LMV324A-Q1 [TI]

LMV321A-Q1, LMV358A-Q1, LMV324A-Q1 Automotive Low-Voltage Rail-to-Rail Output Operational Amplifiers;
LMV324A-Q1
型号: LMV324A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LMV321A-Q1, LMV358A-Q1, LMV324A-Q1 Automotive Low-Voltage Rail-to-Rail Output Operational Amplifiers

文件: 总40页 (文件大小:2588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
LMV321A-Q1, LMV358A-Q1, LMV324A-Q1 Automotive Low-Voltage Rail-to-Rail Output  
Operational Amplifiers  
gain stability, an integrated RFI and EMI rejection  
filter, and no-phase reversal in overdrive conditions.  
1 Features  
AEC-Q100 qualified for automotive applications  
Temperature grade 1: –40°C to +125°C, TA  
– Device HBM ESD classification level 2  
– Device CDM ESD classification level C6  
Low input offset voltage: ±1 mV  
Rail-to-rail output  
Unity-gain bandwidth: 1 MHz  
Low broadband noise: 30 nV/√ Hz  
Low input bias current: 10 pA  
Low quiescent current: 70 µA/Ch  
Unity-gain stable  
The LMV3xxA-Q1 family is available in industry-  
standard packages such as SOIC, MSOP, SOT-23,  
and TSSOP packages.  
Device Information(1)  
PART NUMBER  
PACKAGE  
SOT-23 (5)(2)  
BODY SIZE (NOM)  
1.60 mm × 2.90 mm  
1.25 mm × 2.00 mm  
3.91 mm × 4.90 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
4.40 mm × 5.00 mm  
4.20mm × 1.90 mm  
LMV321A-Q1  
SC70 (5)(2)  
SOIC (8)  
LMV358A-Q1  
LMV324A-Q1  
VSSOP (8)  
SOIC (14)  
TSSOP (14)  
SOT-23 (14)  
Internal RFI and EMI filter  
Operational at supply voltages as low as 2.5 V  
Easier to stabilize with higher capacitive load due  
to resistive open-loop output impedance  
Extended temperature range: –40°C to 125°C  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) Package is for preview only.  
2 Applications  
Optimized for AEC-Q100 grade 1 applications  
Infotainment & Cluster  
Passive safety  
Body electronics and lighting  
HEV/EV inverter and motor control  
On-board (OBC) & wireless charger  
Powertrain current sensor  
Advanced driver assistance systems (ADAS)  
Single-supply, low-side, unidirectional current-  
sensing circuit  
3 Description  
Single-Pole, Low-Pass Filter  
The LMV3xxA-Q1 family includes single - (LMV321A-  
Q1), dual  
(LMV324A-Q1) low-voltage (2.5  
-
(LMV358A-Q1), and quad-channel  
to 5.5 V)  
V
automotive operational amplifiers (op amps) with  
rail-to-rail output swing capabilities. These op amps  
provide a cost-effective solution for space-constrained  
applications such as infotainment and lighting where  
low-voltage operation and high capacitive-load drive  
are required. The capacitive-load drive of the  
LMV3xxA-Q1 family is 500 pF, and the resistive open-  
loop output impedance makes stabilization easier with  
much higher capacitive loads. These op amps are  
designed specifically for low-voltage operation (2.5 V  
to 5.5 V) with performance specifications similar to the  
LMV3xx-Q1 devices.  
The robust design of the LMV3xxA-Q1 family  
simplifies circuit design. The op amps feature unity-  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information: LMV321A-Q1............................6  
6.5 Thermal Information: LMV358A-Q1............................6  
6.6 Thermal Information: LMV324A-Q1............................6  
6.7 Electrical Characteristics.............................................7  
6.8 Typical Characteristics................................................8  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 16  
9 Power Supply Recommendations................................21  
9.1 Input and ESD Protection......................................... 21  
10 Layout...........................................................................22  
10.1 Layout Guidelines................................................... 22  
10.2 Layout Example...................................................... 22  
11 Device and Documentation Support..........................23  
11.1 Documentation Support.......................................... 23  
11.2 Related Links.......................................................... 23  
11.3 Receiving Notification of Documentation Updates..23  
11.4 Support Resources................................................. 23  
11.5 Trademarks............................................................. 23  
11.6 Electrostatic Discharge Caution..............................23  
11.7 Glossary..................................................................23  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (April 2021) to Revision B (October 2021)  
Page  
Added LMV321A-Q1 GPN to the data sheet......................................................................................................1  
Added SOT-23 (5) and SC70 (5) packages in Device Information table............................................................ 1  
Deleted preview note from SOT-23 (14) and TSSOP (14) packages in Device Information table..................... 1  
Added LMV321A-Q1 SOT-23 (5), SC70 (5), and LMV321AU-Q1 SOT-23 (5) packages to Pin Configuration  
and Functions section.........................................................................................................................................3  
Added Thermal Information: LMV321A-Q1 table................................................................................................6  
Changes from Revision * (June 2020) to Revision A (April 2021)  
Page  
Updated the numbering format for tables, figures and cross-references throughout the document...................1  
Deleted preview note from VSSOP (8) package in Device Information table.....................................................1  
Removed SOT-23 (8), TSSOP (8), SOT-23 (5), and SC70 (5) packages from Device Information table.......... 1  
Removed TSSOP (8) package from Pin Configuration and Functions section.................................................. 3  
Added note (4) to differential input voltage in Absolute Maximum Ratings table................................................5  
Added thermal information for DGK package.....................................................................................................6  
Added thermal information for DYY package..................................................................................................... 6  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
5 Pin Configuration and Functions  
OUT  
1
2
3
5
4
V+  
V-  
+IN  
-IN  
Figure 5-1. LMV321A-Q1 DBV Package 5-Pin SOT-23 Top View  
+IN  
V-  
1
2
3
5
4
V+  
-IN  
OUT  
Figure 5-2. LMV321A-Q1 DCK, LMV321AU-Q1 DBV Package 5-Pin SC70, SOT-23 Top View  
Table 5-1. Pin Functions: LMV321A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN  
DBV  
DCK, DBV (U)  
4
3
1
2
5
3
1
4
2
5
I
Inverting input  
Noninverting input  
Output  
+IN  
I
OUT  
V–  
O
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
OUT A  
1
2
3
4
8
7
6
5
V+  
-IN A  
+IN A  
V-  
OUT B  
-IN B  
+IN B  
Figure 5-3. LMV358A-Q1 D and DGK Packages 8-Pin SOIC and VSSOP Top View  
Table 5-2. Pin Functions: LMV358A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
OUT A  
OUT B  
V–  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Output, channel A  
3
6
I
5
I
1
O
O
7
Output, channel B  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
OUT A  
-IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 -IN D  
12 +IN D  
11 V-  
A
D
+IN B  
-IN B  
OUT B  
10 +IN C  
9
8
-IN C  
B
C
OUT C  
Figure 5-4. LMV324A-Q1 D, PW, and DYY Packages 14-Pin SOIC, TSSOP, and SOT-23 Top View  
Table 5-3. Pin Functions: LMV324A-Q1  
PIN  
I/O  
DESCRIPTION  
NAME  
–IN A  
+IN A  
–IN B  
+IN B  
–IN C  
+IN C  
–IN D  
+IN D  
OUT A  
OUT B  
OUT C  
OUT D  
V–  
NO.  
2
I
I
Inverting input, channel A  
Noninverting input, channel A  
Inverting input, channel B  
Noninverting input, channel B  
Inverting input, channel C  
Noninverting input, channel C  
Inverting input, channel D  
Noninverting input, channel D  
Output, channel A  
3
6
I
5
I
9
I
10  
13  
12  
1
I
I
I
O
O
O
O
7
Output, channel B  
8
Output, channel C  
14  
11  
4
Output, channel D  
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
UNIT  
V
Supply voltage, ([V+] – [V–])  
6
(V+) + 0.5  
(V+) – (V–) + 0.2  
10  
Common-mode  
Differential(4)  
(V–) – 0.5  
V
Voltage(2)  
Current(2)  
Signal input pins  
V
–10  
–55  
–65  
mA  
Output short-circuit(3)  
Operating, TA  
Continuous  
150  
°C  
°C  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less.  
(3) Short-circuit to ground, one amplifier per package.  
(4) Differential input voltages greater than 0.5 V applied continuously can result in a shift to the input offset voltage and quiescent current  
above the maximum specifications of these parameters. The magnitude of this effect increases as the ambient operating temperature  
rises.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002 HBM ESD Classification  
Level 2(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011 CDM ESD  
Classification Level C5  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with ANSI/ESDA/JEDEC JS-001 Specification  
6.3 Recommended Operating Conditions  
over operating temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
V
VS  
TA  
Supply voltage  
2.5  
Specified temperature  
–40  
125  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
 
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.4 Thermal Information: LMV321A-Q1  
LMV321A-Q1  
DBV (SOT-23)  
THERMAL METRIC(1)  
DCK (SC70)  
5 PINS  
TBD  
UNIT  
5 PINS  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
TBD  
TBD  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
TBD  
ψJB  
TBD  
RθJC(bot)  
TBD  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.5 Thermal Information: LMV358A-Q1  
LMV358A-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
151.9  
92.0  
DGK (VSSOP)  
8 PINS  
196.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
86.2  
95.4  
118.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
40.2  
23.2  
ψJB  
94.7  
116.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
6.6 Thermal Information: LMV324A-Q1  
LMV324A-Q1  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
115.1  
71.2  
PW (TSSOP)  
14 PINS  
135.3  
DYY (SOT-23)  
14 PINS  
154.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
63.5  
86.8  
RθJB  
ψJT  
Junction-to-board thermal resistance  
71.1  
78.4  
67.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
29.6  
13.6  
10.1  
ψJB  
70.7  
77.9  
67.5  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.7 Electrical Characteristics  
For VS = (V+) – (V–) = 2.5 V to 5.5 V (±0.9 V to ±2.75 V), TA = 25°C, RL = 10 kΩ connected to VS / 2, and VCM = VOUT = VS /  
2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
Vs = 5 V  
±1  
±4  
±5  
VOS  
Input offset voltage  
mV  
Vs = 5 V, TA = –40°C to 125°C  
TA = –40°C to 125°C  
dVOS/dT  
PSRR  
VOS vs temperature  
±1  
µV/°C  
dB  
Power-supply rejection ratio  
VS = 2.5 to 5.5 V, VCM = (V–)  
78  
100  
INPUT VOLTAGE RANGE  
Common-mode  
voltage range  
VCM  
No phase reversal, rail-to-rail input  
(V–) – 0.1  
(V+) – 1  
V
VS = 2.5 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
86  
95  
77  
68  
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) – 1.4 V  
TA = –40°C to 125°C  
Common-mode  
CMRR  
dB  
rejection ratio  
VS = 5.5 V, (V–) – 0.1 V < VCM < (V+) + 0.1 V  
TA = –40°C to 125°C  
63  
VS = 2.5 V, (V–) – 0.1 V < VCM < (V+) + 0.1 V  
TA = –40°C to 125°C  
INPUT BIAS CURRENT  
IB  
Input bias current  
Input offset current  
Vs = 5 V  
±10  
±3  
pA  
pA  
IOS  
NOISE  
Input voltage noise  
(peak-to-peak)  
En  
ƒ = 0.1 Hz to 10 Hz, Vs = 5 V  
5.1  
µVPP  
ƒ = 1 kHz, Vs = 5 V  
ƒ = 10 kHz, Vs = 5 V  
ƒ = 1 kHz, Vs = 5 V  
33  
30  
25  
en  
in  
Input voltage noise density  
nV/√ Hz  
fA/√ Hz  
Input current noise density  
INPUT CAPACITANCE  
CID  
CIC  
Differential  
1.5  
5
pF  
pF  
Common-mode  
OPEN-LOOP GAIN  
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V, RL = 10 kΩ  
VS = 2.5 V, (V–) + 0.04 V < VO < (V+) – 0.04 V, RL = 10 kΩ  
VS = 2.5 V, (V–) + 0.1 V < VO < (V+) – 0.1 V, RL = 2 kΩ  
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V, RL = 2 kΩ  
100  
115  
98  
AOL  
Open-loop voltage gain  
dB  
112  
128  
FREQUENCY RESPONSE  
GBW  
φm  
Gain-bandwidth product  
Vs = 5 V  
1
76  
1.7  
3
MHz  
°
Phase margin  
Slew rate  
VS = 5.5 V, G = 1  
SR  
Vs = 5 V  
V/µs  
To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF  
To 0.01%, VS = 5 V, 2-V step , G = +1, CL = 100 pF  
VS = 5 V, VIN × gain > VS  
tS  
Settling time  
µs  
µs  
4
tOR  
Overload recovery time  
0.9  
Total harmonic distortion  
+ noise  
VS = 5.5 V, VCM = 2.5 V, VO = 1 VRMS, G = +1, f = 1 kHz,  
80-kHz measurement BW  
THD+N  
OUTPUT  
0.005%  
VS = 5.5 V, RL = 10 kΩ  
VS = 5.5 V, RL = 2 kΩ  
Vs = 5.5 V  
20  
40  
50  
75  
Voltage output swing  
from supply rails  
VO  
mV  
ISC  
ZO  
Short-circuit current  
±40  
1200  
mA  
Ω
Open-loop output impedance  
Vs = 5 V, f = 1 MHz  
POWER SUPPLY  
VS  
Specified voltage range  
2.5 (±1.25)  
5.5 (±2.75)  
125  
V
IO = 0 mA, VS = 5.5 V  
70  
50  
IQ  
Quiescent current per amplifier  
Power-on time  
µA  
µs  
IO = 0 mA, VS = 5.5 V, TA = –40°C to 125°C  
VS = 0 V to 5 V, to 90% IQ level  
150  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.8 Typical Characteristics  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
6
4
3.5  
3
IB-  
IB+  
IOS  
IB-  
IB+  
IOS  
2.5  
2
2
1.5  
1
0
0.5  
0
-2  
-4  
-6  
-8  
-10  
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-2  
-1  
0
1
Common-Mode Voltage (V)  
2
3
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D007  
D006  
Figure 6-2. IB and IOS vs Common-Mode Voltage  
Figure 6-1. IB and IOS vs Temperature  
100  
80  
60  
40  
20  
0
120  
160  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
60  
40  
Gain  
Phase  
20  
VS = 5.5 V  
VS = 2.5 V  
-20  
0
-40  
1k  
10k  
100k  
Frequency (Hz)  
1M  
-20  
0
20  
40  
60  
80  
100 120 140  
D009  
Temperature (èC)  
D008  
CL = 10 pF  
Figure 6-3. Open-Loop Gain vs Temperature  
Figure 6-4. Open-Loop Gain and Phase vs Frequency  
80  
160  
140  
120  
100  
80  
Gain = -1  
Gain = 1  
Gain = 10  
Gain = 100  
Gain = 1000  
70  
60  
50  
40  
30  
20  
10  
0
60  
40  
20  
-10  
-20  
0
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
-3  
-2  
-1 0  
Output Voltage (V)  
1
2
3
D011  
D010  
Figure 6-5. Open-Loop Gain vs Output Voltage  
CL = 10 pF  
Figure 6-6. Closed-Loop Gain vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
3
2.5  
2
120  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR-  
1.5  
1
125°C  
85°C  
25°C  
-40°C  
0.5  
0
-0.5  
-1  
85°C  
25°C  
-40°C  
-1.5  
-2  
125°C  
-2.5  
-3  
0
5
10  
15  
20  
25  
30  
Output Current (mA)  
35  
40  
45  
50  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
D012  
D013  
Figure 6-7. Output Voltage vs Output Current (Claw)  
Figure 6-8. PSRR vs Frequency  
120  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
Temperature (èC)  
D014  
D015  
Figure 6-10. CMRR vs Frequency  
VS = 1.8 V to 5.5 V  
Figure 6-9. DC PSRR vs Temperature  
2.5 V  
Time (1 s/div)  
D017  
Figure 6-12. 0.1 Hz to 10 Hz Integrated Voltage Noise  
VCM = (V–) – 0.1 V to (V+) – 1.4 V  
Figure 6-11. DC CMRR vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
-50  
120  
100  
80  
60  
40  
20  
0
-60  
-70  
-80  
-90  
RL = 2K  
RL = 10K  
-100  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
100  
1k  
Frequency (Hz)  
10k  
D018  
D019  
Figure 6-13. Input Voltage Noise Spectral Density  
VS = 5.5 V, VCM = 2.5 V, G = 1, BW = 80 kHz, VOUT = 0.5  
VRMS  
Figure 6-14. THD + N vs Frequency  
0
70  
G = +1, RL = 2 kW  
G = +1, RL = 10 kW  
G = -1, RL = 2 kW  
G = -1, RL = 10 kW  
60  
50  
40  
30  
20  
10  
0
-20  
-40  
-60  
-80  
-100  
0.001  
0.01  
0.1  
Amplitude (VRMS  
1
2
1.5  
2
2.5  
3
3.5  
4
Voltage Supply (V)  
4.5  
5
5.5  
)
D020  
D021  
Figure 6-16. Quiescent Current vs Supply Voltage  
VS = 5.5 V, VCM = 2.5 V, f = 1 kHz, G = 1, BW = 80 kHz  
Figure 6-15. THD + N vs Amplitude  
70  
60  
50  
40  
30  
20  
10  
0
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
D023  
Temperature (èC)  
D022  
Figure 6-18. Open-Loop Output Impedance vs Frequency  
Figure 6-17. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Overshoot (+)  
Overshoot (–)  
Overshoot (+)  
Overshoot (–)  
0
0
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D024  
D025  
G = 1, VIN = 100 mVpp  
G = –1, VIN = 100 mVpp  
Figure 6-19. Small Signal Overshoot vs Capacitive Load  
Figure 6-20. Small Signal Overshoot vs Capacitive Load  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT  
VIN  
Time (100 ms/div)  
0
200  
400 600  
Capacitance Load (pF)  
800  
1000  
D027  
D026  
G = 1, VIN = 6.5 VPP  
Figure 6-21. Phase Margin vs Capacitive Load  
Figure 6-22. No Phase Reversal  
VOUT  
VIN  
VOUT  
VIN  
Time (20 ms/div)  
Time (10 ms/div)  
D028  
D029  
G = –10, VIN = 600 mVPP  
G = 1, VIN = 100 mVPP, CL = 10 pF  
Figure 6-23. Overload Recovery  
Figure 6-24. Small-Signal Step Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
VOUT  
VIN  
Time (10 ms/div)  
Time (1 μs/div)  
D030  
D031  
G = 1, VIN = 4 VPP, CL = 10 pF  
G = 1, CL = 100 pF, 2-V step  
Figure 6-25. Large-Signal Step Response  
Figure 6-26. Large-Signal Settling Time (Negative)  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
Sinking  
Sourcing  
Time (1 ms/div)  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
D032  
D033  
G = 1, CL = 100 pF, 2-V step  
Figure 6-28. Short-Circuit Current vs Temperature  
Figure 6-27. Large-Signal Settling Time (Positive)  
6
140  
VS = 5.5 V  
120  
100  
80  
60  
40  
20  
0
5
4
3
2
1
0
1
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M 100M  
10M  
100M  
Frequency (Hz)  
1G  
10G  
D034  
D035  
Figure 6-29. Maximum Output Voltage vs Frequency  
Figure 6-30. Electromagnetic Interference Rejection Ratio  
Referred to Noninverting Input (EMIRR+) vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
6.8 Typical Characteristics (continued)  
at TA = 25°C, V+ = 2.75 V, V– = –2.75 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2 (unless otherwise  
noted)  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
D036  
Figure 6-31. Channel Separation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LMV3xxA-Q1 is a family of low-power, rail-to-rail output op amps. These devices operate from 2.5 V to  
5.5 V, are unity-gain stable, and are designed for a wide range of general-purpose applications. The input  
common-mode voltage range includes the negative rail and allows the LMV3xxA-Q1 family to be used in  
many single-supply applications. Rail-to-rail output swing significantly increases dynamic range, especially in  
low-supply applications, and makes them suitable for driving sampling analog-to-digital converters (ADCs).  
7.2 Functional Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
7.3 Feature Description  
7.3.1 Operating Voltage  
The LMV3xxA-Q1 family of op amps are for operation from 2.5 V to 5.5 V. In addition, many specifications  
such as input offset voltage, quiescent current, offset current, and short circuit current apply from –40°C to  
125°C. Parameters that vary significantly with operating voltages or temperature are shown in the Typical  
Characteristics section.  
7.3.2 Input Common Mode Range  
The input common-mode voltage range of the LMV3xxA-Q1 family extends 100 mV beyond the negative supply  
rail and within 1 V below the positive rail for the full supply voltage range of 2.5 V to 5.5 V. This performance  
is achieved with a P-channel differential pair, as shown in the Functional Block Diagram. Additionally, a  
complementary N-channel differential pair has been included in parallel to eliminate issues with phase reversal  
that are common with previous generations of op amps. However, the N-channel pair is not optimized for  
operation. TI recommends limiting any voltages applied at the inputs to less than VCC – 1 V to ensure that the op  
amp conforms to the specifications detailed in the Electrical Characteristics table.  
7.3.3 Rail-to-Rail Output  
Designed as a low-power, low-voltage operational amplifier, the LMV3xxA-Q1 family delivers a robust output  
drive capability. A class-AB output stage with common-source transistors achieves full rail-to-rail output swing  
capability. For resistive loads of 10 kΩ, the output swings to within 20 mV of either supply rail, regardless of the  
applied power-supply voltage. Different load conditions change the ability of the amplifier to swing close to the  
rails.  
7.3.4 Overload Recovery  
Overload recovery is defined as the time required for the operational amplifier output to recover from a saturated  
state to a linear state. The output devices of the operational amplifier enter a saturation region when the output  
voltage exceeds the rated operating voltage, because of the high input voltage or the high gain. After the device  
enters the saturation region, the charge carriers in the output devices require time to return to the linear state.  
After the charge carriers return to the linear state, the device begins to slew at the specified slew rate. Therefore,  
the propagation delay (in case of an overload condition) is the sum of the overload recovery time and the slew  
time. The overload recovery time for the LMV3xxA-Q1 family is approximately 850 ns.  
7.4 Device Functional Modes  
The LMV3xxA-Q1 family has a single functional mode. The devices are powered on as long as the power-supply  
voltage is between 2.5 V (±1.25 V) and 5.5 V (±2.75 V).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The LMV3xxA-Q1 family of low-power, rail-to-rail output operational amplifiers is specifically designed for  
portable applications. The devices operate from 2.5 V to 5.5 V, are unity-gain stable, and are suitable for a  
wide range of general-purpose applications. The class AB output stage is capable of driving less than or equal  
to 10kΩ loads connected to any point between V+ and V–. The input common-mode voltage range includes the  
negative rail, and allows the LMV3xxA-Q1 devices to be used in many single-supply applications.  
8.2 Typical Application  
8.2.1 LMV3xxA-Q1 Low-Side, Current Sensing Application  
Figure 8-1 shows the LMV3xxA-Q1 configured in a low-side current sensing application.  
VBUS  
ILOAD  
ZLOAD  
5V  
+
LMV358A  
VOUT  
Þ
+
RSHUNT  
VSHUNT  
RF  
0.1 Ω  
57.6 kΩ  
Þ
RG  
1.2 kΩ  
Figure 8-1. LMV3xxA-Q1 in a Low-Side, Current-Sensing Application  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
8.2.1.1 Design Requirements  
The design requirements for this design are:  
Load current: 0 A to 1 A  
Output voltage: 4.9 V  
Maximum shunt voltage: 100 mV  
8.2.1.2 Detailed Design Procedure  
The transfer function of the circuit in Figure 8-1 is given in Equation 1.  
VOUT = ILOAD ìRSHUNT ìGain  
(1)  
The load current (ILOAD) produces a voltage drop across the shunt resistor (RSHUNT). The load current is set  
from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is  
shown using Equation 2.  
VSHUNT _MAX  
100mV  
1A  
RSHUNT  
=
=
=100mW  
ILOAD_MAX  
(2)  
Using Equation 2, RSHUNT is calculated to be 100 mΩ. The voltage drop produced by ILOAD and RSHUNT is  
amplified by the LMV3xxA-Q1 to produce an output voltage of approximately 0 V to 4.9 V. The gain needed by  
the LMV3xxA-Q1 to produce the necessary output voltage is calculated using Equation 3.  
V
OUT _MAX - VOUT _MIN  
(
)
Gain =  
VIN_MAX - V  
(
)
IN_MIN  
(3)  
Using Equation 3, the required gain is calculated to be 49 V/V, which is set with resistors RF and RG. Equation 4  
sizes the resistors RF and RG, to set the gain of the LMV3xxA-Q1 to 49 V/V.  
R
(
(
)
)
F
Gain = 1+  
R
G
(4)  
Selecting RF as 57.6 kΩ and RG as 1.2 kΩ provides a combination that equals 49 V/V. Figure 8-2 shows the  
measured transfer function of the circuit shown in Figure 8-1. Notice that the gain is only a function of the  
feedback and gain resistors. This gain is adjusted by varying the ratio of the resistors and the actual resistors  
values are determined by the impedance levels that the designer wants to establish. The impedance level  
determines the current drain, the effect that stray capacitance has, and a few other behaviors. There is no  
optimal impedance selection that works for every system, you must choose an impedance that is ideal for your  
system parameters.  
8.2.1.3 Application Curve  
5
4
3
2
1
0
0
0.2  
0.4  
0.6  
0.8  
1
ILOAD (A)  
C219  
Figure 8-2. Low-Side, Current-Sense Transfer Function  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
8.2.2 Single-Supply Photodiode Amplifier  
Photodiodes are used in many applications to convert light signals to electrical signals. The current through  
the photodiode is proportional to the photon energy absorbed, and is commonly in the range of a few hundred  
picoamps to a few tens of microamps. An amplifier in a transimpedance configuration is typically used to convert  
the low-level photodiode current to a voltage signal for processing in an MCU. The circuit shown in Figure 8-3 is  
an example of a single-supply photodiode amplifier circuit using the LMV358A-Q1.  
+3.3 V  
R1  
11.5 kΩ  
10 pF  
CF  
VREF  
R2  
357 Ω  
RF  
309 kΩ  
+3.3 V  
œ
LMV358A  
VOUT  
+
VREF  
CPD  
IIN  
0-10 µA  
RL  
10 k  
47 pF  
Figure 8-3. Single-Supply Photodiode Amplifier Circuit  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
8.2.2.1 Design Requirements  
The design requirements for this design are:  
Supply voltage: 3.3 V  
Input: 0 µA to 10 µA  
Output: 0.1 V to 3.2 V  
Bandwidth: 50 kHz  
8.2.2.2 Detailed Design Procedure  
The transfer function between the output voltage (VOUT), the input current, (IIN) and the reference voltage (VREF  
)
is defined in Equation 5.  
VOUT = IIN ìRF + VREF  
(5)  
(6)  
Where:  
«
÷
R1 ìR2  
R1 + R2 ◊  
VREF = V ì  
+
Set VREF to 100 mV to meet the minimum output voltage level by setting R1 and R2 to meet the required ratio  
calculated in Equation 7.  
VREF  
0.1 V  
3.3 V  
=
= 0.0303  
V+  
(7)  
The closest resistor ratio to meet this ratio sets R1 to 11.5 kΩ and R2 to 357 Ω.  
The required feedback resistance can be calculated based on the input current and desired output voltage.  
VOUT - VREF  
3.2 V - 0.1 V  
10 mA  
kV  
A
RF =  
=
= 310  
ö 309 kW  
I
IN  
(8)  
Calculate the value for the feedback capacitor based on RF and the desired –3-dB bandwidth, (f–3dB) using  
Equation 9.  
1
1
CF =  
=
= 10.3 pF ö 10 pF  
2ì pìRF ì f-3dB 2ì pì309 kWì50 kHz  
(9)  
The minimum op amp bandwidth required for this application is based on the value of RF, CF, and the  
capacitance on the INx– pin of the LMV358A-Q1 which is equal to the sum of the photodiode shunt capacitance,  
(CPD) the common-mode input capacitance, (CCM) and the differential input capacitance (CD) as Equation 10  
shows.  
C
= CPD + CCM + CD = 47 pF+ 5 pF +1pF = 53 pF  
IN  
(10)  
The minimum op amp bandwidth is calculated in Equation 11.  
CIN + CF  
f=BGW  
í
í 324 kHz  
2
2ì pìRF ì CF  
(11)  
The 1-MHz bandwidth of the LMV3xxA-Q1 meets the minimum bandwidth requirement and remains stable in this  
application configuration.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
8.2.2.3 Application Curves  
The measured current-to-voltage transfer function for the photodiode amplifier circuit is shown in Figure 8-4. The  
measured performance of the photodiode amplifier circuit is shown in Figure 8-5.  
120  
100  
80  
3
2.5  
2
1.5  
1
60  
0.5  
0
40  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
0
2E-6  
4E-6 6E-6  
Input Current (A)  
8E-6  
1E-5  
D001  
D002  
Figure 8-4. Photodiode Amplifier Circuit AC Gain  
Results  
Figure 8-5. Photodiode Amplifier Circuit DC  
Results  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
9 Power Supply Recommendations  
The LMV3xxA-Q1 family is specified for operation from 2.5 V to 5.5 V (±1.25 V to ±2.75 V); many specifications  
apply from –40°C to 125°C. The Typical Characteristics section presents parameters that may exhibit significant  
variance with regard to operating voltage or temperature.  
CAUTION  
Supply voltages larger than 6 V may permanently damage the device; see the Absolute Maximum  
Ratings table.  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce coupling errors from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see the Layout  
Guidelines section.  
9.1 Input and ESD Protection  
The LMV3xxA-Q1 family incorporates internal ESD protection circuits on all pins. For input and output pins,  
this protection primarily consists of current-steering diodes connected between the input and power-supply pins.  
These ESD protection diodes provide in-circuit, input overdrive protection, as long as the current is limited to  
10 mA. Figure 9-1 shows how a series input resistor can be added to the driven input to limit the input current.  
The added resistor contributes thermal noise at the amplifier input and the value must be kept to a minimum in  
noise-sensitive applications.  
V+  
IOVERLOAD  
10-mA maximum  
VOUT  
Device  
VIN  
5 kW  
Figure 9-1. Input Current Protection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
For best operational performance of the device, use good printed circuit board (PCB) layout practices, including:  
Noise can propagate into analog circuitry through the power connections of the board and propagate to the  
power pins of the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing a  
low-impedance path to ground.  
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is adequate for single-supply  
applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Take care  
to physically separate digital and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible.  
If these traces cannot be kept separate, crossing the sensitive trace at a 90 degree angle is much better as  
opposed to running the traces in parallel with the noisy trace.  
Place the external components as close to the device as possible, as shown in Figure 10-2. Keeping RF and  
RG close to the inverting input minimizes parasitic capacitance.  
Keep the length of input traces as short as possible. Remember that the input traces are the most sensitive  
part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring may significantly reduce  
leakage currents from nearby traces that are at different potentials.  
Cleaning the PCB following board assembly is recommended for best performance.  
Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the  
plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended  
to remove moisture introduced into the device packaging during the cleaning process. A low-temperature,  
post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.  
10.2 Layout Example  
VIN 1  
VIN 2  
+
+
VOUT 1  
VOUT 2  
RG  
RG  
RF  
RF  
Figure 10-1. Schematic Representation for Figure 10-2  
Place components  
close to device and to  
each other to reduce  
parasitic errors.  
OUT 1  
Use low-ESR,  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VS+  
GND  
OUT1  
V+  
RF  
RG  
OUT 2  
GND  
IN1œ  
IN1+  
Vœ  
OUT2  
IN2œ  
IN2+  
RF  
RG  
VIN 1  
GND  
VIN 2  
Keep input traces short  
and run the input traces  
as far away from  
the supply lines  
Use low-ESR,  
GND  
ceramic bypass  
capacitor . Place as  
close to the device  
as possible .  
VSœ  
Ground (GND) plane on another layer  
as possible .  
Figure 10-2. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
LMV321A-Q1, LMV324A-Q1, LMV358A-Q1  
SLOSE67B – JUNE 2020 – REVISED OCTOBER 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
LMV321A-Q1  
LMV358A-Q1  
LMV324A-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMV321A-Q1 LMV324A-Q1 LMV358A-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMV324AQDRQ1  
LMV324AQDYYRQ1  
LMV324AQPWRQ1  
LMV358AQDGKRQ1  
LMV358AQDRQ1  
ACTIVE  
SOIC  
D
14  
14  
14  
8
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LM324Q  
ACTIVE SOT-23-THIN  
DYY  
PW  
DGK  
D
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Call TI  
LM324Q  
LM324A  
27FT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
VSSOP  
SOIC  
8
L358AQ  
PLMV324AQPWRQ1  
TSSOP  
PW  
14  
2000  
TBD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Nov-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMV324A-Q1, LMV358A-Q1 :  
Catalog : LMV324A, LMV358A  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV324AQDRQ1  
SOIC  
D
14  
14  
2500  
3000  
330.0  
330.0  
16.4  
12.4  
6.5  
4.8  
9.0  
3.6  
2.1  
1.6  
8.0  
8.0  
16.0  
12.0  
Q1  
Q3  
LMV324AQDYYRQ1  
SOT-  
DYY  
23-THIN  
LMV358AQDGKRQ1  
LMV358AQDRQ1  
VSSOP  
SOIC  
DGK  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
5.3  
6.4  
3.4  
5.2  
1.4  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV324AQDRQ1  
LMV324AQDYYRQ1  
LMV358AQDGKRQ1  
LMV358AQDRQ1  
SOIC  
SOT-23-THIN  
VSSOP  
D
14  
14  
8
2500  
3000  
2500  
2500  
853.0  
336.6  
366.0  
853.0  
449.0  
336.6  
364.0  
449.0  
35.0  
31.8  
50.0  
35.0  
DYY  
DGK  
D
SOIC  
8
Pack Materials-Page 2  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
12X 0.5  
14  
1
4.3  
4.1  
NOTE 3  
2X  
3
7
8
0.31  
0.11  
14X  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224643/B 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
5. Reference JEDEC Registration MO-345, Variation AB  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224643/B 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0014A  
SYMM  
14X (1.05)  
1
14  
14X (0.3)  
SYMM  
12X (0.5)  
8
7
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224643/B 07/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY