LMV358-N-Q1 [TI]

汽车级、双路、5.5V、1MHz 运算放大器;
LMV358-N-Q1
型号: LMV358-N-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、双路、5.5V、1MHz 运算放大器

放大器 运算放大器 放大器电路
文件: 总44页 (文件大小:2590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
LMV321-N/LMV321-N-Q1/LMV358-N/LMV358-N-Q1/LMV324-N/LMV324-N-Q1  
Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output Operational  
Amplifiers  
Check for Samples: LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1, LMV324-N, LMV324-N-Q1  
1
FEATURES  
DESCRIPTION  
The LMV358-N/LMV324-N are low voltage (2.7V to  
5.5V) versions of the dual and quad commodity op  
amps LM358/LM324 (5V to 30V). The LMV321-N is  
the single channel version. The LMV321-N/LMV358-  
N/LMV324-N are the most cost effective solutions for  
applications where low voltage operation, space  
efficiency, and low price are important. They offer  
specifications that meet or exceed the familiar  
LM358/LM324. The LMV321-N/LMV358-N/LMV324-N  
have rail-to-rail output swing capability and the input  
common-mode voltage range includes ground. They  
all exhibit excellent speed to power ratio, achieving 1  
MHz of bandwidth and 1 V/µs slew rate with low  
supply current.  
(For V+ = 5V and V= 0V, unless otherwise  
specified)  
LMV321-N, LMV358-N, and LMV324-N are  
available in Automotive AEC-Q100 Grade 1 & 3  
versions  
Guaranteed 2.7V and 5V performance  
No crossover distortion  
Industrial temperature range 40°C to +125°C  
Gain-bandwidth product 1 MHz  
Low supply current  
LMV321-N 130 μA  
LMV358-N 210 μA  
The LMV321-N is available in the space saving 5-Pin  
SC70, which is approximately half the size of the 5-  
Pin SOT23. The small package saves space on PC  
boards and enables the design of small portable  
electronic devices. It also allows the designer to place  
the device closer to the signal source to reduce noise  
pickup and increase signal integrity.  
LMV324-N 410 μA  
Rail-to-rail output swing @ 10 kV+10 mV &  
V+ 65 mV  
VCM Range 0.2V to V+0.8V  
APPLICATIONS  
The chips are built with Texas Instruments's  
advanced submicron silicon-gate BiCMOS process.  
The LMV321-N/LMV358-N/LMV324-N have bipolar  
input and output stages for improved noise  
performance and higher output current drive.  
Active filters  
General purpose low voltage applications  
General purpose portable devices  
Gain and Phase vs. Capacitive Load  
Output Voltage Swing vs. Supply Voltage  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2000–2013, Texas Instruments Incorporated  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)  
Absolute Maximum Ratings  
ESD Tolerance  
(3)  
Human Body Model  
LMV358-N/LMV324-N  
LMV321-N  
2000V  
900V  
Machine Model  
100V  
Differential Input Voltage  
Input Voltage  
±Supply Voltage  
0.3V to +Supply Voltage  
Supply Voltage (V+–V −  
)
5.5V  
(4)  
Output Short Circuit to V +  
Output Short Circuit to V −  
Soldering Information  
(5)  
Infrared or Convection (30 sec)  
Storage Temp. Range  
260°C  
65°C to 150°C  
150°C  
(6)  
Junction Temperature  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test  
conditions, see the Electrical Characteristics.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office / Distributors for  
availability and specifications.  
(3) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of  
JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC  
(4) Shorting output to V+ will adversely affect reliability.  
(5) Shorting output to V-will adversely affect reliability.  
(6) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA)/ θJA. All numbers apply for packages soldered directly onto a PC Board.  
(1)  
Operating Ratings  
Supply Voltage  
2.7V to 5.5V  
(2)  
Temperature Range  
LMV321-N/LMV358-N/LMV324-N  
40°C to +125°C  
(3)  
Thermal Resistance (θ JA  
)
5-pin SC70  
478°C/W  
265°C/W  
190°C/W  
235°C/W  
145°C/W  
155°C/W  
5-pin SOT23  
8-Pin SOIC  
8-Pin MSOP  
14-Pin SOIC  
14-Pin TSSOP  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test  
conditions, see the Electrical Characteristics.  
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is  
PD = (TJ(MAX) – TA)/ θJA. All numbers apply for packages soldered directly onto a PC Board.  
(3) All numbers are typical, and apply for packages soldered directly onto a PC board in still air.  
2
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
2.7V DC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 2.7V, V= 0V, VCM = 1.0V, VO = V+/2 and RL > 1 M.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
VOS  
Input Offset Voltage  
1.7  
5
7
mV  
µV/°C  
nA  
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
11  
5
250  
50  
IOS  
Input Offset Current  
nA  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
0V VCM 1.7V  
2.7V V+ 5V  
50  
50  
63  
60  
dB  
dB  
VO = 1V  
VCM  
VO  
IS  
Input Common-Mode Voltage Range For CMRR 50 dB  
0
0.2  
1.9  
V+ 10  
V
V
1.7  
Output Swing  
RL = 10 kto 1.35V  
V+ 100  
mV  
mV  
µA  
60  
180  
170  
340  
Supply Current  
LMV321-N  
80  
LMV358-N  
Both amplifiers  
140  
µA  
µA  
LMV324-N  
All four amplifiers  
260  
680  
(1) All limits are guaranteed by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
2.7V AC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for T J = 25°C, V+ = 2.7V, V= 0V, VCM = 1.0V, VO = V+/2 and RL > 1 M.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
GBWP  
Φm  
Gain-Bandwidth Product  
Phase Margin  
CL = 200 pF  
1
MHz  
Deg  
dB  
60  
10  
46  
Gm  
Gain Margin  
en  
Input-Referred Voltage Noise  
f = 1 kHz  
f = 1 kHz  
in  
Input-Referred Current Noise  
0.17  
(1) All limits are guaranteed by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
5V DC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for T J = 25°C, V+ = 5V, V= 0V, VCM = 2.0V, VO = V+/2 and R L > 1 M.  
Boldface limits apply at the temperature extremes.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
VOS  
Input Offset Voltage  
1.7  
7
9
mV  
µV/°C  
nA  
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
5
15  
250  
500  
IOS  
Input Offset Current  
5
50  
150  
nA  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
0V VCM 4V  
2.7V V+ 5V  
50  
50  
65  
60  
dB  
dB  
VO = 1V, VCM = 1V  
VCM  
Input Common-Mode Voltage Range For CMRR 50 dB  
0
0.2  
4.2  
V
V
4
AV  
VO  
Large Signal Voltage Gain  
RL = 2 kΩ  
15  
10  
100  
V/mV  
(3)  
Output Swing  
RL = 2 kto 2.5V  
RL = 2 kto 2.5V  
RL = 10 kto 2.5V  
RL = 2 kto 2.5V, 125°C  
V+ 300  
V+ 40  
120  
V+ 400  
mV  
300  
400  
V+ 100  
V+ 200  
V+ 10  
65  
mV  
mA  
180  
280  
IO  
Output Short Circuit Current  
Supply Current  
Sourcing, VO = 0V  
Sinking, VO = 5V  
LMV321-N  
5
60  
10  
160  
130  
IS  
250  
350  
LMV358-N (both amps)  
210  
410  
440  
615  
µA  
LMV324-N (all four amps)  
830  
1160  
(1) All limits are guaranteed by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(3) RL is connected to V-. The output voltage is 0.5V VO 4.5V.  
4
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
5V AC Electrical Characteristics  
Unless otherwise specified, all limits guaranteed for TJ = 25°C, V+ = 5V, V= 0V, VCM = 2.0V, VO = V+/2 and R L > 1 M.  
Boldface limits apply at the temperature extremes.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
(1)  
(2)  
(1)  
(3)  
SR  
Slew Rate  
1
V/µs  
MHz  
Deg  
dB  
GBWP  
Φm  
Gain-Bandwidth Product  
Phase Margin  
CL = 200 pF  
1
60  
10  
39  
Gm  
Gain Margin  
en  
Input-Referred Voltage Noise  
f = 1 kHz  
f = 1 kHz  
in  
Input-Referred Current Noise  
0.21  
(1) All limits are guaranteed by testing or statistical analysis.  
(2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(3) Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.  
CONNECTION DIAGRAM  
5-Pin SC70/SOT23  
8-Pin SOIC/MSOP  
14-Pin SOIC/TSSOP  
Figure 1. Top View  
Figure 2. Top View  
Figure 3. Top View  
Devices with an asterisk (*) are future products. Please contact the factory for availability.  
Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive  
market, includingdefect detection methodologies. Reliability qualification is compliant with the requirements and  
temperature grades defined in the AEC Q100 standard. Automotive Grade products are identified with the letter  
Q.  
Fully  
compliant  
PPAP  
documentation  
is  
available.For  
more  
information  
go  
to  
http://www.national.com/automotive.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Typical Performance Characteristics  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Supply Current  
Input Current  
vs.  
vs.  
Supply Voltage (LMV321-N)  
Temperature  
Figure 4.  
Figure 5.  
Sourcing Current  
vs.  
Output Voltage  
Sourcing Current  
vs.  
Output Voltage  
Figure 6.  
Figure 7.  
Sinking Current  
vs.  
Output Voltage  
Sinking Current  
vs.  
Output Voltage  
Figure 8.  
Figure 9.  
6
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Output Voltage Swing  
Input Voltage Noise  
vs.  
vs.  
Supply Voltage  
Frequency  
Figure 10.  
Figure 11.  
Input Current Noise  
vs.  
Input Current Noise  
vs.  
Frequency  
Frequency  
Figure 12.  
Figure 13.  
Crosstalk Rejection  
vs.  
PSRR  
vs.  
Frequency  
Frequency  
Figure 14.  
Figure 15.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
CMRR  
CMRR  
vs.  
vs.  
Frequency  
Input Common Mode Voltage  
Figure 16.  
Figure 17.  
CMRR  
vs.  
ΔVOS  
vs.  
CMR  
Input Common Mode Voltage  
Figure 18.  
Figure 19.  
ΔV OS  
vs.  
CMR  
Input Voltage  
vs.  
Output Voltage  
Figure 20.  
Figure 21.  
8
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Input Voltage  
vs.  
Output Voltage  
Open Loop Frequency Response  
Figure 22.  
Figure 23.  
Open Loop Frequency Response  
vs.  
Open Loop Frequency Response  
Temperature  
Figure 24.  
Figure 25.  
Gain and Phase  
vs.  
Capacitive Load  
Gain and Phase  
vs.  
Capacitive Load  
Figure 26.  
Figure 27.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Slew Rate  
vs.  
Supply Voltage  
Non-Inverting Large Signal Pulse Response  
Figure 28.  
Figure 29.  
Non-Inverting Large Signal Pulse Response  
Non-Inverting Large Signal Pulse Response  
Figure 30.  
Figure 31.  
Non-Inverting Small Signal Pulse Response  
Non-Inverting Small Signal Pulse Response  
Figure 32.  
Figure 33.  
10  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Non-Inverting Small Signal Pulse Response  
Inverting Large Signal Pulse Response  
Figure 34.  
Figure 35.  
Inverting Large Signal Pulse Response  
Inverting Large Signal Pulse Response  
Figure 36.  
Figure 37.  
Inverting Small Signal Pulse Response  
Inverting Small Signal Pulse Response  
Figure 38.  
Figure 39.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Stability  
vs.  
Capacitive Load  
Inverting Small Signal Pulse Response  
Figure 40.  
Figure 41.  
Stability  
vs.  
Capacitive Load  
Stability  
vs.  
Capacitive Load  
Figure 42.  
Figure 43.  
Stability  
vs.  
Capacitive Load  
THD  
vs.  
Frequency  
Figure 44.  
Figure 45.  
12  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified, VS = +5V, single supply, TA = 25°C.  
Open Loop Output Impedance  
Short Circuit Current  
vs.  
Temperature (Sinking)  
vs.  
Frequency  
Figure 46.  
Figure 47.  
Short Circuit Current  
vs.  
Temperature (Sourcing)  
Figure 48.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
APPLICATION INFORMATION  
BENEFITS OF THE LMV321-N/LMV358-N/LMV324-N  
Size  
The small footprints of the LMV321-N/LMV358-N/LMV324-N packages save space on printed circuit boards, and  
enable the design of smaller electronic products, such as cellular phones, pagers, or other portable systems. The  
low profile of the LMV321-N/LMV358-N/LMV324-N make them possible to use in PCMCIA type III cards.  
Signal Integrity  
Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier  
package, the LMV321-N/LMV358-N/LMV324-N can be placed closer to the signal source, reducing noise pickup  
and increasing signal integrity.  
Simplified Board Layout  
These products help you to avoid using long PC traces in your PC board layout. This means that no additional  
components, such as capacitors and resistors, are needed to filter out the unwanted signals due to the  
interference between the long PC traces.  
Low Supply Current  
These devices will help you to maximize battery life. They are ideal for battery powered systems.  
Low Supply Voltage  
Texas Instruments provides guaranteed performance at 2.7V and 5V. These guarantees ensure operation  
throughout the battery lifetime.  
Rail-to-Rail Output  
Rail-to-rail output swing provides maximum possible dynamic range at the output. This is particularly important  
when operating on low supply voltages.  
Input Includes Ground  
Allows direct sensing near GND in single supply operation.  
Protection should be provided to prevent the input voltages from going negative more than 0.3V (at 25°C). An  
input clamp diode with a resistor to the IC input terminal can be used.  
Ease of Use and Crossover Distortion  
The LMV321-N/LMV358-N/LMV324-N offer specifications similar to the familiar LM324-N. In addition, the new  
LMV321-N/LMV358-N/LMV324-N effectively eliminate the output crossover distortion. The scope photos in  
Figure 49 and Figure 50 compare the output swing of the LMV324-N and the LM324-N in a voltage follower  
configuration, with VS = ± 2.5V and RL (= 2 kΩ) connected to GND. It is apparent that the crossover distortion  
has been eliminated in the new LMV324-N.  
Figure 49. Output Swing of LMV324  
14  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Figure 50. Output Swing of LM324  
CAPACITIVE LOAD TOLERANCE  
The LMV321-N/LMV358-N/LMV324-N can directly drive 200 pF in unity-gain without oscillation. The unity-gain  
follower is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase  
margin of amplifiers. The combination of the amplifier's output impedance and the capacitive load induces phase  
lag. This results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, the  
circuit in Figure 51 can be used.  
Figure 51. Indirectly Driving a Capacitive Load Using Resistive Isolation  
In Figure 51 , the isolation resistor RISO and the load capacitor CL form a pole to increase stability by adding more  
phase margin to the overall system. The desired performance depends on the value of RISO. The bigger the RISO  
resistor value, the more stable VOUT will be. Figure 52 is an output waveform of Figure 51 using 620for RISO  
and 510 pF for CL..  
Figure 52. Pulse Response of the LMV324 Circuit in Figure 51  
The circuit in Figure 53 is an improvement to the one in Figure 51 because it provides DC accuracy as well as  
AC stability. If there were a load resistor in Figure 51, the output would be voltage divided by RISO and the load  
resistor. Instead, in Figure 53, RF provides the DC accuracy by using feed-forward techniques to connect VIN to  
RL. Caution is needed in choosing the value of RF due to the input bias current of theLMV321-N/LMV358-  
N/LMV324-N. CF and RISO serve to counteract the loss of phase margin by feeding the high frequency  
component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the  
overall feedback loop. Increased capacitive drive is possible by increasing the value of CF . This in turn will slow  
down the pulse response.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Figure 53. Indirectly Driving A Capacitive Load with DC Accuracy  
INPUT BIAS CURRENT CANCELLATION  
The LMV321-N/LMV358-N/LMV324-N family has a bipolar input stage. The typical input bias current of LMV321-  
N/LMV358-N/LMV324-N is 15 nA with 5V supply. Thus a 100 kinput resistor will cause 1.5 mV of error voltage.  
By balancing the resistor values at both inverting and non-inverting inputs, the error caused by the amplifier's  
input bias current will be reduced. The circuit in Figure 54 shows how to cancel the error caused by input bias  
current.  
Figure 54. Cancelling the Error Caused by Input Bias Current  
TYPICAL SINGLE-SUPPLY APPLICATION CIRCUITS  
Difference Amplifier  
The difference amplifier allows the subtraction of two voltages or, as a special case, the cancellation of a signal  
common to two inputs. It is useful as a computational amplifier, in making a differential to single-ended  
conversion or in rejecting a common mode signal.  
16  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Figure 55. Difference Amplifier  
Instrumentation Circuits  
The input impedance of the previous difference amplifier is set by the resistors R1, R2, R3, and R4. To eliminate  
the problems of low input impedance, one way is to use a voltage follower ahead of each input as shown in the  
following two instrumentation amplifiers.  
Three-Op-Amp Instrumentation Amplifier  
The quad LMV324 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 56.  
Figure 56. Three-Op-Amp Instrumentation Amplifier  
The first stage of this instrumentation amplifier is a differential-input, differential-output amplifier, with two voltage  
followers. These two voltage followers assure that the input impedance is over 100 M. The gain of this  
instrumentation amplifier is set by the ratio of R2/R1. R3 should equal R1, and R4 equal R2. Matching of R3 to R1  
and R4 to R2 affects the CMRR. For good CMRR over temperature, low drift resistors should be used. Making R4  
slightly smaller than R2 and adding a trim pot equal to twice the difference between R2 and R4 will allow the  
CMRR to be adjusted for optimum performance.  
Two-Op-Amp Instrumentation Amplifier  
A two-op-amp instrumentation amplifier can also be used to make a high-input-impedance DC differential  
amplifier (Figure 57). As in the three-op-amp circuit, this instrumentation amplifier requires precise resistor  
matching for good CMRR. R4 should equal R1 and, R3 should equal R2.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Figure 57. Two-Op-Amp Instrumentation Amplifier  
Single-Supply Inverting Amplifier  
There may be cases where the input signal going into the amplifier is negative. Because the amplifier is  
operating in single supply voltage, a voltage divider using R3 and R4 is implemented to bias the amplifier so the  
input signal is within the input common-mode voltage range of the amplifier. The capacitor C1 is placed between  
the inverting input and resistor R1 to block the DC signal going into the AC signal source, VIN. The values of R1  
and C1 affect the cutoff frequency, fc = 1/2πR1C1.  
As a result, the output signal is centered around mid-supply (if the voltage divider provides V+/2 at the non-  
inverting input). The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system.  
Figure 58. Single-Supply Inverting Amplifier  
ACTIVE FILTER  
Simple Low-Pass Active Filter  
The simple low-pass filter is shown in Figure 59. Its low-frequency gain (ω → 0) is defined by R3/R1. This allows  
low-frequency gains other than unity to be obtained. The filter has a 20 dB/decade roll-off after its corner  
frequency fc. R2 should be chosen equal to the parallel combination of R1 and R3 to minimize errors due to bias  
current. The frequency response of the filter is shown in Figure 60.  
18  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Figure 59. Simple Low-Pass Active Filter  
Figure 60. Frequency Response of Simple Low-Pass Active Filter in Figure 11  
Note that the single-op-amp active filters are used in the applications that require low quality factor, Q( 10), low  
frequency (5 kHz), and low gain (10), or a small value for the product of gain times Q (100). The op amp  
should have an open loop voltage gain at the highest frequency of interest at least 50 times larger than the gain  
of the filter at this frequency. In addition, the selected op amp should have a slew rate that meets the following  
requirement:  
Slew Rate 0.5 × (ω HVOPP) × 106 V/µsec  
(1)  
where ωH is the highest frequency of interest, and VOPP is the output peak-to-peak voltage.  
Sallen-Key 2nd-Order Active Low-Pass Filter  
The Sallen-Key 2nd-order active low-pass filter is illustrated in Figure 61. The DC gain of the filter is expressed  
as  
(2)  
Its transfer function is  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
(3)  
Figure 61. Sallen-Key 2nd-Order Active Low-Pass Filter  
The following paragraphs explain how to select values for R1, R2, R3, R4, C1, and C 2 for given filter requirements,  
such as ALP, Q, and fc.  
The standard form for a 2nd-order low pass filter is  
(4)  
where  
Q: Pole Quality Factor  
ωC: Corner Frequency  
A comparison between Equation 3 and Equation 4 yields  
(5)  
(6)  
To reduce the required calculations in filter design, it is convenient to introduce normalization into the  
components and design parameters. To normalize, let ωC = ωn = 1 rad/s, and C1 = C2 = Cn = 1F, and substitute  
these values into Equation 5 and Equation 6. From Equation 5, we obtain  
(7)  
From Equation 6, we obtain  
(8)  
For minimum DC offset, V+ = V, the resistor values at both inverting and non-inverting inputs should be equal,  
which means  
(9)  
20  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
 
 
 
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
From Equation 2 and Equation 9, we obtain  
(10)  
(11)  
The values of C1 and C2 are normally close to or equal to  
(12)  
As a design example:  
Require: ALP = 2, Q = 1, fc = 1 kHz  
Start by selecting C1 and C2. Choose a standard value that is close to  
(13)  
(14)  
From Equation 7 Equation 8 Equation 10 Equation 11,  
R1= 1Ω  
R2= 1Ω  
R3= 4Ω  
R4= 4Ω  
(15)  
(16)  
(17)  
(18)  
The above resistor values are normalized values with ωn = 1 rad/s and C1 = C2 = Cn = 1F. To scale the  
normalized cutoff frequency and resistances to the real values, two scaling factors are introduced, frequency  
scaling factor (kf) and impedance scaling factor (km).  
(19)  
Scaled values:  
R2 = R1 = 15.9 kΩ  
R3 = R4 = 63.6 kΩ  
C1 = C2 = 0.01 µF  
(20)  
(21)  
(22)  
An adjustment to the scaling may be made in order to have realistic values for resistors and capacitors. The  
actual value used for each component is shown in the circuit.  
2nd-Order High Pass Filter  
A 2nd-order high pass filter can be built by simply interchanging those frequency selective components (R1, R2,  
C1, C2) in the Sallen-Key 2nd-order active low pass filter. As shown in Figure 62, resistors become capacitors,  
and capacitors become resistors. The resulted high pass filter has the same corner frequency and the same  
maximum gain as the previous 2nd-order low pass filter if the same components are chosen.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Figure 62. Sallen-Key 2nd-Order Active High-Pass Filter  
State Variable Filter  
A state variable filter requires three op amps. One convenient way to build state variable filters is with a quad op  
amp, such as the LMV324 (Figure 63).  
This circuit can simultaneously represent a low-pass filter, high-pass filter, and bandpass filter at three different  
outputs. The equations for these functions are listed below. It is also called "Bi-Quad" active filter as it can  
produce a transfer function which is quadratic in both numerator and denominator.  
Figure 63. State Variable Active Filter  
22  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
(23)  
where for all three filters,  
(24)  
(25)  
A design example for a bandpass filter is shown below:  
Assume the system design requires a bandpass filter with f = 1 kHz and Q = 50. What needs to be calculated  
O
are capacitor and resistor values.  
First choose convenient values for C1, R1 and R2:  
C1 = 1200 pF  
(26)  
(27)  
2R2 = R1 = 30 kΩ  
Then from Equation 24,  
(28)  
From Equation 25,  
(29)  
From the above calculated values, the midband gain is H0 = R3/R2 = 100 (40 dB). The nearest 5% standard  
values have been added to Figure 63.  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
PULSE GENERATORS AND OSCILLATORS  
A pulse generator is shown in Figure 64. Two diodes have been used to separate the charge and discharge  
paths to capacitor C.  
Figure 64. Pulse Generator  
When the output voltage VO is first at its high, VOH, the capacitor C is charged toward VOH through R2. The  
voltage across C rises exponentially with a time constant τ = R2C, and this voltage is applied to the inverting  
input of the op amp. Meanwhile, the voltage at the non-inverting input is set at the positive threshold voltage  
(VTH+) of the generator. The capacitor voltage continually increases until it reaches VTH+, at which point the  
output of the generator will switch to its low, VOL which 0V is in this case. The voltage at the non-inverting input is  
switched to the negative threshold voltage (VTH) of the generator. The capacitor then starts to discharge toward  
VOL exponentially through R1, with a time constant τ = R1C. When the capacitor voltage reaches VTH, the output  
of the pulse generator switches to VOH. The capacitor starts to charge, and the cycle repeats itself.  
24  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
Figure 65. Waveforms of the Circuit in Figure 16  
As shown in the waveforms in Figure 65, the pulse width (T1) is set by R2, C and VOH, and the time between  
pulses (T2) is set by R1, C and VOL. This pulse generator can be made to have different frequencies and pulse  
width by selecting different capacitor value and resistor values.  
Figure 66 shows another pulse generator, with separate charge and discharge paths. The capacitor is charged  
through R1 and is discharged through R2.  
Figure 66. Pulse Generator  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
Figure 67 is a squarewave generator with the same path for charging and discharging the capacitor.  
Figure 67. Squarewave Generator  
CURRENT SOURCE AND SINK  
The LMV321-N/LMV358-N/LMV324-N can be used in feedback loops which regulate the current in external PNP  
transistors to provide current sources or in external NPN transistors to provide current sinks.  
Fixed Current Source  
A multiple fixed current source is shown in Figure 68. A voltage (VREF = 2V) is established across resistor R3 by  
the voltage divider (R3 and R4). Negative feedback is used to cause the voltage drop across R1 to be equal to  
VREF. This controls the emitter current of transistor Q1 and if we neglect the base current of Q1 and Q2,  
essentially this same current is available out of the collector of Q1.  
Large input resistors can be used to reduce current loss and a Darlington connection can be used to reduce  
errors due to the β of Q1.  
The resistor, R2, can be used to scale the collector current of Q2 either above or below the 1 mA reference value.  
Figure 68. Fixed Current Source  
26  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
High Compliance Current Sink  
A current sink circuit is shown in Figure 69. The circuit requires only one resistor (RE) and supplies an output  
current which is directly proportional to this resistor value.  
Figure 69. High Compliance Current Sink  
POWER AMPLIFIER  
A power amplifier is illustrated in Figure 70. This circuit can provide a higher output current because a transistor  
follower is added to the output of the op amp.  
Figure 70. Power Amplifier  
LED DRIVER  
The LMV321-N/LMV358-N/LMV324-N can be used to drive an LED as shown in Figure 71.  
Figure 71. LED Driver  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
 
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
www.ti.com  
COMPARATOR WITH HYSTERESIS  
The LMV321-N/LMV358-N/LMV324-N can be used as a low power comparator. Figure 72 shows a comparator  
with hysteresis. The hysteresis is determined by the ratio of the two resistors.  
VTH+ = VREF/(1+R 1/R2)+VOH/(1+R2/R1)  
VTH= VREF/(1+R 1/R2)+VOL/(1+R2/R1)  
VH = (VOHVOL)/(1+R 2/R1)  
(30)  
(31)  
(32)  
where  
VTH+: Positive Threshold Voltage  
VTH: Negative Threshold Voltage  
VOH: Output Voltage at High  
VOL: Output Voltage at Low  
VH: Hysteresis Voltage  
Since LMV321-N/LMV358-N/LMV324-N have rail-to-rail output, the (VOHVOL) is equal to VS, which is the supply  
voltage.  
VH = VS/(1+R2/R1)  
(33)  
The differential voltage at the input of the op amp should not exceed the specified absolute maximum ratings.  
For real comparators that are much faster, we recommend you use Texas Instruments's  
LMV331/LMV93/LMV339, which are single, dual and quad general purpose comparators for low voltage  
operation.  
Figure 72. Comparator with Hysteresis  
28  
Submit Documentation Feedback  
Copyright © 2000–2013, Texas Instruments Incorporated  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
 
LMV321-N, LMV321-N-Q1, LMV358-N, LMV358-N-Q1  
LMV324-N, LMV324-N-Q1  
www.ti.com  
SNOS012I AUGUST 2000REVISED FEBRUARY 2013  
REVISION HISTORY  
Changes from Revision H (February 2013) to Revision I  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 28  
Copyright © 2000–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LMV321-N LMV321-N-Q1 LMV358-N LMV358-N-Q1 LMV324-N LMV324-N-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LMV321M5  
ACTIVE  
SOT-23  
SOT-23  
DBV  
5
5
1000  
TBD  
Call TI  
SN  
Call TI  
-40 to 85  
-40 to 85  
A13  
A13  
LMV321M5/NOPB  
ACTIVE  
DBV  
1000  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV321M5X  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
3000  
3000  
TBD  
Call TI  
SN  
Call TI  
-40 to 85  
-40 to 85  
A13  
A13  
LMV321M5X/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV321M7  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
5
5
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
A12  
A12  
LMV321M7/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV321M7X  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
5
5
3000  
3000  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
A12  
A12  
LMV321M7X/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV321Q1M5/NOPB  
LMV321Q1M5X/NOPB  
LMV321Q3M5/NOPB  
LMV321Q3M5X/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
1000  
3000  
1000  
3000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
AYA  
AYA  
AZA  
AZA  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LMV324M  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
14  
14  
55  
55  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
LMV324M  
LMV324M  
LMV324M/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV324MT  
LMV324MT/NOPB  
LMV324MTX  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
14  
14  
14  
14  
94  
94  
TBD  
Call TI  
CU SN  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LMV324  
MT  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Call TI  
LMV324  
MT  
2500  
2500  
TBD  
LMV324  
MT  
LMV324MTX/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV324  
MT  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LMV324MX  
ACTIVE  
SOIC  
SOIC  
D
14  
14  
2500  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
LMV324M  
LMV324MX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
2500  
55  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV324M  
LMV324Q1MA/NOPB  
LMV324Q1MAX/NOPB  
LMV324Q1MT/NOPB  
LMV324Q1MTX/NOPB  
LMV324Q3MA/NOPB  
LMV324Q3MAX/NOPB  
LMV324Q3MT/NOPB  
LMV324Q3MTX/NOPB  
LMV358M  
SOIC  
SOIC  
14  
14  
14  
14  
14  
14  
14  
14  
8
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LMV324Q1  
MA  
D
2500  
94  
Green (RoHS  
& no Sb/Br)  
LMV324Q1  
MA  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
Green (RoHS  
& no Sb/Br)  
LMV324  
Q1MT  
2500  
55  
Green (RoHS  
& no Sb/Br)  
LMV324  
Q1MT  
Green (RoHS  
& no Sb/Br)  
LMV324Q3  
MA  
SOIC  
D
2500  
94  
Green (RoHS  
& no Sb/Br)  
LMV324Q3  
MA  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
Green (RoHS  
& no Sb/Br)  
LMV324  
Q3MT  
2500  
95  
Green (RoHS  
& no Sb/Br)  
LMV324  
Q3MT  
TBD  
LMV  
358M  
LMV358M/NOPB  
SOIC  
D
8
95  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV  
358M  
LMV358MM  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
V358  
LMV358MM/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
V358  
LMV358MMX  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
3500  
3500  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
V358  
V358  
LMV358MMX/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV358MX  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
LMV  
358M  
LMV358MX/NOPB  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LMV  
358M  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LMV358Q1MA/NOPB  
LMV358Q1MAX/NOPB  
LMV358Q1MM/NOPB  
LMV358Q1MMX/NOPB  
LMV358Q3MA/NOPB  
LMV358Q3MAX/NOPB  
LMV358Q3MM/NOPB  
LMV358Q3MMX/NOPB  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
8
8
8
8
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
LMV35  
8Q1MA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
D
2500  
1000  
3500  
95  
Green (RoHS  
& no Sb/Br)  
LMV35  
8Q1MA  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
Green (RoHS  
& no Sb/Br)  
AFAA  
Green (RoHS  
& no Sb/Br)  
AFAA  
Green (RoHS  
& no Sb/Br)  
LMV35  
8Q3MA  
SOIC  
D
2500  
1000  
3500  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
LMV35  
8Q3MA  
VSSOP  
VSSOP  
DGK  
DGK  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
AHAA  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
AHAA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-May-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMV321-N, LMV321-N-Q1, LMV324-N, LMV324-N-Q1, LMV358-N, LMV358-N-Q1 :  
Catalog: LMV321-N, LMV324-N, LMV358-N  
Automotive: LMV321-N-Q1, LMV324-N-Q1, LMV358-N-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV321M5  
LMV321M5/NOPB  
LMV321M5X  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DBV  
DBV  
DCK  
DCK  
DCK  
DCK  
DBV  
DBV  
DBV  
DBV  
PW  
PW  
D
5
5
1000  
1000  
3000  
3000  
1000  
1000  
3000  
3000  
1000  
3000  
1000  
3000  
2500  
2500  
2500  
2500  
2500  
2500  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.2  
1.2  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.6  
1.6  
2.3  
2.3  
2.3  
2.3  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
5
8.4  
3.2  
3.2  
8.0  
LMV321M5X/NOPB  
LMV321M7  
5
8.4  
3.2  
3.2  
8.0  
5
8.4  
2.25  
2.25  
2.25  
2.25  
3.2  
2.45  
2.45  
2.45  
2.45  
3.2  
8.0  
LMV321M7/NOPB  
LMV321M7X  
SC70  
5
8.4  
8.0  
SC70  
5
8.4  
8.0  
LMV321M7X/NOPB  
LMV321Q1M5/NOPB  
SC70  
5
8.4  
8.0  
SOT-23  
5
8.4  
8.0  
LMV321Q1M5X/NOPB SOT-23  
LMV321Q3M5/NOPB SOT-23  
LMV321Q3M5X/NOPB SOT-23  
5
8.4  
3.2  
3.2  
8.0  
5
8.4  
3.2  
3.2  
8.0  
5
8.4  
3.2  
3.2  
8.0  
LMV324MTX  
LMV324MTX/NOPB  
LMV324MX  
TSSOP  
TSSOP  
SOIC  
14  
14  
14  
14  
14  
14  
12.4  
12.4  
16.4  
16.4  
16.4  
16.4  
6.95  
6.95  
6.5  
8.3  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
8.3  
9.35  
9.35  
9.35  
9.35  
LMV324MX/NOPB  
LMV324Q1MAX/NOPB  
LMV324Q3MAX/NOPB  
SOIC  
D
6.5  
SOIC  
D
6.5  
SOIC  
D
6.5  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMV358MM  
LMV358MM/NOPB  
LMV358MMX  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
1000  
1000  
3500  
3500  
2500  
2500  
2500  
1000  
3500  
2500  
1000  
3500  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
6.5  
6.5  
6.5  
5.3  
5.3  
6.5  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
5.4  
5.4  
5.4  
3.4  
3.4  
5.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
2.0  
2.0  
2.0  
1.4  
1.4  
2.0  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LMV358MMX/NOPB  
LMV358MX  
LMV358MX/NOPB  
LMV358Q1MAX/NOPB  
LMV358Q1MM/NOPB  
SOIC  
D
SOIC  
D
VSSOP  
DGK  
DGK  
D
LMV358Q1MMX/NOPB VSSOP  
LMV358Q3MAX/NOPB  
LMV358Q3MM/NOPB  
SOIC  
VSSOP  
DGK  
DGK  
LMV358Q3MMX/NOPB VSSOP  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV321M5  
LMV321M5/NOPB  
LMV321M5X  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DBV  
DBV  
DCK  
5
5
5
5
5
1000  
1000  
3000  
3000  
1000  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LMV321M5X/NOPB  
LMV321M7  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMV321M7/NOPB  
LMV321M7X  
SC70  
SC70  
DCK  
DCK  
DCK  
DBV  
DBV  
DBV  
DBV  
PW  
PW  
D
5
5
1000  
3000  
3000  
1000  
3000  
1000  
3000  
2500  
2500  
2500  
2500  
2500  
2500  
1000  
1000  
3500  
3500  
2500  
2500  
2500  
1000  
3500  
2500  
1000  
3500  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
367.0  
349.0  
349.0  
210.0  
210.0  
367.0  
367.0  
367.0  
367.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
367.0  
367.0  
367.0  
367.0  
337.0  
337.0  
185.0  
185.0  
367.0  
367.0  
367.0  
367.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
45.0  
45.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LMV321M7X/NOPB  
LMV321Q1M5/NOPB  
LMV321Q1M5X/NOPB  
LMV321Q3M5/NOPB  
LMV321Q3M5X/NOPB  
LMV324MTX  
SC70  
5
SOT-23  
SOT-23  
SOT-23  
SOT-23  
TSSOP  
TSSOP  
SOIC  
5
5
5
5
14  
14  
14  
14  
14  
14  
8
LMV324MTX/NOPB  
LMV324MX  
LMV324MX/NOPB  
LMV324Q1MAX/NOPB  
LMV324Q3MAX/NOPB  
LMV358MM  
SOIC  
D
SOIC  
D
SOIC  
D
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
LMV358MM/NOPB  
LMV358MMX  
8
8
LMV358MMX/NOPB  
LMV358MX  
8
8
LMV358MX/NOPB  
LMV358Q1MAX/NOPB  
LMV358Q1MM/NOPB  
LMV358Q1MMX/NOPB  
LMV358Q3MAX/NOPB  
LMV358Q3MM/NOPB  
LMV358Q3MMX/NOPB  
SOIC  
D
8
SOIC  
D
8
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
VSSOP  
VSSOP  
DGK  
DGK  
8
8
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LMV358-P08-R

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
UTC

LMV358-P08-T

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
UTC

LMV358-PR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV358-Q1

LOW-VOLTAGE RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
TI

LMV358-S08-R

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
UTC

LMV358-S08-T

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
UTC

LMV358-SM1-R

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL OUTPUT OPERATIONAL AMPLIFIERS
UTC

LMV358-SR

1MHZ CMOS Rail-to-Rail IO Opamp with RF Filter
HMSEMI

LMV358A

双路、5.5V、1MHz、4mV 失调电压、RRO 运算放大器
TI

LMV358A-Q1

LMV321A-Q1, LMV358A-Q1, LMV324A-Q1 Automotive Low-Voltage Rail-to-Rail Output Operational Amplifiers
TI

LMV358AIDDFR

双路、5.5V、1MHz、4mV 失调电压、RRO 运算放大器 | DDF | 8 | -40 to 125
TI

LMV358AIDGKR

双路、5.5V、1MHz、4mV 失调电压、RRO 运算放大器 | DGK | 8 | -40 to 125
TI