LMX2531LQ1500E/NOPB [TI]

具有集成 VCO 的高性能频率合成器系统 | NJG | 36 | -40 to 85;
LMX2531LQ1500E/NOPB
型号: LMX2531LQ1500E/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 VCO 的高性能频率合成器系统 | NJG | 36 | -40 to 85

文件: 总41页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
LMX2531 High Performance Frequency Synthesizer System with Integrated VCO  
Check for Samples: LMX2531  
1
FEATURES  
DESCRIPTION  
2
Multiple Frequency Options Available  
The LMX2531 is a low power, high performance  
frequency synthesizer system which includes a fully  
integrated delta-sigma PLL and VCO with fully  
integrated tank circuit. The third and fourth poles are  
also integrated and also adjustable. Also included are  
integrated ultra-low noise and high precision LDOs for  
the PLL and VCO which give higher supply noise  
immunity and also more consistent performance.  
See Selection Guide Table  
Frequencies from: 553 MHz - 3132 MHz  
PLL Features  
Fractional-N Delta Sigma Modulator Order  
Programmable up to 4th Order  
FastLock/Cycle Slip Reduction with  
Timeout Counter  
When combined with  
a high quality reference  
oscillator, the LMX2531 generates very stable, low  
noise local oscillator signals for up and down  
conversion in wireless communication devices. The  
LMX2531 is a monolithic integrated circuit, fabricated  
in an advanced BiCMOS process. There are several  
different versions of this product in order to  
accommodate different frequency bands.  
Partially Integrated, Adjustable Loop Filter  
Very Low Phase Noise and Spurs  
VCO Features  
Integrated Tank Inductor  
Low Phase Noise  
Other Features  
Device programming is facilitated using a three-wire  
MICROWIRE Interface that can operate down to 1.8  
volts.  
2.8 V to 3.2 V Operation  
Low Power-Down Current  
1.8 V MICROWIRE Support  
Package: 36 WQFN  
Supply voltage range is 2.8 to 3.2 Volts. The  
LMX2531 is available in a 36 pin 6x6x0.8 mm WQFN  
Package.  
TARGET APPLICATIONS  
Table 1. Selection Guide  
3G Cellular Base Stations (WCDMA, TD-  
SCDMA,CDMA2000)  
Part  
Low Band  
High Band  
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX2531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX2531LQ1742  
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2080E  
LMX2531LQ2265E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
553 - 592 MHz  
592 - 634 MHz  
634 - 680 MHz  
680 - 735 MHz  
749.5 - 755 MHz  
725 - 790 MHz  
765 - 818 MHz  
795 - 850 MHz  
831 - 885 MHz  
880 - 933 MHz  
863 - 920 MHz  
917 - 1014 MHz  
952 - 1137 MHz  
1089 - 1200 MHz  
1168 - 1395 MHz  
1355 - 1462 MHz  
1455 - 1566 MHz  
1106 - 1184 MHz  
1184 - 1268 MHz  
1268 - 1360 MHz  
1360 - 1470 MHz  
1499 - 1510 MHz  
1450 - 1580 MHz  
1530 - 1636 MHz  
1590 - 1700 MHz  
1662 - 1770 MHz  
1760 - 1866 MHz  
1726 - 1840 MHz  
1834 - 2028 MHz  
1904 - 2274 MHz  
2178 - 2400 MHz  
2336 - 2790 MHz  
2710 - 2925 MHz  
2910 - 3132 MHz  
2G Cellular Base Stations (GSM/GPRS, EDGE,  
CDMA1xRTT)  
Wireless LAN  
Broadband Wireless Access  
Satellite Communications  
Wireless Radio  
Automotive  
CATV Equipment  
Instrumentation and Test Equipment  
RFID Readers  
Data Converter Clocking  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2013, Texas Instruments Incorporated  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
Vtune  
CPout  
Charge  
Pump  
VregVCO  
VrefVCO  
VCO  
VREG  
N
Prescaler  
Comp  
Divider  
FLout  
Fast  
Lock  
f
Fout  
1/2  
MUX  
Ftest/ LD  
OSCin  
R
OSCin*  
Divider  
DIG  
VREG  
DATA  
CLK  
LE  
PLL  
VREG1  
Serial Interface  
Control  
CE  
PLL  
VREG2  
Connection Diagrams  
Figure 1. 36-Pin WQFN Package, D Version  
(LMX2531LQ1146E/1226E/1312E/1415E/1515E/2820E/3010E)  
35  
36  
34  
33  
32  
31  
30  
29  
28  
V
DIG  
NC  
1
2
3
4
5
V
PLL  
27  
26  
25  
24  
23  
CC  
CC  
VregPLL1  
FLout  
GND  
NC  
CPout  
GND  
NC  
Vtune  
VregBUF  
NC  
6
7
8
9
V
BUF  
22  
21  
20  
19  
CC  
Fout  
DATA  
CLK  
GND  
GND  
NC  
11  
10  
12  
13  
14  
15  
16  
17  
18  
2
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Figure 2. 36-Pin WQFN Package, A Version  
(All Other Versions)  
35  
36  
34  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
V
DIG  
NC  
V
PLL  
27  
26  
25  
24  
23  
CC  
CC  
GND  
VregPLL1  
FLout  
GND  
NC  
CPout  
NC  
Vtune  
GND  
VregBUF  
NC  
6
7
8
9
V
BUF  
22  
21  
20  
19  
CC  
Fout  
DATA  
CLK  
GND  
GND  
NC  
11  
10  
12  
13  
14  
15  
16  
17  
18  
PIN DESCRIPTIONS  
Pin #  
Pin Name  
VccDIG  
GND  
I/O  
Description  
Power Supply for digital LDO circuitry. Input may range from 2.8 - 3.2 V. Bypass capacitors should be  
placed as close as possible to this pin and ground.  
1
3
-
-
Ground  
2,4,5,7,  
12, 13,  
29, 35  
NC  
-
No Connect.  
6
VregBUF  
DATA  
-
I
Internally regulated voltage for the VCO buffer circuitry. Connect to ground with a capacitor.  
MICROWIRE serial data input. High impedance CMOS input. This pin must not exceed 2.75V. Data is  
clocked in MSB first. The last bits clocked in form the control or register select bits.  
8
MICROWIRE clock input. High impedance CMOS input. This pin must not exceed 2.75V. Data is clocked  
into the shift register on the rising edge.  
9
CLK  
LE  
I
I
MICROWIRE Latch Enable input. High impedance CMOS input. This pin must not exceed 2.75V. Data  
stored in the shift register is loaded into the selected latch register when LE goes HIGH.  
10  
Chip Enable Input. High impedance CMOS input. This pin must not exceed 2.75V. When CE is brought  
high the LMX2531 is powered up corresponding to the internal power control bits. Although the part can be  
programmed when powered down, it is still necessary to reprogram the R0 register to get the part to re-  
lock.  
11  
CE  
I
14, 15  
16  
NC  
-
-
No Connect. Do NOT ground.  
Power Supply for VCO regulator circuitry. Input may range from 2.8 - 3.2 V. Bypass capacitors should be  
placed as close as possible to this pin and ground.  
VccVCO  
Internally regulated voltage for VCO circuitry. Not intended to drive an external load. Connect to ground  
with a capacitor and some series resistance.  
17  
18  
VregVCO  
VrefVCO  
-
-
Internal reference voltage for VCO LDO. Not intended to drive an external load. Connect to ground with a  
capacitor.  
19  
20  
21  
GND  
GND  
Fout  
-
-
Ground for the VCO circuitry.  
Ground for the VCO Output Buffer circuitry.  
Buffered RF Output for the VCO.  
O
Power Supply for the VCO Buffer circuitry. Input may range from 2.8 - 3.2 V. Bypass capacitors should be  
placed as close as possible to this pin and ground.  
22  
VccBUF  
-
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
PIN DESCRIPTIONS (continued)  
Pin #  
23  
Pin Name  
Vtune  
I/O  
I
Description  
Tuning voltage input for the VCO. For connection to the CPout Pin through an external passive loop filter.  
Charge pump output for PLL. For connection to Vtune through an external passive loop filter.  
An open drain NMOS output which is used for FastLock or a general purpose output.  
24  
CPout  
O
O
25  
FLout  
Internally regulated voltage for PLL charge pump. Not intended to drive an external load. Connect to  
ground with a capacitor.  
26  
27  
28  
VregPLL1  
VccPLL  
-
-
-
Power Supply for the PLL. Input may range from 2.8 - 3.2 V. Bypass capacitors should be placed as close  
as possible to this pin and ground.  
Internally regulated voltage for RF digital circuitry. Not intended to drive an external load. Connect to  
ground with a capacitor.  
VregPLL2  
30  
31  
Ftest/LD  
OSCin  
O
I
Multiplexed CMOS output. Typically used to monitor PLL lock condition.  
Oscillator input.  
Oscillator complimentary input. When a single ended source is used, then a bypass capacitor should be  
placed as close as possible to this pin and be connected to ground.  
32  
OSCin*  
I
33  
34  
36  
Test  
GND  
O
-
This pin is for test purposes and should be grounded for normal operation.  
Ground  
VregDIG  
-
Internally regulated voltage for LDO digital circuitry.  
Connection Diagram  
TCXO  
C2_LF  
100 nF  
C1_LF  
R2_LF  
R2pLF  
100 nF  
10 nF  
10W  
VccDIG  
VccVCO  
VccBUF  
VccPLL  
VregDIG  
VregVCO  
VrefVCO  
VregBUF  
VregPLL2  
VregPLL1  
100 pF  
1 mF  
1 mF  
3.3W  
4.7 mF  
10W  
10W  
10 nF  
10 nF  
Power  
Supply  
LMX2531  
0.22W  
0.22W  
1 mF  
1 mF  
470 nF  
470 nF  
10W  
10 mF  
Circuit  
Microcontroller  
4
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
Pin(s)  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Application Information  
These pins are inputs to voltage regulators. Because the LMX2531 contains internal regulators, the power supply noise  
rejection is very good and capacitors at this pin are not critical. An RC filter can be used to reduce supply noise, but if the  
capacitor is too large and is placed too close to these pins, they can sometimes cause phase noise degradation in the 100 -  
300 kHz offset range. Recommended values are from open to 1 μF. The series resistors serve to filter power supply noise and  
isolate these pins from large capacitances.  
VccDIG  
VccVCO  
VccBUF  
VccPLL  
VregDIG There is not really any reason to use any other values than the recommended value of 10 nF  
If the VrefVCO capacitor is changed, it is recommended to keep this capacitor between 1/100 and 1/1000 of the value of the  
VregVCO capacitor.  
VrefVCO  
Because this pin is the output of a regulator, there are stability concerns if there is not sufficient series resistance. For ceramic  
capacitors, the ESR (Equivalent Series Resistance) is too low, and it is recommended that a series resistance of 1 - 3.3Ω is  
necessary. If there is insufficient ESR, then there may be degradation in the phase noise, especially in the 100 - 300 kHz  
VregVCO  
offset. Recommended values are from 1 μF to 10 μF.  
The choice of the capacitor value at this pin involves a trade-off between integer spurs and phase noise in the 100 - 300 kHz  
VregPLL1 offset range. Using a series resistor of about 220 mΩ in series with a capacitance that has an impedance of about 150 mΩ at  
VregPLL2 the phase detector frequency seems to give an optimal trade-off. For instance, if the phase detector frequency is 2.5 MHz, then  
make this series capacitor 470 nF. If the phase detector frequency is 10 MHz, make this capacitance about 100 nF.  
CLK  
DATA  
LE  
Since the maximum voltage on these pins is less than the minimum Vcc voltage, level shifting may be required if the output  
voltage of the microcontroller is too high. This can be accomplished with a resistive divider.  
As with the CLK, DATA, and LE pins, level shifting may be required if the output voltage of the microcontroller is too high. A  
CE  
resistive divider or a series diode are two ways to accomplish this. The diode has the advantage that no current flows through  
it when the chip is powered down.  
Ftest/LD It is an option to use the lock detect information from this pin.  
This is the high frequency output. This needs to be AC coupled, and matching may also be required. The value of the DC  
blocking capacitor may be changed, depending on the output frequency.  
Fout  
CPout  
Vtune  
In most cases, it is sufficient to short these together, although there always the option of adding additional poles. C1_LF,  
C2_LF, and R2_LF are used in conjunction with the internal loop filter to make a fourth order loop filter.  
This is the fastlock resistor, which can be useful in many cases, since the spurs are often better with low charge pump  
currents, and the internal loop filter can be adjusted during fastlock.  
R2pLF  
OSCin  
This is the reference oscillator input pin. It needs to be AC coupled.  
OSCin*  
If the device is being driven single-ended, this pin needs to be shunted to ground with a capacitor.  
In addition to these suggestions be sure to also consult the evaluation board instructions at www.national.com  
which include schematic, layout, and bill of material. In addition to this, these instructions also contain measured  
data, such as phase noise and spurs.  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Ratings  
Units  
VCC  
(VccDIG, VccVCO,  
VccBUF, VccPLL)  
-0.3 to 3.5  
Power Supply Voltage  
V
All other pins (Except  
Ground)  
-0.3 to 3.0  
-65 to 150  
Storage Temperature  
Range  
TSTG  
°C  
Lead Temperature (solder 4 sec.)  
Junction Temperature  
TL  
TJ  
+ 260  
+ 125  
°C  
°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recommended Operating Conditions indicate  
conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed  
specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only to the test conditions  
listed.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Power Supply Voltage  
(VccDig, VccVCO, VccBUF)  
Vcc  
Vi  
2.8  
3.0  
3.2  
V
Serial Interface and Power Control  
Voltage  
0
2.75  
+85  
V
Ambient Temperature  
TA  
-40  
°C  
(1)  
(1) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the R0 register was last programmed, and still have the part stay in lock. The action of programming the R0 register,  
even to the same value, activates a frequency calibration routine. This implies that the part will work over the entire frequency range, but  
if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reload the R0 register to  
ensure that it stays in lock. Regardless of what temperature the part was initially programmed at, the temperature can never drift outside  
the frequency range of -40°C TA85°C without violating specifications.  
Package Thermal Information  
The following package information assumes a JEDEC standard board with 9 thermal vias.  
Package  
NJH0036D  
NJG0036A  
θJA  
θJC  
35.5 °C/W  
35.5 °C/W  
9.1 °C/W  
9.1 °C/W  
Electrical Characteristics  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Current Consumption  
Min  
Typ  
Max  
Units  
LMX2531LQ2265E/  
2570E  
38  
44  
Divider Disabled  
LMX2531LQ2820E/  
3010E  
38  
34  
41  
46  
41  
49  
All Other Options  
Power Supply Current Power  
Supply Current  
ICC  
mA  
µA  
LMX2531LQ2265E/  
2570E  
Divider Enabled  
LMX2531LQ2820E/  
3010E  
44  
52  
46  
All Other Options  
37  
7
ICCPD  
Power Down Current  
CE = 0 V, Part Initialized  
Oscillator  
IIHOSC  
IILOSC  
fOSCin  
Oscillator Input High Current  
Oscillator Input Low Current  
Frequency Range  
VIH = 2.75 V  
100  
µA  
µA  
VIL = 0  
(1)  
-100  
5
80  
MHz  
Vpp  
vOSCin  
Oscillator Sensitivity  
0.5  
2.0  
PLL  
fPD  
Phase Detector Frequency  
32  
MHz  
µA  
ICP = 0  
90  
180  
360  
1440  
2
ICP = 1  
µA  
Charge Pump  
Output Current Magnitude  
ICPout  
ICP = 3  
µA  
ICP = 15  
µA  
ICPoutTRI CP TRI-STATE Current  
0.4 V < VCPout < 2.0 V  
10  
8
nA  
Charge Pump  
ICPoutMM  
VCPout = 1.2 V  
TA = 25°C  
2
%
Sink vs. Source Mismatch  
(1) There are program bits that need to be set based on the OSCin frequency. Refer to the following sections: XTLSEL[2:0] -- Crystal  
Select, XTLDIV[1:0] -- Division Ratio for the Crystal Frequency, XTLMAN[11:0] -- Manual Crystal Mode, XTLMAN2 -- MANUAL  
CRYSTAL MODE SECOND ADJUSTMENT, andLOCKMODE -- FREQUENCY CALIBRATION MODE. Not all bit settings can be used  
for all frequency choices of OSCin. For instance, automatic modes described in XTLSEL[2:0] -- Crystal Select do not work below 8 MHz.  
6
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
 
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Charge Pump  
Current vs. CP Voltage  
Variation  
0.4 V < VCPout < 2.0 V  
TA = 25°C  
ICPoutV  
4
%
CP Current vs. Temperature  
Variation  
ICPoutT  
VCPout = 1.2 V  
8
%
Normalized PLL 1/f Noise  
ICP = 1X Charge Pump Gain  
ICP = 16X Charge Pump Gain  
ICP = 1X Charge Pump Gain  
ICP = 16X Charge Pump Gain  
-94  
LNPLL_flicker(10 kHz)  
dBc/Hz  
(2)  
-104  
-202  
-212  
LN(f)  
Normalized PLL Noise Floor  
LNPLL_flat  
dBc/Hz  
(3)  
VCO Frequencies  
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX2531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX2531LQ1742  
1106  
1184  
1268  
1360  
1499  
1450  
1530  
1590  
1662  
1760  
1726  
1834  
1904  
2178  
2336  
2710  
2910  
1184  
1268  
1360  
1470  
1510  
1580  
1636  
1700  
1770  
1866  
1840  
2028  
2274  
2400  
2790  
2925  
3132  
Operating Frequency Range  
(All options have a frequency  
divider, this applies before the  
divider. The frequency after the  
divider is half of what is shown)  
fFout  
MHz  
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2080E  
LMX2531LQ2265E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
Other VCO Specifications  
LMX2531LQ1742  
65  
90  
Maximum Allowable  
Temperature Drift for  
LMX2531LQ1500E/1570E/1650E/  
1146E/1226/1312E/1415E/1515E  
ΔTCL  
°C  
Continuous Lock  
(4)  
LMX2531LQ1700E/1778E/1910E/  
2080E/2265E/2570E/2820E/3010E  
125  
(2) One of the specifications for modeling PLL in-band phase noise is the PLL 1/f noise normalized to 1 GHz carrier frequency and 10 kHz  
offset, LPLL_flicker(10 kHz). From this normalized index of PLL 1/f noise, the PLL 1/f noise can be calculated for any carrier and offset  
frequency as: LNPLL_flicker(f) = LPLL_flicker(10 kHz) - 10·log(10 kHz / f) + 20·log( Fout / 1 GHz ). Flicker noise can dominate at low offsets  
from the carrier and has a 10 dB/decade slope and improves with higher charge pump currents and at higher offset frequencies . To  
accurately measure LPLL_flicker(10 kHz) it is important to use a high phase detector frequency and a clean reference to make it such that  
this measurement is on the 10 dB/decade slope close to the carrier. LPLL_flicker(f) can be masked by the reference oscillator performance  
if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f) and LPLL_flat. In other  
(f) / 10 )  
words,LPLL(f) = 10·log(10(LN  
/ 10 ) + 10(LN  
PLL_flat  
PLL_flicker  
(3) A specification used for modeling PLL in-band phase noise floor is the Normalized PLL noise floor, LNPLL_flat, and is defined as:  
LNPLL_flat = L(f) – 20·log(N) – 10·log(fPD). LPLL_flat is the single side band phase noise in a 1 Hz Bandwidth and fPD is the phase detector  
frequency of the synthesizer. LPLL_flat contributes to the total noise, L(f). To measure LPLL_flat the offset frequency must be chosen  
sufficiently smaller then the loop bandwidth of the PLL, and yet large enough to avoid a substantial noise contribution from the reference  
and PLL flicker noise. LPLL_flat can be masked by the reference oscillator performance if a low power or noisy source is used. The total  
PLL in-band phase noise performance is the sum of LPLL_flicker(f) and LPLL_flat. In other words,LPLL(f) = 10·log(10(LN  
/ 10 ) + 10(LN  
PLL_flat  
PLL_flicker  
(f) / 10 )  
(4) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the R0 register was last programmed, and still have the part stay in lock. The action of programming the R0 register,  
even to the same value, activates a frequency calibration routine. This implies that the part will work over the entire frequency range, but  
if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be necessary to reload the R0 register to  
ensure that it stays in lock. Regardless of what temperature the part was initially programmed at, the temperature can never drift outside  
the frequency range of -40°C TA85°C without violating specifications.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
Units  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
1
Typ  
4.0  
3.5  
3.5  
3.0  
3.5  
2.5  
4.5  
4.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.0  
2.5  
1.5  
2.0  
2.0  
1.5  
0.5  
3.0  
0.5  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
2.5  
2.5  
1.5  
0
Max  
7
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX2531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX2531LQ1742  
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2080E  
LMX2531LQ2265E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX2531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX2531LQ1742  
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2080E  
LMX2531LQ2265E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
1
7
1
7
0
6
1
7.0  
5
-1  
2
8
2
8
Divider Disabled  
1
7
dBm  
1
7
1
7
1
7
1
7
1
7
0
6
-0.5  
-1.5  
-1  
-1  
-1  
-2  
1
5.5  
4.5  
5
Output Power to a 50 Load  
(Applies across entire tuning  
range.)  
pFout  
5
4
3
6.0  
3
-2  
1
6
1
6
Divider Enabled  
1
6
dBm  
1
6
1
6
1
6
0
5
0
5
-1  
-2.5  
-3  
4
2.5  
2
-0.5  
8
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
2.5  
-5.5  
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
3-6  
3-6  
3.5  
-6.5  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX2531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX2531LQ1742  
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2080E  
LMX2531LQ2265E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
4-7  
4-7  
Fine Tuning Sensitivity  
(When a range is displayed in  
the typical column, indicates the  
lower sensitivity is typical at the  
lower end of the tuning range,  
and the higher tuning sensitivity  
is typical at the higher end of  
the tuning range.)  
4-7  
4-7  
KVtune  
MHz/V  
6-10  
4-7  
6-10  
8-14  
9-20  
10-16  
10-23  
12-28  
13-29  
LMX2531LQ1146E  
/1226E/1312E  
-35  
-25  
/1415E/1515E  
Divider  
Disabled  
LMX2531LQ2820E  
/3010E  
-40  
-30  
All Other Options  
-25  
-20  
2nd Harmonic  
50 Ω Load  
LMX2531LQ1146E  
/1226E/1312E  
-30  
/1415E/1515E  
Divider  
Enabled  
LMX2531LQ2820E  
/3010E  
-30  
-20  
-35  
-15  
-15  
-30  
Harmonic Suppression  
(Applies Across Entire Tuning  
Range)  
All Other Options  
HSFout  
dBc  
LMX2531LQ1146E  
/1226E/1312E  
Divider  
Disabled  
LMX2531LQ2820E  
/3010E  
-50  
-40  
All Other Options  
-35  
-15  
3rd Harmonic  
50 Ω Load  
LMX2531LQ1146E  
/1226E/1312E  
-20  
/1570E/1650E  
Divider  
Enabled  
LMX2531LQ2820E  
/3010E  
-40  
-20  
-20  
All Other Options  
-25  
PUSHFout Frequency Pushing  
PULLFout Frequency Pulling  
Creg = 0.1uF, VDD ± 100mV, Open Loop  
VSWR = 2:1, Open Loop  
300  
kHz/V  
kHz  
Ω
±600  
ZFout  
Output Impedance  
50  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
Units  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
(5)  
VCO Phase Noise  
10 kHz Offset  
-96  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 KHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
-121  
-142  
-156  
-101  
-126  
-147  
-156  
-95  
fFout = 1146 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1146E)  
L(f)Fout  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
fFout = 573 MHz  
DIV2 = 1  
-121  
-142  
-155  
-101  
-126  
-147  
-155  
-95  
fFout = 1226 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1226E)  
L(f)Fout  
L(f)Fout  
L(f)Fout  
L(f)Fout  
fFout = 613 MHz  
DIV2 = 1  
-121  
-140  
-154  
-101  
-126  
-146  
-154  
-95  
fFout = 1314 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1312E)  
fFout = 657 MHz  
DIV2 = 1  
-121  
-141  
-154  
-100  
-126  
-146  
-154  
-97  
fFout = 1415 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1415E)  
fFout = 707.5 MHz  
DIV2 = 1  
-120  
-142  
-155  
-103  
-126  
-131  
-155  
fFout = 1500 MHz  
DIV2 = 1  
Phase Noise  
(LMX2531LQ1500E)  
fFout = 750 MHz  
DIV2 = 1  
(5) The VCO phase noise is measured assuming that the loop bandwidth is sufficiently narrow that the VCO noise dominates. The  
maximum limits apply only at center frequency and over temperature, assuming that the part is reloaded at each test frequency. Over  
frequency, the phase noise can vary 1 to 2 dB, with the worst case performance typically occurring at the highest frequency. Over  
temperature, the phase noise typically varies 1 to 2 dB, assuming the part is reloaded.  
10  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
-96  
Max  
Units  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
-122  
-142  
-153  
-99  
fFout = 1515 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1515E)  
L(f)Fout  
dBc/Hz  
-125  
-145  
-154  
-93  
fFout = 757.5 MHz  
DIV2 = 1  
-118  
-140  
-154  
-99  
fFout = 1583 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1570E)  
L(f)Fout  
L(f)Fout  
L(f)Fout  
L(f)Fout  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-122  
-144  
-155  
-93  
fFout = 791.5 MHz  
DIV2 = 1  
-118  
-140  
-154  
-99  
fFout = 1645 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1650E)  
-122  
-144  
-155  
-92  
fFout = 822.5 MHz  
DIV2 = 1  
-117  
-139  
-153  
-98  
fFout = 1716 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1700E)  
-122  
-144  
-154  
-92  
fFout = 858 MHz  
DIV2 = 1  
-117  
-140  
-152  
-99  
fFout= 1813 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1742)  
-122  
-143  
-152  
fFout = 906.5 MHz  
DIV2 = 1  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
Units  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
-92  
Max  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
-117  
-139  
-152  
-97  
fFout = 1783 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1778E)  
L(f)Fout  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
-122  
-144  
-154  
-89  
fFout = 891.5 MHz  
DIV2 = 1  
-115  
-138  
-151  
-95  
fFout = 1931 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ1910E)  
L(f)Fout  
L(f)Fout  
L(f)Fout  
L(f)Fout  
-121  
-143  
-155  
-87  
fFout = 965.5 MHz  
DIV2 = 1  
-113  
-136  
-150  
-93  
fFout = 2089 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ2080E)  
-119  
-142  
-154  
-88  
fFout = 1044.5 MHz  
DIV2 = 1  
-113  
-136  
-150  
-94  
fFout = 2264 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ2265E)  
-118  
-141  
-154  
-86  
fFout = 1132 MHz  
DIV2 = 1  
-112  
-135  
-149  
-91  
fFout = 2563 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ2570E)  
-117  
-139  
-152  
fFout = 1281.5 MHz  
DIV2 = 1  
12  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Electrical Characteristics (continued)  
(VCC = 3.0 V, -40°C TA 85 °C; except as specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
-84  
Max  
Units  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
5 MHz Offset  
-111  
-133  
-148  
-90  
fFout = 2818 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ2820E)  
L(f)Fout  
dBc/Hz  
-117  
-138  
-150  
-83  
fFout = 1409 MHz  
DIV2 = 1  
-110  
-132  
-147  
-88  
fFout = 3021 MHz  
DIV2 = 0  
Phase Noise  
(LMX2531LQ3010E)  
L(f)Fout  
dBc/Hz  
-116  
-137  
-148  
fFout = 1510.5 MHz  
DIV2 = 1  
Digital Interface (DATA, CLK, LE, CE, Ftest/LD, FLout)  
VIH  
VIL  
IIH  
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Input Current  
Low-Level Input Current  
High-Level Output Voltage  
Low-Level Output Voltage  
1.6  
2.75  
0.4  
3.0  
3.0  
V
V
VIH = 1.75  
-3.0  
-3.0  
2.0  
µA  
µA  
V
IIL  
VIL = 0 V  
VOH  
VOL  
IOH = 500 µA  
2.65  
0.0  
IOL = -500 µA  
0.4  
V
MICROWIRE Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
See Data Input Timing  
tCS  
Data to Clock Set Up Time  
Data to Clock Hold Time  
Clock Pulse Width High  
Clock Pulse Width Low  
25  
20  
25  
25  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCH  
tCWH  
tCWL  
tES  
Clock to Enable Set Up Time  
Enable to Clock Set Up Time  
Enable Pulse Width High  
tCES  
tEWH  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
SERIAL DATA TIMING DIAGRAM  
MSB  
D19  
LSB  
C0  
DATA  
CLK  
LE  
D18  
D17  
D16  
D15  
D0  
C3  
C2  
C1  
t
t
CWH  
CS  
t
ES  
t
t
CH  
CES  
t
CWL  
t
EWH  
The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the LE  
signal, the data is sent from the shift registers to an actual counter. There are several other considerations as  
well:  
A slew rate of at least 30 V/μs is recommended for the CLK, DATA, and LE signals.  
After the programming is complete, the CLK, DATA, and LE signals should be returned to a low state.  
It is recommended to put a small delay between the falling edge of the last CLK pulse and the rising edge of  
the LE pulse for optimal noise immunity and the most reliable programming.  
Although it is strongly recommended to keep LE low after programming, LE can be kept high if bit R5[23] is  
changed to 0 (from its default value of 1). If this bit is changed, then the operation of the part is not  
guaranteed because it is not tested under these conditions.  
If the CLK and DATA lines are toggled while the in VCO is in lock, as is sometimes the case when these lines  
are shared with other parts, the phase noise may be degraded during the time of this programming.  
If the part is not programmed, the values of the registers in this part have to be assumed to be random.  
Therefore, the current consumption and spurs generated by this part can be random. If this is an issue, the  
CE pin can be held low for more consistent behavior.  
14  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Typical Performance Characteristics  
OSCin Input Impedance  
6
5
4
3
2
1
0
Powered  
Down  
Powered  
Up  
100  
0
25  
50  
75  
125  
150  
FREQUENCY (MHz)  
Figure 3.  
Powered Up (kΩ)  
Imaginary  
-2.70  
Powered Down (kΩ)  
Imaginary  
-8.14  
Frequency  
(MHz)  
Real  
4.98  
3.44  
1.42  
0.52  
0.29  
0.18  
0.13  
0.10  
0.09  
0.07  
0.07  
0.06  
0.06  
0.05  
0.05  
0.04  
0.04  
Magnitude  
5.66  
4.63  
3.02  
1.71  
1.25  
0.94  
0.75  
0.64  
0.56  
0.50  
0.46  
0.42  
0.38  
0.34  
0.32  
0.30  
0.28  
Real  
6.77  
5.73  
1.72  
0.53  
0.26  
0.17  
0.14  
0.10  
0.09  
0.08  
0.07  
0.07  
0.07  
0.06  
0.06  
0.05  
0.05  
Magnitude  
10.59  
9.03  
5.51  
2.98  
2.14  
1.59  
1.25  
1.06  
0.95  
0.87  
0.80  
0.72  
0.65  
0.59  
0.55  
0.50  
0.47  
1
5
-3.04  
-6.72  
10  
-2.67  
-5.24  
20  
-1.63  
-2.94  
30  
-1.22  
-2.12  
40  
-0.92  
-1.58  
50  
-0.74  
-1.24  
60  
-0.63  
-1.06  
70  
-0.56  
-0.95  
80  
-0.50  
-0.86  
90  
-0.46  
-0.80  
100  
110  
120  
130  
140  
150  
-0.41  
-0.72  
-0.37  
-0.65  
-0.34  
-0.59  
-0.32  
-0.55  
-0.29  
-0.50  
-0.27  
-0.47  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
FUNCTIONAL DESCRIPTION  
The LMX2531 is a low power, high performance frequency synthesizer system which includes the PLL, VCO,  
and partially integrated loop filter. The following sections give a discussion of the various blocks of this device.  
REFERENCE OSCILLATOR INPUT  
Because the VCO frequency calibration algorithm is based on clocks from the OSCin pin, there are certain bits  
that need to be set depending on the OSCin frequency. XTLSEL (R6[22:20]) and XTLDIV (R7[9:8]) are both  
need to be set based on the OSCin frequency, fOSCin. For some options and for low OSCin frequencies, the  
XTLMAN (R7[21:10]) and XTLMAN2 (R8[4]) words need to be set to the correct value.  
R DIVIDER  
The R divider divides the OSCin frequency down to the phase detector frequency. The R divider value, R, is  
restricted to the values of 1, 2, 4, 8, 16, and 32. If R is greater than 8, then this also puts restrictions on the  
fractional denominator, FDEN, than can be used. This is discussed in greater depth in later sections.  
PHASE DETECTOR AND CHARGE PUMP  
The phase detector compares the outputs of the R and N dividers and puts out a correction current  
corresponding to the phase error. The phase detector frequency, fPD, can be calculated as follows:  
fPD = fOSCin / R  
(1)  
Choosing R = 1 yields the highest possible phase detector frequency and is optimum for phase noise, although  
there are restrictions on the maximum phase detector frequency which could force the R value to be larger. The  
far out PLL noise improves 3 dB for every doubling of the phase detector frequency, but at lower offsets, this  
effect is much less due to the PLL 1/f noise. Aside from getting the best PLL phase noise, higher phase detector  
frequencies also make it easier to filter the noise that the delta-sigma modulator produces, which peaks at an  
offset frequency of fPD/2 from the carrier. The LMX2531 also has 16 levels of charge pump currents and a highly  
flexible fractional modulus. Increasing the charge pump current improves the phase noise about 3 dB per  
doubling of the charge pump current, although there are small diminishing returns as the charge pump current  
increases.  
From a loop filter design and PLL phase noise perspective, one might think to always design with the highest  
possible phase detector frequency and charge pump current. However, if one considers the worst case fractional  
spurs that occur at an output frequency equal to 1 channel spacing away from a multiple of the fOSCin, then this  
gives reason to reconsider. If the phase detector frequency or charge pump currents are too high, then these  
spurs could be degraded, and the loop filter may not be able to filter these spurs as well as theoretically  
predicted. For optimal spur performance, a phase detector frequency around 2.5 MHz and a charge pump  
current of 1X are recommended.  
N DIVIDER AND FRACTIONAL CIRCUITRY  
The N divider in the LMX2531 includes fractional compensation and can achieve any fractional denominator  
between 1 and 4,194,303. The integer portion, NInteger, is the whole part of the N divider value and the fractional  
portion, NFractional, is the remaining fraction. So in general, the total N divider value, N, is determined by:  
N = NInteger + NFractional  
(2)  
For example, if the phase detector frequency (fPD) was 10 MHz and the VCO frequency (fVCO) was 1736.1 MHz,  
then N would be 173.61. This would imply that NInteger is 173 and NFractional is 61/100. NInteger has some minimum  
value restrictions that are arise due to the architecture of this divider. The first restrictions arise because the N  
divider value is actually formed by a quadruple modulus 16/17/20/21 prescaler, which creates minimum divide  
values. NInteger is further restricted because the LMX2531 due to the fractional engine of the N divider.  
The fractional word, NFractional , is a fraction formed with the NUM and DEN words. In the example used here with  
the fraction of 61/100, NUM = 61 and DEN = 100. The fractional denominator value, DEN, can be set from 2 to  
4,194,303. The case of DEN=0 makes no sense, since this would cause an infinite N value; the case of 1 makes  
no sense either (but could be done), because integer mode should be used in these applications. All other values  
in this range, like 10, 32, 42, 734, or 4,000,000 are all valid. Once the fractional denominator, DEN, is  
determined, the fractional numerator, NUM, is intended to be varied from 0 to DEN-1.  
16  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
In general, the fractional denominator, DEN, can be calculated by dividing the phase detector frequency by the  
greatest common divisor (GCD) of the channel spacing (fCH) and the phase detector frequency. If the channel  
spacing is not obvious, then it can be calculated as the greatest common divisor of all the desired VCO  
frequencies.  
FDEN = k · fPD / GCD(fPD , fCH) k = 1, 2, 3 ..  
(3)  
For example, consider the case of a 10 MHz phase detector frequency and a 200 kHz channel spacing at the  
VCO output. The greatest common divisor of 10 MHz and 200 kHz is just 200 kHz. If one takes 10 MHz divided  
by 200 kHz, the result is 50. So a fractional denominator of 50, or any multiple of 50 would work in this example.  
Now consider a case with a 10 MHz phase detector frequency and a 30 kHz channel spacing. The greatest  
common divisor of 10 MHz and 30 kHz is 10 kHz. The fractional denominator therefore must be a multiple 1000,  
since this is 10 MHz divided by 10 kHz. For a final example, consider an application with a fixed output frequency  
of 2110.8 MHz and a OSCin frequency of 19.68 MHz. If the phase detector frequency is chosen to be 19.68  
MHz, then the channel spacing can be calculated as the greatest common multiple of 19.68 MHz and 2110.8  
MHz, which is 240 kHz. The fractional denominator is therefore a multiple of 41, which is 19.68 MHz / 240 kHz.  
Refer to application note 1865 for more details on frequency planning.  
To achieve a fractional N value, an integer N divider is modulated between different values. This gives rise to  
three main degrees of freedom with the LMX2531 delta sigma engine including the modulator order, dithering,  
and the way that the fractional portion is expressed. The first degree of freedom is the modulator order, which  
gives the user the ability to optimize for a particular application. The modulator order can be selected as zero  
(integer mode), two, three, or four. One simple technique to better understand the impact of the delta sigma  
fractional engine on noise and spurs is to tune the VCO to an integer channel and observe the impact of  
changing the modulator order from integer mode to a higher order. The higher the fractional modulator order is,  
the lower the spurs theoretically are. However, this is not always the case, and the higher order fractional  
modulator can sometimes give rise to additional spurious tones, but this is dependent on the application. The  
second degree of freedom with the LMX2531 delta sigma engine is dithering. Dithering is often effective in  
reducing these additional spurious tones, but can add phase noise in some situations. The third degree of  
freedom is the way that the fraction is expressed. For example, 1/10 can be expressed as 100000/1000000.  
Expressing the fraction in higher order terms sometimes improves the performance, particularly when dithering is  
used. In conclusion, there are some guidelines to getting the optimum choice of settings, but these optimum  
settings are application specific. Refer to application note 1879 for a much more detailed discussion on fractional  
PLLs and fractional spurs..  
PARTIALLY INTEGRATED LOOP FILTER  
The LMX2531 integrates the third pole (formed by R3 and C3) and fourth pole (formed by R4 and C4) of the loop  
filter. The values for C3, C4, R3, and R4 can also be programmed independently through the MICROWIRE  
interface and also R3 and R4 can be changed during FastLock, for minimum lock time. The larger the values of  
these components, the stronger the attenuation of the internal loop filter. The maximum attenuation can be  
achieved by setting R3=R4=40 kΩ and C3=C4=100 pF while the minimum attenuation is achieved by disabling  
the loop filter by setting EN_LPFLTR (R6[15]) to zero. Note that when the internal loop filter is disabled, there is  
still a small amount of input capacitance on front of the VCO on the order of 200 pF.  
Since that the internal loop filter is on-chip, it is more effective at reducing certain spurs than the external loop  
filter. The higher order poles formed by the integrated loop filter are also helpful for attenuating noise due to the  
delta-sigma modulator. This noise produced by the delta-sigma modulator is outside the loop bandwidth and  
dependent on the modulator order. Although setting the filtering for maximum attenuation gives the best filtering,  
it puts increased restrictions on how wide the loop bandwidth of the system can be, which corresponds to the  
case where the shunt loop filter capacitor, C1, is zero. Increasing the charge pump current and/or the phase  
detector frequency increases the maximum attainable loop bandwidth when designing with the integrated filter. It  
is recommended to set the internal loop filter as high as possible without restricting the loop bandwidth of the  
system more than desired. If some setting between the minimum and maximum value is desired, it is preferable  
to reduce the resistor values before reducing the capacitor values since this will reduce the thermal noise  
contribution of the loop filter resistors. For design tools and more information on partially integrated loop filters,  
go to www.national.com/wireless.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
LOW NOISE, FULLY INTEGRATED VCO  
The LMX2531 includes a fully integrated VCO, including the inductors. For optimum phase noise performance,  
this VCO has frequency and phase noise calibration algorithms. The frequency calibration algorithm is necessary  
because the VCO internally divides up the frequency range into several bands, in order to achieve a lower tuning  
gain, and therefore better phase noise performance. The frequency calibration routine is activated any time that  
the R0 register is programmed. There are several bits including LOCKMODE and XTLSEL that need to be set  
properly for this calibration to be performed in a reliable fashion. If the temperature shifts considerably and the  
R0 register is not programmed, then it can not drift more than the maximum allowable drift for continuous lock,  
ΔTCL, or else the VCO is not guaranteed to stay in lock. The phase noise calibration algorithm is necessary in  
order to achieve the lowest possible phase noise. Each version of the LMX2531, the VCO_ACI_SEL bit  
(R6[19:16]) needs to be set to the correct value to ensure the best possible phase noise.  
The gain of the VCO can change considerably over frequency. It is lowest at the minimum frequency and highest  
at the maximum frequency. This range is specified in Electrical Characteristics of the datasheet. When designing  
the loop filter, the following method is recommended to determine what VCO gain to design to. First, take the  
geometric mean of the minimum and maximum frequencies that are to be used. Then use a linear approximation  
to extrapolate the VCO gain. Suppose the application requires the LMX2531LQ2080E PLL to tune from 2100 to  
2150 MHz. The geometric mean of these frequencies is sqrt(2100 × 2150) MHz = 2125 MHz. The VCO gain is  
specified as 9 MHz/V at 1904 MHz and 20 MHz/V at 2274 MHz. Over this range of 370 MHz, the VCO gain  
changes 11 MHz/V. So at 2125 MHz, the VCO gain would be approximately 9 + (2125-1904)* 11/370 = 15.6  
MHz/V. Although the VCO gain can change from part to part, this variation is small compared to how much the  
VCO gain can change over frequency.  
The VCO frequency is related to the other frequencies and divider values as follows:  
fVCO = fPD × N = fOSCin × N / R  
(4)  
PROGRAMMABLE VCO DIVIDER  
All options of the LMX2531 offer the option of dividing the VCO output by two to get half of the VCO frequency at  
the Fout pin. The channel spacing at the Fout pin is also divided by two as well. Because this divide by two is  
outside feedback path between the VCO and the PLL, enabling does require one to change the N divider, R  
divider, or loop filter values. When this divider is enabled, there will be some far-out phase noise contribution to  
the VCO noise. Note that the R0 register should be reprogrammed the first time after the DIV2 bit is enabled or  
disabled for optimal phase noise performance. The frequency at the Fout pin is related to the VCO frequency  
and divider value, D, as follows:  
fFout = fVCO / D  
(5)  
General Programming Information  
The LMX2531 is programmed using 11 24-bit registers used to control the LMX2531 operation. A 24-bit shift  
register is used as a temporary register to indirectly program the on-chip registers. The shift register consists of a  
data field and an address field. The last 4 register bits, CTRL[3:0] form the address field, which is used to  
decode the internal register address. The remaining 20 bits form the data field DATA[19:0]. While LE is low,  
serial data is clocked into the shift register upon the rising edge of clock (data is programmed MSB first). When  
LE goes high, data is transferred from the data field into the selected register bank. Although there are actually  
14 registers in this part, only a portion of them should be programmed, since the state of the other hidden  
registers (R13, R11, and R10) are set during the initialization sequence. Although it is possible to program these  
hidden registers, as well as a lot of bits that are defined to either '1' or '0', the user should not experiment with  
these hidden registers and bits, since the parts are not tested under these conditions and doing so will most  
likely degrade performance.  
DATA[19:0]  
CONTROL[3:0]  
LSB  
MSB  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
C
3
C
2
C
1
C0  
18  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
REGISTER LOCATION TRUTH TABLE  
C3  
1
C2  
1
C1  
0
C0  
0
Data Address  
R12  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
0
0
0
0
1
0
0
0
0
INITIALIZATION SEQUENCE  
The initial loading sequence from a cold start is described below. The registers must be programmed in order  
shown. There must be a minimum of 10 ms between the time when R5 is last loaded and R1 is loaded to ensure  
time for the LDOs to power up properly.  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
DATA[19:0]  
9
8
7
6
5
4
3
2
1
0
REG.  
C3 C2 C1 C0  
R5  
INIT1  
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
R5  
INIT2  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
R5  
R12  
R9  
0
1
1
1
1
0
0
0
0
1
0
1
Program R12 as shown in the complete register map.  
Program R9 as shown in the complete register map.  
See individual section for Register R8 programming information.  
R8  
1
0
0
0
Programming of this register is necessary under specific circumstances.  
See individual section for Register R7 programming information.  
See individual section for Register R6 programming information.  
R7  
R6  
0
0
1
1
1
1
1
0
See individual section for Register R4 programming information.  
Register R4 only needs to be programmed if FastLock is used.  
R4  
0
1
0
0
R3  
R2  
R1  
R0  
See individual section for Register R3 programming information.  
See individual section for Register R2 programming information.  
See individual section for Register R1 programming information.  
See individual section for Register R0 programming information.  
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
Complete Register Content Map  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMX2531  
 
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
This table shows all the programmable bits for the LMX2531. No programming order or initialization sequence is implied by this table, only the location of the programming information.  
RE 23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GIS  
TE  
R
DATA[19:0]  
C3  
C2  
C1  
C0  
N
[7:0]  
NUM  
[11:0]  
R0  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
ICP  
[3:0]  
N
[10:8]  
NUM  
R1  
R2  
R3  
R4  
0
0
0
1
1
[21:12]  
DEN  
[11:0]  
R
[5:0]  
DIV FD  
2
DITHER  
[1:0]  
ORDER  
[1:0]  
FoLD  
[3:0]  
DEN  
M
[21:12]  
ICPFL  
[3:0]  
TOC  
[13:0]  
0
0
RE  
G_  
RS  
T
EN_ EN_ EN_ EN_  
DIG PLL PLL VC  
LD LD LD OL  
EN_ EN_  
OS VC  
EN_  
PLL  
R5  
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
C
O
O
O2 O1  
D
EN_  
LPF  
LTR  
R4_ADJ_  
FL  
[1:0]  
R3_ADJ_  
FL  
[1:0]  
XTLSEL  
[2:0]  
VCO_ACI_SEL  
[3:0]  
R4_ADJ  
[1:0]  
R3_ADJ  
[1:0]  
C3_4_ADJ  
[2:0]  
R6  
R7  
R8  
0
0
0
0
0
1
1
1
0
1
1
0
0
1
0
XTLMAN  
[11:0]  
XTLDIV  
[1:0]  
0
0
0
0
0
0
0
0
XTL  
MA  
N2  
LOCK  
MODE  
0
0
0
0
1
0
0
0
0
0
0
0
0
R9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
1
1
0
1
0
1
1
0
0
1
0
0
0
1
1
0
1
0
0
1
0
R12  
20  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
REGISTER R0  
The action of programming the R0 register activates a frequency calibration routine for the VCO. This calibration  
is necessary to get the VCO to center the tuning voltage for optimal performance. If the temperature drifts  
considerably, then the PLL should stay in lock, provided that the temperature drift specification is not violated.  
NUM[10:0] and NUM[21:12] -- Fractional Numerator  
The NUM word is split between the R0 register and R1 register. The Numerator bits determine the fractional  
numerator for the delta sigma PLL. This value can go from 0 to 4095 when the FDM bit (R3[22]) is 0 (the other  
bits in this register are ignored), or 0 to 4194303 when the FDM bit is 1.  
Fractional  
Numerator  
NUM[21:12]  
NUM[11:0]  
0
...  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
409503  
4096  
...  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
4194303  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note that there are restrictions on the fractional numerator value depending on the R divider value if it is 16 or  
32.  
N[7:0] and N[10:8]  
The N counter is 11 bits. 8 of these bits are located in the R0 register, and the remaining 3 (MSB bits) are  
located in the R1 register. The LMX2531 consists of an A, B, and C counter, which work in conjunction with the  
16/17/20/21 prescaler in order to form the final N counter value.  
N[10:8]  
N[7:0]  
N Value  
<48  
C
B
A
Values less than 48 are prohibited.  
48 - 51  
52-54  
55  
Possible ONLY with ORDER = 1 (Reset Modulator)  
Values of 52 - 54 are prohibited.  
0
1
0
1
0
1
0
0
1
1
0
1
1
1
1
1
1
...  
2039  
1
1
1
1
0
REGISTER R1  
NUM[21:12]  
These are the MSB bits in for the fractional numerator that already have been described.  
N[10:8] -- 3 MSB Bits for the N Counter  
These are the 2 MSB bits for the N counter, which were discussed in REGISTER R0.  
ICP[3:0] -- Charge Pump Current  
This bit programs the charge pump current in from 90 µA to 1440 µA in 90 µA steps. In general, higher charge  
pump currents yield better phase noise for the PLL, but also can cause higher spurs.  
Typical Charge Pump Current at 3 Volts  
ICP  
Charge Pump State  
(µA)  
0
1
2
1X  
2X  
3X  
90  
180  
270  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMX2531  
 
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
3
4
4X  
5X  
360  
450  
5
6X  
540  
6
7X  
630  
7
8X  
720  
8
9X  
810  
9
10X  
11X  
12X  
13X  
14X  
15X  
16X  
900  
10  
11  
12  
13  
14  
15  
990  
1080  
1170  
1260  
1350  
1440  
REGISTER R2  
R[5:0] -- R Counter Value  
These bits determine the phase detector frequency. The OSCin frequency is divided by this R counter value.  
Note that only the values of 1, 2, 4, 8, 16, and 32 are allowed.  
Fractional  
R Value  
Denominator  
Restrictions  
R[5:0]  
0,3,5-7,  
9-15,17-31,  
33-63  
n/a  
These values are illegal.  
1
2
4
8
none  
none  
none  
none  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
Must be  
divisible by 2  
16  
32  
0
1
1
0
0
0
0
0
0
0
0
0
Must be  
divisible by 4  
The R counter value can put some restrictions on the fractional denominator. In the case that it is 16, the  
fractional denominator must be divisible by 2, which is equivalent to saying that the LSB of the fractional  
denominator word is zero. In the case that the R counter is 32, the two LSB bits of the fractional denominator  
word must also be zero, which is equivalent to saying that the fractional denominator must be divisible by 4.  
Because the fractional denominator can be very large, this should cause no issues. For instance, if one wanted  
to achieve a fractional word of 1/65, and the R counter value was 16, the fractional word could be changed to  
4/260, and the same resolution could be achieved.  
DEN[21:12] and DEN[11:0]-- Fractional Denominator  
These bits determine the fractional denominator. Note that the MSB bits for this word are in register R3. If the  
FDM bit is set to 0, DEN[21:12] are ignored. The fractional denominator should only be set to zero if the  
fractional circuitry is being disabled by setting ORDER=1. A value of one never makes sense to use. All other  
values could reasonably be used in fractional mode.  
Fractional  
Denominator  
DEN[21:12]  
DEN[11:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...  
4095  
4096  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
22  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
Fractional  
Denominator  
DEN[21:12]  
DEN[11:0]  
...  
4194303  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
REGISTER R3  
DEN[21:12] -- Extension for the Fractional Denominator  
These are the MSB bits of the DEN word, which have already been discussed.  
FoLD[3:0] -- Multiplexed Output for Ftest/LD Pin  
The FoLD[3:0] word is used to program the output of the Ftest/LD Pin. This pin can be used for a general  
purpose I/O pin, a lock detect pin, and for diagnostic purposes. When programmed to the digital lock detect  
state, the output of the Ftest/LD pin will be high when the part is in lock, and low otherwise. Lock is determined  
by comparing the input phases to the phase detector. The analog lock detect modes put out a high signal with  
very fast negative pulses, that correspond to when the charge pump comes on. This output can be low pass  
filtered with an RC filter in order to determine the lock detect state. If the open drain state is used, a additional  
pull-up resistor is required. For diagnostic purposes, the options that allow one to view the output of the R  
counter or the N counter can be very useful. Be aware that the output voltage level of the Ftest/LD is not equal to  
the supply voltage of the part, but rather is given by VOH and VOL in Electrical Characteristics.  
FoLD  
0
Output Type  
High Impedance  
Push-Pull  
Push-Pull  
Push-Pull  
N/A  
Function  
Disabled  
1
Logical High State  
Logical Low State  
Digital Lock Detect  
Reserved  
2
3
4
5
Push-Pull  
Open-Drain  
Push-Pull  
N/A  
N Counter Output Divided by 2  
Analog Lock Detect  
Analog Lock Detect  
Reserved  
6
7
8
9
N/A  
Reserved  
10  
11  
12  
13  
14  
15  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
N/A  
Reserved  
Push-Pull  
N/A  
R Counter Output  
Reserved  
ORDER -- Order of Delta Sigma Modulator  
This bit determines the order of the delta sigma modulator in the PLL. In general, higher order fractional  
modulators tend to reduce the primary fractional spurs that occur at increments of the channel spacing, but can  
also create spurs that are at a fraction of the channel spacing, if there is not sufficient filtering. The optimal  
choice of modulator order is very application specific, however, a third order modulator is a good starting point if  
not sure what to try first.  
ORDER  
Delta Sigma Modulator Order  
0
Fourth  
Reset Modulator  
(Integer Mode - all fractions are ignored)  
1
2
3
Second  
Third  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
DITHER -- Dithering  
Dithering is useful in reducing fractional spurs, especially those that occur at a fraction of the channel spacing.  
The only exception is when the fractional numerator is zero. In this case, dithering usually is not a benefit.  
Dithering also can sometimes increase the PLL phase noise by a fraction of a dB. In general, if dithering is  
disabled, phase noise may be slightly better inside the loop bandwidth of the system, but spurs are likely to be  
worse too.  
DITHER  
Dithering Mode  
Weak Dithering  
Reserved  
0
1
2
3
Strong Dithering  
Dithering Disabled  
FDM -- Fractional Denominator Mode  
When this bit is set to 1, the 10 MSB bits for the fractional numerator and denominator are considered. This  
allows the fractional denominator to range from 1 to 4,194,303. If this bit is set to zero, only the 12 LSB bits of  
the fractional numerator and denominator are considered, and this allows a fractional denominator from 1 to  
4095. When this bit is disabled, the current consumption is about 0.5 mA lower.  
DIV2  
When this bit is enabled, the output of the VCO is divided by 2. Enabling this bit does have some impact on  
harmonic content and output power.  
DIV2  
VCO Output Frequency  
Not Divided by 2  
Divided by 2  
0
1
REGISTER R4  
TOC[13:0] -- Time Out Counter for FastLock  
When the value of this word is 3 or less, then FastLock is disabled, and this pin can only be used for general  
purpose I/O. When this value is 4 or greater, the time out counter is engaged for the amount of phase detector  
cycles shown in the table below.  
TOC Value  
FLout Pin State  
Timeout Count  
0
High Impedance  
0
1
Low  
Low  
High  
Low  
.
Always Enabled  
2
0
3
0
4
.
4 × 2 Phase Detector  
.
16383  
Low  
16383 × 2 Phase Detector  
When this count is active, the FLout Pin is grounded, the FastLock current is engaged, and the resistors R3 and  
R4 are also potentially changed. The table below summarizes the bits that control various values in and out of  
FastLock differences.  
FastLock State  
Steady State  
Fastlock  
FLout  
Charge Pump Current  
R3  
R4  
High Impedance  
Grounded  
ICP  
R3_ADJ  
R4_ADJ  
ICPFL  
R3_ADJ_FL  
R4_ADJ_FL  
24  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
ICPFL[3:0] -- Charge Pump Current for Fastlock  
When FastLock is enabled, this is the charge pump current that is used for faster lock time.  
Typical Fastlock Charge Pump Current at  
3 Volts (µA)  
ICPFL  
Fastlock Charge Pump State  
0
1
1X  
2X  
90  
180  
2
3X  
270  
3
4X  
360  
4
5X  
450  
5
6X  
540  
6
7X  
630  
7
8X  
720  
8
9X  
810  
9
10X  
11X  
12X  
13X  
14X  
15X  
16X  
900  
10  
11  
12  
13  
14  
15  
990  
1080  
1170  
1260  
1350  
1440  
REGISTER R5  
EN_PLL -- Enable Bit for PLL  
When this bit is set to 1 (default), the PLL is powered up, otherwise, it is powered down.  
EN_VCO -- Enable Bit for the VCO  
When this bit is set to 1 (default), the VCO is powered up, otherwise, it is powered down.  
EN_OSC -- Enable Bit for the Oscillator Inverter  
When this bit is set to 1 (default), the reference oscillator is powered up, otherwise it is powered down.  
EN_VCOLDO -- Enable Bit for the VCO LDO  
When this bit is set to 1 (default), the VCO LDO is powered up, otherwise it is powered down.  
EN_PLLLDO1 -- Enable Bit for the PLL LDO 1  
When this bit is set to 1 (default), the PLL LDO 1 is powered up, otherwise it is powered down.  
EN_PLLLDO2 -- Enable Bit for the PLL LDO 2  
When this bit is set to 1 (default), the PLL LDO 2 is powered up, otherwise it is powered down.  
EN_DIGLDO -- Enable Bit for the digital LDO  
When this bit is set to 1 (default), the Digital LDO is powered up, otherwise it is powered down.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMX2531  
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
REG_RST -- RESETS ALL REGISTERS TO DEFAULT SETTINGS  
This bit needs to be programmed three times to initialize the part. When this bit is set to one, all registers are set  
to default mode, and the part is powered down. The second time the R5 register is programmed with  
REG_RST=0, the register reset is released and the default states are still in the registers. However, since the  
default states for the blocks and LDOs is powered off, it is therefore necessary to program R5 a third time so that  
all the LDOs and blocks can be programmed to a power up state. When this bit is set to 1, all registers are set to  
the default modes, but part is powered down. For normal operation, this bit is set to 0. Note that once this  
initialization is done, it is not necessary to do this again unless power is removed from the device.  
REGISTER R6  
C3_C4_ADJ[2:0] -- VALUE FOR C3 AND C4 IN THE INTERNAL LOOP FILTER  
C3_C4_ADJ  
C3 (pF)  
50  
C4 (pF)  
50  
0
1
2
3
4
5
6
7
50  
100  
150  
50  
50  
100  
150  
100  
50  
50  
100  
150  
150  
50  
R3_ADJ_FL[1:0] -- Value for Internal Loop Filter Resistor R3 During Fastlock  
R3_ADJ_FL Value  
R3 Resistor During Fastlock (kΩ)  
0
1
2
3
10  
20  
30  
40  
R3_ADJ[1:0] -- Value for Internal Loop Filter Resistor R3  
R3_ADJ  
R3 Value (kΩ)  
0
1
2
3
10  
20  
30  
40  
R4_ADJ_FL[1:0] -- Value for Internal Loop Filter Resistor R4 During Fastlock  
R4_ADJ_FL  
R4 Value during Fast Lock (kΩ)  
0
1
2
3
10  
20  
30  
40  
R4_ADJ[1:0] -- Value for Internal Loop Filter Resistor R4  
R4_ADJ  
R4 Value ( kΩ )  
0
1
2
10  
20  
30  
26  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
R4_ADJ  
R4 Value ( kΩ )  
3
40  
EN_LPFLTR-- Enable for Partially Integrated Internal Loop Filter  
The Enable Loop Filter bit is used to enable or disable the 3rd and 4th pole on-chip loop filters.  
EN_LPFLTR  
3rd and 4th Poles of Loop Filter  
disabled  
0
1
(R3 = R4 = 0 Ω and C3 + C4 = 200pF)  
enabled  
VCO_ACI_SEL  
This bit is used to optimize the VCO phase noise. The recommended values are what are used for all testing  
purposes, and this bit should be set as the table below instructs.  
Part  
VCO_ACI_SEL  
All Other Options  
8
LMX2531LQ2265E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
6
XTLSEL[2:0] -- Crystal Select  
The XTLSEL bit is used to select between manual crystal mode and one of the automatic modes. The user may  
choose manual crystal mode (XTLSEL=4) and program the XTLMAN (R7[21:10]) and XTLMAN2 (R7[4]) bits for a  
specific OSCin frequency, or one of the automatic modes (XTLSEL = 0,1,2,3). For the LMX2531LQ2080E/2570E  
options or when the OSCin frequency is less than 8 MHz, manual crystal mode must always be selected. The  
automatic modes can be used for the other frequency options. When using one of the automatic modes, XTLSEL  
should be set based on the OSCin frequency.  
XTLSEL  
Mode  
OSCin Frequency  
8 - 25 MHz  
0
1
2
3
Automatic Modes  
25 - 50 MHz  
50 - 70 MHz  
70 - 80 MHz  
Programming of XTLMAN (R7[21:10]) not required.  
Programming of XTLMAN2 (R7[4]) not required.  
Manual Crystal Mode  
Must use this for LMX2531LQ2080E/2570E/2820E/3010E  
Must use this if fOSCin < 8 MHz  
4
5 - 80 MHz  
Programming of XTLMAN (R7[21:10]) required.  
Programming of XTLMAN2 (R7[4]) may be required.  
5,6,7  
Reserved  
REGISTER R7  
XTLDIV[1:0] -- Division Ratio for the Crystal Frequency  
The frequency provided to the VCO frequency calibration circuitry is based on the OSCin frequency divided down  
by a factor, determined by the XTLDIV word. Note that this division ratio is independent of the R counter value or  
the phase detector frequency. The necessary division ratio depends on the OSCin frequency and is shown in the  
table below:  
XTLDIV  
Crystal Division Ratio  
Reserved  
Crystal Range  
Reserved  
0
1
2
3
Divide by 2  
< 20 MHz  
Divide by 4  
20-40 MHz  
> 40 MHz  
Divide by 8  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMX2531  
 
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
XTLMAN[11:0] -- Manual Crystal Mode  
XTLMAN must be programmed if word XTLSEL (XTLSEL[2:0] -- Crystal Select) is set to manual crystal mode. In  
the table below, the proper value for XTLMAN is shown based on some common OSCin frequencies (fOSCin) and  
various LMX2531 options. For any OSCin frequency XTLMAN can be calculated as 16 × fOSCin / Kbit. fOSCin is  
expressed in MHz and Kbit values for the LMX2531 frequency options can be found in the Kbit table (below).  
XTLMAN Values for Common OSCin Frequencies  
fOSCin  
Device  
5 MHz  
53  
53  
47  
47  
40  
40  
38  
38  
35  
32  
31  
27  
20  
18  
13  
11  
10  
10 MHz  
107  
107  
94  
20 MHz  
213  
213  
188  
188  
160  
160  
152  
152  
139  
128  
123  
107  
80  
30.72 MHz  
327  
327  
289  
289  
246  
246  
234  
234  
214  
197  
189  
164  
123  
109  
82  
61.44 MHz  
655  
76.8 MHz  
819  
819  
722  
722  
614  
614  
585  
585  
534  
492  
473  
410  
307  
273  
205  
178  
154  
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX1531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX2531LQ1742  
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2265E  
LMX2531LQ2080E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
655  
578  
94  
578  
80  
492  
80  
492  
76  
468  
76  
468  
70  
427  
64  
393  
62  
378  
53  
328  
40  
246  
36  
71  
218  
27  
53  
164  
23  
46  
70  
140  
20  
40  
61  
123  
Kbit Values for Various LMX2531 options  
Device  
Kbit  
1.5  
1.5  
1.7  
1.7  
2
LMX2531LQ1146E  
LMX2531LQ1226E  
LMX2531LQ1312E  
LMX2531LQ1415E  
LMX2531LQ1500E  
LMX2531LQ1515E  
LMX2531LQ1570E  
LMX2531LQ1650E  
LMX2531LQ1700E  
LMX25311742  
2
2.1  
2.1  
2.3  
2.5  
2.6  
3
LMX2531LQ1778E  
LMX2531LQ1910E  
LMX2531LQ2265E  
LMX2531LQ2080E  
LMX2531LQ2570E  
LMX2531LQ2820E  
LMX2531LQ3010E  
4
4.5  
6
7
8
28  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
LMX2531  
www.ti.com  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
REGISTER R8  
XTLMAN2 -- MANUAL CRYSTAL MODE SECOND ADJUSTMENT  
This bit also adjusts the calibration timing for lock time. In the case that manual mode for XTLSEL is selected  
and the OSCin frequency is greater than 40 MHz, this bit should be enabled, otherwise it should be 0.  
LOCKMODE -- FREQUENCY CALIBRATION MODE  
This bit controls the method for which the VCO frequency calibration is done. The two valid modes are linear  
mode and mixed mode. Linear mode works by searching through the VCO frequency bands in a consecutive  
manner. Mixed mode works by initially using a divide and conquer approach and then using a linear approach.  
For small frequency changes, linear mode is faster and for large frequency changes, mixed mode is faster.  
Linear mode can always be used, but there are restrictions for when Mixed Mode can be used.  
LOCKMODE  
Description  
Reserved  
Conditions on Options  
Conditions on OSCin Frequency  
0
1
Never use this mode  
Linear Mode  
Works over all options and all valid OSCin Frequencies  
All but the following options  
LMX2531LQ1146E/1226E/1312E/1415E/1515E  
2
3
Mixed Mode  
Reserved  
fOSCin 8 MHz  
Never use this mode  
REGISTER R9  
All the bits in this register should be programmed as shown in the programming table.  
REGISTER R12  
Even though this register does not have user selectable bits, it still needs to be programmed. This register should  
be loaded as shown in Complete Register Content Map.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LMX2531  
 
LMX2531  
SNAS252R OCTOBER 2005REVISED FEBRUARY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision Q (February 2013) to Revision R  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 29  
30  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LMX2531  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LMX2531LQ1146E/NOPB  
LMX2531LQ1226E/NOPB  
LMX2531LQ1312E/NOPB  
LMX2531LQ1415E/NOPB  
LMX2531LQ1500E/NOPB  
LMX2531LQ1515E/NOPB  
LMX2531LQ1570E/NOPB  
LMX2531LQ1650E/NOPB  
LMX2531LQ1700E/NOPB  
LMX2531LQ1742/NOPB  
LMX2531LQ1778E/NOPB  
LMX2531LQ1910E/NOPB  
LMX2531LQ2080E/NOPB  
LMX2531LQ2265E/NOPB  
LMX2531LQ2570E/NOPB  
LMX2531LQ2820E/NOPB  
LMX2531LQ3010E/NOPB  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJH  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
311146E  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NJH  
NJH  
NJH  
NJG  
NJH  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJH  
NJH  
1000  
1000  
1000  
250  
Green (RoHS  
& no Sb/Br)  
311226E  
311312E  
311415E  
311500EB  
311515E  
311570EB  
311650EA  
311700EB  
311742A  
311778EA  
311910EB  
312080EB  
312265ED  
312570EC  
312820E  
313010E  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
1000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LMX2531LQE1146E/NOPB  
LMX2531LQE1226E/NOPB  
LMX2531LQE1312E/NOPB  
LMX2531LQE1415E/NOPB  
LMX2531LQE1515E/NOPB  
LMX2531LQE2820E/NOPB  
LMX2531LQE3010E/NOPB  
LMX2531LQX1146E/NOPB  
LMX2531LQX1226E/NOPB  
LMX2531LQX1312E/NOPB  
LMX2531LQX1415E/NOPB  
LMX2531LQX1500E/NOPB  
LMX2531LQX1515E/NOPB  
LMX2531LQX1570E/NOPB  
LMX2531LQX1650E/NOPB  
LMX2531LQX1700E/NOPB  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJH  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
250  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
311146E  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJG  
NJH  
NJG  
NJG  
NJG  
250  
250  
Green (RoHS  
& no Sb/Br)  
311226E  
311312E  
311415E  
311515E  
312820E  
313010E  
311146E  
311226E  
311312E  
311415E  
311500EB  
311515E  
311570EB  
311650EA  
311700EB  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LMX2531LQX1742/NOPB  
LMX2531LQX1778E/NOPB  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NJG  
NJG  
36  
36  
2500  
2500  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 85  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168 HR  
311778EA  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LMX2531LQX1910E/NOPB  
LMX2531LQX2080E/NOPB  
LMX2531LQX2265E/NOPB  
LMX2531LQX2570E/NOPB  
LMX2531LQX2820E/NOPB  
LMX2531LQX3010E/NOPB  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJG  
36  
36  
36  
36  
36  
36  
2500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
311910EB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NJG  
NJG  
NJG  
NJH  
NJH  
2500  
2500  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
312080EB  
312265ED  
312570EC  
312820E  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
313010E  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Apr-2013  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX2531LQ1146E/NOPB WQFN  
LMX2531LQ1226E/NOPB WQFN  
LMX2531LQ1312E/NOPB WQFN  
LMX2531LQ1415E/NOPB WQFN  
LMX2531LQ1500E/NOPB WQFN  
LMX2531LQ1515E/NOPB WQFN  
LMX2531LQ1570E/NOPB WQFN  
LMX2531LQ1650E/NOPB WQFN  
LMX2531LQ1700E/NOPB WQFN  
LMX2531LQ1742/NOPB WQFN  
LMX2531LQ1778E/NOPB WQFN  
LMX2531LQ1910E/NOPB WQFN  
LMX2531LQ2080E/NOPB WQFN  
LMX2531LQ2265E/NOPB WQFN  
LMX2531LQ2570E/NOPB WQFN  
LMX2531LQ2820E/NOPB WQFN  
LMX2531LQ3010E/NOPB WQFN  
LMX2531LQE1146E/NOP WQFN  
NJH  
NJH  
NJH  
NJH  
NJG  
NJH  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJH  
NJH  
NJH  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
1000  
1000  
1000  
1000  
250  
330.0  
330.0  
330.0  
330.0  
178.0  
330.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
330.0  
178.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
1000  
250  
250  
250  
250  
250  
250  
250  
250  
250  
1000  
1000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
B
LMX2531LQE1226E/NOP WQFN  
B
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJG  
NJH  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJH  
NJH  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
250  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LMX2531LQE1312E/NOP WQFN  
B
LMX2531LQE1415E/NOP WQFN  
B
250  
LMX2531LQE1515E/NOP WQFN  
B
250  
LMX2531LQE2820E/NOP WQFN  
B
250  
LMX2531LQE3010E/NOP WQFN  
B
250  
LMX2531LQX1146E/NOP WQFN  
B
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
LMX2531LQX1226E/NOP WQFN  
B
LMX2531LQX1312E/NOP WQFN  
B
LMX2531LQX1415E/NOP WQFN  
B
LMX2531LQX1500E/NOP WQFN  
B
LMX2531LQX1515E/NOP WQFN  
B
LMX2531LQX1570E/NOP WQFN  
B
LMX2531LQX1650E/NOP WQFN  
B
LMX2531LQX1700E/NOP WQFN  
B
LMX2531LQX1778E/NOP WQFN  
B
LMX2531LQX1910E/NOP WQFN  
B
LMX2531LQX2080E/NOP WQFN  
B
LMX2531LQX2265E/NOP WQFN  
B
LMX2531LQX2570E/NOP WQFN  
B
LMX2531LQX2820E/NOP WQFN  
B
LMX2531LQX3010E/NOP WQFN  
B
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX2531LQ1146E/NOPB  
LMX2531LQ1226E/NOPB  
LMX2531LQ1312E/NOPB  
LMX2531LQ1415E/NOPB  
LMX2531LQ1500E/NOPB  
LMX2531LQ1515E/NOPB  
LMX2531LQ1570E/NOPB  
LMX2531LQ1650E/NOPB  
LMX2531LQ1700E/NOPB  
LMX2531LQ1742/NOPB  
LMX2531LQ1778E/NOPB  
LMX2531LQ1910E/NOPB  
LMX2531LQ2080E/NOPB  
LMX2531LQ2265E/NOPB  
LMX2531LQ2570E/NOPB  
LMX2531LQ2820E/NOPB  
LMX2531LQ3010E/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJH  
NJH  
NJH  
NJH  
NJG  
NJH  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJH  
NJH  
NJH  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
1000  
1000  
1000  
1000  
250  
367.0  
367.0  
367.0  
367.0  
213.0  
367.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
367.0  
367.0  
213.0  
367.0  
367.0  
367.0  
367.0  
191.0  
367.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
367.0  
367.0  
191.0  
38.0  
38.0  
38.0  
38.0  
55.0  
38.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
55.0  
38.0  
38.0  
55.0  
1000  
250  
250  
250  
250  
250  
250  
250  
250  
250  
1000  
1000  
250  
LMX2531LQE1146E/NOP  
B
LMX2531LQE1226E/NOP  
B
WQFN  
NJH  
36  
250  
213.0  
191.0  
55.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Mar-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX2531LQE1312E/NOP  
B
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJH  
NJG  
NJH  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJG  
NJH  
NJH  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
36  
250  
213.0  
213.0  
213.0  
213.0  
213.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
191.0  
191.0  
191.0  
191.0  
191.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
55.0  
55.0  
55.0  
55.0  
55.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
38.0  
LMX2531LQE1415E/NOP  
B
250  
250  
LMX2531LQE1515E/NOP  
B
LMX2531LQE2820E/NOP  
B
250  
LMX2531LQE3010E/NOP  
B
250  
LMX2531LQX1146E/NOP  
B
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
LMX2531LQX1226E/NOP  
B
LMX2531LQX1312E/NOP  
B
LMX2531LQX1415E/NOP  
B
LMX2531LQX1500E/NOP  
B
LMX2531LQX1515E/NOP  
B
LMX2531LQX1570E/NOP  
B
LMX2531LQX1650E/NOP  
B
LMX2531LQX1700E/NOP  
B
LMX2531LQX1778E/NOP  
B
LMX2531LQX1910E/NOP  
B
LMX2531LQX2080E/NOP  
B
LMX2531LQX2265E/NOP  
B
LMX2531LQX2570E/NOP  
B
LMX2531LQX2820E/NOP  
B
LMX2531LQX3010E/NOP  
B
Pack Materials-Page 4  
MECHANICAL DATA  
NJG0036A  
LQA36A (Rev C)  
www.ti.com  
MECHANICAL DATA  
NJH0036D  
LQA36D (Rev B)  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LMX2531LQ1500EX

High Performance Frequency Synthesizer System with Integrated VCO
NSC

LMX2531LQ1500E_08

High Performance Frequency Synthesizer System with Integrated VCO
NSC

LMX2531LQ1515E

High Performance Frequency Synthesizer System with Integrated VCO
NSC

LMX2531LQ1515E

LMX2531 High Performance Frequency Synthesizer System with Integrated VCO
TI

LMX2531LQ1515E

PLL FREQUENCY SYNTHESIZER, 80 MHz, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, LLP-36
ROCHESTER

LMX2531LQ1515E/NOPB

High-Performance Frequency Synthesizer System
TI

LMX2531LQ1515E/NOPB

IC PLL FREQUENCY SYNTHESIZER, 80 MHz, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, LLP-36, PLL or Frequency Synthesis Circuit
NSC

LMX2531LQ1515E/NOPB

PLL FREQUENCY SYNTHESIZER, 80MHz, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, LLP-36
ROCHESTER

LMX2531LQ1570E

PLLatinum High Performance Frequency Synthesizer System with Integrated VCO
NSC

LMX2531LQ1570E

LMX2531 High Performance Frequency Synthesizer System with Integrated VCO
TI

LMX2531LQ1570E/NOPB

具有集成 VCO 的高性能频率合成器系统 | NJG | 36 | -40 to 85
TI

LMX2531LQ1650E

PLLatinum High Performance Frequency Synthesizer System with Integrated VCO
NSC