LMV324SID [TI]

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS; 低电压轨到轨输出运算放大器
LMV324SID
型号: LMV324SID
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
低电压轨到轨输出运算放大器

运算放大器 放大器电路 光电二极管 输出元件
文件: 总31页 (文件大小:792K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔ ꢎꢖ ꢓ ꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
LMV324 . . . D (SOIC) OR PW (TSSOP) PACKAGE  
(TOP VIEW)  
D
D
D
D
D
2.7-V and 5-V Performance  
−405C to 1255C Operation  
Low-Power Shutdown Mode (LMV324S)  
No Crossover Distortion  
1
2
3
4
5
6
7
4OUT  
4IN−  
1OUT  
1IN−  
1IN+  
14  
13  
12 4IN+  
11 GND  
Low Supply Current  
V
− LMV321 . . . 130 µA Typ  
− LMV358 . . . 210 µA Typ  
− LMV324 . . . 410 µA Typ  
− LMV324S . . . 410 µA Typ  
CC+  
10  
9
3IN+  
3IN−  
3OUT  
2IN+  
2IN−  
8
2OUT  
D
D
Rail-to-Rail Output Swing  
LMV324S . . . D (SOIC) OR PW (TSSOP) PACKAGE  
(TOP VIEW)  
ESD Protection Exceeds JESD 22  
− 2000-V Human-Body Model (A114-A)  
− 1000-V Charged-Device Model (C101)  
4OUT  
1OUT  
1IN−  
1IN+  
1
2
3
4
5
6
7
8
16  
15 4IN−  
14 4IN+  
13 GND  
description/ordering information  
V
The LMV321, LMV358, and LMV324/LMV324S  
are single, dual, and quad low-voltage (2.7 V to  
5.5 V), operational amplifiers with rail-to-rail  
output swing. The LMV324S, which is a variation  
of the standard LMV324, includes a power-saving  
shutdown feature that reduces supply current to a  
maximum of 5 µA per channel when the amplifiers  
are not needed. Channels 1 and 2 together are put  
in shutdown, as are channels 3 and 4. While in  
shutdown, the outputs actively are pulled low.  
CC  
12  
11  
10  
9
3IN+  
2IN+  
2IN−  
3IN−  
3OUT  
3/4 SHDN  
2OUT  
1/2 SHDN  
LMV358 . . . D (SOIC), DDU (VSSOP),  
DGK (MSOP), OR PW (TSSOP PACKAGE  
(TOP VIEW)  
1
2
3
4
1OUT  
1IN−  
1IN+  
GND  
V
CC+  
8
7
6
5
The LMV321, LMV358, LMV324, and LMV324S  
are the most cost-effective solutions for  
applications where low-voltage operation, space  
saving, and low cost are needed. These amplifiers  
were designed specifically for low-voltage (2.7 V  
to 5 V) operation, with performance specifications  
meeting or exceeding the LM358 and LM324  
devices that operate from 5 V to 30 V. Additional  
2OUT  
2IN−  
2IN+  
LMV321 . . . DBV (SOT-23) OR DCK (SC-70) PACKAGE  
(TOP VIEW)  
1
2
3
5
1IN+  
GND  
IN−  
V
CC+  
features of the LMV3xx devices are  
a
common-mode input voltage range that includes  
ground, 1-MHz unity-gain bandwidth, and 1-V/µs  
slew rate.  
4
OUT  
The LMV321 is available in the ultra-small DCK  
(SC-70) package, which is approximately  
one-half the size of the DBV (SOT-23) package.  
This package saves space on printed circuit  
boards and enables the design of small portable  
electronic devices. It also allows the designer to  
place the device closer to the signal source to  
reduce noise pickup and increase signal integrity.  
ꢔꢧ  
Copyright 2004, Texas Instruments Incorporated  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢬ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
Reel of 3000  
Reel of 250  
Reel of 3000  
Reel of 250  
Reel of 2500  
Reel of 250  
Tube of 75  
LMV321IDCKR  
LMV321IDCKT  
LMV321IDBVR  
LMV321IDBVT  
LMV358IDGKR  
LMV358IDGKT  
LMV358ID  
SC-70 (DCK)  
R3_  
Single  
SOT23-5 (DBV)  
MSOP/VSSOP (DGK)  
SOIC (D)  
RC1_  
R5_  
PREVIEW  
MV358I  
Reel of 2500  
Tube of 150  
Reel of 2000  
Reel of 3000  
Tube of 50  
LMV358IDR  
Dual  
−40°C to 85°C  
LMV358IPW  
TSSOP (PW)  
MV358I  
RA56  
LMV358IPWR  
LMV358IDDUR  
LMV324ID  
VSSOP (DDU)  
LMV324I  
Reel of 2500  
Tube of 40  
LMV324IDR  
SOIC (D)  
LMV324SID  
Quad  
LMV324SI  
Reel of 2500  
LMV324SIDR  
LMV324IPWR  
LMV324SIPWR  
LMV358QDGKR  
LMV358QDGKT  
LMV358QD  
MV324I  
TSSOP (PW)  
Reel of 2000  
MV324SI  
Reel of 2500  
Reel of 250  
Tube of 75  
MSOP/VSSOP (DGK)  
SOIC (D)  
RH_  
MV358Q  
Reel of 2500  
Tube of 150  
Reel of 2000  
Reel of 3000  
Tube of 50  
LMV358QDR  
LMV358QPW  
LMV358QPWR  
LMV358QDDUR  
LMV324QD  
Dual  
TSSOP (PW)  
MV358Q  
RAH_  
−40°C to 125°C  
VSSOP (DDU)  
SOIC (D)  
LMV324Q  
MV324Q  
Reel of 2500  
Tube of 90  
LMV324QDR  
LMV324QPW  
LMV324QPWR  
Quad  
TSSOP (PW)  
Reel of 2000  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site.  
symbol (each amplifier)  
+
IN−  
IN+  
OUT  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ  
ꢓꢗ  
ꢉꢊ  
ꢔꢖ  
ꢐꢔ  
ꢊꢘ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
LMV324 simplified schematic  
V
CC  
V
BIAS1  
V
CC  
+
V
BIAS2  
+
Output  
V
V
CC CC  
V
BIAS3  
+
IN−  
IN+  
V
BIAS4  
+
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
CC  
Differential input voltage, V (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
ID  
Input voltage, V (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 5.5 V  
I
Duration of output short circuit (one amplifier) to ground at (or below) T = 25°C,  
A
V
5.5 V (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited  
CC  
Package thermal impedance, q (see Notes 4 and 5): D (8-pin) package . . . . . . . . . . . . . . . . . . . . . . 97°C/W  
JA  
D (14-pin) package . . . . . . . . . . . . . . . . . . . . 86°C/W  
D (16-pin) package . . . . . . . . . . . . . . . . . . . . 73°C/W  
DBV (5-pin) package . . . . . . . . . . . . . . . . . . 206°C/W  
DCK (5-pin) package . . . . . . . . . . . . . . . . . . 252°C/W  
DDU (8-pin) package . . . . . . . . . . . . . . . . . TBD°C/W  
DGK (8-pin) package . . . . . . . . . . . . . . . . . . 172°C/W  
PW (8-pin) package . . . . . . . . . . . . . . . . . . . 149°C/W  
PW (14-pin) package . . . . . . . . . . . . . . . . . . 113°C/W  
PW (16-pin) package . . . . . . . . . . . . . . . . . . 108°C/W  
Operating virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values (except differential voltages and V  
2. Differential voltages are at IN+ with respect to IN−.  
specified for the measurement of I ) are with respect to the network GND.  
OS  
CC  
3. Short circuits from outputs to V  
CC  
can cause excessive heating and eventual destruction.  
4. Maximum power dissipation is a function of T (max), q , and T . The maximum allowable power dissipation at any allowable  
JA  
J
A
ambient temperature is P = (T (max) − T )/q . Selecting the maximum of 150°C can affect reliability.  
D
J
A
JA  
5. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions (see Note 6)  
MIN  
2.7  
1.7  
3.5  
MAX  
UNIT  
V
V
Supply voltage (single-supply operation)  
Amplifier turnon voltage level (LMV324S)  
5.5  
V
CC  
V
V
V
V
= 2.7 V  
= 5 V  
CC  
CC  
CC  
CC  
V
V
IH  
= 2.7 V  
= 5 V  
0.7  
1.5  
85  
V
IL  
Amplifier turnoff voltage level (LMV324S)  
Operating free-air temperature  
I-Temp  
−40  
−40  
T
A
°C  
Q-Temp  
125  
V
IH  
should not be allowed to exceed V .  
CC  
NOTE 6: All unused control inputs of the device must be held at V  
or GND to ensure proper device operation. Refer to the TI application report,  
CC  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
electrical characteristics at T = 25°C and V  
= 2.7 V (unless otherwise noted)  
CC+  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
IO  
Input offset voltage  
1.7  
7
mV  
Average temperature coefficient  
of input offset voltage  
aVIO  
5
mV/°C  
I
Input bias current  
Input offset current  
11  
5
250  
50  
nA  
nA  
dB  
dB  
V
IB  
I
IO  
CMRR Common-mode rejection ratio  
V
V
= 0 to 1.7 V  
50  
50  
63  
60  
CM  
k
Supply-voltage rejection ratio  
= 2.7 V to 5 V,  
V
= 1 V  
SVR  
V
CC  
O
Common-mode input voltage range  
CMRR w 50 dB  
0 to 1.7 −0.2 to 1.9  
ICR  
High level  
Low level  
V
CC  
− 100  
V
CC  
− 10  
60  
Output swing  
R
= 10 kto 1.35 V  
mV  
L
180  
170  
340  
680  
80  
LMV321I  
I
CC  
Supply current  
140  
260  
1
mA  
LMV358I (both amplifiers)  
LMV324I/LMV324SI (all four amplifiers)  
= 200 pF  
B
Unity-gain bandwidth  
Phase margin  
C
MHz  
deg  
1
L
F
60  
m
m
n
G
Gain margin  
10  
dB  
V
Equivalent input noise voltage  
Equivalent input noise current  
f = 1 kHz  
f = 1 kHz  
46  
nV/Hz  
pA/Hz  
I
n
0.17  
shutdown characteristics (LMV324S) at T = 25°C and V  
= 2.7 V (unless otherwise noted)  
CC+  
A
PARAMETER  
TEST CONDITIONS  
SHDN 0.6 V  
= 1, R = Open (measured at 50% point)  
MIN  
TYP  
MAX  
UNIT  
Supply current in shutdown mode  
(per channel)  
I
5
mA  
CC(SHDN)  
t
t
Amplifier turnon time  
Amplifier turnoff time  
A
V
2
ms  
(on)  
L
A
= 1, R = Open (measured at 50% point)  
40  
ns  
(off)  
V
L
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
electrical characteristics at specified free-air temperature range, V  
noted)  
= 5 V (unless otherwise  
CC+  
PARAMETER  
TEST CONDITIONS  
T
A
MIN  
TYP  
MAX  
UNIT  
25°C  
1.7  
7
9
V
IO  
Input offset voltage  
mV  
Full range  
Average temperature coefficient  
of input offset voltage  
aVIO  
25°C  
5
mV/°C  
25°C  
Full range  
25°C  
15  
250  
500  
50  
I
Input bias current  
Input offset current  
nA  
IB  
5
I
IO  
nA  
dB  
dB  
Full range  
25°C  
150  
CMRR Common-mode rejection ratio  
V
= 0 to 4 V  
50  
50  
65  
60  
CM  
V
CC  
V
CM  
= 2.7 V to 5 V, V = 1 V,  
O
= 1 V  
k
Supply-voltage rejection ratio  
25°C  
25°C  
SVR  
Common-mode  
input voltage range  
V
CMMR
w
w 50 dB  
0 to 4 −0.2 to 4.2  
V
ICR  
25°C  
Full range  
25°C  
V
V
− 300  
− 400  
V
− 40  
120  
− 10  
65  
CC  
CC  
High level  
Low level  
High level  
Low level  
CC  
R
= 2 kto 2.5 V  
L
300  
400  
Full range  
25°C  
Output swing  
mV  
V
V
− 100  
− 200  
V
CC  
CC  
Full range  
25°C  
CC  
R
R
= 10 kto 2.5 V  
= 2 kΩ  
L
L
180  
280  
Full range  
25°C  
15  
10  
5
100  
Large-signal differential  
voltage gain  
A
V/mV  
mA  
VD  
Full range  
Sourcing, V = 0 V  
60  
160  
130  
O
I
Output short-circuit current  
25°C  
OS  
Sinking, V = 5 V  
O
10  
25°C  
Full range  
25°C  
250  
350  
440  
615  
830  
1160  
LMV321I  
210  
410  
I
Supply current  
mA  
LMV358I (both amplifiers)  
CC  
Full range  
25°C  
LMV324I/LMV324SI  
(all four amplifiers)  
Full range  
25°C  
B
Unity-gain bandwidth  
Phase margin  
C
= 200 pF  
L
1
60  
MHz  
deg  
1
f
m
25°C  
G
Gain margin  
25°C  
10  
dB  
m
V
Equivalent input noise voltage  
Equivalent input noise current  
Slew rate  
f = 1 kHz  
f = 1 kHz  
25°C  
39  
nV/Hz  
pA/Hz  
V/ms  
n
I
n
25°C  
0.21  
1
SR  
25°C  
Full range: −40°C to 85°C for I-temp, −40°C to 125°C for Q-temp.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
shutdown characteristics (LMV324S) at T = 25°C and V  
= 5 V (unless otherwise noted)  
CC+  
A
PARAMETER  
TEST CONDITIONS  
SHDN 0.6 V  
= 1, R = Open (measured at 50% point)  
T
MIN  
TYP  
MAX  
UNIT  
A
Supply current in shutdown mode  
(per channel)  
I
−40°C to 85°C  
5
mA  
CC(SHDN)  
t
t
Amplifier turnon time  
Amplifier turnoff time  
A
V
2
ms  
(on)  
L
A
= 1, R = Open (measured at 50% point)  
40  
ns  
(off)  
V
L
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
LMV321 FREQUENCY RESPONSE  
LMV321 FREQUENCY RESPONSE  
vs  
vs  
RESISTIVE LOAD  
RESISTIVE LOAD  
80  
70  
60  
50  
80  
70  
60  
50  
120  
105  
120  
105  
Vs = 5.0 V  
Vs = 2.7 V  
R
= 100 k, 2 kΩ, 600 Ω  
R
= 100 k, 2 kΩ, 600 Ω  
L
L
Phase  
90  
75  
60  
45  
30  
90  
75  
60  
45  
30  
600 Ω  
2 kΩ  
Phase  
600 Ω  
40  
30  
20  
40  
30  
20  
2 kΩ  
100 kΩ  
100 kΩ  
Gain  
Gain  
100 kΩ  
10  
0
600 Ω  
10  
0
15  
15  
100 kΩ  
2 kΩ  
600 Ω  
2 kΩ  
0
0
−15  
10 M  
−15  
10 M  
−10  
−10  
1 k  
10 k  
100 k  
1 M  
1 k  
10 k  
100 k  
1 M  
Frequency − Hz  
Frequency − Hz  
Figure 1  
Figure 2  
LMV321 FREQUENCY RESPONSE  
LMV321 FREQUENCY RESPONSE  
vs  
vs  
CAPACITIVE LOAD  
CAPACITIVE LOAD  
70  
70  
100  
100  
Phase  
Phase  
80  
60  
60  
50  
40  
30  
20  
10  
80  
60  
60  
50  
40  
30  
20  
10  
0 pF  
0 pF  
100 pF  
500 pF  
100 pF  
500 pF  
1000 pF  
40  
40  
20  
20  
1000 pF  
100 pF  
Gain  
0
0
Gain  
Vs = 5.0 V  
−20  
−40  
−60  
−20  
−40  
−60  
Vs = 5.0 V  
0
0
0 pF  
500 pF  
R
C
= 100 kΩ  
L
L
R
C
= 600 Ω  
= 0 pF  
L
L
100 pF  
−10  
= 0 pF  
0 pF  
−10  
100 pF  
500 pF  
1000 pF  
100 pF  
500 pF  
−20  
−30  
−80  
−20  
−30  
1000 pF  
−80  
500 pF  
1000 pF  
1000 pF  
−100  
10 M  
−100  
10 M  
10 k  
100 k  
1 M  
10 k  
100 k  
1 M  
Frequency − Hz  
Frequency − Hz  
Figure 3  
Figure 4  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
STABILITY  
vs  
CAPACITIVE LOAD  
LMV321 FREQUENCY RESPONSE  
vs  
TEMPERATURE  
120  
105  
80  
70  
60  
10000  
1000  
Vs = 5.0 V  
2.5 V  
R
= 2 kΩ  
LMV324S  
(25% Overshoot)  
L
_
V
O
+
90  
V
I
85°C  
R
C
L
L
−2.5 V  
Phase  
75  
60  
45  
50  
40  
30  
25°C  
−40°C  
LMV3xx  
(25% Overshoot)  
Gain  
100  
10  
30  
15  
20  
10  
85°C  
25°C  
V
=
= +1  
= 2 kΩ  
= 100 mV  
2.5 V  
CC  
A
V
R
V
L
0
0
O
PP  
−40°C  
−15  
10 M  
−10  
−2  
−1.5  
−1  
−0.5  
0
0.5  
1
1.5  
1 k  
10 k  
100 k  
1 M  
Output Voltage − V  
Frequency − Hz  
Figure 5  
Figure 6  
STABILITY  
vs  
CAPACITIVE LOAD  
STABILITY  
vs  
CAPACITIVE LOAD  
10000  
1000  
100  
10000  
1000  
100  
V
R
=
2.5 V  
CC  
L
2.5 V  
= 2 kΩ  
= 10  
= 100 mV  
A
V
O
_
+
LMV324S  
(25% Overshoot)  
V
V
PP  
O
V
I
R
C
L
L
2.5 V  
LMV324S  
(25% Overshoot)  
LMV3xx  
(25% Overshoot)  
134 kΩ  
1.21 MΩ  
+2.5 V  
V
CC  
= 2.5 V  
= +1  
LMV3xx  
(25% Overshoot)  
_
+
A
V
V
L
O
O
V
I
R
= 1 MΩ  
= 100 mV  
R
C
L
L
V
PP  
−2.5 V  
10  
10  
−2.0 −1.5  
−1  
−0.5  
0
0.5  
1
1.5  
−2.0 −1.5  
−1  
−0.5  
0
0.5  
1
1.5  
Output Voltage − V  
Output Voltage − V  
Figure 7  
Figure 8  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
SLEW RATE  
vs  
SUPPLY VOLTAGE  
STABILITY  
vs  
CAPACITIVE LOAD  
10000  
1000  
100  
1.500  
R
= 100 kΩ  
L
V
R
=
2.5 V  
CC  
L
1.400  
1.300  
1.200  
1.100  
LMV3xx  
(25% Overshoot)  
= 1 MΩ  
= 10  
= 100 mV  
A
V
O
V
PP  
Gain  
NSLEW  
LMV324S  
(25% Overshoot)  
LMV3xx  
1.000  
0.900  
0.800  
0.700  
0.600  
0.500  
PSLEW  
NSLEW  
134 kΩ  
1.21 MΩ  
+2.5 V  
_
+
V
O
LMV324S  
V
I
R
C
L
L
−2.5 V  
−1  
PSLEW  
10  
2.5  
3.0  
V
3.5  
4.0  
4.5  
5.0  
−2.0 −1.5  
−0.5  
0
0.5  
1
1.5  
− Supply Voltage − V  
Output Voltage − V  
CC  
Figure 9  
Figure 10  
SUPPLY CURRENT  
vs  
INPUT CURRENT  
vs  
SUPPLY VOLTAGE − QUAD AMPLIFIER  
TEMPERATURE  
700  
600  
500  
400  
300  
200  
100  
0
−10  
−20  
−30  
−40  
V
= 5 V  
CC  
LMV3xx  
V = V /2  
I CC  
LMV324S  
T
= 85°C  
A
T
A
= 25°C  
LMV3xx  
T
A
= −40°C  
−50  
−60  
LMV324S  
0
1
2
3
4
5
6
−40 −3020 −10 0 10 20 30 40 50 60 70 80  
V
CC  
− Supply Voltage − V  
T
A
°C  
Figure 11  
Figure 12  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
SOURCE CURRENT  
vs  
OUTPUT VOLTAGE  
SOURCE CURRENT  
vs  
OUTPUT VOLTAGE  
100  
100  
V
CC  
= 2.7 V  
V
CC  
= 5 V  
10  
1
10  
1
LMV3xx  
LMV3xx  
LMV324S  
LMV324S  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Voltage Referenced to V  
− V  
Output Voltage Referenced to V  
− V  
CC+  
CC+  
Figure 13  
Figure 14  
SINKING CURRENT  
vs  
OUTPUT VOLTAGE  
SINKING CURRENT  
vs  
OUTPUT VOLTAGE  
100  
100  
V
CC  
= 2.7 V  
V
CC  
= 5 V  
10  
1
10  
1
LMV324S  
LMV324S  
LMV3xx  
LMV324  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Voltage Referenced to GND − V  
Output Voltage Referenced to GND − V  
Figure 16  
Figure 15  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
SHORT-CIRCUIT CURRENT  
SHORT-CIRCUIT CURRENT  
vs  
vs  
TEMPERATURE  
TEMPERATURE  
120  
100  
80  
300  
270  
240  
210  
180  
150  
120  
90  
LMV324S  
= 5 V  
V
CC  
LMV324S  
V
CC  
= 5 V  
LMV3xx  
= 5 V  
LMV3xx  
= 5 V  
V
CC  
V
CC  
60  
LMV3xx  
= 2.7 V  
V
CC  
40  
LMV3xx  
= 2.7 V  
LMV324S  
V = 2.7 V  
CC  
V
CC  
60  
LMV324S  
= 2.7 V  
20  
V
CC  
30  
0
0
−40 −30 −20−10 0 10 20 30 40 50 60 70 80 90  
°C  
−40 −302010  
0
10 20 30 40 50 60 70 80 90  
°C  
T
A
T
A
Figure 17  
Figure 18  
+k  
vs  
FREQUENCY  
−k  
vs  
FREQUENCY  
SVR  
SVR  
90  
80  
70  
LMV324S  
LMV324S  
V
R
= 5 V  
= 10 kΩ  
V
R
= −5 V  
= 10 kΩ  
CC  
L
CC  
L
80  
70  
60  
50  
60  
50  
40  
30  
LMV3xx  
LMV3xx  
40  
30  
20  
20  
10  
0
10  
0
1
.1  
10  
100  
1,000  
1
10  
100  
1,000  
.1  
Frequency − Hz  
Frequency − kHz  
Figure 19  
Figure 20  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
−k  
+k  
SVR  
SVR  
vs  
vs  
FREQUENCY  
FREQUENCY  
80  
80  
70  
60  
50  
40  
30  
20  
10  
LMV324S  
V = 2.7 V  
CC  
V
R
= −2.7 V  
= 10 kΩ  
CC  
L
LMV324S  
70  
R = 10 kΩ  
L
60  
50  
LMV3xx  
LMV3xx  
40  
30  
20  
10  
0
0
.1  
1
10  
100  
1,000  
.1  
1
10  
100  
1,000  
Frequency − kHz  
Frequency − kHz  
Figure 21  
Figure 22  
OUTPUT VOLTAGE SWING FROM RAILS  
OUTPUT VOLTAGE  
vs  
vs  
SUPPLY VOLTAGE  
FREQUENCY  
6
70  
60  
50  
40  
30  
20  
10  
0
R
= 10 kΩ  
L
R
= 10 kΩ  
L
THD > 5%  
= 3  
A
V
5
4
3
2
1
0
LMV3xx  
= 5 V  
LMV3xx  
LMV324S  
V
CC  
Negative Swing  
LMV324S  
= 5 V  
V
CC  
LMV3xx  
= 2.7 V  
V
CC  
LMV324S  
= 2.7 V  
V
CC  
Positive Swing  
1
10  
100  
1000  
10000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Frequency − kHz  
V
CC  
− Supply Voltage − V  
Figure 24  
Figure 23  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
OPEN-LOOP OUTPUT IMPEDANCE  
CROSSTALK REJECTION  
vs  
vs  
FREQUENCY  
FREQUENCY  
150  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
LMV3xx  
= 2.7 V  
V
= 5 V  
= 5 kΩ  
CC  
L
V
R
A
LMV3xx  
= 5 V  
CC  
140  
130  
V
V = 1  
= 3 V  
CC  
V
O
PP  
120  
LMV324S  
= 2.7 V  
V
CC  
110  
100  
LMV324S  
= 5 V  
V
CC  
90  
1000  
1
2000  
3000  
4000  
.1  
1
10  
100  
Frequency − kHz  
Frequency − kHz  
Figure 25  
Figure 26  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
NONINVERTING LARGE-SIGNAL  
PULSE RESPONSE  
NONINVERTING LARGE-SIGNAL  
PULSE RESPONSE  
Input  
Input  
LMV3xx  
LMV3xx  
LMV324S  
LMV324S  
V
R
=
2.5 V  
V
R
T
A
= 2.5 V  
= 2 kΩ  
= 85°C  
CC  
L
CC  
L
= 2 kΩ  
T = 25°C  
1 µs/Div  
1 µs/Div  
Figure 27  
Figure 28  
NONINVERTING LARGE-SIGNAL  
PULSE RESPONSE  
Input  
LMV3xx  
LMV324S  
V
R
T
A
= 2.5 V  
= 2 kΩ  
= −40°C  
CC  
L
1 µs/Div  
Figure 29  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
NONINVERTING SMALL-SIGNAL  
PULSE RESPONSE  
NONINVERTING SMALL-SIGNAL  
PULSE RESPONSE  
Input  
Input  
LMV3xx  
LMV3xx  
LMV324S  
LMV324S  
V
R
T
A
=
2.5 V  
V
= 2.5 V  
CC  
L
CC  
L
= 2 kΩ  
= 25°C  
R = 2 kΩ  
T = 85°C  
A
1 µs/Div  
1 µs/Div  
Figure 30  
Figure 31  
NONINVERTING SMALL-SIGNAL  
PULSE RESPONSE  
Input  
LMV3xx  
LMV324S  
V
R
T
A
= 2.5 V  
= 2 kΩ  
= −40°C  
CC  
L
1 µs/Div  
Figure 32  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢂꢃ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
Input  
Input  
LMV3xx  
LMV3xx  
LMV324S  
2.5 V  
= 2 kΩ  
= 25°C  
LMV324S  
V
=
V
=
2.5 V  
CC  
L
CC  
L
R
T
R
T
= 2 kΩ  
= 85°C  
A
A
1 µs/Div  
1 µs/Div  
Figure 33  
Figure 34  
INVERTING LARGE-SIGNAL  
PULSE RESPONSE  
Input  
LMV3xx  
LMV324S  
V
R
T
A
=
2.5 V  
CC  
L
= 2 kΩ  
= −40°C  
1 µs/Div  
Figure 35  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
Input  
Input  
LMV3xx  
LMV3xx  
LMV324S  
LMV324S  
V
= 2.5 V  
= 2 kΩ  
= 25°C  
V
= 2.5 V  
= 2 kΩ  
= 85°C  
CC  
L
CC  
L
R
T
R
T
A
A
1 µs/Div  
1 µs/Div  
Figure 36  
Figure 37  
INVERTING SMALL-SIGNAL  
PULSE RESPONSE  
Input  
LMV3xx  
LMV324S  
V
R
T
A
= 2.5 V  
= 2 kΩ  
= −40°C  
CC  
L
1 µs/Div  
Figure 38  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆ ꢇ ꢈꢉ ꢀꢊ ꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎ ꢏꢐꢀ ꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕꢏ ꢔꢎ ꢖ ꢓꢈ  
ꢀꢖ ꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐꢇ ꢀ ꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔ ꢙꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙ ꢀꢇ ꢚꢇ ꢊꢘ ꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
INPUT CURRENT NOISE  
INPUT CURRENT NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
0.80  
0.60  
0.40  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
= 2.7 V  
CC  
V
CC  
= 5 V  
0.20  
0.00  
10 Hz  
100 Hz  
1 kHz  
10 Hz  
100 Hz  
1 KHz  
10 KHz  
10 kHz  
Frequency  
Frequency  
Figure 39  
Figure 40  
INPUT VOLTAGE NOISE  
vs  
FREQUENCY  
200  
180  
160  
140  
120  
100  
80  
V
CC  
= 2.7 V  
60  
40  
V
CC  
= 5 V  
20  
10 Hz  
100 Hz  
1 kHz  
10 kHz  
Frequency  
Figure 41  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢀ ꢊꢋ ꢀꢁ ꢂꢃ ꢌ ꢍ ꢎꢏ ꢐꢀ ꢋ ꢀꢁ ꢂꢃ ꢄ ꢑ ꢒ ꢏꢐꢎꢋ ꢀ ꢁꢂ ꢃ ꢄ ꢑ ꢆ ꢒ ꢏꢐꢎ ꢓ ꢇꢔ ꢕ ꢆꢕ ꢏꢔꢎ ꢖꢓ ꢈ  
ꢀ ꢖꢓꢗꢂ ꢖꢀꢔꢐ ꢉꢊ ꢘꢐ ꢇ ꢀꢗꢔꢖ ꢗꢘꢐꢇ ꢀ ꢖ ꢏꢔꢙ ꢏꢔ ꢖ ꢙꢊꢘ ꢐꢔ ꢇꢖ ꢈꢐꢀ ꢐꢁ ꢙꢀ ꢇꢚ ꢇꢊ ꢘꢆ  
SLOS263Q − AUGUST 1999 − REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
THD + N  
vs  
THD + N  
vs  
FREQUENCY  
FREQUENCY  
10.000  
10.000  
1.000  
0.100  
0.010  
0.001  
V
= 2.7 V  
= 10 kΩ  
= 1  
V
R
= 2.7 V  
CC  
L
CC  
= 10 kΩ  
R
A
L
AV = 10  
= 1 V  
V
O
V
= 1 V  
PP  
V
O
PP  
1.000  
LMV324S  
LMV3xx  
0.100  
0.010  
0.001  
LMV3xx  
LMV324S  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency − Hz  
Figure 42  
Frequency − Hz  
Figure 43  
THD + N  
vs  
THD + N  
vs  
FREQUENCY  
FREQUENCY  
10.000  
1.000  
10.000  
1.000  
0.100  
0.010  
0.001  
V
R
= 5 V  
= 10 kΩ  
V
R
= 5 V  
= 10 kΩ  
CC  
L
CC  
L
AV = 1  
= 1 V  
AV = 10  
= 2.5 V  
V
O
V
O
PP  
PP  
LMV324S  
0.100  
0.010  
LMV324S  
LMV3xx  
LMV3xx  
0.001  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency − Hz  
Frequency − Hz  
Figure 44  
Figure 45  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
LMV321IDBVR  
LMV321IDBVT  
LMV321IDCKR  
LMV321IDCKT  
LMV324ID  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
5
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT-23  
SC70  
DBV  
DCK  
DCK  
D
5
250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
5
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SC70  
5
250  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
SOIC  
14  
14  
14  
14  
14  
14  
14  
16  
16  
16  
8
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
LMV324IDR  
SOIC  
D
2500  
2000  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
LMV324IPWR  
LMV324QD  
TSSOP  
SOIC  
PW  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
LMV324QDR  
LMV324QPW  
LMV324QPWR  
LMV324SID  
SOIC  
D
2500  
90  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
2000  
40  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
LMV324SIDR  
LMV324SIPWR  
LMV358ID  
SOIC  
D
2500  
2000  
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
TSSOP  
SOIC  
PW  
D
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
LMV358IDDUR  
LMV358IDGKR  
LMV358IDR  
VSSOP  
MSOP  
SOIC  
DDU  
DGK  
D
8
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1YEAR  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
LMV358IPW  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
8
150  
2000  
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
LMV358IPWR  
LMV358QD  
8
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
8
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
LMV358QDDUR  
LMV358QDGKR  
LMV358QDR  
LMV358QPW  
VSSOP  
MSOP  
SOIC  
DDU  
DGK  
D
8
3000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-260C-UNLIM  
8
2500 Green (RoHS & CU NIPDAU Level-2-260C-1YEAR  
no Sb/Br)  
8
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1 YEAR/  
Level-1-235C-UNLIM  
TSSOP  
PW  
8
150  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Mar-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
LMV358QPWR  
ACTIVE  
TSSOP  
PW  
8
2000  
Pb-Free  
(RoHS)  
CU NIPDAU Level-1-250C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MPDS025C – FEBRUARY 1997 – REVISED FEBRUARY 2002  
DCK (R-PDSO-G5)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,30  
0,15  
M
0,10  
0,65  
5
4
0,13 NOM  
1,40 2,40  
1,10 1,80  
1
3
Gage Plane  
2,15  
1,85  
0,15  
0°–8°  
0,46  
0,26  
Seating Plane  
0,10  
1,10  
0,80  
0,10  
0,00  
4093553-2/D 01/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-203  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

LMV324SIDE4

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIDG4

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIDR

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIDRE4

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIDRG4

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIPWR

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIPWRE4

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324SIPWRG4

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV324TP

40μA, 1.27MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV324TP-SR

40μA, 1.27MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV324TP-TR

40μA, 1.27MHz, Micro-Power Rail-to-Rail I/O Op Amps
3PEAK

LMV324TSG-13

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
DIODES