LMX2492QRTWTQ1 [TI]

具有斜坡/线性调频脉冲生成功能的汽车级 500MHz 至 14GHz 宽带、低噪声分数 N PLL | RTW | 24 | -40 to 125;
LMX2492QRTWTQ1
型号: LMX2492QRTWTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有斜坡/线性调频脉冲生成功能的汽车级 500MHz 至 14GHz 宽带、低噪声分数 N PLL | RTW | 24 | -40 to 125

脉冲
文件: 总41页 (文件大小:1910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
LMX2492/LMX2492-Q1 14GHz 低噪声分数 N 分频锁相环 (PLL),具有斜  
/超宽带信号源发生功能  
1 特性  
3 说明  
1
-227dBc/Hz 标称 PLL 噪声  
LMX2492/92-Q1 是一款具有斜坡和超宽带信号源发生  
功能的 14GHz 宽频带三角积分分数 N 分频 PLL。 它  
由一个相位频率检测器、可编程电荷泵以及用于外部  
VCO 的高频输入组成。 LMX2492/92-Q1 支持宽范围  
且灵活的斜升功能类 (class of ramping capabilities),  
其中包括 FSKPSK 和高达 8 个段的可配置分段线性  
FM 调制系统配置。 它还支持精细的 PLL 分辨率以及  
相位检测器速率高达 200MHz 的快速斜坡。  
500MHz - 14GHz 宽频带 PLL  
3.15 -5.25V 电荷泵 PLL 电源  
多用途斜坡/超宽带信号源发生  
最大相位检测器频率 200MHz  
频移键控/相移键控 (FSK/PSK) 调制引脚  
数字锁检测  
单个 3.3V 电源  
LMX2492/92-Q1 的任何一个寄存器均可被回读。  
LMX2492/92-Q1 可由单个 3.3V 电源供电运行。 而  
且,对于电压高达 5.25V 的电荷泵的支持能够免除对  
于外部放大器的需要,从而获得一个具有更佳相位噪声  
性能的更简单解决方案。  
汽车用 125°C Q100 1 级认证  
非汽车用 (LMX2492) 选项  
2
应用范围  
汽车用调频连续波 (FMCW) 雷达  
军用雷达  
器件信息  
微波回程  
订货编号  
封装  
封装尺寸  
测试和测量  
LMX2492-Q1RTW  
超薄四方扁平无  
引线 (WQFN)  
(24)  
卫星通信  
4mm x 4mm  
LMX2492RTW  
无线基础设施  
针对高速模数转换器 (ADC) / 数模转换器 (DAC) 的  
采样时钟  
4 简化电路原理图  
OSCin  
2X  
R Divider  
(16 bit)  
CPout  
Phase  
Comp  
Charge  
Pump  
51 :  
GND/OSCin*  
C2_LF  
R2_LF  
51 :  
C1_LF  
Vcp  
GND (x3)  
18 :  
18 :  
Vcc (x5)  
Fin  
CE  
CLK  
MICROWIRE  
Interface  
36 :  
18 :  
DATA  
To Circuit  
N Divider  
(18 bit)  
LE  
Fin*  
68 :  
TRIG1  
TRIG2  
51 :  
6'  
Modulation  
Generator  
Compensation  
(24 bit)  
MUX  
MOD  
MUXout  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNAS624  
 
 
 
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
目录  
8.6 Register Map........................................................... 14  
8.7 Register Field Descriptions ..................................... 18  
8.8 Lock Detect and Charge Pump Monitoring............. 21  
8.9 TRIG1,TRIG2,MOD, and MUXout Pins .................. 22  
8.10 Ramping Functions ............................................... 24  
8.11 Individual Ramp Controls...................................... 26  
Applications and Implementation ...................... 27  
9.1 Application Information............................................ 27  
9.2 Typical Applications ................................................ 27  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings................................... 4  
7.2 Handling Ratings ...................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information ................................................. 4  
7.5 Electrical Characteristics .......................................... 5  
9
10 Power Supply Recommendations ..................... 33  
11 Layout................................................................... 34  
11.1 Layout Guidelines ................................................. 34  
11.2 Layout Example .................................................... 34  
12 Device and Documentation Support ................. 35  
12.1 Device Support .................................................... 35  
12.2 Documentation Support ....................................... 35  
12.3 Related Links ........................................................ 35  
12.4 Trademarks........................................................... 35  
12.5 Electrostatic Discharge Caution............................ 35  
12.6 Glossary................................................................ 35  
13 机械封装和可订购信息 .......................................... 35  
7.6 Timing Requirements, Programming Interface (CLK,  
DATA, LE).................................................................. 6  
7.7 Serial Data Input Timing ........................................... 6  
7.8 Typical Characteristics ............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
8.4 Device Functional Modes........................................ 13  
8.5 Programming........................................................... 14  
8
5 修订历史记录  
日期  
修订版本  
注释  
2014 3 月  
*
最初发布版本。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
6 Terminal Configuration and Functions  
WQFN (RTW)  
24 Terminal  
(Top View)  
24 23 22 21 20 19  
GND  
GND  
GND  
18 Vcc  
1
2
3
4
5
6
17 MUXout  
LE  
16  
15  
Pin 0  
(Ground Substrate)  
Fin  
Fin*  
Vcc  
DATA  
14 CLK  
CE  
13  
7
8
9
10 11 12  
Terminal Functions  
TERMINAL  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
DAP  
0
1
GND  
GND  
GND  
Die Attach Pad. Connect to PCB ground plane.  
Ground for charge pump.  
GND  
GND  
2,3  
Ground for Fin Buffer  
Complimentary high frequency input pins. Should be AC coupled. If driving single-ended,  
impedance as seen from Fin and Fin* pins looking outwards from the part should be roughly the  
same.  
Fin  
Fin*  
4,5  
Input  
6
7
8
9
Vcc  
Vcc  
Supply  
Supply  
Supply  
Input  
Power Supply for Fin Buffer  
Supply for On-chip LDOs  
Supply for OSCin Buffer  
Vcc  
OSCin  
Reference Frequency Input  
Complimentary input for OSCin.  
GND/  
OSCin*  
10  
GND/Input If not used, it is recommended to match the termination as seen from the OSCin terminal looking  
outwards. However, this may also be grounded as well.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
MOD  
CE  
GND  
Ground for OSCin Buffer  
Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Input  
GND  
GND  
Input  
Chip Enable  
CLK  
DATA  
LE  
Serial Programming Clock.  
Serial Programming Data  
Serial Programming Latch Enable  
MUXout Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Vcc  
Vcc  
Supply  
Supply  
Supply for delta sigma engine.  
Supply for general circuitry.  
TRIG1  
TRIG2  
Vcp  
Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Input/Output Multiplexed Input/Output Pins for Ramp Triggers, FSK/PSK Modulation, FastLock, and Diagnostics  
Supply  
NC  
Power Supply for the charge pump.  
No connect.  
Rset  
CPout  
Output  
Charge Pump Output  
Copyright © 2014, Texas Instruments Incorporated  
3
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
Vcc  
-0.3  
-0.3  
-0.3  
MAX  
5.5  
UNIT  
V
Vcp  
Supply Voltage for Charge Pump  
Charge Pump Output Pin  
All Vcc Pins  
CPout  
Vcc  
Vcp  
V
3.6  
V
Others  
TSolder  
TJunction  
All Other I/O Pins  
Vcc + 0.3  
260  
V
Lead Temperature (solder 4 seconds)  
Junction Temperature  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Handling Ratings  
MIN  
MAX  
150  
3
UNIT  
°C  
TSTG  
MSL  
Storage Temperature Range  
-65  
Moisture Sensitivity Level  
n/a  
V
Human body model (HBM) ESD stress voltage(2)  
Charged device model (CDM) ESD stress voltage(3)  
2500  
1500  
(1)  
VESD  
V
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows  
safe manufacturing with a standard ESD control process.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250 V CDM allows safe  
manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
Vcc  
PARAMETER  
PLL Supply Voltage  
DEVICE  
MIN  
3.15  
Vcc  
-40  
TYP  
MAX  
3.45  
5.25  
85  
UNIT  
V
3.3  
Vcp  
Charge Pump Supply Voltage  
V
LMX2492  
LMX2492-Q1  
LMX2492  
TA  
TJ  
Ambient Temperature  
°C  
°C  
-40  
125  
125  
135  
-40  
Junction Temperature  
LMX2492-Q1  
-40  
7.4 Thermal Information  
THERMAL METRIC(1)  
Temperature  
UNIT  
RθJA  
RθJC  
ψJB  
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
Junction-to-board characterization parameter  
39.4  
7.1  
20  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
7.5 Electrical Characteristics  
(3.15 V Vcc 3.45 V. Vcc Vcp 5.25 V. Typical values are at Vcc = Vcp = 3.3 V, 25 °C.  
-40°C TA 85 °C for the LMX2492 and -40°C TA 125 °C for the LMX2492-Q1 ; except as specified.)  
SYMBOL  
PARAMETER  
Current Consumption  
Current  
CONDITIONS  
Fpd = 10 MHz  
MIN  
TYP  
45  
50  
55  
2
MAX  
UNIT  
All Vcc Pins  
Fpd = 100 MHz  
Fpd = 200 MHz  
Kpd = 0.1 mA  
Kpd = 1.6 mA  
Kpd = 3.1 mA  
Icc  
mA  
Vcp Pin  
10  
19  
3
IccPD  
fOSCin  
POWERDOWN  
OSC_DIFFR=0, Doubler Disabled  
OSC_DIFFR=0, Doubler Enabled  
OSC_DIFFR=1, Doubler Disabled  
OSC_DIFFR=1, Doubler Enabled  
10  
10  
600  
300  
Frequency for OSCin  
terminal  
MHz  
10  
1200  
600  
10  
vOSCin  
fFin  
Voltage for OSCin Pin(1)  
Frequency for FinPin(2)  
Power for Fin Pin  
0.5  
500  
-5  
Vcc-0.5  
14000  
5
Vpp  
MHz  
pFin  
Single-Ended Operation  
dBm  
fPD  
Phase Detector Frequency  
PLL Figure of Merit(3)  
200  
MHz  
PN1Hz  
-227  
-120  
dBc/Hz  
Normalized PLL 1/f  
Noise(3)  
Normalized to 10 kHz offset for a 1 GHz  
carrier.  
PN10kHz  
dBc/Hz  
nA  
Charge Pump Leakage Tri-  
state Leakage  
Charge Pump Mismatch(4) VCPout = Vcp / 2  
ICPoutTRI  
ICPoutMM  
10  
5 %  
0.1  
CPG=1X  
ICPout  
Charge Pump Current  
VCPout = Vcp / 2  
mA  
CPG=31X  
3.1  
(1) For optimal phase noise performance, higher input voltage and a slew rate of at least 3 V/ns is recommended  
(2) Tested to 13.5 GHz, Guaranteed to 14 GHz by characterization  
(3) PLL Noise Metrics are measured with a clean OSCin signal with a high slew rate using a wide loop bandwidth. The noise metrics model  
the PLL noise for an infinite loop bandwidth as:  
PLL_Total = 10×log( 10PLL_Flat/10 + 10PLL_Flicker(Offset)/10  
PLL_Flat = PN1Hz + 20×log(N) + 10×log(Fpd/1Hz)  
)
PLL_Flicker = PN10kHz - 10×log(Offset/10kHz) + 20×log(Fvco/1GHz)  
(4) Charge pump mismatch varies as a function of charge pump voltage. Consult typical performance characteristics to see this variation.  
Copyright © 2014, Texas Instruments Incorporated  
5
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V Vcc 3.45 V. Vcc Vcp 5.25 V. Typical values are at Vcc = Vcp = 3.3 V, 25 °C.  
-40°C TA 85 °C for the LMX2492 and -40°C TA 125 °C for the LMX2492-Q1 ; except as specified.)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LOGIC OUTPUT TERMINALS (MUXout,TRIG1,TRIG2,MOD)  
0.8 x  
Vcc  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
Vcc  
0
V
V
0.2 x Vcc  
LOGIC INPUT TERMINALS (CE,CLK,DATA,LE,MUXout,TRIG1,TRIG2,MOD)  
VIH  
Input High Voltage  
Input Low Voltage  
Input Leakage  
1.4  
0
Vcc  
0.6  
5
V
V
VIL  
IIH  
-5  
5
1
uA  
us  
us  
TCELOW  
TCEHIGH  
Chip enable Low Time  
Chip enable High Time  
5
7.6 Timing Requirements, Programming Interface (CLK, DATA, LE)  
SYMBOL  
PARAMETER  
MIN  
35  
10  
10  
25  
25  
10  
10  
TYP  
MAX  
UNIT  
ns  
TCE  
Clock To LE Low Time  
TCS  
Data to Clock Setup Time  
Data to Clock Hold Time  
Clock Pulse Width High  
Clock Pulse Width Low  
Enable to Clock Setup Time  
Enable Pulse Width High  
ns  
TCH  
ns  
TCWH  
TCWL  
TCES  
TEWH  
ns  
ns  
ns  
ns  
7.7 Serial Data Input Timing  
MSB  
LSB  
D0  
DATA  
CLK  
LE  
R/W  
A15  
t
t
CWH  
CS  
t
CE  
t
t
CH  
CES  
t
CWL  
t
EWH  
There are several other considerations for programming:  
The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE  
signal, the data is sent from the shift register to an actual counter.  
If no LE signal is given after the last data bit and the clock is kept toggling, then these bits will be read into  
the next lower register. This eliminates the need to send the address each time.  
A slew rate of at least 30 V/us is recommended for the CLK, DATA, and LE signals  
Timing specs also apply to readback. Readback can be done through the MUXout, TRIG1, TRIG2, or MOD  
terminals.  
6
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
7.8 Typical Characteristics  
5
4
5
4
3
3
2
2
1
1
0
0
±1  
±2  
±3  
±4  
±5  
±1  
±2  
±3  
±4  
±5  
Kpd = 8x  
Kpd = 16x  
Kpd = 31x  
Kpd = 8x  
Kpd = 16x  
Kpd = 31x  
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Charge Pump Voltage (V)  
Charge Pump Voltage (V)  
C001  
C002  
For a charge pump supply of 3.3 V, optimal performance is for a  
typical charge pump output voltage between 0.5 and 2.8 volts.  
Figure 1. Charge Pump Current for Vcp = 3.3 V  
For a charge pump supply voltage of 5 volts or higher, optimal  
performance is typically for a charge pump output voltage between  
0.5 and 4.5 volts.  
Figure 2. Charge Pump Current for Vcp = 5.5 V  
0
±5  
±10  
±15  
±20  
±25  
±30  
±35  
±40  
0
2
4
6
8
10  
12  
14  
16  
Frequency (GHz)  
C001  
Typical value of lowest power level as a function of frequency. Design to electrical specifications for input sensitivity, not typical performance  
graphs.  
Figure 3. Fin Input Sensitivity  
Copyright © 2014, Texas Instruments Incorporated  
7
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
±90  
Theoretical 1/f  
Theoretical Flat  
Theoretical Model  
Measurement  
±95  
±100  
±105  
±110  
±115  
±120  
1k  
10k  
100k  
1M  
Offset (Hz)  
C001  
This plot is for a phase detector of 100 MHz, 2 MHz loop bandwidth, and VCO at 9600 MHz. However, the plot shown is the divide by 2 port  
at 4800 MHz. The input was a 100 MHz Wenzel Oscillator. The model shows this phase noise has a figure of merit of -227 dBc/Hz and a  
normalized 1/f noise of -120.5 dBc/Hz. The charge pump supply was 5 V and the charge pump output voltage was 1.34 V.  
Figure 4. LMX2492/92-Q1 Phase Noise for Fpd =100 MHz, Fvco = 9600 MHz/2  
8
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
8 Detailed Description  
8.1 Overview  
The LMX2492/92-Q1 is a microwave PLL, consisting of a reference input and divider, high frequency input and  
divider, charge pump, ramp generator, and other digital logic. The Vcc power supply pins run at a nominal 3.3  
volts, while the charge pump supply pin, Vcp, operates anywhere from Vcc to 5 volts. The device is designed to  
operate with an external loop filter and VCO. Modulation is achieved by manipulating the MASH engine.  
8.2 Functional Block Diagram  
GND (x3)  
Vcc (x5)  
Vcp  
2X  
OSCin  
R Divider  
(16 bit)  
Charge  
Pump  
CPout  
GND/OSCin*  
Lock  
Detect  
Fin  
Fin*  
CE  
N Divider  
(18 bit)  
4/5  
Prescaler  
TRIG1  
TRIG2  
MOD  
CLK  
6'  
Modulation  
Generator  
MUX  
MICROWIRE  
Interface  
Compensation  
(24 bit)  
DATA  
LE  
MUXout  
8.3 Feature Description  
8.3.1 OSCin Input  
The reference can be applied in several ways. If using a differential input, this should be terminated differentially  
with a 100 ohm resistance and AC coupled to the OSCin and GND/OSCin* terminals. If driving this single-ended,  
then the GND/OSCin* terminal may be grounded, although better performance is attained by connecting the  
GND/OSCin* terminal through a series resistance and capacitance to ground to match the OSCin terminal  
impedance.  
8.3.2 OSCin Doubler  
The OSCin doubler allows the input signal to the OSCin to be doubled in order to have higher phase detector  
frequencies. This works by clocking on both the rising and falling edges of the input signal, so it therefore  
requires a 50% input duty cycle.  
8.3.3 R Divider  
The R counter is 16 bits divides the OSCin signal from 1 to 65535. If DIFF_R = 0, then any value can be chosen  
in this range. If DIFF_R=1, then the divide is restricted to 2,4,8, and 16, but allows for higher OSCin frequencies.  
8.3.4 PLL N Divider  
The 16 bit N divider divides the signal at the Fin terminal down to the phase detector frequency. It contains a 4/5  
prescaler that creates minimum divide restrictions, but allows the N value to increment in values of one.  
Minimum N  
Modulator Order  
Divide  
Integer Mode, 1st  
16  
Order Modulator  
2nd Order Modulator  
3rd Order Modulator  
4th Order Modulator  
17  
19  
25  
Copyright © 2014, Texas Instruments Incorporated  
9
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.3.5 Fractional Circuitry  
The fractional circuitry controls the N divider with delta sigma modulation that supports a programmable first,  
second, third, and fourth order modulator. The fractional denominator is a fully programmable 24-bit denominator  
that can support any value from 1,2,..., 224, with the exception when the device is running one of the ramps, and  
in this case it is a fixed size of 224.  
8.3.6 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the R and N dividers and generates a correction voltage  
corresponding to the phase error. This voltage is converted to a correction current by the charge pump. The  
phase detector frequency, fPD, can be calculated as follows: fPD = fOSCin × OSC_2X / R.  
The charge pump supply voltage on this device, Vcp, can be either run at the Vcc voltage, or up to 5.25 volts in  
order to get higher tuning voltages to present to the VCO.  
8.3.7 External Loop Filter  
The loop filter is external to the device and is application specific. Texas Instruments website has details on this  
at www.ti.com.  
8.3.8 Fastlock and Cycle Slip Reduction  
The Fastlock™ and Cycle Slip Reduction features can be used to improved lock time. When the frequency is  
changed, a timeout counter can be used to engage these features for a prescribed number of phase detector  
cycles. During this time that the timeout counter is counting down, the device can be used to pull a terminal from  
high impedance to ground switch in an extra resistor (R2pLF), change the charge pump current (FL_CPG), or  
change the phase detector frequency. TRIG2 is recommended for switching the resistor with a setting of  
TRIG2_MUX = Fastlock (2) and TRIG2_PIN = Inverted/Open Drain (5).  
Charge  
CPout  
Pump  
C2_LF  
TRIG2  
C1_LF  
R2pLF  
R2_LF  
Fastlock  
Control  
Parameter  
Normal Operation  
Fastlock Operation  
Charge Pump Gain  
CPG  
FL_CPG  
Device Pin  
(TRIG1, TRIG2, MOD, or MUXout)  
High Impedance  
Grounded  
The resistor and the charge pump current are changed simultaneously so that the phase margin remains the  
same while the loop bandwidth is by a factor of K as shown in the following table:  
Parameter  
Symbol  
FL_CPG  
K
Calculation  
Typically use the highest value.  
K=sqrt(FL_CPG/CPG)  
R2 / (K-1)  
Charge Pump Gain in Fastlock  
Loop Bandwidth Multiplier  
External Resistor  
R2pLF  
10  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
Cycle slip reduction is another method that can also be used to speed up lock time by reducing cycle slipping.  
Cycle slipping typically occurs when the phase detector frequency exceeds about 100x the loop bandwidth of the  
PLL. Cycle slip reduction works in a different way than fastlock. To use this, the phase detector frequency is  
decreased while the charge pump current is simultaneously increased by the same factor. Although the loop  
bandwidth is unchanged, the ratio of the phase detector frequency to the loop bandwidth is, and this is helpful for  
cases when the phase detector frequency is high. Because cycle slip reduction changes the phase detector rate,  
it also impacts other things that are based on the phase detector rate, such as the fastlock timeout-counter and  
ramping controls.  
8.3.9 Lock Detect and Charge Pump Voltage Monitor  
The LMX2492/92-Q1 offers two methods to determine if the PLL is in lock, charge pump voltage monitoring and  
digital lock detect. These features can be used individually or in conjunction to give a reliable indication of when  
the PLL is in lock. The output of this detection can be routed to the TRIG1, TRIG2, MOD, or MUXout terminals.  
8.3.9.1 Charge Pump Voltage Monitor  
The charge pump voltage monitor allows the user to set low (CMP_THR_LOW) and high (CMP_THR_HIGH)  
thresholds for a comparator that monitors the charge pump output voltage.  
Vcp  
Threshold  
Suggested Level  
CPM_THR_LOW  
= (Vthresh + 0.08) / 0.085  
6 for 0.5V limit  
3.3 V  
CPM_THR_HIGH  
42 for 2.8V limit  
4 for 0.5V limit  
46 for 4.5V limit  
= (Vthresh - 0.96) / 0.044  
CPM_THR_LOW  
= (Vthresh + 0.056) / 0.137  
5.0 V  
CPM_THR_HIGH  
= (Vthresh -1.23) / 0.071  
8.3.9.2 Digital Lock Detect  
Digital lock detect works by comparing the phase error as presented to the phase detector. If the phase error  
plus the delay as specified by the PFD_DLY bit is outside the tolerance as specified by DLD_TOL, then this  
comparison would be considered to be an error, otherwise passing. The DLD_ERR_CNT specifies how may  
errors are necessary to cause the circuit to consider the PLL to be unlocked. The DLD_PASS_CNT specifies  
how many passing comparisons are necessary to cause the PLL to be considered to be locked and also resets  
the count for the errors. The DLD_TOL value should be set to no more than half of a phase detector period plus  
the PFD_DLY value. The DLD_ERR_CNT and DLD_PASS_CNT values can be decreased to make the circuit  
more sensitive. If the circuit is too sensitive, then chattering can occur and the DLD_ERR_CNT,  
DLD_PASS_CNT, or DLD_TOL values should be increased.  
Note that if the OSCin signal goes away and there is no noise or self-oscillation at the OSCin pin, then it is  
possible for the digital lock detect to indicate a locked state when the PLL really is not in lock. If this is a concern,  
then digital lock detect can be combined with charge pump voltage monitor to detect this situation..  
8.3.10 FSK/PSK Modulation  
Two level FSK or PSK modulation can be created whenever a trigger event, as defined by the FSK_TRIG field is  
detected. This trigger can be defined as a transition on a terminal (TRIG1, TRIG2, MOD, or MUXout) or done  
purely in software. The RAMP_PM_EN bit defines the modulation to be either FSK or PSK and the FSK_DEV  
register determines the amount of the deviation. Remember that the FSK_DEV[32:0] field is programmed as the  
2's complement of the actual desired FSK_DEV value. This modulation can be added to the modulation created  
from the ramping functions as well.  
RAMP_PM_EN  
Modulation Type  
2 Level FSK  
Deviation  
0
1
Fpd × FSK_DEV / 224  
360° × FSK_DEV / 224  
2 Level PSK  
Copyright © 2014, Texas Instruments Incorporated  
11  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.3.11 Ramping Functions  
The LMX2492/92-Q1 supports a broad and flexible class of FMCW modulation formed by up to 8 linear ramps.  
When the ramping function is running, the denominator is fixed to a forced value of 224 = 16777216. The  
waveform always starts at RAMP0 when the LSB of the PLL_N (R16) is written to. After it is set up, it will start at  
the initial frequency and have piecewise linear frequency modulation that deviates from this initial frequency as  
specified by the modulation. Each of the eight ramps can be individually programmed. Various settings are as  
follows  
Ramp Characteristic  
Programming Field Name  
Description  
The user programs the length of the ramp in phase detector cycles. If  
RAMPx_DLY=1, then each count of RAMPx_LEN is actually two phase detector  
cycles.  
RAMPx_LEN  
RAMPx_DLY  
Ramp Length  
The user does not directly program slope of the line, but rather this is done by  
defining how long the ramp is and how much the fractional numerator is  
increased per phase detector cycle. The value for RAMPx_INC is calculated by  
taking the total expected increase in the frequency, expressed in terms of how  
much the fractional numerator increases, and dividing it by RAMPx_LEN. The  
value programmed into RAMPx_INC is actually the two's complement of the  
desired mathematical value.  
RAMPx_LEN  
RAMPx_DLY  
RAMPx_INC  
Ramp Slope  
The event that triggers the next ramp can be defined to be the ramp finishing or  
can wait for a trigger as defined by TRIG A, TRIG B, or TRIG C.  
Trigger for Next Ramp  
Next Ramp  
RAMPx_NEXT_TRIG  
RAMPx_NEXT  
This sets the ramp that follows. Waveforms are constructed by defining a chain  
ramp segments. To make the waveform repeat, make RAMPx_NEXT point to  
the first ramp in the pattern.  
Ramp Fastlock  
Ramp Flags  
RAMPx_FL  
This allows the ramp to use a different charge pump current or use Fastlock  
This allows the ramp to set a flag that can be routed to external terminals to  
trigger other devices.  
RAMPx_FLAG  
8.3.11.1 Ramp Count  
If it is desired that the ramping waveform keep repeating, then all that is needed is to make the RAMPx_NEXT of  
the final ramp equal to the first ramp. This will run until the RAMP_EN bit is set to zero. If this is not desired, then  
one can use the RAMP_COUNT to specify how may times the specified pattern is to repeat.  
8.3.11.2 Ramp Comparators and Ramp Limits  
The ramp comparators and ramp limits use programable thresholds to allow the device to detect whenever the  
modulated waveform frequency crosses a limit as set by the user. The difference between these is that  
comparators set a flag to alert the user while a ramp limits prevent the frequency from going beyond the  
prescribed threshold. In either case, these thresholds are expressed by programming the  
Extended_Fractional_Numerator.  
Extended_Fractional_Numerator  
=
Fractional_Numerator  
+
(N-N*)  
×
224  
In the above, N is the PLL feedback value without ramping and N* is the instantaneous value during ramping.  
The actual value programmed is the 2's complement of Extended_Fractional_Numerator.  
Type  
Programming Bit  
RAMP_LIMIT_LOW  
RAMP_LIMIT_HIGH  
Threshold  
Lower Limit  
Upper Limit  
Ramp Limits  
For the ramp comparators, if the ramp is increasing and exceeds the value as specified  
by RAMP_CMPx, then the flag will go high, otherwise it is low. If the ramp is decreasing  
and goes below the value as specified by RAMP_CMPx, then the flag will go high,  
otherwise it will be low.  
Ramp  
Comparators  
RAMP_CMP0  
RAMP_CMP1  
8.3.12 Power on Reset (POR)  
The power on reset circuitry sets all the registers to a default state when the device is powered up. This same  
reset can be done by programming SWRST=1. In the programming section, the power on reset state is given for  
all the programmable fields.  
12  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
8.4 Device Functional Modes  
The two primary ways to use the LMX2492/92-Q1 are to run it to generate a set of frequencies  
8.4.1 Continuous Frequency Generator  
In this mode, the LMX2492/92-Q1 generates a single frequency that only changes when the N divider is  
programmed to a new value. In this mode, the RAMP_EN bit is set to 0 and the ramping controls are not used.  
The fractional denominator can be programmed to any value from 1 to 16777216. In this kind of application, the  
PLL is tuned to different channels, but at each channel, the goal is to generate a stable fixed frequency.  
8.4.1.1 Integer Mode Operation  
In integer mode operation, the VCO frequency needs to be an integer multiple of the phase detector frequency.  
This can be the case when the output frequency or frequencies are nicely related to the input frequency. As a  
rule of thumb, if this an be done with a phase detector of as high as the lesser of 10 MHz or the OSCin  
frequency, then this makes sense. To operate the device in integer mode, disable the fractional circuitry by  
programming the fractional order (FRAC_ORDER) , dithering (FRAC_DITH), and numerator (FRAC_NUM) to  
zero.  
8.4.1.2 Fractional Mode Operation  
In fractional mode, the output frequency does not need to be an integer multiple of the phase detector frequency.  
This makes sense when the channel spacing is more narrow or the input and output frequencies are not nicely  
related. There are several programmable controls for this such as the modulator order, fractional dithering,  
fractional numerator, and fractional denominator. There are many trade-offs with choosing these, but here are  
some guidelines  
Parameter  
Field Name  
How to Choose  
The first step is to find the fractional denominator. To do this, find the frequency that  
divides the phase detector frequency by the channel spacing. For instance, if the  
output ranges from 5000 to 5050 in 5 MHz steps and the phase detector is 100  
MHz, then the fractional denominator is 100 MHz/5 = 20. So for a an output of 5015  
MHz, the N divider would be 50 + 3/20. In this case, the fractional numerator is 3  
and the fractional denominator is 20. Sometimes when dithering is used, it makes  
Fractional Numerator and  
Denominator  
FRAC_NUM  
FRAC_DEN  
sense  
to  
express  
this  
as  
a
larger  
equivalent  
fraction.  
Note that if ramping is active, the fractional denominator is forced to 224  
.
There are many trade-offs, but in general try either the 2nd or 3rd order modulator  
Fractional Order  
Dithering  
FRAC_ORDER as starting points. The 3rd order modulator may give lower main spurs, but may  
generate others. Also if dithering is involved, it can generate phase noise.  
Dithering can reduce some fractional spurs, but add noise. Consult application note  
FRAC_DITH  
AN-1879 for more details on this.  
8.4.2 Modulated Waveform Generator  
In this mode, the device can generate a broad class of frequency sweeping waveforms. The user can specify up  
to 8 linear segments in order to generate these waveforms. When the ramping function is running, the  
denominator is fixed to a forced value of 224 = 16777216  
In addition to the ramping functions, there is also the capability to use a terminal to add phase or frequency  
modulation that can be done by itself or added on top of the waveforms created by the ramp generation  
functions.  
Copyright © 2014, Texas Instruments Incorporated  
13  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.5 Programming  
8.5.1 Loading Registers  
The device is programmed using several 24 bit registers. The first 16 bits of the register are the address,  
followed by the next 8 bits of data. The user has the option to pull the LE terminal high after this data, or keep  
sending data and it will apply this data to the next lower register. So instead of sending three registers of 24 bits  
each, one could send a single 40 bit register with the 16 bits of address and 24 bits of data. For that matter, the  
entire device could be programmed as a single register if desired.  
8.6 Register Map  
Registers are programmed in REVERSE order from highest to lowest. Registers NOT shown in this table or  
marked as reserved can be written as all 0's unless otherwise stated. The POR value is the power on reset value  
that is assigned when the device is powered up or the SWRST bit is asserted.  
Table 1. Register Map  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
0x18  
0x00  
0x00  
-
0
1
2
0
0x1  
0
0
0
1
1
0
0
0
Reserved  
Reserved  
0x2  
0
0
0
0
0
0
SWRST  
POWERDOWN[1:0]  
PLL_N[17:16]  
3-15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
0x3 - 0xF  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
PLL_N[7:0]  
0x64  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x04  
0x00  
PLL_N[15:8]  
FRAC_ORDER[2:0]  
FRAC_DITHER[1:0]  
FRAC_NUM[7:0]  
FRAC_NUM[15:8]  
FRAC_NUM[23:16]  
FRAC_DEN[7:0]  
FRAC_DEN[15:8]  
FRAC_DEN[23:16]  
PLL_R[7:0]  
PLL_R[15:8]  
PLL_R_  
DIFF  
27  
0x1B  
0
0
FL_CSR[1:0]  
PFD_DLY[1:0]  
0
OSC_2X  
0x08  
28  
29  
0x1C  
0x1D  
0
CPPOL  
CPG[4:0]  
0x00  
0x00  
FL_TOC[10:8]  
FL_CPG[4:0]  
CPM_  
FLAGL  
30  
31  
0x1E  
0x1F  
0
0
CPM_THR_LOW[5:0]  
CPM_THR_HIGH[5:0]  
0x0a  
0x32  
CPM_  
FLAGH  
32  
33  
34  
0x20  
0x21  
0x22  
FL_TOC[7:0]  
DLD_PASS_CNT[7:0]  
DLD_ERR_CNTR[4:0]  
TRIG1  
_MUX[5]  
0x00  
0x0f  
0x00  
DLD_TOL[2:0]  
1
MOD_  
MUX[5]  
MUXout  
_MUX[5]  
TRIG2  
_MUX[5]  
35  
0x23  
0
0
1
0x41  
36  
37  
0x24  
0x25  
TRIG1_MUX[4:0]  
TRIG2_MUX[4:0]  
MOD_MUX[4:0]  
TRIG1_PIN[2:0]  
TRIG2_PIN[2:0]  
MOD_PIN[2:0]  
0x08  
0x10  
0x18  
0x38  
-
38  
0x26  
39  
0x27  
MUXout_MUX[4:0]  
MUXout_PIN[2:0]  
40-57  
0x28-0x39  
Reserved  
14  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
Register Map (continued)  
Table 1. Register Map (continued)  
Register  
0x3A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
RAMP_  
PM_EN  
RAMP_  
CLK  
58  
RAMP_TRIG_A[3:0]  
RAMP_TRIG_C[3:0]  
0
RAMP_EN  
0x00  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
RAMP_TRIG_B[3:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RAMP_CMP0[7:0]  
RAMP_CMP0[15:8]  
RAMP_CMP0[23:16]  
RAMP_CMP0[31:24]  
RAMP_CMP0_EN[7:0]  
RAMP_CMP1[7:0]  
RAMP_CMP1[15:8]  
RAMP_CMP1[23:16]  
RAMP_CMP1[31:24]  
RAMP_CMP1_EN[7:0]  
RAMP_  
LIMH[32]  
RAMP_  
LIML[32]  
FSK_  
DEV[32]  
RAMP_  
CMP1[32] CMP0[32]  
RAMP_  
70  
0x46  
0
FSK_TRIG[1:0]  
0x08  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
FSK_DEV[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xff  
FSK_DEV[15:8]  
FSK_DEV[23:16]  
FSK_DEV[31:24]  
RAMP_LIMIT_LOW[7:0]  
RAMP_LIMIT_LOW[15:8]  
RAMP_LIMIT_LOW[23:16]  
RAMP_LIMIT_LOW[31:24]  
RAMP_LIMIT_HIGH[7:0]  
RAMP_LIMIT_HIGH[15:8]  
RAMP_LIMIT_HIGH[23:16]  
RAMP_LIMIT_HIGH[31:24]  
RAMP_COUNT[7:0]  
0xff  
0xff  
0xff  
0x00  
RAMP_  
AUTO  
84  
85  
0x54  
0x55  
RAMP_TRIG_INC[1:0]  
RAMP_COUNT[12:8]  
0x00  
0x00  
Reserved  
Copyright © 2014, Texas Instruments Incorporated  
15  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
Register Map (continued)  
Table 1. Register Map (continued)  
Register  
0x56  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
0x00  
0x00  
0x00  
86  
87  
88  
RAMP0_INC[7:0]  
RAMP0_INC[15:8]  
RAMP0_INC[23:16]  
0x57  
0x58  
RAMP0_  
DLY  
RAMP0_  
FL  
89  
0x59  
RAMP0_INC[29:24]  
RAMP0_LEN[7:0]  
0x00  
90  
91  
0x5A  
0x5B  
0x00  
0x00  
RAMP0_LEN[15:8]  
RAMP0_  
NEXT_TRIG[1:0]  
RAMP0_  
RST  
92  
0x5C  
RAMP0_NEXT[2:0]  
RAMP0_FLAG[1:0]  
RAMP1_FLAG[1:0]  
RAMP2_FLAG[1:0]  
RAMP3_FLAG[1:0]  
0x00  
93  
94  
95  
0x5D  
0x5E  
0x5F  
RAMP1_INC[7:0]  
RAMP1_INC[15:8]  
RAMP1_INC[23:16]  
0x00  
0x00  
0x00  
RAMP1_  
DLY  
RAMP1_  
FL  
96  
0x60  
RAMP1_INC[29:24]  
0x00  
97  
98  
0x61  
0x62  
RAMP1_LEN[7:0]  
0x00  
0x00  
RAMP1_LEN[15:8]  
RAMP1_  
NEXT_TRIG[1:0]  
RAMP1_  
RST  
99  
0x63  
RAMP1_NEXT[2:0]  
0x00  
100  
101  
102  
0x64  
0x65  
0x66  
RAMP2_INC[7:0]  
RAMP2_INC[15:8]  
RAMP2_INC[23:16]  
0x00  
0x00  
0x00  
RAMP2  
DLY  
RAMP2_  
FL  
103  
0x67  
RAMP2_INC[29:24]  
0x00  
104  
105  
0x68  
0x69  
RAMP2_LEN[7:0]  
0x00  
0x00  
RAMP2_LEN[15:8]  
RAMP2_  
NEXT_TRIG[1:0]  
RAMP2_  
RST  
106  
0x6A  
RAMP2_NEXT[2:0]  
0x00  
107  
108  
109  
0x6B  
0x6C  
0x6D  
RAMP3_INC[7:0]  
RAMP3_INC[15:8]  
RAMP3_INC[23:16]  
0x00  
0x00  
0x00  
RAMP3_  
DLY  
RAMP3_  
FL  
110  
0x6E  
RAMP3_INC[29:24]  
RAMP3_LEN[7:0]  
0x00  
111  
112  
0x6F  
0x70  
0x00  
0x00  
RAMP3_LEN[15:8]  
RAMP3_  
NEXT_TRIG[1:0]  
RAMP3_  
RST  
113  
0x71  
RAMP3_NEXT[2:0]  
0x00  
16  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
Register Map (continued)  
Table 1. Register Map (continued)  
Register  
0x72  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
0x00  
0x00  
0x00  
114  
115  
116  
RAMP4_INC[7:0]  
RAMP4_INC[15:8]  
RAMP4_INC[23:16]  
0x73  
0x74  
RAMP4_  
DLY  
RAMP4_  
FL  
117  
0x75  
RAMP4_INC[29:24]  
RAMP4_LEN[7:0]  
0x00  
118  
119  
0x76  
0x77  
0x00  
0x00  
RAMP4_LEN[15:8]  
RAMP4_  
NEXT_TRIG[1:0]  
RAMP4_  
RST  
120  
0x78  
RAMP4_NEXT[2:0]  
RAMP4_FLAG[1:0]  
RAMP5_FLAG[1:0]  
RAMP6_FLAG[1:0]  
RAMP7_FLAG[1:0]  
0x00  
121  
122  
123  
0x79  
0x7A  
0x7B  
RAMP5_INC[7:0]  
RAMP5_INC[15:8]  
RAMP5_INC[23:16]  
0x00  
0x00  
0x00  
RAMP5_  
DLY  
RAMP5_  
FL  
124  
0x7C  
RAMP5_INC[29:24]  
0x00  
125  
126  
0x7D  
0x7E  
RAMP5_LEN[7:0]  
0x00  
0x00  
RAMP5_LEN[15:8]  
RAMP5_  
NEXT_TRIG[1:0]  
RAMP5_  
RST  
127  
0x7F  
RAMP5_NEXT[2:0]  
0x00  
128  
129  
130  
0x80  
0x81  
0x82  
RAMP6_INC[7:0]  
RAMP6_INC[15:8]  
RAMP6_INC[23:16]  
0x00  
0x00  
0x00  
RAMP6_  
DLY  
RAMP6_  
FL  
131  
0x83  
RAMP6_INC[29:24]  
0x00  
132  
133  
0x84  
0x85  
RAMP6_LEN[7:0]  
0x00  
0x00  
RAMP6_LEN[15:8]  
RAMP6_  
NEXT_TRIG[1:0]  
RAMP6_  
RST  
134  
0x86  
RAMP6_NEXT[2:0]  
0x00  
135  
136  
137  
0x87  
0x88  
0x89  
RAMP7_INC[7:0]  
RAMP7_INC[15:8]  
RAMP7_INC[23:16]  
0x00  
0x00  
0x00  
RAMP7_  
DLY  
RAMP7_  
FL  
138  
0x8A  
RAMP7_INC[29:24]  
RAMP7_LEN[7:0]  
0x00  
139  
140  
0x8B  
0x8C  
0x00  
0x00  
RAMP7_LEN[15:8]  
RAMP7_  
NEXT_TRIG[1:0]  
RAMP7_  
RST  
141  
0x8D  
RAMP7_NEXT[2:0]  
0x00  
0x00  
0x8E-  
0x7fff  
142-32767  
Reserved  
Copyright © 2014, Texas Instruments Incorporated  
17  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.7 Register Field Descriptions  
The following sections go through all the programmable fields and their states. Additional information is also  
available in the applications and feature descriptions sections as well. The POR column is the power on reset  
state that this field assumes if not programmed.  
8.7.1 POWERDOWN and Reset Fields  
Table 2. POWERDOWN and Reset Fields  
Field  
Location  
POR  
Description and States  
Value  
POWERDOWN State  
POWERDOWN, ignore CE  
Power Up, ignore CE  
0
1
POWERDOWN  
[1:0]  
R2[1:0]  
0
POWERDOWN Control  
Power State Defined by CE  
terminal state  
2
3
Reserved  
Reset State  
Value  
Software Reset. Setting this bit sets all  
registers to their POR default values.  
SWRST  
R2[2]  
0
0
1
Normal Operation  
Register Reset  
18  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
8.7.2 Dividers and Fractional Controls  
Table 3. Dividers and Fractional Controls  
Field  
Location  
POR  
Description and States  
PLL_N  
[17:0]  
R18[1] to  
R16[0]  
Feedback N counter Divide value. Minimum count is 16. Maximum is 262132. Writing of  
the register R16 begins any ramp execution when RAMP_EN=1.  
16  
Value  
Dither  
Weak  
0
FRAC_ DITHER  
[1:0]  
R18[3:2]  
R18[6:4]  
0
0
Dither used by the fractional modulator  
1
Medium  
2
Strong  
3
Disabled  
Value  
Modulator Order  
Integer Mode  
1st Order Modulator  
2nd Order Modulator  
3rd Order Modulator  
4th Order Modulator  
Reserved  
0
1
FRAC_ ORDER  
[2:0]  
Fractional Modulator order  
2
3
4
5-7  
FRAC_NUM  
[23:0]  
R21[7] to  
R19[0]  
Fractional Numerator. This value should be less than or equal to the fractional  
denominator.  
0
0
1
FRAC_DEN  
[23:0]  
R24[7] to  
R22[0]  
Fractional Denominator. If the RAMP_EN=1, this field is ignored and the denominator is  
fixed to 224  
.
PLL_R  
[15:0]  
R26[7] to  
R25[0]  
Reference Divider value. Selecting 1 will bypass counter.  
Value  
Doubler  
Disabled  
Enables the Doubler before the Reference  
divider  
OSC_2X  
R27[0]  
R27[2]  
0
0
0
1
Enabled  
Enables the Differential  
R
counter.  
Value  
R Divider  
Single-Ended  
Differential  
Pulse Width  
Reserved  
860 ps  
This allows for higher OSCin frequencies,  
but restricts PLL_R to divides of 2,4,8 or  
16.  
0
PLL_R _DIFF  
1
Value  
Sets the charge pump minimum pulse  
width. This could potentially be a trade-off  
between fractional spurs and phase noise.  
Setting 1 is recommended for general use.  
0
PFD_DLY  
[1:0]  
R27[4:3]  
1
1
2
1200 ps  
3
1500 ps  
Value  
Charge Pump State  
Tri-State  
0
1
100 uA  
CPG  
[4:0]  
R28[4:0]  
R28[5]  
0
0
Charge pump gain  
2
200 uA  
31  
Value  
0
3100 uA  
Charge Pump Polarity  
Negative  
Charge  
Pump  
Polarity  
CPPOL  
Positive is for a positive slope VCO  
characteristic, negative otherwise.  
1
Positive  
Copyright © 2014, Texas Instruments Incorporated  
19  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.7.2.1 Speed Up Controls (Cycle Slip Reduction and Fastlock)  
Table 4. FastLock and Cycle Slip Reduction  
Field  
Location  
POR  
Description and States  
Cycle Slip Reduction (CSR) reduces the  
phase detector frequency by multiplying  
both the R and N counters by the CSR  
value while either the FastLock Timer is  
counting or the RAMPx_FL=1 and the part  
is ramping. Care must be taken that the R  
and N divides remain inside the range of  
the counters. Cycle slip reduction is  
Value  
CSR Value  
0
1
2
Disabled  
x 2  
FL_ CSR  
[1:0]  
x 4.  
R27[6:5]  
0
3
Reserved  
generally  
ramping.  
not  
recommended  
during  
Value  
Fastlock Charge Pump Gain  
0
1
Tri-State  
100 uA  
Charge pump gain only when Fast Lock  
FL_ CPG  
[4:0]  
R29[4:0]  
0
Timer is counting down or  
running with RAMPx_FL=1  
a ramp is  
2
200 uA  
31  
Value  
0
3100 uA  
Fast Lock Timer. This counter starts  
counting when the user writes the  
PLL_N(Register R16). During this time the  
FL_CPG gain is sent to the charge pump,  
Fastlock Timer Value  
Disabled  
1
1 x 32 = 32  
R29[7:5]  
and  
R32[7:0]  
FL_ TOC  
[10:0]  
0
and the FL_CSR shifts the R and N  
...  
counters if enabled. When the counter  
terminates, the normal CPG is presented  
and the CSR undo’s the shifts to give a  
normal PFD frequency.  
2047  
2047 x 32 = 65504  
20  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
8.8 Lock Detect and Charge Pump Monitoring  
Table 5. Lock Detect and Charge Pump Monitor  
Field  
Location  
POR  
Description and States  
Value  
Threshold  
Lowest  
Charge pump voltage low threshold value.  
0x0A When the charge pump voltage is below  
this threshold, the LD goes low.  
0
CPM_THR _LOW  
[5:0]  
R30[5:0]  
63  
Highest  
Value  
Flag Indication  
This is a read only bit.  
Low indicates the charge pump voltage is  
below the minimum threshold.  
Charge pump is below  
CPM_THR_LOW threshold  
0
1
CPM_FLAGL  
R30[6]  
R31[5:0]  
R31[6]  
-
Charge pump is above  
CPM_THR_LOW threshold  
Value  
0
Threshold  
Lowest  
Charge pump voltage high threshold value.  
CPM_THR _HIGH  
[5:0]  
0x32 When the charge pump voltage is above  
this threshold, the LD goes low.  
63  
Highest  
Threshold  
Value  
This  
is  
a
read  
only  
bit.  
Charge pump is below  
CPM_THR_HIGH threshold  
Charge pump voltage high comparator  
reading. High indicates the charge pump  
voltage is above the maximum threshold.  
0
1
CPM_FLAGH  
-
Charge pump is above  
CPM_THR_HIGH threshold  
Digital Lock Detect Filter amount. There must be at least DLD_PASS_CNT good edges  
0xff and less than DLD_ERR edges before the DLD is considered in lock. Making this number  
smaller will speed the detection of lock, but also will allow a higher chance of DLD chatter.  
DLD_ PASS_CNT  
[7:0]  
R33[7:0]  
R34[4:0]  
Digital Lock Detect error count. This is the maximum number of errors greater than  
DLD_TOL that are allowed before DLD is de-asserted. Although the default is 0, the  
recommended value is 4.  
DLD_ ERR_CNT  
[4:0]  
0
0
Value  
Window and Fpd Frequency  
0
1 ns (Fpd > 130 MHz)  
Digital Lock detect edge window. If both N  
and R edges are within this window, it is  
considered a “good” edge. Edges that are  
farther apart in time are considered “error”  
edges. Window choice depends on phase  
detector frequency, charge pump minimum  
pulse width, fractional modulator order and  
the users desired margin.  
1.7 ns (80 MHz , Fpd 130  
1
MHz)  
2
3
3 ns (60 MHz , Fpd 80 MHz)  
6 ns (45 MHz , Fpd 60 MHz)  
DLD _TOL  
[2:0]  
R34[7:5]  
10 ns (30 MHz < Fpd 45  
4
MHz)  
5
18 ns ( Fpd 30 MHz)  
6 and 7  
Reserved  
Copyright © 2014, Texas Instruments Incorporated  
21  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.9 TRIG1,TRIG2,MOD, and MUXout Pins  
Table 6. TRIG1, TRIG2, MOD, and MUXout Terminal States  
Field  
Location  
POR  
Description and States  
Value  
Pin Drive State  
0
1
2
TRISTATE (default)  
Open Drain Output  
TRIG1 _PIN  
[2:0]  
R36[2:0]  
0
Pullup / Pulldown Output  
TRIG2 _PIN  
[2:0]  
R37[2:0]  
R38[2:0]  
0
0
3
Reserved  
This is the terminal drive state for the  
TRIG1, TRIG2, MOD, and MUXout Pins  
MOD_ _PIN  
[2:0]  
4
5
6
7
GND  
Inverted Open Drain Output  
MUXout_ _PIN  
[2:0]  
Inverted Pullup / Pulldown  
Output  
R39[2:0]  
0
Input  
22  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
Table 7. TRIG1, TRIG2, MOD, and MUXout Selections  
Field  
Location  
POR  
Description and States  
Value  
MUX State  
GND  
0
1
2
3
Input TRIG1  
Input TRIG2  
Input MOD  
Output TRIG1 after  
synchronizer  
4
5
6
Output TRIG2 after  
synchronizer  
Output MOD after  
synchronizer  
7
8
9
Output Read back  
Output CMP0  
Output CMP1  
Output LD (DLD good AND  
CPM good)  
10  
11  
12  
13  
14  
Output DLD  
Output CPMON good  
Output CPMON too High  
Output CPMON too low  
These fields control what signal is muxed  
to or from the TRIG1,TRIG2, MOD, and  
MUXout pins.  
Some of the abbreviations used are:  
COMP0, COMP1: Comparators 0 and 1  
LD, DLD: Lock Detect, Digital Lock Detect  
Output RAMP LIMIT  
EXCEEDED  
15  
TRIG1_MUX  
R36[7:3],  
R37.3  
R36[7:3],  
R35.3  
R37[7:3],  
R35.4  
R38[7:3],  
R35.7  
[5:0]  
TRIG2_MUX  
[5:0]  
MOD_MUX  
[5:0]  
16  
17  
Output R Divide/2  
Output R Divide/4  
Output N Divide/2  
Output N Divide/4  
Reserved  
1
2
3
7
18  
CPM:  
CPG:  
CPUP:  
Charge  
Charge  
Charge  
Pump  
Pump  
Pump Up  
Monitor  
Gain  
Pulse  
MUXout_MUX  
[5:0]  
19  
20  
CPDN: Charge Pump Down Pulse  
21  
Reserved  
22  
Output CMP0RAMP  
Output CMP1RAMP  
Reserved  
23  
24  
25  
Reserved  
26  
Reserved  
27  
Reserved  
28  
Output Faslock  
Output CPG from RAMP  
Output Flag0 from RAMP  
Output Flag1 from RAMP  
Output TRIGA  
29  
30  
31  
32  
33  
Output TRIGB  
34  
Output TRIGC  
35  
Output R Divide  
Output CPUP  
36  
37  
Output CPDN  
38  
Output RAMP_CNT Finished  
Reserved  
39 to 63  
Copyright © 2014, Texas Instruments Incorporated  
23  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.10 Ramping Functions  
Table 8. Ramping Functions  
Field  
Location  
POR  
Description and States  
Enables the RAMP functions. When this bit  
is set, the Fractional Denominator is fixed  
to 224. RAMP execution begins at RAMP0  
upon the PLL_N[7:0] write. The Ramp  
should be set up before RAMP_EN is set.  
Value  
Ramp  
0
Disabled  
RAMP_EN  
R58[0]  
0
1
Enabled  
RAMP clock input source. The ramp can  
be clocked by either the phase detector  
clock or the MOD terminal based on this  
selection.  
Value  
Source  
0
Phase Detector  
RAMP_CLK  
R58[1]  
R58[2]  
0
0
1
MOD Terminal  
Value  
Modulation Type  
RAMP_PM_EN  
Phase modulation enable.  
0
1
Frequency Modulation  
Phase Modulation  
Value  
0
Source  
Never Triggers (default)  
TRIG1 terminal rising edge  
TRIG2 terminal rising edge  
MOD terminal rising edge  
DLD Rising Edge  
1
2
3
4
5
CMP0 detected (level)  
RAMPx_CPG Rising edge  
RAMPx_FLAG0 Rising edge  
Always Triggered (level)  
TRIG1 terminal falling edge  
TRIG2 terminal falling edge  
MOD terminal falling edge  
DLD Falling Edge  
RAMP_TRIGA  
[3:0]  
RAMP_TRIGB  
[3:0]  
RAMP_TRIGC  
[3:0]  
6
R58[7:4]  
R59[3:0]  
R59[7:4]  
0
Trigger A,B, and C Sources  
7
8
9
10  
11  
12  
13  
14  
15  
CMP1 detected (level)  
RAMPx_CPG Falling edge  
RAMPx_FLAG0 Falling edge  
R70[0],  
R63[7] to  
R60[0]  
RAMP_CMP0  
[32:0]  
Twos compliment of Ramp Comparator 0 value. Be aware of that the MSB is in Register  
R70.  
0
0
0
0
Comparator 0 is active during each RAMP corresponding to the bit. Place a 1 for ramps it  
is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7  
corresponds to R64[7]  
RAMP_CMP0_EN  
[7:0]  
R64[7:0]  
R70[1],  
R68[7] to  
R65[0]  
RAMP_CMP1  
[32:0]  
Twos compliment of Ramp Comparator 1 value. Be aware of that the MSB is in Register  
R70.  
Comparator 1 is active during each RAMP corresponding to the bit. Place a 1 for ramps it  
is active in and 0 for ramps it should be ignored. RAMP0 corresponds to R64[0], RAMP7  
corresponds to R64[7].  
RAMP_CMP1_EN  
[7:0]  
R69[7:0]  
Value  
Trigger  
Always Triggered  
Trigger A  
0
1
2
3
Deviation trigger source. When this trigger  
source specified is active, the FSK_DEV  
value is applied.  
FSK_TRIG  
[1:0]  
R76[4] to  
R75[3]  
0
0
Trigger B  
Trigger C  
R70[2],  
R74[7] to  
R71[0]  
Twos compliment of the deviation value for frequency modulation and phase modulation.  
This value should be written with 0 when not used. Be aware that the MSB is in Register  
R70.  
FSK_DEV  
[32:0]  
24  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
Ramping Functions (continued)  
Table 8. Ramping Functions (continued)  
Field  
Location  
POR  
Description and States  
Twos compliment of the ramp lower limit that the ramp can not go below . The ramp limit  
0x000 occurs before any deviation values are included. Care must be taken if the deviation is  
00000 used and the ramp limit must be set appropriately. Be aware that the MSB is in Register  
R70.  
R70[3],  
R78[7] to  
75[0]  
RAMP_LIMIT_LOW  
[32:0]  
Twos compliment of the ramp higher limit that the ramp can not go above. The ramp limit  
0xfffffff occurs before any deviation values are included. Care must be taken if the deviation is  
R70[4],  
R82[7] to  
79.0[0]  
RAMP_LIMIT_HIGH  
[32:0]  
f
used and the ramp limit must be set appropriately. Be aware that the MSB is in Register  
R70.  
Number of RAMPs that will be executed before a trigger or ramp enable is brought down.  
Load zero if this feature is not used. Counter is automatically reset when RAMP_EN goes  
from 0 to 1.  
RAMP_COUNT  
[12:0]  
R84[4] to  
R83[0]  
0
Value  
Ramp  
RAMP_EN unaffected by ramp  
counter (default)  
0
Automatically clear RAMP_EN when  
RAMP Count hits terminal count.  
RAMP_AUTO  
R84[5]  
0
0
RAMP_EN automatically  
brought low when ramp  
counter terminal counts  
1
Value  
Source  
Increments occur on each  
ramp transition  
0
Increment Trigger source for RAMP  
Counter. To disable ramp counter, load a  
count value of 0.  
RAMP_TRIG_INC  
[1:0]  
R84[7:6]  
1
2
3
Increment occurs on trigA  
Increment occurs on trigB  
Increment occurs on trigC  
Copyright © 2014, Texas Instruments Incorporated  
25  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
8.11 Individual Ramp Controls  
These bits apply for all eight ramps. For the field names, x can be 0,1,2,3,4,5,6, or 7.  
Table 9. Individual Ramp Controls  
Field  
Location POR  
Description and States  
RAMPx  
_INC[29:0]  
Varies  
0
Signed ramp increment.  
Value  
0
CPG  
RAMPx _FL  
Varies  
0
This enables fastlock and cycle slip reduction for ramp x.  
Disabled  
Enabled  
Clocks  
1
Value  
During this ramp, each increment takes 2 PFD cycles per  
LEN clock instead of the normal 1 PFD cycle. Slows the  
ramp by a factor of 2.  
1 PFD clock per RAMP  
tick.(default)  
RAMPx  
_DLY  
0
1
Varies  
Varies  
0
0
2 PFD clocks per RAMP  
tick.  
RAMPx  
_LEN  
Number of PFD clocks (if DLY is 0) to continue to increment RAMP. 1=>1 cycle, 2=>2 etc. Maximum of  
65536 cycles.  
Value  
Flag  
Both FLAG1 and FLAG0  
are zero. (default)  
0
FLAG0 is set, FLAG1 is  
clear  
RAMPx  
_FLAG[1:0]  
1
2
3
Varies  
Varies  
0
0
General purpose FLAGS sent out of RAMP.  
FLAG0 is clear, FLAG1 is  
set  
Both FLAG0 and FLAG1  
are set.  
Forces a clear of the ramp accumulator. This is used to  
erase any accumulator creep that can occur depending on  
how the ramps are defined. Should be done at the start of a  
ramp pattern.  
Value  
Reset  
Disabled  
Enabled  
RAMP0  
_RST  
0
1
Value  
Operation  
RAMPx_LEN  
TRIG_A  
RAMPx_  
NEXT  
_TRIG  
[1:0]  
Determines what event is necessary to cause the state  
machine to go to the next ramp. It can be set to when the  
RAMPx_LEN counter reaches zero or one of the events for  
Triggers A,B, or C.  
0
1
2
3
Varies  
Varies  
0
0
TRIG_B  
TRIG_C  
RAMP0  
_NEXT[2:0]  
The next RAMP to execute when the length counter times out  
26  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
9 Applications and Implementation  
9.1 Application Information  
The LMX2492/92-Q1 can be used in a broad class of applications such as generating a single frequency for a  
high frequency clock, generating a tunable range of frequencies, or generating swept waveforms that can be  
used in applications such as radar.  
9.2 Typical Applications  
The following schematic is an example of hat could be used in a typical application.  
3.3 or 5 V  
R3_LF  
100 nF  
C2_LF  
C1_LF  
3.3 V  
C3_LF  
R2_LF  
100 nF  
24 23 22 21 20 19  
3.3 V  
Vcc  
GND  
GND  
GND  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
MUXOUT  
100 nF  
18 :  
18 :  
LE  
10 pF  
36 :  
To  
DATA  
Fin  
Circuit  
Fin*  
CLK  
CE  
68 :  
3.3 V  
10 pF  
Vcc  
51 :  
100 nF  
3.3 V  
7
8
9
10 11 12  
3.3 V  
18 :  
100 nF  
100 nF  
68 :  
18 :  
9.2.1 Design Requirements  
For these examples, it will be assumed that there is a 100 MHz input signal and the output frequency is between  
9400 and 9800 MHz with various modulated waveforms.  
Parameter  
Symbol  
Value  
Comments  
Input Frequency  
OSCin  
100 MHz  
There are many possibilities, but this choice gives  
good performance and saves a little current (as  
shown in the electrical specifications).  
Phase Detector  
Frequency  
Fpd  
100 MHz  
Copyright © 2014, Texas Instruments Incorporated  
27  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
Typical Applications (continued)  
Parameter  
Symbol  
Value  
Comments  
9400 - 9800 MHz (Simple Chirp)  
9400 - 9800 (Flattened Ramp)  
In the different examples, the VCO frequency is  
actually changing. However, the same loop filter  
design can be used for all three.  
VCO Frequency  
Fvco  
9500 - 9625 MHz (Complex Triggered  
Ramp  
This parameter has nothing to do with the  
LMX2492/92-Q1, but is rather set by the external  
VCO choice.  
VCO Gain  
Kvco  
200 MHz/V  
9.2.2 Detailed Design Procedure  
The first step is to calculate the reference divider (PLL_R) and feedback divider (PLL_N) values as shown in the  
table that follows.  
Parameter  
Symbol and Calculations  
Value  
Comments  
To design a loop filter, one designs for a fixed VCO  
value, although it is understood that the VCO will  
tune around. This typical value is usually chosen as  
the average VCO frequency.  
Average  
VCO Frequency  
FvcoAvg  
= (FvcoMax + FvcoMin)/2  
9600 MHz  
This parameter has nothing to do with the  
LMX2492/92-Q1, but is rather set by the external  
VCO choice. In this case, it was the RFMD1843  
VCO.  
VCO Gain  
Kvco  
200 MHz/V  
This bandwidth is very wide to allow the VCO  
frequency to be modulated.  
PLL Loop Bandwidth  
Charge Pump Gain  
R Divider  
BW  
380 kHz  
3.1 mA  
1
Using the larger gain allows a wider loop bandwidth  
and gives good phase performance.  
CPG  
PLL_R  
= OSCin / Fpd  
This value is calculated from previous values.  
This value is calculated from previous values.  
PLL_N  
= Fvco / Fpd  
N Divider  
96  
C1_LF  
C2_LF  
C3_LF  
R2_LF  
R3_LF  
68 pF  
3.9 nF  
Loop Filter  
Components  
150 pF  
390 ohm  
390 ohm  
These were calculated by TI design tools.  
Once a loop filter bandwidth is chosen, the external loop filter components of C1_LF, C2_LF, C3_LF, R2_LF, and  
R3_LF can be calculated with a tool such as the Clock Architect tool available at www.ti.com. It is also highly  
recommended to look at the EVM instructions. The CodeLoader software is an excellent starting point and  
example to see how to program this device.  
28  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
9.2.3 Application Performance Plot - Sawtooth Waveform Example  
Using the above design, it can be programmed to generate a sawtooth waveform with the following paramters.  
Parameter  
Ramp Duration  
VCO Frequency  
Range  
Symbol  
ΔT  
Value  
100 uS  
Fvco  
ΔF  
9400 - 9800 MHz  
9400 - 9800 MHz = 400 MHz Change  
tRAMP0t  
tRAMP0t  
tRAMP0t  
tRAMP0t  
Because we want the ramp length to be 100 us, this works out to 10,000 phase detector cycles which means  
that RAMP0_LEN=10000. To change 400 MHz, we know that each one of the 10000 steps is 40 kHz. Given the  
fractional denominator is 224 = 16777216 and the phase detector frequency is 100 MHz, this implies that the  
fractional numerator at the end of the ramp will be 6711. However, since this 6711 number is not exact (closer to  
6718.8864), the ramp will creep if we do not reset it. Therefore, we set reset the ramp. After the ramp finishes,  
we want to start with the same ramp, so RAMP0_NEXT is RAMP0. The results of this analysis are in the table  
below:  
RAMP  
RAMP0_LEN  
RAMP0_INC  
RAMP0_NEXT  
RAMP0_RST  
ΔT × Fpd = 100 us / 100 MHz  
(ΔF / Fpd) /RAMP0_LEN × 224  
= (400/100)/10000 ×16777216 = 6711  
RAMP0  
0
1
= 10000  
The actual measured waveform for this is shown in the following figure. Note that the frequency that was actually  
measured was from the divide by two output of the VCO and therefore the measured frequency was half of the  
actual frequency presented to the PLL. This ramping waveform does show some undershoot as the frequency  
rapidly returns from 9800 MHz ( 4900 MHz on the plot) to 9400 MHz (4700 MHz on the plot). This undershoot  
can be mitigated by adding additional ramps.  
Copyright © 2014, Texas Instruments Incorporated  
29  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
9.2.4 Application Performance Plot - Flat Top Triangle Waveform  
Now consider pattern as shown below. The ramp is sometimes used because it can better account for Doppler  
Shift. The purpose for making the top and bottom portions flat is to help reduce the impact of the PLL  
overshooting and undershooting in order to make the sloped ramped portions more linear.  
Parameter  
Symbol  
ΔT0  
Value  
10 uS  
90 uS  
10 uS  
90 uS  
0
ΔT1  
Ramp Duration  
ΔT2  
ΔT3  
ΔF0  
ΔF1  
400 MHz  
0
Range  
ΔF2  
ΔF3  
-400 MHz  
tRAMP1t  
tRAMP1t  
RAMP0  
RAMP2  
RAMP0  
RAMP2  
RAMP  
RAMPx_LEN  
RAMPx_INC  
RAMPx_NEXT  
RAMPx_RST  
10 us/ 100 MHz  
=1000  
RAMP0  
0
1
1
0
0
(ΔF / Fpd) /RAMP1_LEN × 224  
= (400/100)/9000 ×16777216 =  
7457  
90 us / 100 MHz  
=9000  
RAMP1  
RAMP2  
2
3
10 us/ 100 MHz  
=1000  
0
(ΔF / Fpd) /RAMP1_LEN × 224  
= (-400/100)/9000 ×16777216 =  
-7457  
90 us / 100 MHz  
=9000  
RAMP3  
0
0
Program in 2's complement of -  
7457  
= 230-7457 = 1073734367  
30  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
The actual measured waveform for this is shown in the following figure. Note that the frequency that was actually  
measured was from the divide by two output of the VCO and therefore the measured frequency was half of the  
actual frequency presented to the PLL. The flattened top and bottom of this triangle wave help mitigate the  
overshoot and undersoot in the frequency.  
The actual measured waveform for this is shown in the following figure. Note that the frequency that was actually  
measured was from the divide by two output of the VCO and therefore the measured frequency was half of the  
actual frequency presented to the PLL. The flattened top and bottom of this triangle wave help mitigate the  
overshoot and undersoot in the frequency.  
Copyright © 2014, Texas Instruments Incorporated  
31  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
9.2.5 Applications Performance Plot -- Complex Triggered Ramp  
In this example, the modulation is not started until a trigger pulse from the MOD terminal goes high. Assume a  
phase detector frequency of 100 MHz and we RAMP1 to be 60 us and ramps 2,3,and 4 to be 12 us each. We  
set the next trigger for RAMP0 to be trigger A and define trigger A to be the MOD terminal. Then we configure as  
follows:  
MOD  
Frequency  
9.800 GHz  
Increased Charge Pump Gain  
Increased Charge Pump Gain  
9.800 GHz  
9.400 GHz  
9.725 GHz  
9.600 GHz  
FLAG0  
TRIG1 Output as Loop Filter Switch 1  
FLAG1  
TRIG2 Output as Loop Filter Switch 2  
'T2  
'T3  
'T4  
'T2  
'T3  
'T4  
'T0  
'T1  
'T1  
Figure 5. Complex Triggered Ramp Example  
RAMPx  
_LEN  
RAMPx_  
INC  
RAMPx  
_NEXT  
RAMPx_  
NEXT_TRIG  
RAMPx_RS  
T
RAMP  
RAMP0  
RAMP1  
RAMPx_FL  
RAMPx_FLAG  
FLAG0 and  
FLAG1  
1
0
0
0
1
2
TRIG A  
1
1
FLAG0 and  
FLAG1  
6000  
1073730639  
TOC Timeout  
RAMP2  
RAMP3  
1200  
1200  
27963  
17476  
1
0
3
4
Disabled  
FLAG1  
TOC Timeout  
TOC Timeout  
0
0
FLAG0 and  
FLAG1  
RAMP4  
1200  
10486  
0
1
TOC Timeout  
0
32  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
The actual measured waveform for this is shown in the following figure. Note that the frequency that was actually  
measured was from the divide by two output of the VCO and therefore the measured frequency was half of the  
actual frequency presented to the PLL. The flattened top and bottom of this triangle wave help mitigate the  
overshoot and undersoot in the frequency.  
Figure 6. Actual Measurement for Complex Triggered Ramp  
10 Power Supply Recommendations  
For power supplies, it is recommended to place 100 nF close to each of the power supply pins. If fractional spurs  
are a large concern, using a ferrite bead to each of these power supply pins can reduce spurs to a small degree.  
Copyright © 2014, Texas Instruments Incorporated  
33  
LMX2492, LMX2492-Q1  
ZHCSCB6 MARCH 2014  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
For layout examples, the EVM instructions are the most comprehensive document. In general, the layout  
guidelines are similar to most other PLL devices. For the high frequency Fin pin, it is recommended to use 0402  
components and match the trace width to these pad sizes. Also the same needs to be done on the Fin* pin. If  
layout is easier to route the signal to Fin* instead of Fin, then this is acceptable as well.  
11.2 Layout Example  
34  
Copyright © 2014, Texas Instruments Incorporated  
LMX2492, LMX2492-Q1  
www.ti.com.cn  
ZHCSCB6 MARCH 2014  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
Texas Instruments has several software tools to aid in the development process including CodeLoder for  
programming, Clock Design Tool for Loop filter design and phase noise/spur simulation, and the Clock Architect.  
All these tools are available at www.ti.com.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For the avid reader, the following resources are available at www.ti.com.  
Application Note 1879 -- Fractional N Frequency Synthesis  
PLL Performance, Simulation, and Design -- by Dean Banerjee  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 10. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS and  
SOFTWARE  
SUPPORT and  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE and BUY  
LMX2492  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
LMX2492-Q1  
12.4 Trademarks  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
Copyright © 2014, Texas Instruments Incorporated  
35  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2492QRTWRQ1  
LMX2492QRTWTQ1  
LMX2492RTWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
X2492Q  
SN  
SN  
SN  
X2492Q  
X2492  
X2492  
LMX2492RTWT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY