.  
1. Place the input capacitor or capacitors as close as possible to the VIN and GND terminals. VIN and  
GND pins are adjacent, simplifying the input capacitor placement. With the VQFN package there are two  
VIN/PGND pairs on either side of the package. This provides for a symmetrical layout and helps minimize  
switching noise and EMI generation. A wide VIN plane must be used on a lower layer to connect both of the  
VIN pairs together to the input supply; see the layout example.  
2. Place bypass capacitor for VCC close to the VCC pin. This capacitor must be placed close to the device  
and routed with short, wide traces to the VCC and GND pins.  
3. Use wide traces for the CBOOT capacitor. Place CBOOT close to the device with short/wide traces to the  
BOOT and SW pins. It is important to route the SW connection under the device to the NC pin, and use this  
path to connect the BOOT capacitor to SW.  
4. Place the feedback divider as close as possible to the FB pin of the device. Place RFBB, RFBT, and CFF,  
if used, physically close to the device. The connections to FB and GND must be short and close to those  
pins on the device. The connection to VOUT can be somewhat longer. However, this latter trace must not be  
routed near any noise source (such as the SW node) that can capacitively couple into the feedback path of  
the regulator.  
5. Use at least one ground plane in one of the middle layers. This plane acts as a noise shield and also act  
as a heat dissipation path.  
6. Provide wide paths for VIN, VOUT, and GND. Making these paths as wide and direct as possible reduces  
any voltage drops on the input or output paths of the converter and maximizes efficiency.  
7. Provide enough PCB area for proper heat sinking. As stated in 8.2.2.11, enough copper area must be  
used to ensure a low RθJA, commensurate with the maximum load current and ambient temperature. Make  
the top and bottom PCB layers with two-ounce copper; and no less than one ounce. If the PCB design uses  
multiple copper layers (recommended), thermal vias can also be connected to the inner layer heat-spreading  
ground planes.  
8. Keep switch area small. Keep the copper area connecting the SW pin to the inductor as short and wide as  
possible. At the same time the total area of this node should be minimized to help reduce radiated EMI.  
See the following PCB layout resources for additional important guidelines:  
Layout Guidelines for Switching Power Supplies  
Simple Switcher PCB Layout Guidelines  
Construction Your Power Supply- Layout Considerations  
Low Radiated EMI Layout Made Simple with LM4360x and LM4600x  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VIN  
KEEP  
CURRENT  
LOOP  
CIN  
SW  
SMALL  
GND  
10-1. Current Loops with Fast Edges  
10.1.1 Ground and Thermal Considerations  
As mentioned above, TI recommends using one of the middle layers as a solid ground plane. A ground plane  
provides shielding for sensitive circuits and traces. It also provides a quiet reference potential for the control  
circuitry. The AGND and PGND pins must be connected to the ground planes using vias next to the bypass  
capacitors. PGND pins are connected directly to the source of the low side MOSFET switch, and also connected  
directly to the grounds of the input and output capacitors. The PGND net contains noise at the switching  
frequency and can bounce due to load variations. The PGND trace, as well as the VIN and SW traces, must be  
constrained to one side of the ground planes. The other side of the ground plane contains much less noise and  
must be used for sensitive routes.  
Use as much copper as possible, for system ground plane, on the top and bottom layers for the best heat  
dissipation. Use a four-layer board with the copper thickness for the four layers, starting from the top as: 2 oz / 1  
oz / 1 oz / 2 oz. A four-layer board with enough copper thickness, and proper layout, provides low current  
conduction impedance, proper shielding, and lower thermal resistance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMR33620-Q1  
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
10.2 Layout Example  
VOUT  
VOUT  
INDUCTOR  
COUT  
COUT  
COUT  
COUT  
GND  
GND  
CIN  
CIN  
CHF  
CHF  
12  
1
2
11  
10  
9
3
4
VIN  
EN  
VIN  
8
PGOOD  
5
6
7
CVCC  
RFBB  
GND  
HEATSINK  
GND  
HEATSINK  
INNER GND PLANE  
Top Trace/Plane  
Inner GND Plane  
VIN Strap on Inner Layer  
VIA to Signal Layer  
Top  
Inner GND Plane  
VIN Strap and  
GND Plane  
VIA to GND Planes  
VIA to VIN Strap  
Signal traces  
and GND Plane  
Trace on Signal Layer  
10-2. Example Layout for VQFN Package  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM33620-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Thermal Design by Insight not Hindsight  
A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages  
Semiconductor and IC Package Thermal Metrics  
Thermal Design Made Simple with LM43603 and LM43602  
PowerPADTM Thermally Enhanced Package  
PowerPADTM Made Easy  
Using New Thermal Metrics  
Layout Guidelines for Switching Power Supplies  
Simple Switcher PCB Layout Guidelines  
Construction Your Power Supply- Layout Considerations  
Low Radiated EMI Layout Made Simple with LM4360x and LM4600x  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMR33620-Q1  
 
 
 
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMR33620-Q1  
 
 
 
LMR33620-Q1  
ZHCSIE9C JUNE 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMR33620-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMR33620AQ5RNXRQ1  
LMR33620AQ5RNXTQ1  
LMR33620AQRNXRQ1  
LMR33620AQRNXTQ1  
LMR33620BQRNXRQ1  
LMR33620BQRNXTQ1  
LMR33620CQ3RNXRQ1  
LMR33620CQ3RNXTQ1  
LMR33620CQ5RNXRQ1  
LMR33620CQ5RNXTQ1  
LMR33620CQRNXRQ1  
LMR33620CQRNXTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
620AQ5  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
620AQ5  
Z620AQ  
Z620AQ  
Z620BQ  
Z620BQ  
Z20CQ3  
Z20CQ3  
Z205CQ  
Z205CQ  
Z620CQ  
Z620CQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMR33620-Q1 :  
Catalog : LMR33620  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMR33620AQ5RNXRQ1 VQFN-  
HR  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
12  
12  
12  
12  
12  
12  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
3.25  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
1.05  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LMR33620AQ5RNXTQ1 VQFN-  
HR  
LMR33620AQRNXRQ1 VQFN-  
HR  
3000  
250  
LMR33620AQRNXTQ1 VQFN-  
HR  
LMR33620BQRNXRQ1 VQFN-  
HR  
3000  
250  
LMR33620BQRNXTQ1 VQFN-  
HR  
LMR33620CQ3RNXRQ1 VQFN-  
HR  
3000  
250  
LMR33620CQ3RNXTQ1 VQFN-  
HR  
LMR33620CQ5RNXRQ1 VQFN-  
HR  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Dec-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMR33620CQ5RNXTQ1 VQFN-  
HR  
RNX  
RNX  
RNX  
12  
12  
12  
250  
3000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
1.05  
1.05  
1.05  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
LMR33620CQRNXRQ1 VQFN-  
HR  
LMR33620CQRNXTQ1 VQFN-  
HR  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMR33620AQ5RNXRQ1  
LMR33620AQ5RNXTQ1  
LMR33620AQRNXRQ1  
LMR33620AQRNXTQ1  
LMR33620BQRNXRQ1  
LMR33620BQRNXTQ1  
LMR33620CQ3RNXRQ1  
LMR33620CQ3RNXTQ1  
LMR33620CQ5RNXRQ1  
LMR33620CQ5RNXTQ1  
LMR33620CQRNXRQ1  
LMR33620CQRNXTQ1  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
RNX 12  
2 x 3 mm, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224286/A  
PACKAGE OUTLINE  
RNX0012B  
VQFN-HR - 0.9 mm max height  
SCALE 4.500  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
A
-
A
4
0
.
0
0
0
SECTION A-A  
TYPICAL  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1
SYMM  
(0.2) TYP  
5
7
4X 0.5  
8
4
2X  
0.675  
PKG  
2X  
1.725  
1.525  
2X  
1.125  
0.65  
A
A
11  
1
12  
0.3  
0.2  
0.1  
PIN 1 ID  
11X  
0.3  
0.2  
C B A  
C
0.5  
0.3  
11X  
0.05  
4223969/C 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNX0012B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.25)  
12  
11X (0.6)  
11X  
1
2X (0.65)  
11  
(0.25)  
(1.825)  
(0.788)  
2X  
(1.125)  
PKG  
2X  
(0.675)  
4X (0.5)  
8
(1.4)  
4
(R0.05) TYP  
5
7
SYMM  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 1, 2, 10-12  
(PREFERRED)  
SOLDER MASK DETAILS  
4223969/C 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNX0012B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.25)  
2X (0.812)  
12  
11X (0.6)  
11X (0.25)  
1
11  
2X  
(0.65)  
(1.294)  
EXPOSED METAL  
PKG  
2X  
(1.125)  
(0.282)  
2X (0.675)  
4X (0.5)  
8
(1.4)  
4
(R0.05) TYP  
5
7
SYMM  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR PAD 12  
87.7% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4223969/C 10/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RNX0012C  
A
2.1  
1.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1
PKG  
(0.2) TYP  
5
7
(0.16)  
4X 0.5  
8
4
2X  
0.675  
PKG  
2X  
1.125  
1.725  
1.525  
2X  
0.65  
A
A
11  
1
12  
PIN 1 ID  
0.3  
0.2  
0.3  
0.2  
11X  
0.5  
0.3  
0.1  
C A B  
C
11X  
0.05  
4225021/C 05/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RNX0012C  
(0.25)  
11X (0.6)  
12  
11X (0.25)  
2X (0.65)  
11  
1
(1.825)  
2X  
(1.125)  
(0.7875)  
PKG  
2X  
(0.675)  
4X (0.5)  
8
(1.4)  
4
5
7
PKG  
(1.8)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.075 MAX  
ALL AROUND  
0.075 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225021/C 05/2022  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RNX0012C  
2X (0.25)  
2X (0.812)  
11X (0.6)  
11X (0.25)  
12  
2X (0.65)  
1
11  
EXPOSED  
METAL  
2X  
(1.125)  
(1.294)  
(0.281)  
PKG  
2X  
(0.675)  
4X (0.5)  
8
(1.4)  
4
5
7
PKG  
(1.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
FOR PAD 12  
87.7% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225021/C 05/2022  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY