LMR36006CRNXT [TI]

4.2V 至 60V、0.6A 超小型同步降压转换器 | RNX | 12 | -40 to 150;
LMR36006CRNXT
型号: LMR36006CRNXT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.2V 至 60V、0.6A 超小型同步降压转换器 | RNX | 12 | -40 to 150

开关 转换器
文件: 总52页 (文件大小:3656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
LMR36006 4.2V 60V0.6A 超小型同步降压转换器  
1 特性  
2 应用  
1
专为可靠耐用的 应用而设计  
现场发送器和传感器、PLC 模块  
恒温器、视频监控、HVAC 系统  
交流和伺服驱动器、旋转编码器  
工业运输资产跟踪  
高达 66V 的输入瞬态保护  
结温范围为 –40°C +150°C  
保护 功能:热关断、输入欠压锁定、逐周期电  
流限制和断续短路保护  
3 说明  
0.6A 负载下具有 0.2V 压降(典型值)  
LMR36006 稳压器是一款易于使用的同步降压直流/直  
流转换器。该器件具有集成高侧和低侧功率  
适合可扩展的工业电源  
与以下器件引脚兼容:  
MOSFET,可在 4.2V 60V 的宽输入电压范围内提  
供高达 0.6A 的输出电流。 容差高达 66V。 这种瞬态  
电压耐受能力降低了防止过压所需的设计工作量,并满  
IEC 61000-4-5 的浪涌抗扰度要求。  
LMR3601560V1.5A)  
LMR33620/LMR3363036V2A 3A)  
1MHz2.1MHz 频率选项  
在整个负载范围内具有低功率耗散  
1MHz24VIN5VOUT0.6A)时的效率为  
87%  
LMR36006 采用峰值电流模式控制机制来提供最佳的  
效率和输出电压精度。精密使能支持直接连接到宽输入  
电压或对器件启动和关断进行精确控制,因此提供了灵  
活性。附带内置滤波和延迟功能的电源正常状态标志可  
提供系统状态的真实指示,免去了使用外部监控器的麻  
烦。  
1MHz12VIN5VOUT0.6A)时的效率为  
92%  
PFM 模式中提高了轻负载效率  
低至 26µA 的工作静态电流  
小型 2mm × 3mm HotRod™ 封装  
LMR36006 采用 HotRod™ 封装,实现了低噪声、更  
高的效率和最小的封装裸片比率。 此器件需要极少外  
部组件,其引脚设计可实现简单的 PCB 布局。  
LMR36006 的小解决方案尺寸和功能集旨在简化各种  
终端设备的实施,这些终端设备包括超小型现场发送器  
和视觉传感器等具有严苛空间要求的 应用 。  
解决方案只需很少的外部组件  
LMR36006-Q1 LMR36015-Q1 具有 400kHz 和  
2.1MHz 频率、可调节输出和固定的 3.3VOUT  
进行了优化,可满足超低 EMI 要求  
符合 CISPR25 5 类标准  
Hotrod™封装可最大限度减少开关节点振铃  
并行输入路径可最大限度减少寄生电感  
扩频频谱可降低峰值辐射发射  
器件信息(1)  
器件型号  
LMR36006  
封装  
封装尺寸(标称值)  
使用 LMR36006 并借助 WEBENCH® 电源设计器  
VQFN-HR (12)  
2.00mm x 3.00mm  
创建定制设计方案  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
100%  
90%  
80%  
70%  
60%  
50%  
简化原理图  
BOOT  
VIN  
VIN  
CBOOT  
EN  
CIN  
SW  
VOUT  
L1  
COUT  
PGND  
LMR36006  
PG  
FB  
VCC  
RFBT  
CVCC  
40%  
VIN = 12V  
VIN = 24V  
RFBB  
30%  
AGND  
0
0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54 0.6  
Output Current (A)  
typi  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSB48  
 
 
 
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 16  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Application .................................................. 20  
9.3 What to Do and What Not to Do ............................. 34  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions ...................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 System Characteristics ............................................. 8  
7.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 35  
11 Layout................................................................... 36  
11.1 Layout Guidelines ................................................. 36  
11.2 Layout Example .................................................... 38  
12 器件和文档支持 ..................................................... 39  
12.1 器件支持 ............................................................... 39  
12.2 文档支持................................................................ 39  
12.3 接收文档更新通知 ................................................. 39  
12.4 支持资源................................................................ 40  
12.5 ....................................................................... 40  
12.6 静电放电警告......................................................... 40  
12.7 Glossary................................................................ 40  
13 机械、封装和可订购信息....................................... 40  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (February 2019) to Revision C  
Page  
添加了 EMI 说明 ,目标位置:特性 ....................................................................................................................................... 1  
Added 33 through 42................................................................................................................................................... 28  
Changes from Revision A (November 2018) to Revision B  
Page  
Updated package quantities in Device Comparison Table. ................................................................................................... 3  
Changes from Original (April 2018) to Revision A  
Page  
首次发布生产数据数据表 ........................................................................................................................................................ 1  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
5 Device Comparison Table  
ORDERABLE PART  
NUMBER  
OUTPUT VOLTAGE  
FPWM  
fSW  
PACKAGE QUANTITY  
LMR36006BRNXT  
LMR36006BRNXR  
LMR36006CRNXT  
LMR36006CRNXR  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
No  
No  
No  
No  
1 MHz  
1 MHz  
250  
3000  
250  
2.1 MHz  
2.1 MHz  
3000  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RNX Package  
12-Pin VQFN-HR  
Top View  
SW  
12  
1
2
11 PGND  
10 VIN  
PGND  
VIN  
9
3
4
EN  
NC  
PG  
8
BOOT  
6
7
5
AGND  
VCC  
FB  
Pin Functions  
NO.  
NAME  
PGND  
VIN  
TYPE  
DESCRIPTION  
1, 11  
2, 10  
G
P
Power ground terminal. Connect to system ground and AGND. Connect to CIN with short wide traces.  
Input supply to regulator. Connect to CIN with short wide traces.  
Connect the SW pin to NC on the PCB. This simplifies the connection from the CBOOT capacitor to the  
SW pin. This pin has no internal connection to the regulator.  
3
NC  
Boot-strap supply voltage for internal high-side driver. Connect a high-quality 100-nF capacitor from this  
pin to the SW pin. Connect the SW pin to NC on the PCB. This simplifies the connection from the CBOOT  
capacitor to the SW pin.  
4
BOOT  
P
Internal 5-V LDO output. Used as supply to internal control circuits. Do not connect to external loads.  
5
VCC  
P
Can be used as logic supply for power-good flag. Connect a high-quality 1-µF capacitor from this pin to  
GND.  
Analog ground for regulator and system. Ground reference for internal references and logic. All electrical  
parameters are measured with respect to this pin. Connect to system ground on PCB.  
6
7
AGND  
FB  
G
A
Feedback input to regulator. Connect to tap point of feedback voltage divider. DO NOT FLOAT. DO  
NOT GROUND.  
Open drain power-good flag output. Connect to suitable voltage supply through a current limiting  
resistor. High = power OK, low = power bad. Goes low when EN = Low. Can be open or grounded when  
not used.  
8
PG  
A
9
EN  
A
P
Enable input to regulator. High = ON, low = OFF. Can be connected directly to VIN; DO NOT FLOAT.  
Regulator switch node. Connect to power inductor. Connect the SW pin to NC on the PCB. This  
simplifies the connection from the CBOOT capacitor to the SW pin.  
12  
SW  
A = Analog, P = Power, G = Ground  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating junction temperature range of -40°C to 150°C (unless otherwise noted)(1)  
MIN  
MAX  
66  
UNIT  
V
Input voltage  
Input voltage  
Input voltage  
Input voltage  
Input voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
VIN to PGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–3.5  
–0.3  
–0.3  
-40  
EN to AGND  
66.3  
5.5  
V
FB to AGND  
V
PG to AGND  
22  
V
AGND to PGND  
SW to PGND  
0.3  
V
66.3  
66.3  
5.5  
V
SW to PGND less than 10-ns transients  
CBOOT to SW  
V
V
VCC to AGND  
5.5  
V
Junction Temperature TJ  
Storage temperature, Tstg  
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic  
discharge  
V(ESD)  
V(ESD)  
Human-body model (HBM)(1)  
±2500  
V
Electrostatic  
discharge  
Charged-device model (CDM)(2)  
±750  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40 to 150 (unless otherwise noted)(1)  
MIN  
4.2  
0
MAX  
UNIT  
VIN to PGND  
EN to PGND(2)  
PG to PGND(2)  
IOUT  
60  
60  
V
V
V
A
Input voltage  
0
18  
Output current  
0
0.6  
(1) Recommended operating conditions indicate conditions for which the device is intended to be functional, but do not ensure specific  
performance limits. For ensured specifications, see Electrical Characteristics.  
(2) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
 
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
7.4 Thermal Information  
LMR36006  
THERMAL METRIC(1)  
RNX (VQFN-HR)  
UNIT  
12 PINS  
72.5  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
35.9  
23.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.8  
ψJB  
23.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Limits apply over operating junction temperature (TJ ) range of –40°C to +150°C, unless otherwise stated. Minimum and  
Maximum limits(1) are specified through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions  
apply: VIN = 24 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE (VIN PIN)  
Operating quiescent current (non-  
IQ-nonSW  
ISD  
VEN = 3.3 V (PFM variant only)  
VEN = 0 V  
18  
26  
5
36  
µA  
µA  
switching)(2)  
Shutdown quiescent current;  
measured at VIN pin  
ENABLE (EN PIN)  
VEN-VCC-H  
VEN-VCC-L  
VEN-VOUT-H  
Enable input high level for VCC output VENABLE rising  
1.14  
1.3  
V
V
Enable input low level for VCC output  
Enable input high level for VOUT  
VENABLE falling  
0.3  
VENABLE rising  
1.157  
1.231  
110  
V
VEN-VOUT-HYS Enable input hysteresis for VOUT  
ILKG-EN Enable input leakage current  
INTERNAL LDO (VCC PIN)  
Hysteresis below VENABLE-H; falling  
VEN = 3.3V  
mV  
nA  
0.2  
VCC  
Internal VCC voltage  
6 V VIN 60 V  
4.75  
3.6  
5
5.25  
4.0  
V
V
VCC-UVLO-  
Rising  
Internal VCC undervoltage lockout  
Internal VCC undervoltage lockout  
VCC rising  
3.8  
VCC-UVLO-  
Falling  
VCC falling  
FB = 1 V  
3.1  
3.3  
3.5  
V
VOLTAGE REFERENCE (FB PIN)  
VFB  
Feedback voltage  
0.985  
1
1.015  
V
ILKG-FB  
Feedback leakage current  
0.2  
nA  
CURRENT LIMITS AND HICCUP  
ISC  
High-side current limit(3)  
Low-side current limit(3)  
0.8  
0.6  
1
0.8  
1.2  
A
A
A
A
ILS-LIMIT  
IL-ZC  
0.95  
Zero cross detector threshold  
Minimum inductor peak current(3)  
PFM variants only  
0.02  
0.18  
IPEAK-MIN  
(1) MIN and MAX limits are 100% production tested at 25. Limits over the operating temperature range verified through correlation using  
Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
(2) This is the current used by the device open loop. It does not represent the total input current of the system when in regulation.  
(3) The current limit values in this table are tested, open loop, in production. They may differ from those found in a closed loop application.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
Limits apply over operating junction temperature (TJ ) range of –40°C to +150°C, unless otherwise stated. Minimum and  
Maximum limits(1) are specified through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions  
apply: VIN = 24 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER GOOD (PGOOD PIN)  
VPG-HIGH-UP  
VPG-LOW-DN  
Power-Good upper threshold - rising  
% of FB voltage  
105%  
90%  
107%  
93%  
110%  
95%  
Power-Good lower threshold - falling  
% of FB voltage  
Power-Good hysteresis (rising &  
falling)  
VPG-HYS  
TPG  
% of FB voltage  
2%  
Power-Good rising/falling edge  
deglitch delay  
80  
140  
200  
2
µs  
V
Minimum input voltage for proper  
Power-Good function  
VPG-VALID  
RPG  
Power-Good on-resistance  
Power-Good on-resistance  
VEN = 2.5 V  
VEN = 0 V  
80  
35  
165  
90  
Ω
Ω
RPG  
OSCILLATOR  
FOSC  
Internal oscillator frequency  
Internal oscillator frequency  
2.1-MHz variant  
1-MHz variant  
1.95  
0.85  
2.1  
1
2.35  
1.15  
MHz  
MHz  
FOSC  
MOSFETS  
RDS-ON-HS  
RDS-ON-LS  
High-side MOSFET ON-resistance  
Low-side MOSFET ON-resistance  
IOUT = 0.5 A  
IOUT = 0.5 A  
225  
150  
435  
280  
mΩ  
mΩ  
7.6 Timing Requirements  
Limits apply over operating junction temperature (TJ ) range of –40°C to +150°C, unless otherwise stated. Minimum and  
Maximum limits(1) are specified through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions  
apply: VIN = 24 V.  
MIN  
NOM  
55  
MAX  
83  
73  
12  
6
UNIT  
ns  
tON-MIN  
tOFF-MIN  
tON-MAX  
tSS  
Minimum switch on-time  
Minimum switch off-time  
Maximum switch on-time  
Internal soft-start time  
53  
ns  
7
µs  
3
4.5  
ms  
(1) MIN and MAX limits are 100% production tested at 25. Limits over the operating temperature range verified through correlation using  
Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
7.7 System Characteristics  
The following specifications apply to a typical application circuit with nominal component values. Specifications in the typical  
(TYP) column apply to TJ = 25only. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the case  
of typical components over the temperature range of TJ = –40to 150. These specifications are not ensured by production  
testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Operating input voltage range  
4.2  
60  
V
Adjustable output voltage  
regulation(1)  
VOUT  
PFM operation  
–1.5%  
2.5%  
VIN = 24 V, VOUT = 3.3 V, IOUT = 0 A,  
RFBT = 1 MΩ, PFM variant  
Input supply current when in  
regulation  
Maximum switch duty cycle(2)  
ISUPPLY  
DMAX  
VHC  
26  
98%  
0.4  
µA  
FB pin voltage required to trip short-  
circuit hiccup mode  
V
Time between current-limit hiccup  
burst  
tHC  
94  
ms  
tD  
Switch voltage dead time  
2
170  
158  
ns  
°C  
°C  
TSD  
TSD  
Thermal shutdown temperature  
Thermal shutdown temperature  
Shutdown temperature  
Recovery temperature  
(1) Deviation in VOUT from nominal output voltage value at VIN = 24 V, IOUT = 0 A to 0.6A  
(2) In dropout the switching frequency drops to increase the effective duty cycle. The lowest frequency is clamped at approximately: FMIN  
1 / (tON-MAX + tOFF-MIN). DMAX = tON-MAX /(tON-MAX + tOFF-MIN).  
=
8
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
7.8 Typical Characteristics  
Unless otherwise specified the following conditions apply: TA = 25°C. VIN = 24 V.  
32  
10  
31  
9
8
7
6
5
4
3
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
25C  
150C  
-40C  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
Shut  
LMR3  
EN = 0 V  
VFB = 1 V  
2. Shutdown Supply Current  
1. Non-Switching Input Supply Current  
1
0.8  
0.6  
0.4  
0.2  
0
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-40  
0
40 80  
Temperature (°C)  
120  
150  
-40  
0
40 80  
Temperatuer (°C)  
120  
150  
ls-c  
hs-c  
VIN = 24 V  
VIN = 24 V  
4. Low Side Current Limit  
3. High Side Current Limit  
1.02  
400  
350  
300  
250  
200  
150  
100  
1.016  
1.012  
1.008  
1.004  
1
0.996  
0.992  
0.988  
0.984  
0.98  
25C  
150C  
-40C  
-40  
0
40 80  
Temperature (°C)  
120  
150  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
vref  
LMR3  
IOUT = 0 A  
ƒSW = 1000 kHz  
VOUT = 3.3 V  
5. Reference Voltage Drift  
6. IPEAK-MIN  
版权 © 2018–2019, Texas Instruments Incorporated  
9
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LMR36006 is a synchronous peak-current-mode buck regulator designed for a wide variety of industrial  
applications. The regulator automatically switches modes between PFM and PWM depending on load. At heavy  
loads, the device operates in PWM at a constant switching frequency. At light loads the mode changes to PFM,  
with diode emulation allowing DCM. This reduces the input supply current and keeps efficiency high. The device  
features internal loop compensation which reduces design time and requires fewer external components than  
externally compensated regulators.  
The LMR36006 is designed with a flip-chip or HotRod™ technology, greatly reducing the parasitic inductance of  
pins. In addition, the layout of the device allows for reduction in the radiated noise generated by the switching  
action through partial cancellation of the current generated magnetic field. As a result the switch-node waveform  
exhibits less overshoot and ringing.  
2V/div  
50ns/div  
BW:500MHz  
7. Switch Node Waveform  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
8.2 Functional Block Diagram  
VCC  
VIN  
INT. REG.  
BIAS  
OSCILLATOR  
BOOT  
ENABLE  
LOGIC  
HS CURRENT  
SENSE  
EN  
1.0V  
Reference  
PWM  
COMP.  
ERROR  
AMPLIFIER  
+
-
CONTROL  
LOGIC  
DRIVER  
SW  
+
-
FB  
LS CURRENT  
SENSE  
PFM MODE  
CONTROL  
PG  
POWER GOOD  
CONTROL  
AGND PGND  
8.3 Feature Description  
8.3.1 Power-Good Flag Output  
The power-good flag function (PG output pin) of the LMR36006 can be used to reset a system microprocessor  
whenever the output voltage is out of regulation. This open-drain output goes low under fault conditions, such as  
current limit and thermal shutdown, as well as during normal start-up. A glitch filter prevents false flag operation  
for short excursions of the output voltage, such as during line and load transients. Output voltage excursions  
lasting less than tPG do not trip the power-good flag. Power-good operation can best be understood by reference  
to 8 and 9. Note that during initial power-up a delay of about 4 ms (typical) is inserted from the time that EN  
is asserted to the time that the power-good flag goes high. This delay only occurs during start-up and is not  
encountered during normal operation of the power-good function.  
The power-good output consists of an open drain NMOS; requiring an external pullup resistor to a suitable logic  
supply. It can also be pulled up to either VCC or VOUT, through an appropriate resistor, as desired. If this function  
is not needed, the PG pin must be grounded. When EN is pulled low, the flag output is also forced low. With EN  
low, power good remains valid as long as the input voltage is 2 V (typical). Limit the current into this pin to 4  
mA.  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
VOUT  
VPG-HIGH_UP (107%)  
VPG-HIGH-DN  
(105%)  
VPG-LOW-UP  
(95%)  
VPG-LOW-DN (93%)  
PG  
High = Power Good  
Low = Fault  
8. Static Power-Good Operation  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
Feature Description (接下页)  
Glitches do not cause false operation nor reset timer  
VOUT  
VPG-LOW-UP  
(95%)  
VPG-LOW-DN (93%)  
<tPG  
PG  
tPG  
9. Power-Good-Timing Behavior  
tPG  
tPG  
8.3.2 Enable and Start-up  
Start-up and shutdown are controlled by the EN input. This input features precision thresholds, allowing the use  
of an external voltage divider to provide an adjustable input UVLO (see the section). Applying a voltage of VEN-  
causes the device to enter standby mode, powering the internal VCC, but not producing an output voltage.  
VCC-H  
Increasing the EN voltage to VEN-OUT-H (VEN-H in 10) fully enables the device, allowing it to enter start-up mode  
and beginning the soft-start period. When the EN input is brought below VEN-OUT-H (VEN-H in 10) by VEN-OUT-HYS  
(VEN-HYS in 10), the regulator stops running and enters standby mode. Further decrease in the EN voltage to  
below VEN-VCC-L completely shuts down the device. This behavior is shown in 10. The EN input may be  
connected directly to VIN if this feature is not needed. This input must not be allowed to float. The values for the  
various EN thresholds can be found in the Electrical CharacteristicsElectrical Characteristics table.  
The LMR36006 utilizes a reference-based soft start that prevents output voltage overshoots and large inrush  
currents as the regulator is starting up. A typical start-up waveform is shown in 11 along with typical timings.  
The rise time of the output voltage is about 4 ms.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
EN  
VEN-H  
VEN-H œ VEN-HYS  
VEN-VCC-H  
VEN-VCC-L  
VCC  
5 V  
0
VOUT  
VOUT  
0
10. Precision Enable Behavior  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
Feature Description (接下页)  
11. Typical Start-up Behavior  
VIN = 24 V, VOUT = 3.3 V, IOUT = 0.6 A  
8.3.3 Current Limit and Short Circuit  
The LMR36006 incorporates valley current limit for normal overloads and for short-circuit protection. In addition  
the high-side power MOSFET is protected from excessive current by a peak current limit circuit. Cycle-by-cycle  
current limit is used for overloads, while hiccup mode is used for short circuits. Finally, a zero current detector is  
used on the low-side power MOSFET to implement diode emulation mode (DEM) at light loads (see Glossary).  
During overloads the low-side current limit, ILIMIT, determines the maximum load current that the LMR36006 can  
supply. When the low-side switch turns on, the inductor current begins to ramp down. If the current does not fall  
below ILIMIT before the next turnon cycle, then that cycle is skipped, and the low-side MOSFET is left on until the  
current falls below ILIMIT. This is somewhat different than the more typical peak current limit and results in 公式 1  
for the maximum load current.  
(
V
IN - VOUT  
)
VOUT  
IOUT  
= ILIMIT  
+
max  
2fSW L  
V
IN  
where  
fSW = switching frequency  
L = inductor value  
(1)  
If, during current limit, the voltage on the FB input falls below about 0.4 V due to a short circuit, the device enters  
into hiccup mode. In this mode the device stops switching for tHC or about 94 ms, and then goes through a  
normal re-start with soft start. If the short-circuit condition remains, the device runs in current limit for about 20  
ms (typical) and then shuts down again. This cycle repeats, as shown in 12 as long as the short-circuit  
condition persists. This mode of operation helps to reduce the temperature rise of the device during a hard short  
on the output. Of course the output current is greatly reduced during hiccup mode. Once the output short is  
removed and the hiccup delay is passed, the output voltage recovers normally as shown in 12.  
The high-side-current limit trips when the peak inductor current reaches ISC. This is a cycle-by-cycle current limit  
and does not produce any frequency or load current fold back. It is meant to protect the high-side MOSFET from  
excessive current. Under some conditions, such as high input voltages, this current limit may trip before the low-  
side protection. Under this condition, ISC determines the maximum output current. Note that ISC varies with duty  
cycle.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
12. Short-Circuit Transient and Recovery  
8.3.4 Undervoltage Lockout and Thermal Shutdown  
The LMR36006 incorporates an undervoltage-lockout feature on the output of the internal LDO (at the VCC pin).  
When VCC reaches 3.8 V (typ.), the device receives the EN signal and starts switching. When VCC falls below  
3.3 V (typ.), the device shuts down, regardless of EN status. Because the LDO is in dropout during these  
transitions, the previously mentioned values roughly represent the input voltage levels during the transitions.  
Thermal shutdown is provided to protect the regulator from excessive junction temperature. When the junction  
temperature reaches about 170°C, the device shuts down; re-start occurs when the temperature falls to about  
158°C .  
8.4 Device Functional Modes  
8.4.1 Auto Mode  
In auto mode the device moves between PWM and PFM as the load changes. At light loads the regulator  
operates in PFM. At higher loads the mode changes to PWM.  
In PWM the regulator operates as a constant frequency, current mode, full synchronous converter using PWM to  
regulate the output voltage. While operating in this mode the output voltage is regulated by switching at a  
constant frequency and modulating the duty cycle to control the power to the load. This provides excellent line  
and load regulation and low output voltage ripple.  
In PFM the high-side MOSFET is turned on in a burst of one or more pulses to provide energy to the load. The  
duration of the burst depends on how long it takes the inductor current to reach IPEAK-MIN. The frequency of these  
bursts is adjusted to regulate the output, while diode emulation (DEM) is used to maximize efficiency (see  
Glossary). This mode provides high light-load efficiency by reducing the amount of input supply current required  
to regulate the output voltage at small loads. This trades off very good light-load efficiency for larger output  
voltage ripple and variable switching frequency. Also, a small increase in output voltage occurs at light loads. The  
actual switching frequency and output voltage ripple depends on the input voltage, output voltage, and load.  
Typical switching waveforms in PFM and PWM are shown in 13 and 14. See the Application Curves for  
output voltage variation with load in auto mode.  
13. Typical PFM Switching Waveforms  
14. Typical PWM Switching Waveforms  
VIN = 24 V, VOUT = 5 V, IOUT = 30 mA  
VIN = 24 V, VOUT = 5 V, IOUT = 600 mA, ƒS = 1000 kHz  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
Device Functional Modes (接下页)  
8.4.2 Dropout  
The dropout performance of any buck regulator is affected by the RDSON of the power MOSFETs, the DC  
resistance of the inductor, and the maximum duty cycle that the controller can achieve. As the input voltage is  
reduced to near the output voltage, the off-time of the high-side MOSFET starts to approach the minimum value.  
Beyond this point the switching may become erratic and/or the output voltage falls out of regulation. To avoid this  
problem the LMR36006 automatically reduces the switching frequency to increase the effective duty cycle and  
maintain regulation. In this data sheet the dropout voltage is defined as the difference between the input and  
output voltage when the output has dropped by 1% of its nominal value. Under this condition the switching  
frequency has dropped to its minimum value of about 140 kHz. Note that the 0.4 V short circuit detection  
threshold is not activated when in dropout mode. Typical dropout characteristics can be found in 15 and 16.  
6
5.5  
5
1.2E+6  
1.1E+6  
1E+6  
9E+5  
8E+5  
7E+5  
6E+5  
5E+5  
4E+5  
3E+5  
2E+5  
1E+5  
0
IOUT = 1.5 mA  
IOUT = 300 mA  
IOUT = 600 mA  
4.5  
4
3.5  
3
IOUT = 300 mA  
IOUT = 600 mA  
4
4.2 4.4 4.6 4.8  
5
Input Voltage (V)  
5.2 5.4 5.6 5.8  
6
5
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9  
Input Voltage (V)  
6
6.1  
D003  
LMR3  
15. Overall Dropout Characteristic  
16. Typical ƒSW vs Output Current  
VOUT = 5 V  
ƒSW = 1000 kHz  
8.4.3 Minimum Switch On-Time  
Every switching regulator has a minimum controllable on-time dictated by the inherent delays and blanking times  
associated with the control circuits. This imposes a minimum switch duty cycle and therefore a minimum  
conversion ratio. The constraint is encountered at high input voltages and low output voltages. To help extend  
the minimum controllable duty cycle, the LMR36006 automatically reduces the switching frequency when the  
minimum on-time limit is reached. In this way the converter can regulate the lowest programmable output voltage  
at the maximum input voltage. An estimate for the approximate input voltage, for a given output voltage, before  
frequency foldback occurs is found in 公式 2. As the input voltage is increased, the switch on-time (duty cycle)  
reduces to regulate the output voltage. When the on-time reaches the limit, the switching frequency drops, while  
the on-time remains fixed.  
VOUT  
V
Ç
IN  
tON fSW  
(2)  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
2.4E+6  
2.2E+6  
2E+6  
1.8E+6  
1.6E+6  
1.4E+6  
1.2E+6  
1E+6  
8E+5  
6E+5  
4E+5  
IOUT = 300 mA  
IOUT = 600 mA  
2E+5  
0
10  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
45  
50  
55  
60  
LMR3  
17. Switching Frequency vs Input Voltage  
VOUT = 3.3 V  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMR36006 step-down DC-to-DC converter is typically used to convert a higher DC voltage to a lower DC  
voltage with a maximum output current of 0.6 A. The following design procedure can be used to select  
components for the LMR36006. Alternately, the WEBENCH® Design Tool may be used to generate a complete  
design. This tool utilizes an iterative design procedure and has access to a comprehensive database of  
components. This allows the tool to create an optimized design and allows the user to experiment with various  
options.  
All of the capacitance values given in the following application information refer to effective  
values; unless otherwise stated. The effective value is defined as the actual capacitance  
under DC bias and temperature; not the rated or nameplate values. Use high-quality, low-  
ESR, ceramic capacitors with an X7R or better dielectric throughout. All high value  
ceramic capacitors have a large voltage coefficient in addition to normal tolerances and  
temperature effects. Under DC bias the capacitance drops considerably. Large case sizes  
and/or higher voltage ratings are better in this regard. To help mitigate these effects,  
multiple capacitors can be used in parallel to bring the minimum effective capacitance up  
to the required value. This can also ease the RMS current requirements on a single  
capacitor. A careful study of bias and temperature variation of any capacitor bank should  
be made in order to ensure that the minimum value of effective capacitance is provided.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
9.2 Typical Application  
18 shows a typical application circuit for the LMR36006. This device is designed to function over a wide range  
of external components and system parameters. However, the internal compensation is optimized for a certain  
range of external inductance and output capacitance. As a quick start guide, 1 provides typical component  
values for a range of the most common output voltages.  
L
VOUT  
VIN  
SW  
VIN  
VIN  
CIN  
CHF1  
220 nF 220 nF  
CHF2  
CBOOT  
4.7 µF  
COUT  
BOOT  
EN  
VPU  
100 kΩ  
0.1 µF  
LMR36006  
CFF  
RFBT  
100 kΩ  
PG  
FB  
VCC  
RFBB  
CVCC  
1 µF  
PGND PGND  
AGND  
18. Example Applications Circuit  
1. Typical External Component Values  
Nominal COUT Minimum COUT  
ƒSW  
(kHz)  
VOUT (V)  
L (µH)  
(rated  
(rated  
RFBT (Ω)  
RFBB (Ω)  
CIN  
CFF  
(1)  
(2)  
capacitance)  
capacitance)  
1000  
2100  
1000  
2100  
1000  
2100  
3.3  
3.3  
5
10  
6.8  
15  
10  
33  
22  
2 × 15 µF  
2 × 15 µF  
2 × 15 µF  
2 × 15 µF  
2 × 15 µF  
2 × 15 µF  
1 × 15 µF  
1 × 15 µF  
1 × 15 µF  
1 × 15 µF  
1 × 15µF  
1 × 15 µF  
100 k  
100 k  
100 k  
100 k  
100 k  
100 k  
43.2 k  
43.2 k  
24.9 k  
24.9 k  
9.09 k  
9.09 k  
4.7 µF + 2 × 220 nF  
4.7 µF + 2 × 220 nF  
4.7 µF + 2 × 220 nF  
4.7 µF + 2 × 220 nF  
4.7 µF + 2 × 220 nF  
4.7 µF + 2 × 220 nF  
20 pF  
20 pF  
20 pF  
20 pF  
20 pF  
20 pF  
5
12  
12  
(1) Optimized for superior load transient performance from 0 to 100% rated load.  
(2) Optimized for size constrained end applications.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
9.2.1 Design 1: Low Power 24-V, 600-mA PFM Converter  
9.2.1.1 Design Requirements  
Example requirements for a typical 5-V or 3.3-V application. The input voltages are here for illustration purposes  
only. See Specifications for the operating input voltage range.  
2. Detailed Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
12 V to 24 V steady state, 4.2 V to 60-V transients  
Output voltage  
5 V/3.3 V  
0 A to 0.6 A  
Maximum output current  
Switching frequency  
1000 kHz  
Current consumption at 0-A load  
Switching frequency at 0-A load  
Critical: Need to ensure low current consumption to reduce battery drain  
Not critical: Need fixed frequency operation at high load only  
3. List of Components for Design 1  
VOUT  
FREQUENCY  
1000 kHz  
RFBB  
COUT  
L
U1  
5 V  
24.9 kΩ  
43.3 kΩ  
1 × 15 µF  
1 × 15 µF  
10 µH, 45 mΩ  
10 µH, 45 mΩ  
LMR36006BRNX  
LMR36006BRNX  
3.3 V  
1000 KHz  
9.2.1.2 Detailed Design Procedure  
The following design procedure applies to 18 and 2.  
9.2.1.2.1 Custom Design With WEBENCH Tools  
Click here to create a custom design using the LMR36006 device and the WEBENCH Power Designer.  
1. Start by entering the input voltage, output voltage, and output current requirements  
2. Optimize the design for key performance such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases the following features are available with this tool:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to help understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print full design reports in PDF.  
Get more information at ti.com  
9.2.1.2.2 Choosing the Switching Frequency  
The choice of switching frequency is a compromise between conversion efficiency and overall solution size.  
Lower switching frequency implies reduced switching losses and usually results in higher system efficiency.  
However, higher switching frequency allows the use of smaller inductors and output capacitors, and hence a  
more compact design. For this example 1 MHz is used.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.1.2.3 Setting the Output Voltage  
The output voltage of LMR36006 is externally adjustable using a resistor divider network. The range of  
recommended output voltage is found in the table. The divider network is comprised of RFBT and RFBB, and  
closes the loop between the output voltage and the converter. The converter regulates the output voltage by  
holding the voltage on the FB pin equal to the internal reference voltage, VREF. The resistance of the divider is a  
compromise between excessive noise pick-up and excessive loading of the output. Smaller values of resistance  
reduce noise sensitivity but also reduce the light-load efficiency. The recommended value for RFBT is 100 kΩ;  
with a maximum value of 1 MΩ. If a 1 MΩ is selected for RFBT, then a feed-forward capacitor must be used  
across this resistor to provide adequate loop phase margin (see CFF Selection). Once RFBT is selected, is used to  
select RFBB. VREF is nominally 1 V.  
RFBT  
RFBB  
=
»
ÿ
VOUT  
VREF  
-1  
Ÿ
(3)  
For this 5-V example values are: RFBT = 100 kΩ and RFBB = 24.9 kΩ.  
9.2.1.2.4 Inductor Selection  
The parameters for selecting the inductor are the inductance and saturation current. The inductance is based on  
the desired peak-to-peak ripple current and is normally chosen to be in the range of 20% to 40% of the maximum  
output current. Experience shows that the best value for inductor ripple current is 30% of the maximum load  
current. Note that when selecting the ripple current for applications with much smaller maximum load than the  
maximum available from the device, use the the maximum device current. 公式 4 can be used to determine the  
value of inductance. The constant K is the percentage of inductor current ripple. For this example we choose K =  
0.4 and find an inductance L = 16.4 µH; we select the standard value of 10 µH.  
(
V
IN - VOUT  
)
VOUT  
L =  
fSW K IOUTmax  
V
IN  
(4)  
Ideally, the saturation current rating of the inductor is at least as large as the high-side switch current limit, ISC  
.
This ensures that the inductor does not saturate even during a short circuit on the output. When the inductor core  
material saturates, the inductance falls to a very low value, causing the inductor current to rise very rapidly.  
Although the valley current limit, ILIMIT, is designed to reduce the risk of current runaway, a saturated inductor can  
cause the current to rise to high values very rapidly. This may lead to component damage; do not allow the  
inductor to saturate! Inductors with a ferrite core material have very hard saturation characteristics, but usually  
have lower core losses than powdered iron cores. Powered iron cores exhibit a soft saturation, allowing some  
relaxation in the current rating of the inductor. However, they have more core losses at frequencies above about  
1 MHz. In any case, the inductor saturation current must not be less than the device low-side current limit, ILIMIT  
.
In order to avoid sub-harmonic oscillation, the inductance value must not be less than that given in 公式 5:  
VOUT  
LMIN í 0.28 ∂  
fSW  
(5)  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
9.2.1.2.5 Output Capacitor Selection  
The value of the output capacitor, and its ESR, determine the output voltage ripple and load transient  
performance. The output capacitor bank is usually limited by the load transient requirements, rather than the  
output voltage ripple. 公式 6 can be used to estimate a lower bound on the total output capacitance, and an  
upper bound on the ESR, required to meet a specified load transient.  
K2  
»
ÿ
DIOUT  
fSW ∂ DVOUT K  
COUT  
í
(
1- D  
)
(
1+ K  
)
+
(
2 - D  
)
Ÿ
12  
Ÿ
(
2 + K  
)
∂ DVOUT  
ESR Ç  
K2  
1
»
ÿ
2∂ DIOUT 1+ K +  
1+  
÷
÷
Ÿ
12  
(1- D)  
«
◊Ÿ  
VOUT  
D =  
V
IN  
where  
ΔVOUT = output voltage transient  
ΔIOUT = output current transient  
K = Ripple factor from Inductor Selection  
(6)  
Once the output capacitor and ESR have been calculated, 公式 7 can be used to check the output voltage ripple.  
1
Vr @ DIL ESR2 +  
2
(
8fSW COUT  
)
where  
Vr = peak-to-peak output voltage ripple  
(7)  
The output capacitor and ESR can then be adjusted to meet both the load transient and output ripple  
requirements.  
In practice the output capacitor has the most influence on the transient response and loop phase margin. Load  
transient testing and bode plots are the best way to validate any given design and must always be completed  
before the application goes into production. In addition to the required output capacitance, a small ceramic  
placed on the output can help to reduce high frequency noise. Small case size ceramic capacitors in the range of  
1 nF to 100 nF can be very helpful in reducing spikes on the output caused by inductor and board parasitics.  
Limit the maximum value of total output capacitance to about 10 times the design value, or 1000 µF, whichever  
is smaller. Large values of output capacitance can adversely affect the start-up behavior of the regulator as well  
as the loop stability. If values larger than noted here must be used, then a careful study of start-up at full load  
and loop stability must be performed.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.1.2.6 Input Capacitor Selection  
The ceramic input capacitors provide a low impedance source to the regulator in addition to supplying the ripple  
current and isolating switching noise from other circuits. A minimum ceramic capacitance of 4.7-µF is required on  
the input of the LMR36006. This must be rated for at least the maximum input voltage that the application  
requires; preferably twice the maximum input voltage. This capacitance can be increased to help reduce input  
voltage ripple and/or maintain the input voltage during load transients. In addition a small case size 220-nF  
ceramic capacitor must be used at the input, as close a possible to the regulator. This provides a high frequency  
bypass for the control circuits internal to the device. For this example a 4.7-µF, 100-V, X7R (or better) ceramic  
capacitor is chosen. The 220 nF must also be rated at 100-V with an X7R dielectric. The VQFN package  
provides two input voltage pins and two power ground pins on opposite sides of the package. This allows the  
input capacitors to be split, and placed optimally with respect to the internal power MOSFETs, thus improving the  
effectiveness of the input bypassing. In this example, place two 220-nF ceramic capacitors at each VIN-PGND  
location.  
It is often desirable to use an electrolytic capacitor on the input in parallel with the ceramics. This is especially  
true if long leads/traces are used to connect the input supply to the regulator. The moderate ESR of this  
capacitor can help damp any ringing on the input supply caused by the long power leads. The use of this  
additional capacitor also helps with voltage dips caused by input supplies with unusually high impedance.  
Most of the input switching current passes through the ceramic input capacitor(s). The approximate RMS value of  
this current can be calculated from 公式 8 and should be checked against the manufacturers' maximum ratings.  
IOUT  
IRMS  
@
2
(8)  
9.2.1.2.7 CBOOT  
The LMR36006 requires a bootstrap capacitor connected between the BOOT pin and the SW pin. This capacitor  
stores energy that is used to supply the gate drivers for the power MOSFETs. A high-quality ceramic capacitor of  
100 nF and at least 16 V is required.  
9.2.1.2.8 VCC  
The VCC pin is the output of the internal LDO used to supply the control circuits of the regulator. This output  
requires a 1-µF, 16-V ceramic capacitor connected from VCC to GND for proper operation. In general this output  
must not be loaded with any external circuitry. However, this output can be used to supply the pullup for the  
power-good function (see Power-Good Flag Output). A value in the range of 10 kΩ to 100 kΩ is a good choice in  
this case. The nominal output voltage on VCC is 5 V.  
9.2.1.2.9 CFF Selection  
In some cases a feed-forward capacitor can be used across RFBT to improve the load transient response or  
improve the loop-phase margin. This is especially true when values of RFBT > 100 kΩ are used. Large values of  
RFBT, in combination with the parasitic capacitance at the FB pin, can create a small signal pole that interferes  
with the loop stability. A CFF can help to mitigate this effect. 公式 9 can be used to estimate the value of CFF. The  
value found with 公式 9 is a starting point; use lower values to determine if any advantage is gained by the use of  
a CFF capacitor. The Optimizing Transient Response of Internally Compensated DC-DC Converters with Feed-  
forward Capacitor Application Report is helpful when experimenting with a feed-forward capacitor.  
VOUT COUT  
CFF  
<
VREF  
VOUT  
120 RFBT  
(9)  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
9.2.1.2.9.1 External UVLO  
In some cases an input UVLO level different than that provided internal to the device is needed. This can be  
accomplished by using the circuit shown in 19 can be used. The input voltage at which the device turns on is  
designated VON; while the turnoff voltage is VOFF. First a value for RENB is chosen in the range of 10 kΩ to 100  
kΩ and then 公式 10 is used to calculate RENT and VOFF  
.
VIN  
RENT  
EN  
RENB  
19. Set-up for External UVLO Application  
«
÷
VON  
÷
RENT  
=
-1 RENB  
VEN-H  
÷
÷
VEN-HYS  
VEN  
VOFF = VON 1-  
«
where  
VON = VIN turnon voltage  
VOFF = VIN turnoff voltage  
(10)  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
 
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.1.2.10 Maximum Ambient Temperature  
As with any power conversion device, the LMR36006 dissipates internal power while operating. The effect of this  
power dissipation is to raise the internal temperature of the converter above ambient. The internal die  
temperature (TJ) is a function of the ambient temperature, the power loss and the effective thermal resistance,  
RθJA of the device and PCB combination. The maximum internal die temperature for the LMR36006 must be  
limited to 150°C. This establishes a limit on the maximum device power dissipation and therefore the load  
current. 公式 11 shows the relationships between the important parameters. It is easy to see that larger ambient  
temperatures (TA) and larger values of RθJA reduce the maximum available output current. The converter  
efficiency can be estimated by using the curves provided in this data sheet. If the desired operating conditions  
cannot be found in one of the curves, then interpolation can be used to estimate the efficiency. Alternatively, the  
EVM can be adjusted to match the desired application requirements and the efficiency can be measured directly.  
The correct value of RθJA is more difficult to estimate. As stated in Semiconductor and IC Package Thermal  
Metrics, the values given in Thermal Information are not valid for design purposes and must not be used to  
estimate the thermal performance of the application. The values reported in that table were measured under a  
specific set of conditions that are rarely obtained in an actual application.  
(
TJ - TA  
RqJA  
)
h
1- h  
1
IOUT  
=
MAX  
(
)
VOUT  
where  
η = Efficiency  
(11)  
The effective RθJA is a critical parameter and depends on many factors such as power dissipation, air  
temperature/flow, PCB area, copper heat-sink area, number of thermal vias under the package, and adjacent  
component placement; to mention just a few. Due to the ultra-miniature size of the VQFN (RNX) package, a DAP  
is not available. This means that this package exhibits a somewhat greater RθJA. A typical example of RθJA vs  
copper board area can be found in 20. Note that the data given in this graph is for illustration purposes only,  
and the actual performance in any given application depends on all of the factors mentioned above.  
70  
65  
60  
55  
50  
45  
RNX, 4L  
60  
40  
0
10  
20  
30  
40  
50  
70  
Copper Area (cm2)  
C005  
20. RθJA versus Copper Board Area for the VQFN (RNX) Package  
Use the following resources as guides to optimal thermal PCB design and estimating RθJA for a given application  
environment:  
Thermal Design by Insight not Hindsight Application Report  
Semiconductor and IC Package Thermal Metrics Application Report  
Thermal Design Made Simple with LM43603 and LM43602 Application Report  
Using New Thermal Metrics Application Report  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
9.2.2 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 24 V, TA = 25°C. The circuit is shown in 18,  
with the appropriate BOM from 3.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
8 VIN  
6 VIN  
12 VIN  
24 VIN  
48 VIN  
12 VIN  
24 VIN  
48 VIN  
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
Output Current (A)  
Output Current (A)  
LMR3  
LMR3  
VOUT = 5 V  
1000 kHz  
21. Efficiency  
VOUT = 3.3 V  
1000 kHz  
22. Efficiency  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5
3.34  
3.33  
3.32  
3.31  
3.3  
8 VIN  
6 VIN  
12 VIN  
24 VIN  
48 VIN  
12 VIN  
24 VIN  
48 VIN  
3.29  
3.28  
3.27  
4.99  
0
0.1  
0.2  
0.3  
Output Current (A)  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
Ouput Current (A)  
0.4  
0.5  
0.6  
LMR3  
LMR3  
VOUT = 5 V  
1000 kHz  
VOUT = 3.3 V  
1000 kHz  
23. Load Regulation  
24. Load Regulation  
6
5.5  
5
1.2E+6  
1.1E+6  
1E+6  
9E+5  
8E+5  
7E+5  
6E+5  
5E+5  
4E+5  
3E+5  
2E+5  
1E+5  
0
IOUT = 1.5 mA  
IOUT = 300 mA  
IOUT = 600 mA  
4.5  
4
3.5  
3
IOUT = 300 mA  
IOUT = 600 mA  
4
4.2 4.4 4.6 4.8  
5
Input Voltage (V)  
5.2 5.4 5.6 5.8  
6
5
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9  
Input Voltage (V)  
6
6.1  
D003  
LMR3  
VOUT = 5 V  
1000 kHz  
VOUT = 5 V  
1000 kHz  
25. Overall Dropout Characteristic  
26. Frequency Dropout Characteristic  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
45  
40  
35  
30  
25  
20  
400  
350  
300  
250  
200  
150  
100  
50  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
LMR3  
LMR3  
VOUT = 3.3 V  
IOUT= 0 A  
RFBT= 100 kΩ  
VOUT = 3.3 V  
1000 kHz  
27. Input Supply Current  
28. Mode Change Thresholds  
VOUT = 5 V  
1000 kHz  
VOUT = 3.3 V  
1000 kHz  
29. Start-Up Waveform  
30. Start-Up Waveform  
VOUT = 5 V  
Slew Rate = 1 µs/A  
1000 kHz  
ILOAD= 10 mA - 0.6 A  
VOUT = 3.3 V  
1000 kHz  
ILOAD= 10 mA - 0.6 A  
Slew Rate = 1 µs/A  
31. Load Transient  
32. Load Transient  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
Frequency Tested: 150kHz to 30 MHz  
Frequency Tested: 30 MHz to 108 MHz  
33. Conducted EMI vs. CISPR25 Limits (Yellow: Peak  
34. Conducted EMI vs. CISPR25 Limits (Yellow: Peak  
Signal, Blue: Average Signal)  
Signal, Blue: Average Signal)  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
Frequency Tested: 150 kHz to 30 MHz  
Frequency Tested: 30 MHz to 200 MHz  
35. Radiated EMI Rod vs. CISPR25 Limits  
36. Radiated EMI Bicon Vertical vs. CISPR25 Limits  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
Frequency Tested: 30 MHz to 200 MHz  
Frequency Tested: 200 MHz to 1 GHz  
37. Radiated EMI Bicon Horizontal vs. CISPR25 Limits  
版权 © 2018–2019, Texas Instruments Incorporated  
38. Radiated EMI Log Vertical vs. CISPR25 Limits  
29  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
Frequency Tested: 1.83 GHz to 2.5 GHz  
Frequency Tested: 200 MHz to 1 GHz  
40. Radiated EMI Horn Vertical vs. CISPR25 Limits  
39. Radiated EMI Log Horizontal vs. CISPR25 Limits  
83H9652  
VIN  
IN+  
FB1  
+
CD = 100 uF  
GND  
INœ  
CF2 = 0.1 uF  
CF1 = 4.7 uF  
CF3 = 4.7 uF  
VIN = 13.5 V  
VOUT = 5 V  
IOUT = 1.5 A  
Frequency Tested: 1.8 GHz to 2.5 GHz  
42. Recommended Input EMI Filter  
41. Radiated EMI Horn Horizontal vs. CISPR25 Limits  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
9.2.3 Design 2: High Density 24-V, 600-mA PFM Converter  
9.2.3.1 Design Requirements  
Example requirements for a typical 5-V or 3.3-V application. The input voltages are here for illustration purposes  
only. See Specifications for minimum operating input voltage.  
4. Detailed Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
18-V to 24-V steady state, 4.2-V to 60-V transients  
3.3 V/5 V  
Output voltage  
Maximum output current  
Switching frequency  
0 A to 600 mA  
2100 kHz  
Current consumption at 0-A load  
Switching frequency at 0-A load  
Critical: Need to ensure low current consumption to reduce battery drain  
Not critical: Need fixed frequency operation at high load only  
5. List of Components for Design 2  
VOUT  
FREQUENCY  
2100 KHz  
RFBB  
COUT  
L
U1  
5 V  
24.9 kΩ  
43.2 kΩ  
1 × 15 µF  
1 × 15 µF  
10 µH, 21 mΩ  
7.8 µH, 13.6 mΩ  
LMR36006CRNXR  
LMR36006CRNXR  
3.3 V  
2100 kHz  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.3.2 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 24 V, TA = 25°C. The circuit is shown in 18,  
with the appropriate BOM from 5.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
8 VIN  
6 VIN  
12 VIN  
24 VIN  
48 VIN  
12 VIN  
24 VIN  
48 VIN  
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
0.001 0.002 0.005 0.01 0.02  
0.05 0.1 0.2 0.3 0.5  
1
Output Current (A)  
Output Current (A)  
LMR3  
LMR3  
VOUT = 5 V  
2100 kHz  
43. Efficiency  
VOUT = 3.3 V  
2100 kHz  
44. Efficiency  
5.04  
5.035  
5.03  
5.025  
5.02  
5.015  
5.01  
5.005  
5
3.34  
3.33  
3.32  
3.31  
3.3  
8 VIN  
6 VIN  
12 VIN  
24 VIN  
48 VIN  
12 VIN  
24 VIN  
48 VIN  
3.29  
3.28  
3.27  
0
0.1  
0.2  
0.3  
Output Current (A)  
0.4  
0.5  
0.6  
0
0.1  
0.2  
0.3  
Output Current (A)  
0.4  
0.5  
0.6  
LMR3  
LMR3  
VOUT = 5 V  
2100 kHz  
VOUT = 3.3 V  
2100 kHz  
45. Load Regulation  
46. Load Regulation  
6
5
4
3
2
1
2.4E+6  
2.2E+6  
2E+6  
1.8E+6  
1.6E+6  
1.4E+6  
1.2E+6  
1E+6  
8E+5  
6E+5  
IOUT = 1.5 mA  
IOUT = 300 mA  
IOUT = 600 mA  
4E+5  
IOUT = 300 mA  
IOUT = 600 mA  
2E+5  
0
0
0
10  
5
10 15 20 25 30 35 40 45 50 55 60  
Input Voltage (V)  
15  
20  
25  
30  
35  
40  
Input Voltage (V)  
45  
50  
55  
60  
LMR3  
LMR3  
VOUT = 5 V  
2100 kHz  
VOUT = 5 V  
2100 kHz  
47. Line Regulation  
48. Switching Frequency vs Input Voltage  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
5.6  
5.4  
5.2  
5
4.8  
4.6  
4.4  
4.2  
IOUT = 1.5 mA  
IOUT = 300 mA  
IOUT = 600 mA  
4
4
VOUT = 5 V  
2100 kHz  
4.2 4.4 4.6 4.8  
5
Input Voltage (V)  
5.2 5.4 5.6 5.8  
6
LMR3  
VOUT = 5 V  
2100 kHz  
50. Start-Up Waveform  
49. Overall Dropout Characteristic  
VOUT = 5 V  
2100 kHz  
ILOAD= 10 mA - 0.3 A  
VOUT = 3.3 V  
2100 kHz  
Slew Rate = 1  
µs/A  
51. Start-Up Waveform  
52. Load Transient  
VOUT = 3.3 V 2100 kHz  
ILOAD= 10 mA - 0.3 A  
VOUT = 5 V  
2100  
kHz  
ILOAD= 10 mA - 0.6 A  
Slew Rate =  
1 µs/A  
Slew Rate = 1  
µs/A  
53. Load Transient  
54. Load Transient  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
VOUT = 3.3 V  
2100 kHz  
ILOAD= 10 mA - 0.6 A  
Slew Rate = 1 µs/A  
55. Load Transient  
9.3 What to Do and What Not to Do  
Don't: Exceed the Absolute Maximum Ratings.  
Don't: Exceed the ESD Ratings.  
Don't: Allow the EN input to float.  
Don't: Allow the output voltage to exceed the input voltage, nor go below ground.  
Don't: Use the thermal data given in the Thermal Information table to design your application.  
Do: Follow all the guidelines and/or suggestions found in this data sheet before committing the design to  
production. TI application engineers are ready to help critique your design and PCB layout to help make your  
project a success (see Support Resources).  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
10 Power Supply Recommendations  
The characteristics of the input supply must be compatible with the Specifications found in this data sheet. In  
addition, the input supply must be capable of delivering the required input current to the loaded regulator. The  
average input current can be estimated with 公式 12.  
VOUT IOUT  
IIN  
=
VIN ∂ h  
where  
η is the efficiency  
(12)  
If the regulator is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse  
effect on the operation of the regulator. The parasitic inductance, in combination with the low-ESR, ceramic input  
capacitors, can form an underdamped resonant circuit, resulting in overvoltage transients at the input to the  
regulator. The parasitic resistance can cause the voltage at the VIN pin to dip whenever a load transient is  
applied to the output. If the application is operating close to the minimum input voltage, this dip may cause the  
regulator to momentarily shutdown and/or reset. The best way to solve these kind of issues is to reduce the  
distance from the input supply to the regulator and/or use an aluminum or tantalum input capacitor in parallel with  
the ceramics. The moderate ESR of these types of capacitors help to damp the input resonant circuit and reduce  
any overshoots. A value in the range of 20 µF to 100 µF is usually sufficient to provide input damping and help to  
hold the input voltage steady during large load transients.  
Sometimes, for other system considerations, an input filter is used in front of the regulator. This can lead to  
instability, as well as some of the effects mentioned above, unless it is designed carefully. The AN-2162 Simple  
Success With Conducted EMI From DCDC Converters User's Guide provides helpful suggestions when  
designing an input filter for any switching regulator.  
In some cases a transient voltage suppressor (TVS) is used on the input of regulators. One class of this device  
has a snap-back characteristic (thyristor type). The use of a device with this type of characteristic is not  
recommended. When the TVS fires, the clamping voltage falls to a very low value. If this voltage is less than the  
output voltage of the regulator, the output capacitors discharge through the device back to the input. This  
uncontrolled current flow may damage the device.  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
 
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The PCB layout of any DC/DC converter is critical to the optimal performance of the design. Poor PCB layout  
can disrupt the operation of an otherwise good schematic design. Even if the converter regulates correctly, bad  
PCB layout can mean the difference between a robust design and one that cannot be mass produced.  
Furthermore, to a great extent the EMI performance of the regulator is dependent on the PCB layout. In a buck  
converter the most critical PCB feature is the loop formed by the input capacitor(s) and power ground, as shown  
in 56. This loop carries large transient currents that can cause large transient voltages when reacting with the  
trace inductance. These unwanted transient voltages disrupt the proper operation of the converter. Because of  
this, the traces in this loop must be wide and short, and the loop area as small as possible to reduce the parasitic  
inductance. 57 shows a recommended layout for the critical components of the LMR36006.  
1. Place the input capacitor(s) as close as possible to the VIN and GND terminals. VIN and GND pins are  
adjacent, simplifying the input capacitor placement.  
2. Place bypass capacitor for VCC close to the VCC pin. This capacitor must be placed close to the device and  
routed with short, wide traces to the VCC and GND pins.  
3. Use wide traces for the CBOOT capacitor. Place CBOOT close to the device with short/wide traces to the BOOT  
and SW pins. Route the SW pin to the N/C pin and used to connect the BOOT capacitor to SW.  
4. Place the feedback divider as close as possible to the FB pin of the device. Place RFBB, RFBT, and CFF, if  
used, physically close to the device. The connections to FB and GND must be short and close to those pins  
on the device. The connection to VOUT can be somewhat longer. However, this latter trace must not be  
routed near any noise source (such as the SW node) that can capacitively couple into the feedback path of  
the regulator.  
5. Use at least one ground plane in one of the middle layers. This plane acts as a noise shield and also act as  
a heat dissipation path.  
6. Provide wide paths for VIN, VOUT, and GND. Making these paths as wide and direct as possible reduces  
any voltage drops on the input or output paths of the converter and maximizes efficiency.  
7. Provide enough PCB area for proper heat-sinking. As stated in the Maximum Ambient Temperature section,  
enough copper area must be used to ensure a low RθJA, commensurate with the maximum load current and  
ambient temperature. The top and bottom PCB layers must be made with two ounce copper; and no less  
than one ounce. If the PCB design uses multiple copper layers (recommended), these thermal vias can also  
be connected to the inner layer heat-spreading ground planes.  
8. Keep switch area small. Keep the copper area connecting the SW pin to the inductor as short and wide as  
possible. At the same time the total area of this node must be minimized to help reduce radiated EMI.  
See the following PCB layout resources for additional important guidelines:  
Layout Guidelines for Switching Power Supplies Application Report  
Simple Switcher PCB Layout Guidelines Application Report  
Construction Your Power Supply- Layout Considerations Seminar  
Low Radiated EMI Layout Made Simple with LM4360x and LM4600x Application Report  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
Layout Guidelines (接下页)  
VIN  
CIN  
SW  
GND  
56. Current Loops with Fast Edges  
11.1.1 Ground and Thermal Considerations  
As previously mentioned, TI recommends using one of the middle layers as a solid ground plane. A ground plane  
provides shielding for sensitive circuits and traces as well as a quiet reference potential for the control circuitry.  
Connect the AGND and PGND pins to the ground planes using vias next to the bypass capacitors. PGND pins  
are connected directly to the source of the low side MOSFET switch and also connected directly to the grounds  
of the input and output capacitors. The PGND net contains noise at the switching frequency and may bounce  
due to load variations. The PGND trace, as well as the VIN and SW traces, must be constrained to one side of  
the ground planes. The other side of the ground plane contains much less noise; use for sensitive routes.  
Use as much copper as possible, for system ground plane, on the top and bottom layers for the best heat  
dissipation. Use a four-layer board with the copper thickness for the four layers, starting from the top as: 2 oz / 1  
oz / 1 oz / 2 oz. A four-layer board with enough copper thickness, and proper layout, provides low current  
conduction impedance, proper shielding and lower thermal resistance.  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
11.2 Layout Example  
VOUT  
VOUT  
INDUCTOR  
COUT  
COUT  
COUT  
COUT  
GND  
GND  
CIN  
CIN  
CHF  
CHF  
12  
1
11  
10  
9
2
3
4
VIN  
EN  
PGOOD  
VIN  
8
5
6
7
CVCC  
RFBB  
GND  
GND  
HEATSINK  
HEATSINK  
INNER GND PLANE  
Top Trace/Plane  
Inner GND Plane  
VIN Strap on Inner Layer  
VIA to Signal Layer  
Top  
Inner GND Plane  
VIN Strap and  
GND Plane  
VIA to GND Planes  
VIA to VIN Strap  
Signal  
traces and  
GND Plane  
Trace on Signal Layer  
57. Example Layout  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
LMR36006  
www.ti.com.cn  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
适用于现场变送器的两级电源参考设计  
适用于空间受限的工业传感器的宽输入电压电源参考设计  
针对解决方案尺寸和低噪声进行了优化的汽车 ADAS 摄像头电源参考设计  
直流/直流转换器封装和引脚排列设计如何提高汽车 EMI 性能  
降压转换器简介 特性:UVLO,启用,软启动,电源正常  
降压转换器简介:了解模式转换  
降压转换器简介:最小导通时间和最小关闭时间运行  
降压转换器简介:了解静态电流规格  
直流/直流转换器的热性能与小解决方案尺寸之间的折衷  
利用 HotRod 封装降低 EMI 并减小解决方案尺寸  
12.1.1.1 使用 WEBENCH® 工具创建定制设计方案  
请单击此处,使用 LMR36006 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《设计高性能、低 EMI 的汽车电源》 应用报告  
德州仪器 (TI)Simple Switcher PCB 布局指南》 应用报告  
德州仪器 (TI)《构建电源 - 布局注意事项》 应用报告  
德州仪器 (TI)《使用 LM4360x LM4600x 简化低辐射 EMI 布局》 应用报告  
德州仪器 (TI)《半导体和 IC 封装热指标》 应用报告  
德州仪器 (TI)《通过 LM43603 LM43602 简化热设计》 应用报告  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
LMR36006  
ZHCSI01C APRIL 2018REVISED OCTOBER 2019  
www.ti.com.cn  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
HotRod, Hotrod, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMR36006BRNXR  
LMR36006BRNXT  
LMR36006CRNXR  
LMR36006CRNXT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNX  
RNX  
RNX  
RNX  
12  
12  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
NH06B  
Samples  
Samples  
Samples  
Samples  
Call TI | SN  
Call TI | SN  
Call TI | SN  
NH06B  
NH06C  
NH06C  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Oct-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMR36006 :  
Automotive : LMR36006-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMR36006BRNXR  
LMR36006BRNXT  
LMR36006BRNXT  
LMR36006CRNXR  
LMR36006CRNXT  
LMR36006CRNXT  
VQFN-  
HR  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
12  
12  
12  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.3  
3.25  
3.25  
3.2  
1.05  
1.05  
1.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
250  
VQFN-  
HR  
3000  
250  
2.25  
2.25  
2.3  
3.25  
3.25  
3.2  
1.05  
1.05  
1.0  
VQFN-  
HR  
VQFN-  
HR  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMR36006BRNXR  
LMR36006BRNXT  
LMR36006BRNXT  
LMR36006CRNXR  
LMR36006CRNXT  
LMR36006CRNXT  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNX  
RNX  
RNX  
RNX  
RNX  
RNX  
12  
12  
12  
12  
12  
12  
3000  
250  
210.0  
210.0  
213.0  
210.0  
210.0  
213.0  
185.0  
185.0  
191.0  
185.0  
185.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
3000  
250  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RNX 12  
2 x 3 mm, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224286/A  
PACKAGE OUTLINE  
RNX0012A  
VQFN-HR - 1 mm max height  
SCALE 4.500  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1
SYMM  
(0.2) TYP  
5
7
4X 0.5  
8
4
2X  
0.675  
PKG  
2X  
1.725  
1.525  
2X  
1.125  
0.65  
11  
1
12  
0.3  
PIN 1 ID  
11X  
0.3  
0.2  
0.2  
0.1  
0.05  
C B A  
C
0.5  
0.3  
11X  
4222858/A 04/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNX0012A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.25)  
12  
11X (0.6)  
1
2X (0.65)  
11  
11X  
(0.25)  
(1.825)  
(0.788)  
2X  
(1.125)  
PKG  
2X  
(0.675)  
4X (0.5)  
8
(1.4)  
4
(R0.05) TYP  
5
7
SYMM  
(1.8)  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 1, 2, 10-12  
PADS 3-9  
SOLDER MASK DETAILS  
4222858/A 04/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNX0012A  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.25)  
2X (0.812)  
12  
11X (0.6)  
11X (0.25)  
2X SOLDER MASK EDGE  
11  
1
2X  
(0.65)  
(1.294)  
EXPOSED METAL  
METAL UNDER  
2X  
(1.125)  
SOLDER MASK  
TYP  
PKG  
(0.282)  
2X (0.675)  
4X (0.5)  
8
(1.4)  
4
(R0.05) TYP  
5
7
SYMM  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR PAD 12  
87.7% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4222858/A 04/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RNX0012B  
VQFN-HR - 0.9 mm max height  
SCALE 4.500  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
A
-
A
4
0
.
0
0
0
SECTION A-A  
TYPICAL  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1
SYMM  
(0.2) TYP  
5
7
4X 0.5  
8
4
2X  
0.675  
PKG  
2X  
1.725  
1.525  
2X  
1.125  
0.65  
A
A
11  
1
12  
0.3  
0.2  
0.1  
PIN 1 ID  
11X  
0.3  
0.2  
C B A  
C
0.5  
0.3  
11X  
0.05  
4223969/C 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNX0012B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.25)  
12  
11X (0.6)  
11X  
1
2X (0.65)  
11  
(0.25)  
(1.825)  
(0.788)  
2X  
(1.125)  
PKG  
2X  
(0.675)  
4X (0.5)  
8
(1.4)  
4
(R0.05) TYP  
5
7
SYMM  
(1.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
PADS 1, 2, 10-12  
(PREFERRED)  
SOLDER MASK DETAILS  
4223969/C 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNX0012B  
VQFN-HR - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.25)  
2X (0.812)  
12  
11X (0.6)  
11X (0.25)  
1
11  
2X  
(0.65)  
(1.294)  
EXPOSED METAL  
PKG  
2X  
(1.125)  
(0.282)  
2X (0.675)  
4X (0.5)  
8
(1.4)  
4
(R0.05) TYP  
5
7
SYMM  
(1.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR PAD 12  
87.7% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4223969/C 10/2018  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY