LMX2491 [TI]

具有斜坡/线性调频脉冲生成功能的 6.4GHz 低噪声分数 N PLL;
LMX2491
型号: LMX2491
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有斜坡/线性调频脉冲生成功能的 6.4GHz 低噪声分数 N PLL

脉冲
文件: 总49页 (文件大小:2614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
LMX2491 具有斜坡/线性调频生成功能的 6.4GHz 低噪声 RF PLL  
1 特性  
3 说明  
1
-227dBc/Hz 标准化锁相环 (PLL) 噪声  
500MHz 6.4GHz 宽带 PLL  
3.15V 5.25V 电荷泵 PLL 电源  
多用途斜坡/超宽带信号源生成功能  
200MHz 最大相位检测器频率  
频移键控/相移键控 (FSK/PSK) 调制引脚  
数字锁检测  
LMX2491 器件是一款具有斜坡/线性调频生成功能的低  
噪声 6.4GHz 宽带 Δ-Σ 分数 N PLL。它由一个相位频  
率检测器、可编程电荷泵以及适用于外部 VCO 的高频  
输入组成。LMX2491 广泛支持各类灵活的斜坡功能,  
包括 FSKPSK 和多达 8 段的可配置分段线性 FM 调  
制配置文件。该器件具有精密 PLL 分辨率和快速斜升  
功能,相位检测器速率高达 200MHzLMX2491 允许  
读回其任一寄存器。LMX2491 可由 3.3V 单电源供电  
运行。此外,该器件支持电压高达 5.25V 的电荷泵,  
无需使用外部放大器即可提供相位噪声性能得到改善的  
简易解决方案。  
3.3V 单电源供电  
2 应用  
调频连续波 (FMCW) 雷达  
军用雷达  
器件信息  
微波回程  
器件编号  
LMX2491  
封装  
WQFN (24)  
封装尺寸(标称值)  
测试和测量  
卫星通信  
4.00mm x 4.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
无线基础设施  
适用于高速模数转换器/数模转换器 (ADC/DAC) 的  
采样时钟  
简化原理图  
OSCin  
2X  
R Divider  
(16 bit)  
CPout  
Phase  
Comp  
Charge  
Pump  
51 Ω  
GND/OSCin*  
GND (x3)  
C2_LF  
R2_LF  
51 Ω  
C1_LF  
Vcp  
18 Ω  
18 Ω  
Vcc (x5)  
Fin  
CE  
CLK  
DATA  
MICROWIRE  
Interface  
36 Ω  
18 Ω  
To Circuit  
N Divider  
(18 bit)  
LE  
Fin*  
68 Ω  
TRIG1  
51 Ω  
û  
TRIG2  
MOD  
Modulation  
Generator  
Compensation  
(24 bit)  
MUX  
MUXout  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNAS711  
 
 
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
7.5 Programming........................................................... 14  
7.6 Register Maps......................................................... 14  
Applications and Implementation ...................... 27  
8.1 Application Information............................................ 27  
8.2 Typical Application .................................................. 27  
Power Supply Recommendations...................... 39  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Storage Conditions.................................................... 4  
6.3 ESD Ratings.............................................................. 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Thermal Information.................................................. 4  
6.6 Electrical Characteristics .......................................... 5  
8
9
10 Layout................................................................... 39  
10.1 Layout Guidelines ................................................. 39  
10.2 Layout Example .................................................... 40  
11 器件和文档支持 ..................................................... 41  
11.1 器件支持 ............................................................... 41  
11.2 文档支持 ............................................................... 41  
11.3 接收文档更新通知 ................................................. 41  
11.4 社区资源................................................................ 41  
11.5 ....................................................................... 41  
11.6 静电放电警告......................................................... 41  
11.7 Glossary................................................................ 41  
12 机械、封装和可订购信息....................................... 41  
6.7 Timing Requirements, Programming Interface (CLK,  
DATA, LE).................................................................. 6  
6.8 Typical Characteristics ............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
7
4 修订历史记录  
Changes from Original (October 2016) to Revision A  
Page  
Deleted Charge pump output pin from the table ................................................................................................................... 4  
Changed to Supply voltage ................................................................................................................................................... 4  
Changed to I/O input voltage ................................................................................................................................................. 4  
Changed to Power down current ........................................................................................................................................... 5  
Changed DATA field bit description........................................................................................................................................ 6  
Added new plots in Typical Characteristics ........................................................................................................................... 7  
Changed Table 1 title ............................................................................................................................................................. 9  
Added CMP0 and CMP1 definition. Changed Equation 1 description. ................................................................................ 12  
Added Register Readback ................................................................................................................................................... 13  
Added MSB bit description .................................................................................................................................................. 14  
Changed the format in Window and fPD Frequency column ................................................................................................ 21  
Changed to correct register bits location ............................................................................................................................. 23  
Changed to correct value .................................................................................................................................................... 25  
Added correct start time ...................................................................................................................................................... 26  
Added design details and plots in Typical Application ........................................................................................................ 27  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
5 Pin Configuration and Functions  
RTW Package  
24-Pin VQFN  
Top View  
24 23 22 21 20 19  
GND  
1
18 Vcc  
17 MUXout  
GND  
2
GND  
3
LE  
16  
15  
Pin 0  
(Ground Substrate)  
Fin  
Fin*  
Vcc  
4
5
6
DATA  
14 CLK  
CE  
13  
7
8
9
10 11 12  
Pin Functions  
TERMINAL  
NAME  
TYPE  
DESCRIPTION  
NO.  
0
DAP  
GND  
GND  
GND  
GND  
GND  
Die Attach Pad. Connect to PCB ground plane.  
Ground for charge pump.  
1
2, 3  
Ground for Fin Buffer  
Complimentary high frequency input pins. Should be AC-coupled. If driving single-ended,  
impedance as seen from Fin and Fin* pins looking outwards from the part should be roughly the  
same.  
Fin  
Fin*  
4, 5  
Input  
6
7
8
9
Vcc  
Vcc  
Supply  
Supply  
Supply  
Input  
Power Supply for Fin Buffer  
Supply for On-chip LDOs  
Supply for OSCin Buffer  
Vcc  
OSCin  
Reference Frequency Input  
Complimentary input for OSCin.  
GND/  
OSCin*  
10  
GND/Input If not used, it is recommended to match the termination as seen from the OSCin terminal looking  
outwards. However, this may also be grounded as well.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
MOD  
CE  
GND  
Ground for OSCin Buffer  
Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Input  
GND  
GND  
Input  
Chip Enable  
CLK  
DATA  
LE  
Serial Programming Clock.  
Serial Programming Data  
Serial Programming Latch Enable  
MUXout Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Vcc  
Vcc  
Supply  
Supply  
Supply for delta sigma engine.  
Supply for general circuitry.  
TRIG1  
TRIG2  
Vcp  
Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Supply  
NC  
Power Supply for the charge pump.  
No connect.  
Rset  
CPout  
Output  
Charge Pump Output  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
VCC  
–0.3  
–0.3  
MAX  
5.5  
UNIT  
V
VCP  
Supply voltage for charge pump  
Supply voltage  
VCC  
3.6  
V
VIN  
I/O input voltage  
VCC + 0.3  
260  
V
TSolder  
TJunction  
Lead temperature (solder 4 seconds)  
Junction temperature  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 Storage Conditions  
applicable before the DMD is installed in the final product  
MIN  
MAX  
150  
3
UNIT  
°C  
Tstg  
TDP  
DMD storage temperature  
Storage dew point  
–65  
°C  
6.3 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±2500  
±1500  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Supply voltage  
MIN  
3.15  
VCC  
–40  
–40  
NOM  
MAX  
3.45  
5.25  
85  
UNIT  
VCC  
VCP  
TA  
3.3  
V
V
Charge pump supply voltage  
Ambient temperature  
°C  
°C  
TJ  
Junction temperature  
125  
6.5 Thermal Information  
LMX2491  
THERMAL METRIC(1)  
RTW (VQFN)  
24 PINS  
39.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
RθJC(top)  
ψJB  
Junction-to-case (top) thermal resistance  
Junction-to-board characterization parameter  
7.1  
20  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
6.6 Electrical Characteristics  
3.15 V VCC 3.45 V, VCC VCP 5.25 V, –40 °C TA 85 °C, except as specified. Typical values are at VCC = VCP = 3.3 V,  
25 °C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
45  
50  
55  
2
MAX  
UNIT  
fPD = 10 MHz  
All Vcc pins  
fPD = 100 MHz  
fPD = 200 MHz  
KPD = 0.1 mA  
KPD = 1.6 mA  
KPD = 3.1 mA  
ICC  
Current consumption  
Power down current  
mA  
Vcp pin  
10  
19  
3
ICCPD  
POWERDOWN  
OSC_DIFFR = 0, doubler disabled  
OSC_DIFFR = 0, doubler enabled  
OSC_DIFFR = 1, doubler disabled  
OSC_DIFFR = 1, doubler enabled  
10  
10  
600  
300  
Frequency for OSCin  
terminal  
fOSCin  
MHz  
10  
1200  
600  
10  
VOSCin  
fFin  
Voltage for OSCin pin(1)  
Frequency for Fin pin  
Power for Fin pin  
0.5  
500  
–5  
VCC – 0.5  
6400  
5
VPP  
MHz  
PFin  
Single-ended operation  
dBm  
fPD  
Phase detector frequency  
PLL figure of merit(2)  
200  
MHz  
PN1Hz  
–227  
–120  
dBc/Hz  
Normalized to 10-kHz offset for a 1-  
GHz carrier.  
PN10kHz  
Normalized PLL 1/f noise(2)  
dBc/Hz  
nA  
Charge pump leakage tri-  
state leakage  
Charge pump mismatch(3) VCPout = VCP / 2  
ICPoutTRI  
ICPoutMM  
10  
5%  
0.1  
CPG = 1X  
ICPout  
Charge pump current  
VCPout = VCP / 2  
mA  
CPG = 31X  
3.1  
LOGIC OUTPUT TERMINALS (MUXout, TRIG1, TRIG2, MOD)  
VOH  
VOL  
Output high voltage  
Output low voltage  
0.8 × VCC  
VCC  
0
V
V
0.2 × VCC  
LOGIC INPUT TERMINALS (CE, CLK, DATA, LE, MUXout, TRIG1, TRIG2, MOD)  
VIH  
Input high voltage  
1.4  
0
VCC  
0.6  
5
V
V
VIL  
Input low voltage  
IIH  
Input leakage current  
Chip enable low time  
Chip enable high time  
–5  
5
1
µA  
µs  
µs  
tCELOW  
tCEHIGH  
5
(1) For optimal phase noise performance, higher input voltage and a slew rate of at least 3 V/ns is recommended  
(2) PLL Noise Metrics are measured with a clean OSCin signal with a high slew rate using a wide loop bandwidth. The noise metrics model  
the PLL noise for an infinite loop bandwidth as:  
PLL_Total = 10 × log( 10PLL_Flat / 10 + 10PLL_Flicker(Offset) / 10  
PLL_Flat = PN1Hz + 20 × log(N) + 10 × log(fPD / 1 Hz)  
)
PLL_Flicker = PN10kHz - 10 × log(Offset / 10 kHz) + 20 × log(fVCO / 1 GHz)  
(3) Charge pump mismatch varies as a function of charge pump voltage. Consult typical performance characteristics to see this variation.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
6.7 Timing Requirements, Programming Interface (CLK, DATA, LE)  
MIN  
TYP  
MAX  
UNIT  
ns  
tCE  
Clock to LE low time  
10  
4
tCS  
Data to clock setup time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
ns  
tCH  
4
ns  
tCWH  
tCWL  
tCES  
tEWH  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
DATA  
MSB  
LSB  
tCS  
tCH  
CLK  
tCES  
tCWH  
tCE  
tEWH  
tCWL  
LE  
Figure 1. Serial Data Input Timing  
There are several other considerations for programming:  
The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE  
signal, the data is sent from the shift register to an actual counter.  
If no LE signal is given after the last data bit and the clock is kept toggling, then these bits are read into the  
next lower register. This eliminates the need to send the address each time.  
A slew rate of at least 30 V/µs is recommended for the CLK, DATA, and LE signals  
Timing specs also apply to readback. Readback can be done through the MUXout, TRIG1, TRIG2, or MOD  
terminals.  
6.8 Typical Characteristics  
5
4
5
4
3
3
2
2
1
1
0
0
œ1  
œ2  
œ3  
œ4  
œ5  
œ1  
œ2  
œ3  
œ4  
œ5  
Kpd = 8x  
Kpd = 16x  
Kpd = 31x  
Kpd = 8x  
Kpd = 16x  
Kpd = 31x  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Charge Pump Voltage (V)  
Charge Pump Voltage (V)  
C001  
C002  
Optimal performance is for a typical charge pump output voltage  
between 0.5 and 2.8 volts.  
Optimal performance is typically for a charge pump output voltage  
between 0.5 and 4.5 volts.  
Figure 2. Charge Pump Current for VCP = 3.3 V  
Figure 3. Charge Pump Current for VCP = 5.5 V  
6
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Typical Characteristics (continued)  
See Frequency Shift Keying Example for the detail of  
configuration.  
See Single Sawtooth Ramp Example for the detail of  
configuration.  
Figure 4. Frequency Shift Keying  
Figure 5. Single Sawtooth Ramp  
See Continuous Sawtooth Ramp Example for the detail of  
configuration.  
See Continuous Sawtooth Ramp with FSK Example for the detail  
of configuration.  
Figure 6. Continuous Sawtooth Ramp  
Figure 7. Continuous Sawtooth Ramp with FSK  
Copyright © 2016–2017, Texas Instruments Incorporated  
7
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
See Continuous Triangular Ramp Example for the detail of  
configuration.  
See Continuous Trapezoid Ramp Example for the detail of  
configuration.  
Figure 8. Continuous Triangular Ramp  
Figure 9. Continuous Trapezoid Ramp  
See Arbitrary Waveform Ramp Example for the detail of  
configuration.  
See Arbitrary Waveform Ramp Example for the detail of  
configuration.  
Figure 11. Output Flags  
Figure 10. Arbitrary Waveform Ramp  
8
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
7 Detailed Description  
7.1 Overview  
The LMX2491 is a microwave PLL, consisting of a reference input and divider, high frequency input and divider,  
charge pump, ramp generator, and other digital logic. The Vcc power supply pins run at a nominal 3.3 volts,  
while the charge pump supply pin, Vcp, operates anywhere from VCC to 5 volts. The device is designed to  
operate with an external loop filter and VCO. Modulation is achieved by manipulating the MASH engine.  
7.2 Functional Block Diagram  
GND  
(x3)  
Vcc (x5)  
Vcp  
2X  
OSCin  
R Divider  
(16 bit)  
Charge  
Pump  
CPout  
GND/OSCin*  
Lock  
Detect  
Fin  
Fin*  
CE  
N Divider  
(18 bit)  
4/5  
Prescaler  
TRIG1  
TRIG2  
MOD  
CLK  
DATA  
û  
Modulation  
Generator  
MUX  
MICROWIRE  
Interface  
Compensation  
(24 bit)  
LE  
MUXout  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
7.3.1 OSCin Input  
The reference can be applied in several ways. If using a differential input, this must be terminated differentially  
with a 100-Ω resistance and AC-coupled to the OSCin and GND/OSCin* terminals. If driving this single-ended,  
then the GND/OSCin* terminal may be grounded, although better performance is attained by connecting the  
GND/OSCin* terminal through a series resistance and capacitance to ground to match the OSCin terminal  
impedance.  
7.3.2 OSCin Doubler  
The OSCin doubler allows the input signal to the OSCin to be doubled to have higher phase detector  
frequencies. This works by clocking on both the rising and falling edges of the input signal, so it therefore  
requires a 50% input duty cycle.  
7.3.3 R Divider  
The R counter is 16 bits divides the OSCin signal from 1 to 65535. If DIFF_R = 0, then any value can be chosen  
in this range. If DIFF_R = 1, then the divide is restricted to 2, 4, 8, and 16, but allows for higher OSCin  
frequencies.  
7.3.4 PLL N Divider  
The 16-bit N divider divides the signal at the Fin terminal down to the phase detector frequency. It contains a 4/5  
prescaler that creates minimum divide restrictions, but allows the N value to increment in values of one.  
Table 1. Allowable Minimum N Divider Values  
MODULATOR ORDER  
Integer Mode, 1st-Order Modulator  
2nd-Order Modulator  
MINIMUM N DIVIDE  
16  
17  
19  
25  
3rd-Order Modulator  
4th-Order Modulator  
Copyright © 2016–2017, Texas Instruments Incorporated  
9
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.3.5 Fractional Circuitry  
The fractional circuitry controls the N divider with delta sigma modulation that supports a programmable first,  
second, third, and fourth-order modulator. The fractional denominator is a fully programmable 24-bit denominator  
that can support any value from 1, 2, ..., 224, with the exception when the device is running one of the ramps,  
and in this case it is a fixed size of 224.  
7.3.6 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the R and N dividers and generates a correction voltage  
corresponding to the phase error. This voltage is converted to a correction current by the charge pump. The  
phase detector frequency, fPD, can be calculated as follows: fPD = fOSCin × OSC_2X / R.  
The charge pump supply voltage on this device, VCP, can be either run at the VCC voltage, or up to 5.25 volts to  
get higher tuning voltages to present to the VCO.  
7.3.7 External Loop Filter  
The loop filter is external to the device and is application specific. Texas Instruments website has details on this  
at www.ti.com.  
7.3.8 Fastlock and Cycle Slip Reduction  
This PLL has a Fastlock and a cycle slipping reduction feature. The user can enable these two features by  
programming FL_TOC to a non-zero value. Every time PLL_N (the feedback divider, register R17 and R16) is  
written, the Fastlock feature engages for the prescribed time set in FL_TOC. There are 3 actions that can be  
enabled while the counter is running:  
1. Change the charge pump current to the desired higher value FL_CPG. Typically this value would be set to  
the maximum at 31x. This increases the loop bandwidth and hence reduces lock time.  
2. Change the phase detector frequency with FL_CSR to reduce cycle slipping. The phase detector frequency  
can be reduced by a factor 2 or 4 to reduce cycle slipping.  
3. The loop filter can be configured to have a switchable R2 resistor to increase loop bandwidth and hence  
reduce lock time. A resistor R2pLF is added in parallel to R2_LF and connected to the a terminal on the PLL  
to use the internal switch. Any of the terminal MUXout, MOD, TRIG1,or TRIG2 can be configured for the  
function. The terminal configuration is set as Output TOC Running. Also set the terminal as output inverted  
OD (OD for open-drain) so the output will be high impedance in normal operation and act as ground in  
Fastlock. The suggested schematic for that feature is shown in Figure 12.  
/harge  
/touꢀ  
tump  
/2_[C  
ÇwLD2  
/1_[C  
w2p[C  
w2_[C  
Casꢀlock  
/onꢀrol  
Figure 12. Suggested Schematic to Enable the Variable Loop Bandwidth Filter In Fastlock Mode  
Table 2. Fastlock Settings: Charge Pump Gain and Fastlock Pin Status  
PARAMETER  
NORMAL OPERATION  
FASTLOCK OPERATION  
Charge Pump Gain  
CPG  
FL_CPG  
Device Pin  
(TRIG1, TRIG2, MOD, or MUXout)  
High Impedance  
Grounded  
10  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
The resistor and the charge pump current are changed simultaneously so that the phase margin remains the  
same while the loop bandwidth is by a factor of K as shown in the following table:  
Table 3. Suggested Equations to Calculate R2pLF  
PARAMETER  
Charge Pump Gain in Fastlock  
Loop Bandwidth Multiplier  
External Resistor  
CALCULATION  
Typically use the highest value.  
K = sqrt(FL_CPG / CPG)  
R2 / (K - 1)  
FL_CPG  
K
R2pLF  
Cycle slip reduction is another method that can also be used to speed up lock time by reducing cycle slipping.  
Cycle slipping typically occurs when the phase detector frequency exceeds about 100x the loop bandwidth of the  
PLL. Cycle slip reduction works in a different way than fastlock. To use this, the phase detector frequency is  
decreased while the charge pump current is simultaneously increased by the same factor. Although the loop  
bandwidth is unchanged, the ratio of the phase detector frequency to the loop bandwidth is, and this is helpful for  
cases when the phase detector frequency is high. Because cycle slip reduction changes the phase detector rate,  
it also impacts other things that are based on the phase detector rate, such as the fastlock timeout-counter and  
ramping controls.  
7.3.9 Lock Detect and Charge Pump Voltage Monitor  
The LMX2491 offers two methods to determine if the PLL is in lock: charge pump voltage monitoring and digital  
lock detect. These features can be used individually or in conjunction to give a reliable indication of when the  
PLL is in lock. The output of this detection can be routed to the TRIG1, TRIG2, MOD, or MUXout terminals.  
7.3.9.1 Charge Pump Voltage Monitor  
The charge pump voltage monitor allows the user to set low (CMP_THR_LOW) and high (CMP_THR_HIGH)  
thresholds for a comparator that monitors the charge pump output voltage.  
Table 4. Desired Comparator Threshold Register Settings for Two Charge Pump Supplies  
VCP  
THRESHOLD  
SUGGESTED LEVEL  
CPM_THR_LOW  
= (Vthresh + 0.08) / 0.085  
6 for 0.5-V limit  
3.3 V  
CPM_THR_HIGH  
42 for 2.8-V limit  
4 for 0.5-V limit  
46 for 4.5-V limit  
= (Vthresh - 0.96) / 0.044  
CPM_THR_LOW  
= (Vthresh + 0.056) / 0.137  
5.0 V  
CPM_THR_HIGH  
= (Vthresh -1.23) / 0.071  
7.3.9.2 Digital Lock Detect  
Digital lock detect works by comparing the phase error as presented to the phase detector. If the phase error  
plus the delay as specified by the PFD_DLY bit is outside the tolerance as specified by DLD_TOL, then this  
comparison would be considered to be an error, otherwise passing. The DLD_ERR_CNT specifies how may  
errors are necessary to cause the circuit to consider the PLL to be unlocked. The DLD_PASS_CNT specifies  
how many passing comparisons are necessary to cause the PLL to be considered to be locked and also resets  
the count for the errors. The DLD_TOL value should be set to no more than half of a phase detector period plus  
the PFD_DLY value. The DLD_ERR_CNT and DLD_PASS_CNT values can be decreased to make the circuit  
more sensitive. If the circuit is too sensitive, then chattering can occur and the DLD_ERR_CNT,  
DLD_PASS_CNT, or DLD_TOL values should be increased.  
NOTE  
If the OSCin signal goes away and there is no noise or self-oscillation at the OSCin pin,  
then it is possible for the digital lock detect to indicate a locked state when the PLL really  
is not in lock. If this is a concern, then digital lock detect can be combined with charge  
pump voltage monitor to detect this situation.  
Copyright © 2016–2017, Texas Instruments Incorporated  
11  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.3.10 FSK/PSK Modulation  
Two-level FSK or PSK modulation can be created whenever a trigger event, as defined by the FSK_TRIG field is  
detected. This trigger can be defined as a transition on a terminal (TRIG1, TRIG2, MOD, or MUXout) or done  
purely in software. The RAMP_PM_EN bit defines the modulation to be either FSK or PSK and the FSK_DEV  
register determines the amount of the deviation. Remember that the FSK_DEV[32:0] field is programmed as the  
2's complement of the actual desired FSK_DEV value. This modulation can be added to the modulation created  
from the ramping functions as well.  
Table 5. How to Obtain Deviation for Two Types of Modulation  
RAMP_PM_EN  
MODULATION TYPE  
2 Level FSK  
DEVIATION  
0
1
fPD × FSK_DEV / 224  
360° × FSK_DEV / 224  
2 Level PSK  
7.3.11 Ramping Functions  
The LMX2491 supports a broad and flexible class of FMCW modulation formed by up to 8 linear ramps. When  
the ramping function is running, the denominator is fixed to a forced value of 224 = 16777216. The waveform  
always starts at RAMP0 when the LSB of the PLL_N (R16) is written to. After it is set up, it starts at the initial  
frequency and have piecewise linear frequency modulation that deviates from this initial frequency as specified  
by the modulation. Each of the eight ramps can be individually programmed. Various settings are as follows:  
Table 6. Register Descriptions of the Ramping Function  
RAMP  
CHARACTERISTIC  
PROGRAMMING FIELD  
NAME  
DESCRIPTION  
The user programs the length of the ramp in phase detector cycles. If  
RAMPx_DLY = 1, then each count of RAMPx_LEN is actually two phase  
detector cycles.  
RAMPx_LEN  
RAMPx_DLY  
Ramp Length  
The user does not directly program slope of the line, but rather this is done by  
defining how long the ramp is and how much the fractional numerator is  
increased per phase detector cycle. The value for RAMPx_INC is calculated by  
taking the total expected increase in the frequency, expressed in terms of how  
much the fractional numerator increases, and dividing it by RAMPx_LEN. The  
value programmed into RAMPx_INC is actually the two's complement of the  
desired mathematical value.  
RAMPx_LEN  
RAMPx_DLY  
RAMPx_INC  
Ramp Slope  
The event that triggers the next ramp can be defined to be the ramp finishing or  
can wait for a trigger as defined by Trigger A, Trigger B, or Trigger C.  
Trigger for Next Ramp  
Next Ramp  
RAMPx_NEXT_TRIG  
RAMPx_NEXT  
This sets the ramp that follows. Waveforms are constructed by defining a chain  
ramp segments. To make the waveform repeat, make RAMPx_NEXT point to  
the first ramp in the pattern.  
Ramp Fastlock  
Ramp Flags  
RAMPx_FL  
This allows the ramp to use a different charge pump current or use Fastlock  
This allows the ramp to set a flag that can be routed to external terminals to  
trigger other devices.  
RAMPx_FLAG  
7.3.11.1 Ramp Count  
If it is desired that the ramping waveform keep repeating, then all that is needed is to make the RAMPx_NEXT of  
the final ramp equal to the first ramp. This runs until the RAMP_EN bit is set to zero. If this is not desired, then  
one can use the RAMP_COUNT to specify how may times the specified pattern is to repeat.  
7.3.11.2 Ramp Comparators and Ramp Limits  
The ramp comparators and ramp limits use programable thresholds to allow the device to detect whenever the  
modulated waveform frequency crosses a limit as set by the user. The difference between these is that  
comparators set a flag to alert the user while a ramp limits prevent the frequency from going beyond the  
prescribed threshold. In either case, these thresholds are expressed by programming the  
Extended_Fractional_Numerator. CMP0 and CMP1 are two separated comparators but they work in the same  
fashion.  
Extended_Fractional_Numerator = Fractional_Numerator + (N - N*) × 224  
(1)  
12  
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
In Equation 1, N* is the PLL feedback value without ramping. Fractional_Numerator and N are the new values as  
defined by the threshold frequency. The actual value programmed is the 2's complement of  
Extended_Fractional_Numerator.  
Table 7. Register Descriptions of Ramp Comparators and Limits  
TYPE  
PROGRAMMING BIT  
RAMP_LIMIT_LOW  
RAMP_LIMIT_HIGH  
THRESHOLD  
Lower Limit  
Upper Limit  
Ramp Limits  
For the ramp comparators, if the ramp is increasing and exceeds the value as specified  
by RAMP_CMPx, then the flag goes high, otherwise it is low. If the ramp is decreasing  
and goes below the value as specified by RAMP_CMPx, then the flag goes high,  
otherwise it is low.  
Ramp  
Comparators  
RAMP_CMP0  
RAMP_CMP1  
7.3.12 Power-on-reset (POR)  
The power-on-reset circuitry sets all the registers to a default state when the device is powered up. This same  
reset can be done by programming SWRST = 1. In the programming section, the power on reset state is given  
for all the programmable fields.  
7.3.13 Register Readback  
The LMX2491 allows any of its registers to be read back. MOD, MUXout, TRIG1 or TRIG2 pin can be  
programmed to support register-readback serial-data output. To read back a certain register value, follow the  
following steps:  
1. Set the R/W bit to 1; the data field contents are ignored.  
2. Send the register to the device; readback serial data will be output starting at the 17th clock cycle.  
R/W  
= 1  
Address  
15-bit  
Data  
= Ignored  
DATA  
CLK  
1st  
2nd œ 16th  
17th œ 24th  
MOD  
MUXout  
TRIG1  
Read back register value  
8-bit  
TRIG2  
LE  
Figure 13. Register Readback Timing Diagram  
7.4 Device Functional Modes  
The two primary ways to use the LMX2491 are to run it to generate a set of frequencies  
7.4.1 Continuous Frequency Generator  
In this mode, the LMX2491 generates a single frequency that only changes when the N divider is programmed to  
a new value. In this mode, the RAMP_EN bit is set to 0 and the ramping controls are not used. The fractional  
denominator can be programmed to any value from 1 to 16777216. In this kind of application, the PLL is tuned to  
different channels, but at each channel, the goal is to generate a stable fixed frequency.  
7.4.1.1 Integer Mode Operation  
In integer mode operation, the VCO frequency needs to be an integer multiple of the phase detector frequency.  
This can be the case when the output frequency or frequencies are nicely related to the input frequency. As a  
rule of thumb, if this an be done with a phase detector of as high as the lesser of 10 MHz or the OSCin  
frequency, then this makes sense. To operate the device in integer mode, disable the fractional circuitry by  
programming the fractional order (FRAC_ORDER), dithering (FRAC_DITH), and numerator (FRAC_NUM) to  
zero.  
Copyright © 2016–2017, Texas Instruments Incorporated  
13  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.1.2 Fractional Mode Operation  
In fractional mode, the output frequency does not need to be an integer multiple of the phase detector frequency.  
This makes sense when the channel spacing is more narrow or the input and output frequencies are not nicely  
related. There are several programmable controls for this such as the modulator order, fractional dithering,  
fractional numerator, and fractional denominator. There are many trade-offs with choosing these, but here are  
some guidelines  
Table 8. Fractional Mode Register Descriptions and Recommendations  
PARAMETER  
FIELD NAME  
HOW TO CHOOSE  
The first step is to find the fractional denominator. To do this, find the frequency that  
divides the phase detector frequency by the channel spacing. For instance, if the  
output ranges from 5000 to 5050 in 5-MHz steps and the phase detector is 100  
MHz, then the fractional denominator is 100 MHz / 5 = 20. So for a an output of  
5015 MHz, the N divider would be 50 + 3/20. In this case, the fractional numerator is  
3 and the fractional denominator is 20. Sometimes when dithering is used, it makes  
sense to express this as a larger equivalent fraction.  
Fractional Numerator and  
Denominator  
FRAC_NUM  
FRAC_DEN  
Note that if ramping is active, the fractional denominator is forced to 224  
.
There are many trade-offs, but in general try either the 2nd or 3rd-order modulator  
Fractional Order  
Dithering  
FRAC_ORDER as starting points. The 3rd-order modulator may give lower main spurs, but may  
generate others. Also if dithering is involved, it can generate phase noise.  
Dithering can reduce some fractional spurs, but add noise. Consult application note  
FRAC_DITH  
AN-1879 Fractional N Frequency Synthesis for more details on this.  
7.4.2 Modulated Waveform Generator  
In this mode, the device can generate a broad class of frequency sweeping waveforms. The user can specify up  
to 8 linear segments to generate these waveforms. When the ramping function is running, the denominator is  
fixed to a forced value of 224 = 16777216  
In addition to the ramping functions, there is also the capability to use a terminal to add phase or frequency  
modulation that can be done by itself or added on top of the waveforms created by the ramp generation  
functions.  
7.5 Programming  
7.5.1 Loading Registers  
The device is programmed using several 24-bit registers. Each register consists of a data field, an address field,  
and a R/W bit. The MSB is the R/W bit. 0 means register write while 1 means register read. The following 15 bits  
of the register are the address, followed by the next 8 bits of data. The user has the option to pull the LE terminal  
high after this data, or keep sending data and it applies this data to the next lower register. So instead of sending  
three registers of 24 bits each, one could send a single 40-bit register with the 16 bits of address and 24 bits of  
data. For that matter, the entire device could be programmed as a single register if desired.  
7.6 Register Maps  
Registers are programmed in REVERSE order from highest to lowest. Registers NOT shown in this table or  
marked as reserved can be written as all 0s unless otherwise stated. The POR value is the power on reset value  
that is assigned when the device is powered up or the SWRST bit is asserted.  
Table 9. Register Map  
REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
0x18  
0x00  
0x00  
-
0
1
0
0
0
0
1
1
0
0
0
0x1  
0x2  
Reserved  
Reserved  
2
0
0
0
0
0
SWRST  
POWERDOWN[1:0]  
3 - 15  
16  
0x3 - 0xF  
0x10  
PLL_N[7:0]  
0x64  
14  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Register Maps (continued)  
Table 9. Register Map (continued)  
REGISTER  
17  
D7  
D6  
D5  
D4  
PLL_N[15:8]  
FRAC_DITHER[1:0]  
D3  
D2  
D1  
D0  
POR  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x00  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
18  
19  
20  
21  
22  
23  
24  
25  
26  
0
FRAC_ORDER[2:0]  
PLL_N[17:16]  
FRAC_NUM[7:0]  
FRAC_NUM[15:8]  
FRAC_NUM[23:16]  
FRAC_DEN[7:0]  
FRAC_DEN[15:8]  
FRAC_DEN[23:16]  
PLL_R[7:0]  
PLL_R[15:8]  
PLL_R_  
DIFF  
27  
0x1B  
0
0
FL_CSR[1:0]  
PFD_DLY[1:0]  
0
OSC_2X  
0x08  
28  
29  
0x1C  
0x1D  
0
CPPOL  
CPG[4:0]  
0x00  
0x00  
FL_TOC[10:8]  
FL_CPG[4:0]  
CPM_  
FLAGL  
30  
31  
0x1E  
0x1F  
0
0
CPM_THR_LOW[5:0]  
CPM_THR_HIGH[5:0]  
0x0A  
0x32  
CPM_  
FLAGH  
32  
33  
34  
0x20  
0x21  
0x22  
FL_TOC[7:0]  
DLD_PASS_CNT[7:0]  
DLD_ERR_CNTR[4:0]  
0x00  
0x0F  
0x00  
DLD_TOL[2:0]  
1
MOD_  
MUX[5]  
MUXout  
_MUX[5]  
TRIG2  
TRIG1  
_MUX[5]  
35  
0x23  
0
0
1
0x41  
_MUX[5]  
36  
37  
38  
39  
0x24  
0x25  
0x26  
0x27  
TRIG1_MUX[4:0]  
TRIG2_MUX[4:0]  
MOD_MUX[4:0]  
TRIG1_PIN[2:0]  
TRIG2_PIN[2:0]  
MOD_PIN[2:0]  
0x08  
0x10  
0x18  
0x38  
MUXout_MUX[4:0]  
MUXout_PIN[2:0]  
0x28 -  
0x39  
40 - 57  
58  
Reserved  
-
RAMP_  
PM_EN  
RAMP_  
CLK  
0x3A  
RAMP_TRIG_A[3:0]  
RAMP_TRIG_C[3:0]  
0
RAMP_EN  
0x00  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
RAMP_TRIG_B[3:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RAMP_CMP0[7:0]  
RAMP_CMP0[15:8]  
RAMP_CMP0[23:16]  
RAMP_CMP0[31:24]  
RAMP_CMP0_EN[7:0]  
RAMP_CMP1[7:0]  
RAMP_CMP1[15:8]  
RAMP_CMP1[23:16]  
RAMP_CMP1[31:24]  
RAMP_CMP1_EN[7:0]  
RAMP_  
LIMH[32]  
RAMP_  
LIML[32]  
FSK_  
DEV[32]  
RAMP_  
CMP1[32] CMP0[32]  
RAMP_  
70  
0x46  
0
FSK_TRIG[1:0]  
0x08  
71  
72  
73  
74  
0x47  
0x48  
0x49  
0x4A  
FSK_DEV[7:0]  
0x00  
0x00  
0x00  
0x00  
FSK_DEV[15:8]  
FSK_DEV[23:16]  
FSK_DEV[31:24]  
Copyright © 2016–2017, Texas Instruments Incorporated  
15  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Register Maps (continued)  
Table 9. Register Map (continued)  
REGISTER  
75  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
RAMP_LIMIT_LOW[7:0]  
RAMP_LIMIT_LOW[15:8]  
RAMP_LIMIT_LOW[23:16]  
RAMP_LIMIT_LOW[31:24]  
RAMP_LIMIT_HIGH[7:0]  
RAMP_LIMIT_HIGH[15:8]  
RAMP_LIMIT_HIGH[23:16]  
RAMP_LIMIT_HIGH[31:24]  
RAMP_COUNT[7:0]  
76  
77  
78  
79  
80  
81  
82  
83  
RAMP_  
AUTO  
84  
0x54  
RAMP_TRIG_INC[1:0]  
RAMP_COUNT[12:8]  
0x00  
85  
86  
87  
88  
0x55  
0x56  
0x57  
0x58  
Reserved  
0x00  
0x00  
0x00  
0x00  
RAMP0_INC[7:0]  
RAMP0_INC[15:8]  
RAMP0_INC[23:16]  
RAMP0_  
DLY  
RAMP0_  
FL  
89  
0x59  
RAMP0_INC[29:24]  
0x00  
90  
91  
0x5A  
0x5B  
RAMP0_LEN[7:0]  
RAMP0_LEN[15:8]  
0x00  
0x00  
RAMP0_  
NEXT_TRIG[1:0]  
RAMP0_  
RST  
92  
0x5C  
RAMP0_NEXT[2:0]  
RAMP0_FLAG[1:0]  
RAMP1_FLAG[1:0]  
RAMP2_FLAG[1:0]  
RAMP3_FLAG[1:0]  
0x00  
93  
94  
95  
0x5D  
0x5E  
0x5F  
RAMP1_INC[7:0]  
RAMP1_INC[15:8]  
RAMP1_INC[23:16]  
0x00  
0x00  
0x00  
RAMP1_  
DLY  
RAMP1_  
FL  
96  
0x60  
RAMP1_INC[29:24]  
RAMP1_LEN[7:0]  
0x00  
97  
98  
0x61  
0x62  
0x00  
0x00  
RAMP1_LEN[15:8]  
RAMP1_  
NEXT_TRIG[1:0]  
RAMP1_  
RST  
99  
0x63  
RAMP1_NEXT[2:0]  
0x00  
100  
101  
102  
0x64  
0x65  
0x66  
RAMP2_INC[7:0]  
RAMP2_INC[15:8]  
RAMP2_INC[23:16]  
0x00  
0x00  
0x00  
RAMP2  
DLY  
RAMP2_  
FL  
103  
0x67  
RAMP2_INC[29:24]  
RAMP2_LEN[7:0]  
0x00  
104  
105  
0x68  
0x69  
0x00  
0x00  
RAMP2_LEN[15:8]  
RAMP2_  
NEXT_TRIG[1:0]  
RAMP2_  
RST  
106  
0x6A  
RAMP2_NEXT[2:0]  
0x00  
107  
108  
109  
0x6B  
0x6C  
0x6D  
RAMP3_INC[7:0]  
RAMP3_INC[15:8]  
RAMP3_INC[23:16]  
0x00  
0x00  
0x00  
RAMP3_  
DLY  
RAMP3_  
FL  
110  
0x6E  
RAMP3_INC[29:24]  
RAMP3_LEN[7:0]  
0x00  
111  
112  
0x6F  
0x70  
0x00  
0x00  
RAMP3_LEN[15:8]  
RAMP3_  
NEXT_TRIG[1:0]  
RAMP3_  
RST  
113  
0x71  
RAMP3_NEXT[2:0]  
0x00  
16  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Register Maps (continued)  
Table 9. Register Map (continued)  
REGISTER  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
0x00  
0x00  
0x00  
114  
0x72  
0x73  
0x74  
RAMP4_INC[7:0]  
RAMP4_INC[15:8]  
RAMP4_INC[23:16]  
115  
116  
RAMP4_  
DLY  
RAMP4_  
FL  
117  
0x75  
RAMP4_INC[29:24]  
RAMP4_LEN[7:0]  
0x00  
118  
119  
0x76  
0x77  
0x00  
0x00  
RAMP4_LEN[15:8]  
RAMP4_  
NEXT_TRIG[1:0]  
RAMP4_  
RST  
120  
0x78  
RAMP4_NEXT[2:0]  
RAMP4_FLAG[1:0]  
RAMP5_FLAG[1:0]  
RAMP6_FLAG[1:0]  
RAMP7_FLAG[1:0]  
0x00  
121  
122  
123  
0x79  
0x7A  
0x7B  
RAMP5_INC[7:0]  
RAMP5_INC[15:8]  
RAMP5_INC[23:16]  
0x00  
0x00  
0x00  
RAMP5_  
DLY  
RAMP5_  
FL  
124  
0x7C  
RAMP5_INC[29:24]  
RAMP5_LEN[7:0]  
0x00  
125  
126  
0x7D  
0x7E  
0x00  
0x00  
RAMP5_LEN[15:8]  
RAMP5_  
NEXT_TRIG[1:0]  
RAMP5_  
RST  
127  
0x7F  
RAMP5_NEXT[2:0]  
0x00  
128  
129  
130  
0x80  
0x81  
0x82  
RAMP6_INC[7:0]  
RAMP6_INC[15:8]  
RAMP6_INC[23:16]  
0x00  
0x00  
0x00  
RAMP6_  
DLY  
RAMP6_  
FL  
131  
0x83  
RAMP6_INC[29:24]  
RAMP6_LEN[7:0]  
0x00  
132  
133  
0x84  
0x85  
0x00  
0x00  
RAMP6_LEN[15:8]  
RAMP6_  
NEXT_TRIG[1:0]  
RAMP6_  
RST  
134  
0x86  
RAMP6_NEXT[2:0]  
0x00  
135  
136  
137  
0x87  
0x88  
0x89  
RAMP7_INC[7:0]  
RAMP7_INC[15:8]  
RAMP7_INC[23:16]  
0x00  
0x00  
0x00  
RAMP7_  
DLY  
RAMP7_  
FL  
138  
0x8A  
RAMP7_INC[29:24]  
RAMP7_LEN[7:0]  
0x00  
139  
140  
0x8B  
0x8C  
0x00  
0x00  
RAMP7_LEN[15:8]  
RAMP7_  
NEXT_TRIG[1:0]  
RAMP7_  
RST  
141  
0x8D  
RAMP7_NEXT[2:0]  
0x00  
0x00  
142 -  
32767  
0x8E -  
0x7FFF  
Reserved  
Copyright © 2016–2017, Texas Instruments Incorporated  
17  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.6.1 Register Field Descriptions  
The following sections go through all the programmable fields and their states. Additional information is also  
available in the applications and feature descriptions sections as well. The POR column is the power on reset  
state that this field assumes if not programmed.  
7.6.1.1 POWERDOWN and Reset Fields  
Table 10. POWERDOWN and Reset Fields  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Value  
POWERDOWN State  
Power Down, ignore CE  
Power Up, ignore CE  
0
1
POWERDOWN  
[1:0]  
R2[1:0]  
R2[2]  
0
0
POWERDOWN Control  
Power State Defined by CE  
terminal state  
2
3
Reserved  
Reset State  
Value  
Software Reset. Setting this bit sets all  
registers to their POR default values.  
SWRST  
0
1
Normal Operation  
Register Reset  
18  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
7.6.1.2 Dividers and Fractional Controls  
Table 11. Dividers and Fractional Controls  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
PLL_N  
[17:0]  
R18[1] to  
16  
Feedback N counter Divide value. Minimum count is 16. Maximum is 262132. Writing of  
the register R16 begins any ramp execution when RAMP_EN = 1.  
R16[0]  
Value  
Dither  
Weak  
0
FRAC_ DITHER  
[1:0]  
R18[3:2]  
R18[6:4]  
0
0
Dither used by the fractional modulator  
1
Medium  
2
Strong  
3
Disabled  
Value  
Modulator Order  
Integer Mode  
1st Order Modulator  
2nd Order Modulator  
3rd Order Modulator  
4th Order Modulator  
Reserved  
0
1
FRAC_ ORDER  
[2:0]  
Fractional Modulator order  
2
3
4
5-7  
FRAC_NUM  
[23:0]  
R21[7] to  
R19[0]  
Fractional Numerator. This value should be less than or equal to the fractional  
denominator.  
0
0
1
FRAC_DEN  
[23:0]  
R24[7] to  
R22[0]  
Fractional Denominator. If RAMP_EN = 1, this field is ignored and the denominator is  
fixed to 224  
.
PLL_R  
[15:0]  
R26[7] to  
R25[0]  
Reference Divider value. Selecting 1 bypasses counter.  
Value  
Doubler  
Disabled  
Enables the Doubler before the Reference  
divider  
OSC_2X  
R27[0]  
R27[2]  
0
0
0
1
Enabled  
Enables the Differential R counter.  
This allows for higher OSCin frequencies,  
but restricts PLL_R to divides of 2, 4, 8 or  
16.  
Value  
R Divider  
Single-Ended  
Differential  
Pulse Width  
Reserved  
860 ps  
0
PLL_R _DIFF  
1
Value  
Sets the charge pump minimum pulse  
width. This could potentially be a trade-off  
between fractional spurs and phase noise.  
Setting 1 is recommended for general use.  
0
PFD_DLY  
[1:0]  
R27[4:3]  
R28[4:0]  
1
0
1
2
1200 ps  
3
1500 ps  
Value  
Charge Pump State  
Tri-State  
0
1
100 µA  
CPG  
[4:0]  
Charge pump gain  
2
200 µA  
31  
Value  
0
3100 µA  
Charge pump polarity is used to  
accommodate VCO with either polarity so  
that feedback of the PLL is always correct.  
Charge Pump Polarity  
Positive  
SPACE  
IF reference (R) output is faster than  
feedback (N) output,  
R28[5]==0 THEN charge pump will source  
current  
CPPOL  
R28[5]  
0
1
Negative  
R28[5]==1 THEN charge pump will sink  
current  
Copyright © 2016–2017, Texas Instruments Incorporated  
19  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.6.1.2.1 Speed Up Controls (Cycle Slip Reduction and Fastlock)  
Table 12. FastLock and Cycle Slip Reduction  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Cycle Slip Reduction (CSR) reduces the  
phase detector frequency by multiplying  
both the R and N counters by the CSR  
value while either the FastLock Timer is  
counting or the RAMPx_FL = 1 and the  
part is ramping. Care must be taken that  
the R and N divides remain inside the  
range of the counters. Cycle slip reduction  
is generally not recommended during  
ramping.  
Value  
CSR Value  
0
1
2
Disabled  
x 2  
FL_ CSR  
[1:0]  
x 4  
R27[6:5]  
0
3
Reserved  
Value  
Fastlock Charge Pump Gain  
0
1
Tri-State  
100 µA  
Charge pump gain only when Fast Lock  
FL_ CPG  
[4:0]  
R29[4:0]  
0
Timer is counting down or  
running with RAMPx_FL = 1  
a ramp is  
2
200 µA  
31  
Value  
0
3100 µA  
Fast Lock Timer. This counter starts  
counting when the user writes the  
PLL_N(Register R16). During this time the  
FL_CPG gain is sent to the charge pump,  
Fastlock Timer Value  
Disabled  
1
1 x 32 = 32  
R29[7:5]  
and  
R32[7:0]  
FL_ TOC  
[10:0]  
0
and the FL_CSR shifts the R and N  
...  
counters if enabled. When the counter  
terminates, the normal CPG is presented  
and the CSR undo’s the shifts to give a  
normal PFD frequency.  
2047  
2047 x 32 = 65504  
20  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
7.6.2 Lock Detect and Charge Pump Monitoring  
Table 13. Lock Detect and Charge Pump Monitor  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Value  
Threshold  
Lowest  
Charge pump voltage low threshold value.  
0x0A When the charge pump voltage is below  
0
CPM_THR _LOW  
[5:0]  
R30[5:0]  
R30[6]  
this threshold, the LD goes low.  
63  
Highest  
Value  
Flag Indication  
This is a read only bit.  
Charge pump is below  
CPM_THR_LOW threshold  
0
1
CPM_FLAGL  
-
Low indicates the charge pump voltage is  
below the minimum threshold.  
Charge pump is above  
CPM_THR_LOW threshold  
Value  
0
Threshold  
Lowest  
Charge pump voltage high threshold value.  
0x32 When the charge pump voltage is above  
this threshold, the LD goes low.  
CPM_THR _HIGH  
[5:0]  
R31[5:0]  
R31[6]  
63  
Highest  
Threshold  
Value  
This is a read only bit.  
Charge pump voltage high comparator  
reading. High indicates the charge pump  
voltage is above the maximum threshold.  
Charge pump is below  
CPM_THR_HIGH threshold  
0
1
CPM_FLAGH  
-
Charge pump is above  
CPM_THR_HIGH threshold  
Digital Lock Detect Filter amount. There must be at least DLD_PASS_CNT good edges  
0xFF and less than DLD_ERR edges before the DLD is considered in lock. Making this number  
smaller speeds the detection of lock, but also allows a higher chance of DLD chatter.  
DLD_ PASS_CNT  
[7:0]  
R33[7:0]  
R34[4:0]  
Digital Lock Detect error count. This is the maximum number of errors greater than  
DLD_ ERR_CNT  
[4:0]  
0
0
DLD_TOL that are allowed before DLD is de-asserted. Although the default is 0, the  
recommended value is 4.  
Value  
Window and fPD Frequency  
0
1 ns (fPD > 130 MHz)  
Digital Lock detect edge window. If both N  
and R edges are within this window, it is  
considered a “good” edge. Edges that are  
farther apart in time are considered “error”  
edges. Window choice depends on phase  
detector frequency, charge pump minimum  
pulse width, fractional modulator order and  
the users desired margin.  
1.7 ns (80 MHz < fPD 130  
1
MHz)  
2
3
3 ns (60 MHz < fPD 80 MHz)  
6 ns (45 MHz < fPD 60 MHz)  
DLD _TOL  
[2:0]  
R34[7:5]  
10 ns (30 MHz < fPD 45  
4
MHz)  
5
18 ns ( fPD 30 MHz)  
6 and 7  
Reserved  
Copyright © 2016–2017, Texas Instruments Incorporated  
21  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.6.3 TRIG1, TRIG2, MOD, and MUXout Pins  
Table 14. TRIG1, TRIG2, MOD, and MUXout Terminal States  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Value  
Pin Drive State  
0
1
2
TRISTATE (default)  
Open Drain Output  
TRIG1 _PIN  
[2:0]  
R36[2:0]  
0
Pullup / Pulldown Output  
TRIG2 _PIN  
[2:0]  
R37[2:0]  
R38[2:0]  
0
0
3
Reserved  
This is the terminal drive state for the  
TRIG1, TRIG2, MOD, and MUXout Pins  
MOD_ PIN  
[2:0]  
4
5
6
7
GND  
Inverted Open Drain Output  
MUXout_ PIN  
[2:0]  
Inverted Pullup / Pulldown  
Output  
R39[2:0]  
0
Input  
22  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Table 15. TRIG1, TRIG2, MOD, and MUXout Selections  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Value  
MUX State  
GND  
0
1
2
3
Input TRIG1  
Input TRIG2  
Input MOD  
Output TRIG1 after  
synchronizer  
4
5
6
Output TRIG2 after  
synchronizer  
Output MOD after  
synchronizer  
7
8
9
Output Read back  
Output CMP0  
Output CMP1  
Output LD (DLD good AND  
CPM good)  
10  
11  
12  
13  
14  
Output DLD  
Output CPMON good  
Output CPMON too High  
Output CPMON too low  
These fields control what signal is muxed  
to or from the TRIG1, TRIG2, MOD, and  
MUXout pins.  
TRIG1_MUX  
[5:0]  
R36[7:3],  
1
Output RAMP LIMIT  
EXCEEDED  
15  
R35[3]  
16  
17  
Output R Divide/2  
Output R Divide/4  
Output N Divide/2  
Output N Divide/4  
Reserved  
TRIG2_MUX  
[5:0]  
R37[7:3],  
2
Some of the abbreviations used are:  
COMP0, COMP1: Comparators 0 and 1  
LD, DLD: Lock Detect, Digital Lock Detect  
CPM: Charge Pump Monitor  
CPG: Charge Pump Gain  
CPUP: Charge Pump Up Pulse  
CPDN: Charge Pump Down Pulse  
R35[4]  
MOD_MUX  
[5:0]  
R38[7:3],  
3
18  
R35[7]  
19  
MUXout_MUX  
[5:0]  
R39[7:3],  
7
20  
R35[5]  
21  
Reserved  
22  
Output CMP0RAMP  
Output CMP1RAMP  
Reserved  
23  
24  
25  
Reserved  
26  
Reserved  
27  
Reserved  
28  
Output Faslock  
Output CPG from RAMP  
Output Flag0 from RAMP  
Output Flag1 from RAMP  
Output TRIGA  
29  
30  
31  
32  
33  
Output TRIGB  
34  
Output TRIGC  
35  
Output R Divide  
Output CPUP  
36  
37  
Output CPDN  
38  
Output RAMP_CNT Finished  
Reserved  
39 to 63  
Copyright © 2016–2017, Texas Instruments Incorporated  
23  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.6.4 Ramping Functions  
Table 16. Ramping Functions  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Enables the RAMP functions. When this bit  
is set, the Fractional Denominator is fixed  
to 224. RAMP execution begins at RAMP0  
upon the PLL_N[7:0] write. The Ramp  
should be set up before RAMP_EN is set.  
Value  
Ramp  
0
Disabled  
RAMP_EN  
R58[0]  
0
1
Enabled  
RAMP clock input source. The ramp can  
be clocked by either the phase detector  
clock or the MOD terminal based on this  
selection.  
Value  
Source  
0
Phase Detector  
RAMP_CLK  
R58[1]  
R58[2]  
0
0
1
MOD Terminal  
Value  
Modulation Type  
RAMP_PM_EN  
Phase modulation enable.  
0
1
Frequency Modulation  
Phase Modulation  
Value  
0
Source  
Never Triggers (default)  
TRIG1 terminal rising edge  
TRIG2 terminal rising edge  
MOD terminal rising edge  
DLD Rising Edge  
1
2
3
4
RAMP_TRIGA  
[3:0]  
5
CMP0 detected (level)  
RAMPx_CPG Rising edge  
RAMPx_FLAG0 Rising edge  
Always Triggered (level)  
TRIG1 terminal falling edge  
TRIG2 terminal falling edge  
MOD terminal falling edge  
DLD Falling Edge  
R58[7:4]  
R59[3:0]  
R59[7:4]  
6
RAMP_TRIGB  
[3:0]  
0
Trigger A, B, and C Sources  
7
8
RAMP_TRIGC  
[3:0]  
9
10  
11  
12  
13  
14  
15  
CMP1 detected (level)  
RAMPx_CPG Falling edge  
RAMPx_FLAG0 Falling edge  
R70[0],  
R63[7] to  
R60[0]  
RAMP_CMP0  
[32:0]  
Twos compliment of Ramp Comparator 0 value. Be aware of that the MSB is in Register  
R70.  
0
0
0
0
Comparator 0 is active during each RAMP corresponding to the bit. Place a 1 for ramps it  
is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7  
corresponds to R64[7]  
RAMP_CMP0_EN  
[7:0]  
R64[7:0]  
R70[1],  
R68[7] to  
R65[0]  
RAMP_CMP1  
[32:0]  
Twos compliment of Ramp Comparator 1 value. Be aware of that the MSB is in Register  
R70.  
Comparator 1 is active during each RAMP corresponding to the bit. Place a 1 for ramps it  
is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7  
corresponds to R64[7].  
RAMP_CMP1_EN  
[7:0]  
R69[7:0]  
Value  
Trigger  
Always Triggered  
Trigger A  
0
1
2
3
Deviation trigger source. When this trigger  
source specified is active, the FSK_DEV  
value is applied.  
FSK_TRIG  
[1:0]  
R76[4] to  
R75[3]  
0
0
Trigger B  
Trigger C  
R70[2],  
R74[7] to  
R71[0]  
Twos compliment of the deviation value for frequency modulation and phase modulation.  
This value should be written with 0 when not used. Be aware that the MSB is in Register  
R70.  
FSK_DEV  
[32:0]  
24  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Table 16. Ramping Functions (continued)  
FIELD  
LOCATION POR  
DESCRIPTION AND STATES  
Twos compliment of the ramp lower limit that the ramp can not go below . The ramp limit  
occurs before any deviation values are included. Care must be taken if the deviation is  
used and the ramp limit must be set appropriately. Be aware that the MSB is in Register  
R70.  
R70[3],  
R78[7] to  
R75[0]  
RAMP_LIMIT_LOW  
[32:0]  
0
Twos compliment of the ramp higher limit that the ramp can not go above. The ramp limit  
occurs before any deviation values are included. Care must be taken if the deviation is  
used and the ramp limit must be set appropriately. Be aware that the MSB is in Register  
R70.  
R70[4],  
R82[7] to  
R79[0]  
0x1FF  
FFFF  
FF  
RAMP_LIMIT_HIGH  
[32:0]  
Number of RAMPs that is executed before a trigger or ramp enable is brought down. Load  
zero if this feature is not used. Counter is automatically reset when RAMP_EN goes from  
0 to 1.  
RAMP_COUNT  
[12:0]  
R84[4] to  
R83[0]  
0
Value  
Ramp  
RAMP_EN unaffected by ramp  
counter (default)  
0
Automatically clear RAMP_EN when  
RAMP Count hits terminal count.  
RAMP_AUTO  
R84[5]  
0
RAMP_EN automatically  
brought low when ramp  
counter terminal counts  
1
Value  
Source  
Increments occur on each  
ramp transition  
0
Increment Trigger source for RAMP  
Counter. To disable ramp counter, load a  
count value of 0.  
RAMP_TRIG_INC  
[1:0]  
R84[7:6]  
0
1
2
3
Increment occurs on Trigger A  
Increment occurs on Trigger B  
Increment occurs on Trigger C  
Copyright © 2016–2017, Texas Instruments Incorporated  
25  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
7.6.5 Individual Ramp Controls  
These bits apply for all eight ramp segments. For the field names, x can be 0, 1, 2, 3, 4, 5, 6, or 7.  
Table 17. Individual Ramp Controls  
LOCATI  
ON  
FIELD  
POR  
DESCRIPTION AND STATES  
RAMPx  
_INC[29:0]  
Varies  
0
Signed ramp increment.  
Value  
CPG  
RAMPx _FL  
Varies  
0
This enables fastlock and cycle slip reduction for ramp x.  
0
1
Disabled  
Enabled  
Clocks  
Value  
During this ramp, each increment takes 2 fPD cycles per  
LEN clock instead of the normal 1 fPD cycle. Slows the  
ramp by a factor of 2.  
RAMPx  
_DLY  
1 fPD clock per RAMP  
tick.(default)  
Varies  
Varies  
0
0
0
1
2 fPD clocks per RAMP tick.  
RAMPx  
_LEN  
Number of fPD clocks (if DLY is 0) to continue to increment RAMP. 1 = 1 cycle, 2 = 2 cycles, etc.  
Maximum of 65536 cycles.  
Value  
Flag  
Both FLAG1 and FLAG0  
are zero. (default)  
0
FLAG0 is set, FLAG1 is  
clear  
RAMPx  
_FLAG[1:0]  
General purpose FLAGs sent out of RAMP at the start of a  
ramp pattern.  
1
2
3
Varies  
Varies  
0
0
FLAG0 is clear, FLAG1 is  
set  
Both FLAG0 and FLAG1  
are set.  
Value  
Reset  
Disabled  
Forces a clear of the ramp accumulator at the start of a  
ramp pattern. This is used to erase any accumulator creep  
that can occur depending on how the ramps are defined.  
RAMPx  
_RST  
0
1
Enabled  
Value  
Operation  
RAMPx_LEN  
Trigger A  
Trigger B  
Trigger C  
RAMPx_  
NEXT  
_TRIG  
[1:0]  
Determines what event is necessary to cause the state  
machine to go to the next ramp. It can be set to when the  
RAMPx_LEN counter reaches zero or one of the events for  
Triggers A, B, or C.  
0
1
2
3
Varies  
Varies  
0
0
RAMPx  
_NEXT[2:0]  
The next RAMP to execute when the length counter times out  
26  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMX2491 can be used in a broad class of applications such as generating a single frequency for a high  
frequency clock, generating a tunable range of frequencies, or generating swept waveforms that can be used in  
applications such as radar.  
8.2 Typical Application  
Figure 14 is an example that could be used in a typical application.  
3.3 or 5 V  
R3_LF  
100 nF  
C2_LF  
C1_LF  
3.3 V  
C3_LF  
R2_LF  
100 nF  
24  
23  
22  
21  
20  
19  
3.3 V  
Vcc  
GND  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
100 nF  
GND  
GND  
MUXOUT  
18 Ω  
LE  
10 pF  
18 Ω  
36 Ω  
DATA  
Fin  
To Circuit  
Fin*  
CLK  
CE  
68 Ω  
3.3 V  
10 pF  
Vcc  
51 Ω  
100 nF  
7
8
9
10  
11  
12  
3.3 V  
3.3 V  
18 Ω  
100 nF  
100 nF  
68 Ω  
18 Ω  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. Typical Schematic  
Copyright © 2016–2017, Texas Instruments Incorporated  
27  
 
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
For these examples, it will be assumed that there is a 100 MHz input signal and the output frequency is between  
1500 and 1520 MHz with various modulated waveforms.  
Table 18. Design Requirements  
PARAMETER  
SYMBOL  
VALUE  
COMMENTS  
Input frequency  
fOSCin  
100 MHz  
Phase detector  
frequency  
fPD  
50 MHz  
There are many possibilities, but this choice gives good performance.  
In the different examples, the VCO frequency is actually changing. However,  
VCO frequency  
VCO gain  
fVCO  
1500 - 1520 MHz the same loop filter design can be used for all examples. Unmodulated VCO  
frequency or steady state VCO frequency without ramp is 1500 MHz.  
This parameter has nothing to do with the LMX2491, but is rather set by the  
KVCO  
65 MHz/V  
external VCO choice.  
8.2.2 Detailed Design Procedure  
The first step is to calculate the reference divider (PLL_R) and feedback divider (PLL_N) values as shown in the  
table that follows.  
Table 19. Detailed Design Procedure  
PARAMETE  
SYMBOL AND CALCULATIONS  
VALUE  
COMMENTS  
R
To design a loop filter, one designs for a fixed VCO value,  
although it is understood that the VCO will tune around. This  
typical value is usually chosen as the average VCO  
frequency  
Average VCO  
frequency  
fVCOavg = (fVCOmax + fVCOmin) / 2  
1510 MHz  
This parameter has nothing to do with LMX2491, but is  
rather set by the external VCO choice. In this case, it was  
the CVCO55BE-1400-1624 VCO.  
VCO gain  
KVCO  
65 MHz/V  
VCO input  
capacitance  
This parameter has nothing to do with LMX2491, but is  
rather set by the external VCO choice.  
CVCO  
LBW  
CPG  
120 pF  
380 kHz  
3.1 mA  
PLL loop  
bandwidth  
This bandwidth is very wide to allow the VCO frequency to  
be modulated.  
Charge pump  
gain  
Using the larger gain allows a wider loop bandwidth and  
gives good phase performance.  
R-divider  
N-divider  
PLL_R = fOSCin / fPD  
PLL_N = fVCO / fPD  
C1_LF  
2
96  
68 pF  
3.9 nF  
150 pF  
390 Ω  
150 Ω  
C2_LF  
Loop filter  
components  
C3_LF  
These were calculated by TI PLLatinum Simulator Tool.  
R2_LF  
R3_LF  
Once a loop filter bandwidth is chosen, the external loop filter component values can be calculated with a tool  
such as PLLatinum Simulator Tool. It is also highly recommended to look at the EVM User's Guide. TICS Pro  
software is an excellent starting point and example to see how to program this device.  
8.2.3 TICS Pro Basic Setup  
In the following application examples, TICS Pro is used to program the device to implement different ramp  
profiles. The following procedure shows how to setup TICS Pro to put the device to lock to 1500 MHz without  
modulation or ramp.  
28  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Figure 15. TICS Pro  
1. In the Menu bar, click Select Device and then select LMX2491.  
2. In the Menu bar, click Default Configuration and then select Default Mode.  
3. In the Page window, click PLL.  
4. In the Main window, change R Divider value to 2 and VCO value to 1500.  
5. In the Menu bar, click USB Communications and then click Write All Registers. The device is now locked to  
1500 MHz.  
Other TICS Pro fundamentals:  
When a particular content in the Main window is moused-over, the Context window will show a brief  
description of that content.  
An alternative method to write all registers is press the Ctrl key and L key from the keyboard.  
Whenever a value is updated in the Main window, the Message window will show which register is being  
updated  
8.2.4 Frequency Shift Keying Example  
FSK operation requires an external input trigger signal at either MOD, TRIG1 or TRIG2 pin. In this example,  
MOD pin is selected as the Trigger A source. A 20 kHz square-wave clock will be applied to MOD pin to toggle  
the RF output to switch between 1500 MHz and 1502 MHz. That is, FSK frequency deviation is 2 MHz. The  
following register bits are required to set in order to initiate FSK operation.  
Table 20. FSK Register Settings  
PARAMETER  
REGISTER BIT  
FSK_DEV  
SETTING  
COMMENTS  
Frequency deviation = (fPD x FSK_DEV) / 224  
Frequency deviation  
671089 = 2 MHz  
MOD pin  
characteristic  
MOD_PIN  
7 = Input  
Set MOD pin as an input pin  
Use Trigger A to trigger FSK  
FSK trigger source  
FSK_DEV_TRIG  
RAMP_TRIGA  
RAMP_EN  
1 = Trigger A  
3 = MOD Rising Edge  
1 = Enabled  
Trigger source  
definition  
When there is a L-to-H transition at MOD pin, the set amount of  
frequency deviation will be added to the unmodulated carrier  
Enable ramp  
Activate FSK operation  
Copyright © 2016–2017, Texas Instruments Incorporated  
29  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Figure 16. TICS Pro FSK Configuration  
Figure 17. Frequency Shift Keying Example  
8.2.5 Single Sawtooth Ramp Example  
In this example, Trigger B is used to trigger the ramp generator of LMX2491 to general a single frequency ramp  
between 1500 MHz and 1520 MHz. Ramp duration is 50 µs. The ramp will finish and return back to 1500 MHz  
immediately when the output frequency reaches 1520 MHz. Trigger 1 pin is assigned as Trigger B source.  
Two ramp segments are setup to create this one-time single ramp. RAMP0 is used to establish a trigger for the  
second ramp segment - RAMP1. When a trigger signal is received, RAMP1 will execute and bring the output  
frequency to 1520 MHz in 50 µs.  
30  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Table 21. Single Sawtooth Ramp Register Settings  
PARAMETER  
REGISTER BIT  
SETTING  
COMMENTS  
This threshold frequency can be anything above 1520 MHz.  
The fractional numerator is equal to 0 at 1550 MHz. The N-Divider  
difference between 1500 MHz and 1550 MHz is 1. From Equation 1,  
this threshold is equal to 0 + (1 x 224) = 16777216.  
Set maximum ramp  
frequency threshold  
16777216 = 1550  
MHz  
RAMP_LIMIT_HIGH  
This threshold frequency can be anything below 1500 MHz.  
This threshold is equal to –16777216. This is a 33-bit long register,  
2's complement is therefore equal to 8573157376.  
Set minimum ramp  
frequency threshold  
8573157376 = 1450  
MHz  
RAMP_LIMIT_LOW  
The duration of RAMP0 is not matter, for demonstration  
convenience, it has the same ramp duration as RAMP1.  
During ramp, LMX2491 ramp generator will increment its output  
Number of ramp in  
each ramp segment  
RAMP0_LEN,  
RAMP1_LEN  
2500 = for ramp  
duration equals 50 µs frequency once per phase detector cycle. For ramp duration of 50  
µs and fPD = 50 MHz, there are 2500 ramps [= 50 µs / (1 / 50  
MHz)].  
Frequency change  
per ramp in RAMP0  
Since the output frequency would not change in RAMP0, there is no  
frequency increment.  
RAMP0_INC  
0
Set next ramp  
segment  
RAMP0_NEXT  
1 = RAMP1  
Set RAMP1 as the next ramp segment following RAMP0.  
Use Trigger B to trigger the execution of RAMP1.  
Set next ramp  
segment trigger  
source  
RAMP0_NEXT_TRIG 2 = Trigger B  
RAMP0 will execute again after RAMP1 is finished but RAMP1 does  
not end at 1500 MHz, a reset to the fractional numerator is required  
before RAMP0 is executed.  
Rest fractional  
numerator  
RAMP0_RST  
1 = Reset  
Between 1500 MHz and 1520 MHz, there are 2500 ramps. For each  
ramp, the output frequency will increment by 20 MHz / 2500 = 8  
kHz. For fPD = 50 MHz and fractional denominator = 224, fractional  
numerator is incremented by a value of (8 kHz x 224) / 50 MHz ≈  
2684.  
Frequency change  
per ramp in RAMP1  
RAMP1_INC  
2684 = 8 kHz  
0 = RAMP0  
Set next ramp  
segment  
RAMP1_NEXT  
Set RAMP0 as the next ramp segment following RAMP1.  
Set next ramp  
segment trigger  
source  
After RAMP1 is finished, the next ramp segment will execute  
immediately.  
RAMP1_NEXT_TRIG 0 = TOC Timeout  
Trigger source  
definition  
1 = TRIG1 Rising  
RAMP_TRIGB  
Edge  
When there is a L-to-H transition at TRIG1 pin, RAMP1 will execute.  
Set TRIG1 pin as an input pin.  
TRIG1 pin  
characteristic  
TRIG1_PIN  
7 = Input  
Copyright © 2016–2017, Texas Instruments Incorporated  
31  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
It is recommended to use the Ramp Calculator in TICS Pro to create the ramp profile. TICS Pro will calculate the  
ramp-related register values automatically.  
Figure 18. TICS Pro Ramp Calculator  
Figure 19. Single Sawtooth Ramp Example  
8.2.6 Continuous Sawtooth Ramp Example  
This example shows how to generate a continuous sawtooth ramp. Only one ramp segment is necessary as it  
will loop back to itself.  
32  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Figure 20. Continuous Sawtooth Ramp Configuration  
Figure 21. Continuous Sawtooth Ramp Example  
8.2.7 Continuous Sawtooth Ramp with FSK Example  
A ramp and FSK can coexist at the same time. Since the amount of FSK is added to the instantaneous carrier,  
the FSK will appear at the envelope of the ramp. Furthermore, a ramp and FSK are two independent operations,  
their register settings can be combined in a single configuration setting. That is, when RAMP_EN is enabled,  
both frequency ramp and FSK will be activated together.  
Copyright © 2016–2017, Texas Instruments Incorporated  
33  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Figure 22. Continuous Sawtooth Ramp with FSK Configuration  
Figure 23. Continuous Sawtooth Ramp with FSK Example  
8.2.8 Continuous Triangular Ramp Example  
Two ramp segments are used to create this ramp pattern. RAMP0 ramps from 1500 MHz to 1520 MHz. RAMP1  
brings the frequency back to 1500 MHz and then RAMP0 starts over again. Since RAMP1 already brought the  
frequency back to 1500 MHz, which is also the start frequency of RAMP0, a reset to fractional numerator is not  
required.  
34  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Figure 24. Continuous Triangular Ramp Configuration  
Ramp comparators are enabled so as to output flag signals when the threshold frequencies are hit. MOD pin is  
assigned for CMP0 while TRIG1 pin is assigned for CMP1. RAMP_CMP0_EN is equal to 3 because ramp  
segment 0 and 1 are monitored.  
Figure 25. Ramp Comparators Configuration  
Copyright © 2016–2017, Texas Instruments Incorporated  
35  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Figure 26. Continuous Triangular Ramp Example  
Figure 27. Ramp Comparators Output Flags  
8.2.9 Continuous Trapezoid Ramp Example  
This is a long-ramp example, the ramp duration is 2 ms. Since fPD = 50 MHz, 100000 ramps are required for  
each ramp segment. However, LMX2491 supports up to a maximum ramp length (RAMPx_LEN) of 65536 only.  
There are two solutions to resolve this problem:  
1. Reduce phase detector frequency. For example, reduce fPD to 25 MHz, then the required RAMPx_LEN  
becomes 50000.  
2. Enable RAMPx_DLY. When this register bit is set, the ramp generator will ramp every 2 phase detector  
cycles instead of the normal 1 fPD cycle. In this example, this bit is set and as a result, RAMPx_LEN is  
50000.  
Four ramp segments are used to construct the ramp pattern. Again there is no need to reset the fractional  
numerator because the last ramp end frequency is equal to the first ramp start frequency.  
36  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Figure 28. Continuous Trapezoid Ramp Configuration  
Figure 29. Continuous Trapezoid Ramp Example  
8.2.10 Arbitrary Waveform Ramp Example  
An arbitrary ramp waveform can be easily constructed with the 8 ramp segments provided in LMX2491.  
LMX2491 also provides flag signals output to indicate the start of a ramp. This example used the MOD pin to  
initiate the ramp and used TRIG1 and TRIG2 as the output flags to indicate the status of the ramp.  
Copyright © 2016–2017, Texas Instruments Incorporated  
37  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
Figure 30. Arbitrary Waveform Ramp Configuration  
Figure 31. Arbitrary Waveform Ramp Example  
38  
Copyright © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
Figure 32. Arbitrary Waveform Ramp Timing  
9 Power Supply Recommendations  
For power supplies, TI recommends placing 100 nF close to each of the power supply pins. If fractional spurs are  
a large concern, using a ferrite bead to each of these power supply pins can reduce spurs to a small degree.  
10 Layout  
10.1 Layout Guidelines  
For layout examples, the EVM instructions are the most comprehensive document. In general, the layout  
guidelines are similar to most other PLL devices. For the high frequency Fin pin, it is recommended to use 0402  
components and match the trace width to these pad sizes. Also the same needs to be done on the Fin* pin. If  
layout is easier to route the signal to Fin* instead of Fin, then this is acceptable as well.  
Copyright © 2016–2017, Texas Instruments Incorporated  
39  
LMX2491  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
www.ti.com.cn  
10.2 Layout Example  
Figure 33. Layout Recommendation  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
LMX2491  
www.ti.com.cn  
ZHCSFL5A OCTOBER 2016REVISED JANUARY 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
德州仪器 (TI) 提供多款开发辅助软件工具,包括 TICS Pro 编程辅助工具、PLLatinum Simulator Tool 回路滤波器  
设计辅助工具以及相位噪声/毛刺仿真辅助工具。所有这些工具均可从以下网址获得:www.ti.com。  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
AN-1879 分数 N 频率合成》(文献编号:SNAA062)  
PLL 性能仿真和设计》  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据发生变化时,  
我们可能不会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2491RTWR  
LMX2491RTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
X2491  
X2491  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX2491RTWR  
LMX2491RTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
1000  
250  
178.0  
178.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX2491RTWR  
LMX2491RTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
1000  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMX2491RTWR

具有斜坡/线性调频脉冲生成功能的 6.4GHz 低噪声分数 N PLL | RTW | 24 | -40 to 85
TI

LMX2491RTWT

具有斜坡/线性调频脉冲生成功能的 6.4GHz 低噪声分数 N PLL | RTW | 24 | -40 to 85
TI

LMX2492

具有斜坡/线性调频脉冲生成功能的 500MHz 至 14GHz 宽带、低噪声分数 N PLL
TI

LMX2492-Q1

具有斜坡/线性调频脉冲生成功能的汽车级 500MHz 至 14GHz 宽带、低噪声分数 N PLL
TI

LMX2492-Q1RTW

LMX2492/LMX2492-Q1 14 GHz Low Noise Fractional N PLL with Ramp/Chirp Generation
TI

LMX2492-Q1_15

LMX2492/LMX2492-Q1 14 GHz Low Noise Fractional N PLL with Ramp/Chirp Generation
TI

LMX2492QRTWRQ1

具有斜坡/线性调频脉冲生成功能的汽车级 500MHz 至 14GHz 宽带、低噪声分数 N PLL | RTW | 24 | -40 to 125
TI

LMX2492QRTWTQ1

具有斜坡/线性调频脉冲生成功能的汽车级 500MHz 至 14GHz 宽带、低噪声分数 N PLL | RTW | 24 | -40 to 125
TI

LMX2492RTW

LMX2492/LMX2492-Q1 14 GHz Low Noise Fractional N PLL with Ramp/Chirp Generation
TI

LMX2492RTWR

具有斜坡/线性调频脉冲生成功能的 500MHz 至 14GHz 宽带、低噪声分数 N PLL | RTW | 24 | -40 to 85
TI

LMX2492RTWT

具有斜坡/线性调频脉冲生成功能的 500MHz 至 14GHz 宽带、低噪声分数 N PLL | RTW | 24 | -40 to 85
TI

LMX2502

PLLatinum⑩ Frequency Synthesizer System with Integrated VCO
NSC