LMX2571SRHHTEP [TI]

具有 FSK 调制功能的增强型 1.34GHz、低功耗、极端温度 RF 合成器 | RHH | 36 | -55 to 125;
LMX2571SRHHTEP
型号: LMX2571SRHHTEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 FSK 调制功能的增强型 1.34GHz、低功耗、极端温度 RF 合成器 | RHH | 36 | -55 to 125

文件: 总67页 (文件大小:3807K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
FSK 调制功能LMX2571-EP 低功耗、高性PLLatinum射频合成器  
1 特性  
3 说明  
VID#V62/21613-01XE  
-55 °C +125 °C 工作温度  
10MHz 1344MHz 范围内的任何频率  
• 低相位噪声和毛刺  
LMX2571-EP 件是一款低功耗、高性能的宽带  
PLLatinum射频合成器该器件集成了 Δ-Σ 分数 N  
PLL、多核电压控制振荡(VCO)、可编程输出分频器  
和两个输出缓冲器。VCO 核的工作频率高达  
5.376GHz 续输出频率范围为 10MHz  
1344MHz。  
-123dBc/Hz480MHz 且偏移12.5kHz  
)  
-145dBc/Hz480MHz 且偏移1MHz )  
– 标PLL 本底噪声231dBc/Hz  
– 杂散优75dBc/Hz  
该合成器还可搭配外部 VCO 使用。在此配置下需使  
用专用5V 电荷泵和输出分频器。  
该合成器还包含一个独特的可编程乘法器有助于去除  
毛刺即使毛刺落在整数边界系统也仍能够使用任一  
通道。  
• 新FastLock 技术缩短了锁定时间  
• 新型整数边界毛刺去除技术  
• 集5V 电荷泵和输出分频器用于外VCO 操作  
24 8 电平或者任意电平数直接数FSK 调制  
• 一TX/RX 输出或两个扇出输出  
• 低电流消耗  
输出具有集成式 SPDT 开关可用作 FDD 无线电应用  
中的发送和接收开关。并且可同时导通两个开关以便  
同时提供双输出。  
39mA 典型合成器模式VCO)  
9mA PLL 模式VCO)  
24 位分N Δ-Σ制器  
通过编程或引脚LMX2571-EP 可支持直接数字 FSK  
调制。此外还支持离散电平 FSK、脉冲成形 FSK 以  
及模FM 调制。  
LMX2571 LMX2571-EP 之间的功能差异  
LMX2571-EP TrCtl 引脚  
LMX2571-EP OSCin* 引脚、差分模式和晶  
振模式  
该合成器采用了全新的 FastLock 技术即使在外部  
VCO 与窄带回路滤波器搭配使用时用户也能够在不  
1.5ms 的时间内从一个频率切换至另一频率。  
器件信息(1)  
2 应用  
封装尺寸标称值)  
器件型号  
封装  
导引头前端  
国防无线电  
飞行器驾驶舱显示屏  
飞行控制单元  
无线基础设施  
LMX2571-EP  
V62/21613-01XE  
VQFN (36)  
6.00mm × 6.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Vcc3p3VccIO  
VcpExt  
CPout  
Power  
supply  
5-V CP  
supply  
CP  
MUX  
Int. charge  
pump  
Output  
divider  
OP  
MUX  
RFoutTx  
Phase  
detector  
OSCin  
R-divider  
Prescaler  
N-divider  
Fast  
lock  
5-V charge  
pump  
VCO  
MUX  
Output  
divider  
Lock  
dect  
µWIRE  
SPI  
Enable  
CE  
RFoutRx  
modulator  
FSK  
FLout  
CPoutExt  
Fin  
MUXout  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS824  
 
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
7.6 Register Maps...........................................................20  
8 Application and Implementation..................................39  
8.1 Application Information............................................. 39  
8.2 Typical Applications.................................................. 46  
8.3 Do's and Don'ts.........................................................55  
9 Power Supply Recommendations................................56  
10 Layout...........................................................................57  
10.1 Layout Guidelines................................................... 57  
10.2 Layout Example...................................................... 57  
11 Device and Documentation Support..........................58  
11.1 Device Support........................................................58  
11.2 Documentation Support.......................................... 58  
11.3 接收文档更新通知................................................... 58  
11.4 支持资源..................................................................58  
11.5 Trademarks............................................................. 58  
11.6 Electrostatic Discharge Caution..............................58  
11.7 术语表..................................................................... 58  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................8  
6.7 Timing Diagrams.........................................................8  
6.8 Typical Characteristics................................................9  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................18  
7.5 Programming............................................................ 18  
Information.................................................................... 58  
4 Revision History  
Changes from Revision A (December 2021) to Revision B (June 2022)  
Page  
• 删除了TrCtl 引脚的所有引用...........................................................................................................................1  
• 删除了“差分模式”........................................................................................................................................... 1  
• 删除了“晶振模式”........................................................................................................................................... 1  
Redefined the OSCin* pin to NC........................................................................................................................ 3  
Added the Differences Between the LMX2571 and LMX2571-EP section.......................................................13  
Changes from Revision * (October 2021) to Revision A (December 2021)  
Page  
• 将数据表状态从“预告信息”更改为量产数据................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. RHH Package 36-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
Bypass1  
Bypass2  
CE  
NO.  
2
Bypass Place a 100-nF capacitor to GND.  
Bypass Place a 100-nF capacitor to GND.  
3
19  
11  
25  
30  
Input  
Chip Enable input. Active HIGH powers on the device.  
MICROWIRE clock input.  
CLK  
Input  
CPout  
Output Internal VCO charge pump access point to connect to a 2nd order loop filter.  
CPoutExt  
Output 5-V charge pump output used in PLL mode (external VCO).  
DAP  
GND  
12  
GND  
Input  
The DAP should be grounded.  
MICROWIRE serial data input.  
DATA  
High-frequency, AC-coupled input pin for an external VCO. Leave it open or AC-coupled to GND if not  
being used.  
Fin  
24  
Input  
FSK_D0  
FSK_D1  
FSK_D2  
FSK_DV  
FLout1  
FLout2  
GND  
7
Input  
Input  
Input  
Input  
FSK data bit 0 (FSK PIN mode) / I2S FS input (FSK I2S mode).  
FSK data bit 1 (FSK PIN mode) / I2S DATA input (FSK I2S mode).  
FSK data bit 2 (FSK PIN mode).  
6
5
4
FSK data valid input (FSK PIN mode) / I2S CLK input (FSK I2S mode).  
29  
28  
23  
31  
35  
13  
10  
Output FastLock output control 1 for external switch. Output is HIGH when F1 is selected.  
Output FastLock output control 2 for external switch. Output is HIGH when F2 is selected.  
GND  
GND  
GND  
Input  
VCO ground.  
GND  
Charge pump ground.  
OSCin ground.  
GND  
LE  
MICROWIRE latch enable input.  
MUXout  
Output Multiplexed output that can be assigned to lock detect or readback serial data output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NC  
NO.  
14, 26  
34  
NC  
Input  
NC  
Leave floating, do not connect to GND or power supply.  
Reference clock input.  
OSCin  
NC  
8,18, 36  
16  
These pins may be left floating or connected to GND.  
RFoutRx  
RFoutTx  
Output RF output used to drive receive mixer. Selectable open-drain or push-pull output.  
Output RF output used to drive transmit signal. Selectable open-drain or push-pull output.  
17  
1, 9, 20,  
27  
Vcc3p3  
VccIO  
Supply Connect to 3.3-V supply.  
15, 33  
32  
Supply Supply for digital logic interface. Connect to 3.3-V supply.  
Supply for 5-V charge pump. Connect to 5-V supply in PLL mode. Connect to either 3.3-V or 5-V  
supply in synthesizer mode.  
VcpExt  
Supply  
VrefVCO  
VregVCO  
22  
21  
Bypass LDO output. Place a 100-nF capacitor to GND.  
Bypass Bias circuitry for the VCO. Place a 2.2-µF capacitor to GND.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
3.6  
UNIT  
V
VCC  
VIO  
VCP  
VIN  
TJ  
Power supply voltage  
IO supply voltage  
3.6  
V
Charge pump supply voltage  
IO input voltage  
5.25  
V
VCC + 0.3  
150  
V
Junction temperature  
Storage temperature  
°C  
°C  
55  
65  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.45  
VCC  
5
UNIT  
VCC  
VIO  
Power supply voltage  
IO supply voltage  
3.15  
3.3  
V
V
PLL mode (external VCO)  
VCP  
TA  
Charge pump supply voltage  
Ambient temperature  
V
Synthesizer mode (internal VCO)  
VCC  
5
125  
°C  
55  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
 
 
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.4 Thermal Information  
LMX2571-EP  
THERMAL METRIC(1)  
NJK (WQFN)  
36 PINS  
32.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
14.5  
6.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJT  
6.3  
ΨJB  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
3.15 V VCC 3.45 V, VIO = VCC, 55 °C TA 125 °C, except as specified. Typical values are at VCC = VIO = 3.3 V,  
VCP = 3.3 V or 5 V in synthesizer mode, VCP = 5 V in PLL mode, TA = 25 °C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT CONSUMPTION  
Configuration A(1)  
39  
44  
46  
51  
9
Configuration B(2)  
Configuration C(3)  
Configuration D(4)  
Configuration E(5)  
Configuration F(6)  
Configuration G(7)  
ICC  
Synthesizer mode  
fOUT = 480 MHz, SE  
OSCIN  
mA  
mA  
IPLL  
PLL mode  
15  
21  
CE = 0 V or POWERDOWN = 1, VCC = 3.3  
V, Push-pull output  
IPD  
Powerdown  
0.9  
OSCIN REFERENCE INPUT  
fOSCIN  
Input frequency  
Input voltage(8)  
10  
150  
3.3  
MHz  
V
VOSCIN  
0.8  
REFERENCE INPUT PROGRAMMABLE MULTIPLIER  
fMULTin  
fMULTout  
PLL  
MULT input frequency  
MULT output frequency  
10  
60  
30  
MULT > Pre-divider  
MHz  
MHz  
130  
fPD  
Phase detector frequency  
Charge pump current(9)  
10  
130  
Internal charge  
pump  
312.5  
625  
Programmable  
minimum value  
5-V charge pump  
Internal charge  
pump  
312.5  
625  
Per programmable  
step  
KPD  
µA  
5-V charge pump  
Internal charge  
pump  
7187.5  
6875  
Programmable  
maximum value  
5-V charge pump  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMX2571-EP  
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
3.15 V VCC 3.45 V, VIO = VCC, 55 °C TA 125 °C, except as specified. Typical values are at VCC = VIO = 3.3 V,  
VCP = 3.3 V or 5 V in synthesizer mode, VCP = 5 V in PLL mode, TA = 25 °C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
124  
120  
231  
226  
MAX  
UNIT  
Internal charge  
pump  
PNPLL_1/f  
Normalized PLL 1/f noise(10)  
5-V charge pump  
At maximum charge  
pump current  
dBc/Hz  
Internal charge  
pump  
PNPLL_FLAT Normalized PLL noise floor(10)  
5-V charge pump  
EXTVCO_CHDIV = 1  
100  
100  
100  
10  
5  
0
2000  
1900  
1400  
fRFIN  
External VCO input frequency(11)  
External VCO input power  
EXTVCO_CHDIV = 8, 10  
MHz  
dBm  
EXTVCO_CHDIV = 2, 3, 4, 5, 6, 7, 9  
0.1 GHz fRFIN < 1 GHz  
1 GHz fRFIN 1.4 GHz  
1.4 GHz < fRFIN 2 GHz  
PRFIN  
VCO  
fVCO  
VCO frequency  
VCO gain(12)  
4300  
5376  
165  
MHz  
KVCO  
fVCO = 4800 MHz  
56  
MHz/V  
VCO not being recalibrated, 40 °C TA  
125 °C  
Allowable temperature drift(13)  
VCO calibration time  
°C  
µs  
|ΔTCL  
|
fOSCIN = fPD = 100  
MHz  
tVCOCAL  
140  
100 Hz offset  
1 kHz offset  
32.4  
62.3  
10 kHz offset  
fOUT = 480 MHz  
92.1  
PNVCO  
Open loop VCO phase noise  
dBc/Hz  
100 kHz offset  
121.1  
144.5  
156.8  
1 MHz offset  
10 MHz offset  
Outputs  
Synthesizer mode  
10  
10  
1344  
1400  
fOUT  
RF output frequency  
MHz  
PLL mode, RF output from buffer  
PTX, PRX  
H2RFout  
RF output power  
Second harmonic  
0
dBm  
dBc  
Power control bit =  
fOUT = 480 MHz  
6
25  
DIGITAL FSK MODULATION  
FSKLevel  
FSKBaud  
FSKDev  
FSK level(14)  
FSK PIN mode  
2
8
FSK baud rate(15)  
Loop bandwidth = 200 kHz  
Configuration H(16)  
100  
±39  
kSPs  
kHz  
FSK deviation  
DIGITAL INTERFACE  
VIH  
VIL  
IIH  
High-level input voltage  
1.4  
VCC  
0.4  
25  
V
V
Low-Level input voltage  
High-level input current  
Low-Level input current  
High-level output voltage  
Low-level input voltage  
VIH = 1.75 V  
VIL = 0 V  
µA  
µA  
V
25  
25  
2
IIL  
25  
VOH  
VOL  
IOH = 500 μA  
IOL = 500 μA  
0
0.4  
V
(1) fOSCIN = 19.44 MHz, MULT = 1, Prescaler = 4, fPD = 19.44 MHz, one RF output, output type = push pull, output power = 3 dBm  
(2) fOSCIN = 19.44 MHz, MULT = 1, Prescaler = 2, fPD = 19.44 MHz, one RF output, output type = push pull, output power = 3 dBm  
(3) fOSCIN = 19.44 MHz, MULT = 5, Prescaler = 2, fPD = 19.44 MHz, one RF output, output type = push pull, output power = 3 dBm  
(4) fOSCIN = 19.44 MHz, MULT = 5, Prescaler = 2, fPD = 97.2 MHz, one RF output, output type = push pull, output power = 3 dBm  
(5) fOSCIN = 19.44 MHz, MULT = 1, fPD = 19.44 MHz, output from VCO  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
(6) fOSCIN = 19.44 MHz, MULT = 1, fPD = 19.44 MHz, one RF output, output type = push pull, output power = 3 dBm  
(7) fOSCIN = 19.44 MHz, MULT = 1, fPD = 19.44 MHz, two RF outputs, output type = push pull, output power = 3 dBm  
(8) See OSCIN Configuration for definition of OSCIN input voltage.  
(9) This is referring to the total base charge pump current. In PLL mode, this is equal to EXTVCO_CP_IDN + EXTVCO_CP_IUP. In  
synthesizer mode, this is equal to CP_IDN + CP_IUP.  
(10) Measured with a clean OSCIN signal with a high slew rate using a wide loop bandwidth. The noise metrics model the PLL noise for  
an infinite loop bandwidth as:  
PLL_Total = 10 * log[10(PLL_Flat / 10) + 10(PLL_Flicker / 10)  
PLL_Flat = PN1Hz + 20 * log(N) + 10 * log(fPD  
]
)
PLL_Flicker = PN10kHz 10 * log(Offset / 10 kHz) + 20 * log(fOUT / 1 GHz)  
(11) For external VCO frequencies above 1.4 GHz, there are restrictions on the output divider and register R70 needs to be programmed  
to 0x046110.  
(12) The VCO gain changes as a function of the VCO core and frequency. See Integrated VCO for details.  
(13) Not tested in production. Ensured by characterization. Allowable temperature drift refers to programming the device at an  
initial temperature and allowing this temperature to drift WITHOUT reprogramming the device, and still have the device stay in lock.  
This change could be up or down in temperature and the specification does not apply to temperatures that go outside the  
recommended operating temperatures of the device.  
(14) The data showed here simply specifies the range of discrete FSK level that is supported in PIN mode. PIN mode supports 2-, 4- and 8-  
level of FSK modulation. If arbitrary level of FSK modulation is desired, use FSK SPI™ FAST mode or FSK I2S mode. See Direct  
Digital FSK Modulation for details.  
(15) The baud rate is limited by the loop bandwidth of the PLL loop. As a general rule of thumb, it is desirable to have the loop bandwidth  
at least twice the baud rate.  
(16) fPD = 100 MHz, DEN = 224, CHDIV1 = 5, CHDIV2 = 2, Prescaler = 2, FSK step value = 32716, 32819. The maximum  
achievable frequency deviation depends on the configuration, see Direct Digital FSK Modulation for details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMX2571-EP  
 
 
 
 
 
 
 
 
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.6 Timing Requirements  
3.15 V VCC 3.45 V, VIO = VCC, 55 °C TA 125 °C, except as specified. Typical values are at VCC = VIO = 3.3 V, TA  
= 25 °C.  
MIN  
NOM  
MAX  
UNIT  
Timing Requirements  
tES  
CLK to LE low time  
5
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCS  
DATA to CLK setup time  
DATA to CLK hold time  
CLK pulse width high  
CLK pulse width low  
tCH  
2
tCWH  
tCWL  
tCES  
tEWH  
tOD  
10  
10  
5
See Figure 6-1  
LE to CLK setup time  
LE pulse width high  
2
CLK to MUXOUT delay time  
8
6.7 Timing Diagrams  
There are several other considerations for programming:  
A slew rate of at least 30 V/µs is recommended for the CLK, DATA and LE. The same apply for other digital  
control signals such as FSK_D[0:2] and FSK_DV signals.  
The DATA is clocked into a shift register on each rising edge of the CLK signal. On the rising edge of the 24th  
CLK, the data is transferred from the data field to the selected register bank.  
The LE pin may be held high after programming, causing the LMX2571-EP to ignore clock pulses.  
When CLK or DATA lines are shared between devices, it is recommended to divide down the voltage to the  
CLK, DATA, and LE pins closer to the minimum voltage. This provides better noise immunity.  
If the CLK and DATA lines are toggled while the VCO is in lock, as is sometimes the case when these lines  
are shared with other parts, the phase noise may be degraded during the time of this programming.  
MSB  
tCS tCH  
LSB  
DATA  
CLK  
LE  
tCWL  
tCWH  
tES  
tCES  
tEWH  
6-1. MICROWIRE Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
at TA = 25°C (unless otherwise noted)  
OSCin = 19.44 MHz  
fOUT = 200 MHz Synthesizer mode  
OSCin = 19.44 MHz  
fOUT = 500 MHz Synthesizer mode  
6-2. Typical Closed-Loop Phase Noise  
6-3. Typical Closed-Loop Phase Noise  
OSCin = 19.44 MHz  
fOUT = 900 MHz Synthesizer mode  
OSCin = 19.44 MHz  
fOUT = 1200 MHz Synthesizer mode  
6-4. Typical Closed-Loop Phase Noise  
6-5. Typical Closed-Loop Phase Noise  
FSKBaud = 4.8 kSPS  
FSK PIN mode  
Reference clock is a FM modulated signal with fMOD = 2.4 kHz  
6-6. 4FSK Direct Digital Modulation  
6-7. FM Modulation Through Reference Clock  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
Switching between int. and ext. VCO as well as Tx and Rx  
port  
Freq. jump = 50 MHz  
.
LBW = 4 kHz  
PLL mode  
6-8. Output Port and VCO Switching  
6-9. FastLock With SPST Switch  
Start: 100 MHz  
6-10. Fin Input Impedance  
Stop: 2000 MHz  
Start: 10 MHz  
Stop: 300 MHz  
6-11. OSCin Input Impedance  
-80  
-80  
-90  
Modeled flicker noise  
Modeled flat noise  
OSCin noise  
Modeled flicker noise  
Modeled flat noise  
OSCin noise  
-90  
Model total noise  
Actual measurement  
Modeled total noise  
Actual measurement  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
102  
103  
104  
105  
106  
107  
102  
103  
104  
105  
106  
107  
Offset /Hz  
Offset /Hz  
fOUT = 1228.8 MHz  
fPD = 122.88 MHz  
Synthesizer mode  
fOUT = 430.08 MHz  
fPD = 61.44 MHz  
PLL mode  
6-12. Normalized PLL 1/f Noise and Noise Floor  
6-13. Normalized PLL 1/f Noise and Noise Floor  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
100  
50  
single-ended input  
30  
20  
10  
5
3
2
1
0.5  
0.3  
0.2  
0.1  
85  
90  
95  
100  
105  
110  
115  
120  
125  
Continuous Junction TempertureTj (oC)  
6-14. Lifetime vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMX2571-EP is a frequency synthesizer with low-noise, high-performance integrated VCOs. The 5-GHz  
VCO cores, together with the output channel dividers, can produce frequencies from 10 MHz to 1344 MHz. The  
LMX2571-EP supports two operation modes, synthesizer mode and PLL mode. In synthesizer mode, the entire  
device is used; in PLL mode the internal VCO is bypassed, and an external VCO is required to implement a  
complete synthesizer.  
The PLL is a fractional-N PLL with programmable Delta Sigma modulator (first order to fourth order). The  
fractional denominator is of variable length and up to 24-bits long, providing a frequency step with very fine  
resolution.  
The internal VCO can be bypassed, allowing the use of an external VCO. A separate 5-V charge pump is  
dedicated for the external VCO, eliminating the need for an op-amp to support 5-V VCOs. A new advanced  
FastLock technique is developed to shorten the lock time to less than 1.5 ms, even there is a very narrow loop  
bandwidth.  
A unique programmable multiplier is incorporated in the R-divider. The multiplier is used to avoid and reduce  
integer boundary spurs or to increase the phase detector frequency for higher performance.  
The LMX2571-EP supports direct digital FSK modulation, thus allowing a change in the output frequency by  
changing the N-divider value. The N-divider value can be programmed through MICROWIRE interface or  
through pins. Discrete 2-, 4- and 8-level FSK, as well as arbitrary-level FSK, are supported. Arbitrary-level FSK  
can be used to construct pulse-shaping FSK or analog-FM modulation.  
The output has an integrated T/R switch, and the divided-down internal or external VCO signal can be output to  
either the TX port or the RX port. The switch can also be configured as a 1:2 fanout buffer, providing the signal  
on both outputs at the same time. In addition to port switching, the output frequency can be switched between  
two pre-defined frequencies, F1 and F2, simultaneously. This feature is ideal for use in FDD duplex system  
where the TX frequency is different from RX (LO) frequency.  
The LMX2571-EP requires only a single 3.3-V power supply. Digital logic interface is 1.8-V input compatible. The  
analog blocks power supplies use integrated LDOs, eliminating the need for high performance external LDOs.  
Programming of the device is achieved through the MICROWIRE interface. The device can be powered down  
through a register programming or toggling the Chip Enable (CE) pin.  
7.2 Functional Block Diagram  
Vcc3p3VccIO  
VcpExt  
CPout  
Power  
supply  
5-V CP  
supply  
CP  
MUX  
Int. charge  
pump  
Output  
divider  
OP  
MUX  
RFoutTx  
Phase  
detector  
OSCin  
R-divider  
Prescaler  
N-divider  
Fast  
lock  
5-V charge  
pump  
VCO  
MUX  
Output  
divider  
Lock  
dect  
µWIRE  
SPI  
Enable  
CE  
RFoutRx  
modulator  
FSK  
FLout  
CPoutExt  
Fin  
MUXout  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Differences Between the LMX2571 and LMX2571-EP  
For both devices, pin 8 is not connected to the die and pins 14 and 26 are. However, tor the LMX2571-EP, both  
Pin 36 and Pin 18 are different and are true no connect pins, meaning that this pin is not connected to the die.  
This impacts some of the functionality of the device.  
7-1. Differences Between LMX2571 and LMX2571-EP  
Aspect  
Details  
LMX2571  
LMX2571-EP  
Pin 36  
OSCin*  
NC. There is no connection to the die.  
Not Supported  
R34[14]=0  
One may drive OSCin and pin 36 with a  
differential signal, but pin 36 is high  
impedance (open) and the signal is ignored  
at this pin.  
Supported  
R34[14]=IPBUF_SE_DIFF_SEL  
Differential Input  
Reference Input  
Supported  
R34[10]=XTAL_EN  
Not Supported  
R34[10]=0  
Crystal Mode  
Pin 18  
R34[11]=XTAL_PWRCTRL  
R34[11]=2  
TrCtl  
NC. There is no connection to the die.  
Supported  
R0[8]=F1F2_CTRL  
Software Only  
R0[8]=0  
Rx/Tx Switching  
Pin Switching  
R0[10]=RXTX_POL  
R0[11]=RXTX_CTL  
R0[10]=0  
R0[11]=0  
7.3.2 Reference Oscillator Input  
The OSCin pin is used as frequency reference input to the device. The OSCin pin can be driven single-ended  
with a CMOS clock.  
The OSCin signal is used as a clock for VCO calibration, therefore a proper signal must be applied at the OSCin  
pin at the time of programming the R0 register. A higher slew rate tends to yield the best fractional spurs and  
phase noise, so a square wave signal is best for the OSCin pin. If using a sine wave, higher frequencies tend to  
yield better phase noise and fractional spurs due to their higher slew rates.  
7.3.3 R-Dividers and Multiplier  
The R-divider consists of a Pre-divider, a Multiplier (MULT), and a Post-divider.  
Pre-  
divider  
Post-  
divider  
MULT  
OSCin  
Phase detector  
7-1. R-Divider  
Both the Pre- and Post-dividers divide frequency down while the MULT multiplies frequency up. The purpose of  
adding a multiplier is to avoid and reduce integer boundary spurs or to increase the phase-detector frequency for  
higher performance. See MULT Multiplier for details. The phase detector frequency, fPD, is therefore equal to  
fPD = (fOSCin / Pre-divider) × (MULT / Post-divider)  
(1)  
When using the Multiplier (MULT > 1), there are some points to remember:  
The Multiplier must be greater than the Pre-divider.  
Using the multiplier may add noise, especially for multiplier values greater than 6.  
7.3.4 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the Post-divider and N-divider and generates a correction current  
corresponding to the phase error. This charge pump current is programmable to different strengths. The pump  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
up and pump down currents are individually programmable, but should always programmed to the same value.  
The effective charge pump current is the sum of the up and down currents and multiplied by a gain multiplier. In  
other words, Effective Charge Pump Current = (Base Charge Pump Current) × (Gain Multiplier)  
7.3.4.1 CPout Pin Charge Pump Current  
When using internal VCO mode, the charge pump output is the CPout pin and the base charge pump current is  
programmable in 156.25 µA increments set by the CP_IUP and CP_IDN fields (see 7-2). This value is  
doubled and then multiplied by the charge pump gain value specified in 7-3.  
7-2. Base Charge Pump Current When Using Internal VCO  
CP_IUP, CP_IDN  
BASE CHARGE PUMP CURRENT (µA)  
0
Tri-State  
156.25  
312.5  
1
2
3
...  
468.75.  
...  
7
1093.75  
1250  
8 or 16  
9 or 17  
...  
1406.25  
15 or 23  
24  
2343.75  
2500  
25  
2656.25  
...  
31  
3593.75  
7-3. Charge Pump Gain Multiplier When Using Internal VCO  
CP_GAIN  
GAIN MULTIPLIER  
0
1
2
3
1X  
2X  
1.5X  
2.5X  
7.3.4.2 Charge Pump Current When Using External VCO  
When using external VCO mode, the charge pump output is the CPoutExt pin and the base charge pump current  
is programmable in 312.5 µA increments set by the EXTVCO_CP_IUP and EXTVCO_CP_IDN fields as shown  
in 7-4. Odd values for EXTVCO_CP_IUP and EXTVCO_CP_IDN are not valued. This value is doubled and  
then multiplied by the charge pump gain value specified in 7-5.  
7-4. Base Charge Pump Current in External VCO Mode  
EXTVCO_CP_IUP, EXTVCO_CP_IDN  
BASE CHARGE PUMP CURRENT (µA)  
0
2
Tri-state  
312.5  
625  
4
6
937.5  
1250  
8 or 16  
10 or 18  
12 or 20  
14 or 22  
24  
1562.5  
1875  
2187.5  
2500  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-4. Base Charge Pump Current in External VCO Mode (continued)  
EXTVCO_CP_IUP, EXTVCO_CP_IDN  
BASE CHARGE PUMP CURRENT (µA)  
26  
28  
30  
2812.5  
3125  
3437.5  
7-5. Charge Pump Gain Multiplier in External VCO Mode  
EXTVCO_CP_GAIN  
CHARGE PUMP GAIN MULTIPLIER  
0
1
2
3
1X  
2X  
1.5X  
2.5X  
7.3.5 PLL N-Divider and Fractional Circuitry  
The total N-divider value is determined by Ninteger + NUM / DEN. The N-divider includes fractional compensation  
and can achieve any fractional denominator (DEN) from 1 to 16,777,215 (224 1). The integer portion, Ninteger  
,
is the whole part of the N-divider value and the fractional portion, Nfrac = NUM / DEN, is the remaining fraction.  
Ninteger, NUM and DEN are programmable.  
The order of the delta sigma modulator is also programmable from integer mode to fourth order. There are  
several dithering modes that are also programmable. Dithering is used to reduce fractional spurs. In order to  
make the fractional spurs consistent, the modulator is reset any time that the R0 register is programmed.  
7.3.6 Partially Integrated Loop Filter  
The LMX2571-EP integrates the third and fourth pole of the loop filter. The values for the resistors can be  
programmed independently through the MICROWIRE interface. The larger the values of the resistors, the  
stronger the attenuation of the internal loop filter. This partially integrated loop filter can only be used in  
synthesizer mode.  
CPout  
Int. charge  
pump  
100pF  
50pF  
7-2. Integrated Loop Filter  
7.3.7 Low-Noise, Fully Integrated VCO  
The LMX2571-EP includes a fully integrated VCO. The VCO generates a frequency which varies with the tuning  
voltage from the loop filter. Output of the VCO is fed to a prescaler before going to the N-divider. The prescaler  
value is selectable between 2 and 4. In general, prescaler equals 2 will result in better phase noise especially  
when the PLL is operated in fractional-N mode. If the prescaler equals 4, however, the device will consume less  
current. The VCO frequency is related to the other frequencies and Prescaler as follows:  
fVCO = fPD × N-divider × Prescaler  
(2)  
To reduce the VCO tuning gain, thus improving the VCO phase noise performance, the VCO frequency range is  
divided into several different frequency bands. This creates the need for frequency calibration to determine the  
correct frequency band given a desired output frequency. The VCO is also calibrated for amplitude to optimize  
phase noise. These calibration routines are activated any time that the R0 register is programmed with the  
FCAL_EN bit equals one. It is important that a valid OSCin signal must present before VCO calibration begins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
This device will support a full sweep of the valid temperature range of 125°C (40°C to 85°C) without having to  
recalibrate the VCO. This is important for continuous operation of the synthesizer under the most extreme  
temperature variation.  
7.3.8 External VCO Support  
The LMX2571-EP supports an external VCO in PLL mode. In PLL mode, the internal VCO and its associated  
charge pump are powered down, and a 5-V charge pump is switched in to support external VCO. No extra  
external low noise op-amp is required to support 5-V tuning range VCO. The external VCO output can be  
obtained directly from the VCO or from the RF output buffer of the device.  
7.3.9 Programmable RF Output Divider  
The internal VCO RF output divider consists of two sub-dividers; the total division value is equal to the  
multiplication of them. As a result, the minimum division is 4 while the maximum division is 448.  
Int.  
VCO  
Ext.  
VCO  
CHDIV1  
4,5,6,7  
CHDIV2  
1,2,4,8,16,32,64  
CHDIV3  
1,2,3,Y,9,10  
OP MUX  
OP MUX  
7-3. VCO Output Divider  
There is only one output divider when external VCO is being used. This divider supports even and odd division,  
and its values are programmable between 1 and 10.  
7.3.10 Programmable RF Output Buffer  
The RF output buffer type is selectable between push-pull and open-drain. If the open-drain buffer is selected,  
external pullup to VccIO is required. Regardless of output type, output power can be programmed to various  
levels. The RF output buffer can be disabled while still keeping the PLL in lock. See RF Output Buffer Type for  
details.  
7.3.11 Integrated TX, RX Switch  
The LMX2571-EP integrates a T/R switch. The output from the internal VCO or external VCO divider will be  
routed to either the RFoutTx or RFoutRx ports, depending on the state of the F1F2_SEL bit.  
The T/R switch could also be configured as a fanout buffer to output the same signal at both RFoutTx and  
RFoutRx ports at the same time. All of these features are also programmable, see Programming for details.  
7.3.12 Power Down  
The LMX2571-EP can be powered up and down using the CE pin or the POWERDOWN bit. All registers are  
preserved in memory and the device may still be programmed when the device is in a powered down state.  
When the device comes out of the powered down state, do the following:  
1. If it was powered-down by CE pin, pull CE pin HIGH  
2. If it was powered-down by POWERDOWN bit, set POWERDOWN = 0 and FCAL_EN = 0  
3. Wait for 100-µs to have the internal LDOs settled down  
4. Program register R0 with FCAL_EN=1  
7.3.13 Lock Detect  
The MUXout pin of the LMX2571-EP can be configured to output a signal that indicates when the PLL is being  
locked. If lock detect is enabled while the MUXout pin is configured as a lock-detect output, when the device is  
locked the MUXout pin output is a logic HIGH voltage. When the device is unlocked, MUXout output is a logic  
LOW voltage.  
7.3.14 FSK Modulation  
Direct digital FSK modulation is supported in LMX2571-EP. FSK modulation is achieved by changing the output  
frequency by changing the N-divider value. The LMX2571-EP supports four different types of FSK operation.  
1. FSK PIN mode. LMX2571-EP supports 2-, 4-, and 8-level FSK modulation in PIN mode. In this mode,  
symbols are directly fed to the FSK_D0, FSK_D1, and FSK_D2 pins. Symbol clock is fed to the FSK_DV pin.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
Symbols are latched into the device on the rising edge of the symbol clock. The maximum supported symbol  
clock rate is 1 MHz. The device has eight dedicated registers to prestore the desired FSK frequency  
deviations, with each register corresponding to one of the FSK symbols. The LMX2571-EP will change its  
output frequency according to the states on the FSK pins; no extra register programming is required.  
2. FSK SPI mode. This mode is identical to the FSK PIN mode with the exception that the control for the  
selected FSK level is not performed with external pins but with register R34. Each time when register R34 is  
programmed, change only the FSK_DEV_SEL field to select the desired FSK frequency deviation as stored  
in the dedicated registers.  
3. FSK SPI FAST mode. In this mode, instead of selecting one of the prestored FSK level, change the FSK  
deviation directly by writing to the register R33, FSK_DEV_SPI_FAST field. As a result, this mode supports  
arbitrary-FSK level, which is useful to construct pulse-shaping or analog-FM modulation.  
4. FSK I2S mode. This mode is similar to the FSK SPI FAST mode, but the programming format is an I2S  
format on dedicated pins instead of SPI. The benefit of using I2S is that this interface could be shared and  
synchronous to other digital audio interfaces. The same FSK data input pins that are used in FSK PIN mode  
are reused to support I2S programming. In this mode only the 16 bits of DATA field is required to program.  
The data is transmitted on the high or low side of the frame sync (programmable in register R34,  
FSK_I2S_FS_POL). The unused side of the frame sync needs to be at least one clock cycle. In other words,  
17 (16 + 1) CLK cycles are required at a minimum for one I2S frame. Maximum I2S clock rate is 100 MHz.  
I2S DATA  
(FSK_D1)  
MSB  
Bit 15  
LSB  
Bit 0  
FSK_D[0:2]  
I2S CLK  
(FSK_DV)  
FSK_DV  
I2S FS  
(FSK_D0)  
7-4. FSK PIN Mode Timing  
7-5. FSK I2S Mode Timing  
See Direct Digital FSK Modulation for FSK operation details.  
7.3.15 FastLock  
The LMX2571-EP includes a FastLock feature that can be used to improve the lock times in PLL mode when the  
loop bandwidth is small. In general, the lock time is approximately equal to 4 divided by the loop bandwidth. If  
the loop bandwidth is 1 kHz, then the lock time would be 4 ms. However, if the fPD is much higher than the loop  
bandwidth, cycle slipping may occur, and the actual lock time will be much longer. Traditional fastlock usually  
reduces lock time by increasing loop bandwidth during frequency switching. However, there is a limitation on the  
achievable maximum loop bandwidth due to limitation on charge-pump current and loop filter component values.  
In some cases, this kind of fastlock technique will make cycle slip even worse.  
The LMX2571-EP adopts a new FastLock approach that eliminates the cycle slip problem. With an external  
analog SPST switch in conjunction with FastLock control of the LMX2571-EP, the lock time for a 100-MHz  
frequency switch could be settled in less than 1.5 ms. See FastLock With External VCO for details.  
7.3.16 Register Readback  
The LMX2571-EP allows any of its registers to be read back. The MUXout pin can be programmed to support  
either lock-detect output or register-readback serial-data output. To read back a certain register value, follow the  
following steps:  
1. Set the R/W bit to 1; the data field contents are ignored.  
2. Send the register to the device; readback serial data outputs starting at the falling edge of the 8th clock cycle.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
R/W  
= 1  
Address  
7-bit  
Data  
= Ignored  
DATA  
CLK  
1st  
2nd-8th  
9th-24th  
Read back register value  
16-bit  
MUXout  
LE  
7-6. Register Readback Timing Diagram  
7.4 Device Functional Modes  
7.4.1 Operation Mode  
The device can be operated in synthesizer mode or PLL mode.  
1. Synthesizer mode. The internal VCO is adopted.  
2. PLL mode. The device is operated as a standalone PLL; an external VCO is required to complete the loop.  
7.4.2 Duplex Mode  
LMX2571-EP supports fast frequency switching between two predefined register sets, F1 and F2. This feature is  
good for duplex operation. The device supports three duplex modes:  
1. Synthesizer duplex mode. Both F1 and F2 are operated in synthesizer mode.  
2. PLL duplex mode. Both F1 and F2 are operated in PLL mode.  
3. Synthesizer/PLL duplex mode. In this mode, F1 and F2 will be operated in different operation mode.  
7.4.3 FSK Mode  
LMX2571-EP supports four direct digital FSK modulation modes.  
1. FSK PIN mode. 2-, 4-, and 8-level FSK modulation. Modulation data is fed to the device through dedicated  
pins.  
2. FSK SPI mode. 2-, 4-, and 8-level FSK modulation. Pre-defined FSK deviation is selected through SPI  
programming.  
3. FSK SPI FAST mode. This mode supports arbitrary-level FSK modulation. Desired FSK deviation is written  
to the device through SPI programming.  
4. FSK I2S mode. Arbitrary-level FSK modulation is supported. Desired FSK deviation is fed to the device  
through dedicated pins.  
7.5 Programming  
The LMX2571-EP is programmed using several 24-bit registers. A 24-bit shift register is used as a temporary  
register to indirectly program the on-chip registers. The shift register consists of a data field, an address field,  
and a R/W bit. The MSB is the R/W bit. 0 means register write while 1 means register read. The following 7 bits,  
ADDR[6:0], form the address field which is used to decode the internal register address. The remaining 16 bits  
form the data field DATA[15:0]. While LE is low, serial data is clocked into the shift register upon the rising edge  
of clock. Serial data is shifted MSB first into the shift register when programming. When LE goes high, data is  
transferred from the data field into the selected active register bank. See 6-1 for timing diagram details.  
7.5.1 Recommended Initial Power on Programming Sequence  
When the device is first powered up, it must to be initialized, and the ordering of this programming is important.  
The sequence is listed below. After this sequence is completed, the device should be running and locked to the  
proper frequency.  
1. Apply power to the device and ensure the Vcc pins are at the proper levels.  
2. If CE is LOW, pull it HIGH.  
3. Wait 100 µs for the internal LDOs to become stable.  
4. Ensure that a valid reference is applied to the OSCin pin.  
5. Program register R0 with RESET=1. This will ensure all the registers are reset to their default values.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
6. Program in sequence registers R60, R58, R53, , R1 and then R0.  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies in different scenarios is as follows:  
1. If the N-divider is changing, program the relevant registers, then program R0 with FCAL_EN = 1.  
2. In FSK SPI mode, FSK SPI FAST mode, and FSK I2S mode, the fractional numerator is changing; program  
the relevant registers only.  
3. If switching frequency between F1 and F2, program the relevant control registers only toggle the F1F2_SEL  
bit.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6 Register Maps  
23  
22 21 20 19 18 17 16 15  
ADDRESS[6:0] DATA[15:0]  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
POR  
REG.  
R/W  
R/W  
R/W  
R/W  
R/W  
R60  
R58  
R53  
R47  
0
0
0
0
1
1
1
1
1
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
0
0
1
1
1
1
0
0
0
0
1
1
0
1
0
0
1
0
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
3C4000h  
3A0C00h  
352802h  
2F0000h  
0
0
0
DITHERING  
VCO_  
SEL_  
STRT  
R46  
R42  
R/W  
R/W  
0
0
1
1
0
0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
VCO_SEL  
2E001Ah  
2A0210h  
EXTVCO  
_CP  
_POL  
0
0
0
EXTVCO_CP_IDN  
CP_IDN  
R41  
R40  
R/W  
R/W  
0
0
1
1
0
0
1
1
0
0
0
0
1
0
0
0
0
0
0
0
EXTVCO_CP_IUP  
EXTVCO_CP_GAIN  
290810h  
28101Ch  
CP_IUP  
0
CP_GAIN  
0
1
1
1
1
1
0
0
1
0
SDO_LD_  
SEL  
R39  
R35  
R/W  
R/W  
0
0
1
1
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
0
1
0
0
0
0
1
1
1
LD_EN  
2711F0h  
230647h  
OUTBUF  
_AUTO  
MUTE  
OUTBUF  
_TX  
OUTBUF  
_RX  
MULT_WAIT  
_TYPE  
_TYPE  
IPBUF  
DIFF_  
TERM  
FSK_  
MODE_  
SEL0  
FSK_  
MODE_  
SEL1  
FSK_I2S_  
FS_POL  
FSK_I2S_  
CLK_POL  
R34  
R/W  
0
1
0
0
0
1
0
0
1
0
FSK_LEVEL  
FSK_DEV_SEL  
221000h  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
FSK_DEV_SPI_FAST  
FSK_DEV7_F2  
FSK_DEV6_F2  
FSK_DEV5_F2  
FSK_DEV4_F2  
FSK_DEV3_F2  
FSK_DEV2_F2  
FSK_DEV1_F2  
FSK_DEV0_F2  
210000h  
200000h  
1F0000h  
1E0000h  
1D0000h  
1C0000h  
1B0000h  
1A0000h  
190000h  
FSK_EN  
EXTVCO  
_SEL  
R24  
R23  
R/W  
R/W  
0
0
0
0
1
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
_
EXTVCO_CHDIV_F2  
OUTBUF_TX_PWR_F2  
180010h  
1710A4h  
F2  
_F2  
OUTBUF  
_TX_EN  
_F2  
OUTBUF  
_RX_EN  
_F2  
OUTBUF_RX_PWR_F2  
0
0
0
LF_R4_F2  
R22  
R21  
R/W  
R/W  
0
0
0
0
1
1
0
0
1
1
1
0
0
1
LF_R3_F2  
CHDIV2_F2  
PLL_R_F2  
CHDIV1_F2  
PFD_DELAY_F2  
MULT_F2  
168584h  
150101h  
PLL_R_PRE_F2  
PLL_N_  
PRE_F2  
R20  
R/W  
0
0
1
0
1
0
0
FRAC_ORDER_F2  
PLL_N_F2  
140028h  
R19  
R18  
R17  
R16  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
PLL_DEN_F2[15:0]  
130000h  
120000h  
110000h  
100000h  
PLL_NUM_F2[15:0]  
PLL_DEN_F2[23:16]  
PLL_NUM_F2[23:16]  
FSK_DEV7_F1  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
23  
22 21 20 19 18 17 16 15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
POR  
REG.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ADDRESS[6:0]  
DATA[15:0]  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
FSK_DEV6_F1  
FSK_DEV5_F1  
FSK_DEV4_F1  
FSK_DEV3_F1  
FSK_DEV2_F1  
FSK_DEV1_F1  
FSK_DEV0_F1  
F0000h  
E0000h  
D0000h  
C0000h  
B0000h  
A0000h  
90000h  
FSK_EN  
EXTVCO  
_SEL  
R8  
R7  
R/W  
R/W  
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
0
0
0
0
0
0
0
_
EXTVCO_CHDIV_F1  
OUTBUF_TX_PWR_F1  
80010h  
710A4h  
F1  
_F1  
OUTBUF  
_TX_EN  
_F1  
OUTBUF  
_RX_EN  
_F1  
OUTBUF_RX_PWR_F1  
0
0
0
LF_R4_F1  
R6  
R5  
R/W  
R/W  
0
0
0
0
0
0
0
0
1
1
1
0
0
1
LF_R3_F1  
CHDIV2_F1  
PLL_R_F1  
CHDIV1_F1  
PFD_DELAY_F1  
MULT_F1  
68584h  
50101h  
PLL_R_PRE_F1  
PLL_N_  
PRE_F1  
R4  
R/W  
0
0
0
0
1
0
0
FRAC_ORDER_F1  
PLL_N_F1  
40028h  
R3  
R2  
R1  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
PLL_DEN_F1[15:0]  
30000h  
20000h  
10000h  
PLL_NUM_F1[15:0]  
PLL_DEN_F1[23:16]  
PLL_NUM_F1[23:16]  
POWER  
0
F1F2_  
INIT  
F1F2_  
MODE  
F1F2_  
SEL  
R0  
R/W  
0
0
0
0
0
0
0
0
0
RESET  
0
0
0
0
0
0
1
FCAL_EN  
3h  
DOWN  
The POR value is the power-on reset value that is assigned when the device is powered up or the RESET bit is asserted. POR is not a default working  
mode, all registers are required to program properly in order to make the device works as desired.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.1 R60 Register (offset = 3Ch) [reset = 4000h]  
7-7. R60 Register  
15  
1
14  
0
13  
1
12  
0
11  
0
10  
0
9
8
7
6
5
0
4
0
3
0
2
0
1
0
0
0
0
0
0
0
R/W-4000h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-6. R60 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
R/W  
4000h  
Program A000h to this field.  
7.6.2 R58 Register (offset = 3Ah) [reset = C00h]  
7-8. R58 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
0
1
0
0
0
1
0
0
0
1
1
0
0
0
0
R/W-C00h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-7. R58 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
R/W  
C00h  
Program 8C00h to this field.  
7.6.3 R53 Register (offset = 35h) [reset = 2802h]  
7-9. R53 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
1
1
1
0
0
0
1
1
1
1
0
0
0
0
0
R/W-2802h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-8. R53 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
R/W  
2802h  
Program 7806h to this field.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.4 R47 Register (offset = 2Fh) [reset = 0h]  
7-10. R47 Register  
15  
0
14  
13  
12  
0
11  
0
10  
0
9
8
7
6
5
0
4
0
3
0
2
0
1
0
0
0
DITHERING  
R/W-0h  
0
0
0
0
R/W-0h  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-9. R47 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
R/W  
0h  
Program 0h to this field.  
14-13  
DITHERING  
R/W  
0h  
Set the level of dithering. This feature is used to mitigate spurs  
level in certain use case by increasing the level of randomness  
in the Delta Sigma modulator, typically done at the expense of  
noise at certain offset.  
0 = Disabled  
1 = Weak  
2 = Medium  
3 = Strong  
12-0  
R/W  
0h  
Program 0h to this field.  
7.6.5 R46 Register (offset = 2Eh) [reset = 1Ah]  
7-11. R46 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
1
3
1
2
1
0
0
0
0
0
0
0
0
0
0
0
VCO_  
SEL_S  
TRT  
VCO_SEL  
R/W-1Ah  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-10. R46 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-3  
R/W  
3h  
Program 3h to this field.  
2
VCO_SEL_STRT  
R/W  
0h  
Enables VCO calibration to start with the VCO core being  
selected in VCO_SEL. Please note that programming to this  
register is optional. That is, you do not need to program this  
register, the default POR value of this register will ensure that  
the right VCO core will be picked up automatically.  
0 = Disabled  
1 = Enabled  
1-0  
VCO_SEL  
R/W  
2h  
Set the VCO core to start calibration with. Please note that  
programming to this register is optional. That is, you do not need  
to program this register, the default POR value of this register  
will ensure that the right VCO core will be picked up  
automatically.  
0 = VCOL  
1 = VCOM  
2 = VCOH  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.6 R42 Register (offset = 2Ah) [reset = 210h]  
7-12. R42 Register  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
1
0
0
0
EXTVC  
O_CP_  
POL  
EXTVCO_CP_IDN  
R/W-8h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-0h  
R/W-10h  
7-11. R42 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-6  
R/W  
8h  
Program 8h to this field.  
5
EXTVCO_CP_POL  
R/W  
0h  
Sets the phase detector polarity for external VCO in PLL mode  
operation. Positive means VCO frequency increases directly  
proportional to Vtune voltage.  
0 = Positive  
1 = Negative  
4-0  
EXTVCO_CP_IDN  
R/W  
10h  
Set the base charge pump current for external VCO in PLL  
mode operation. The total base charge pump current is equal to  
EXTVCO_CP_IDN + EXTVCO_CP_IUP. EXTVCO_CP_IDN  
must be equal to EXTVCO_CP_IUP. Only even number values  
are supported.  
0 = Tri-state  
2 = 312.5 µA  
4 = 625 µA  
...  
30 = 3437.5 µA  
7.6.7 R41 Register (offset = 29h) [reset = 810h]  
7-13. R41 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
EXTVCO_CP_IUP  
EXTVCO_CP_  
GAIN  
CP_IDN  
R/W-0h  
R/W-10h  
R/W-0h  
R/W-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-12. R41 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-12  
R/W  
0h  
Program 0h to this field.  
11-7  
EXTVCO_CP_IUP  
R/W  
10h  
Set the base charge pump current for external VCO in PLL  
mode operation. The total base charge pump current is equal to  
EXTVCO_CP_IDN + EXTVCO_CP_IUP. EXTVCO_CP_IDN  
must be equal to EXTVCO_CP_IUP. Only even number values  
are supported.  
0 = Tri-state  
2 = 312.5 µA  
4 = 625 µA  
...  
30 = 3437.5 µA  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-12. R41 Register Field Descriptions (continued)  
BIT  
FIELD  
EXTVCO_CP_GAIN  
TYPE  
RESET  
DESCRIPTION  
6-5  
R/W  
0h  
Set the multiplication factor to the base charge pump current for  
external VCO in PLL mode operation. For example, if the gain  
here is 2x and if the total base charge pump current  
(EXTVCO_CP_IDN + EXTVCO_CP_IUP) is 2.5 mA, then the  
final charge pump current applied to the loop filter is 5 mA. The  
gain values are not precise. They are provided as a quick way to  
boost the total charge pump current for debug purposes or  
specific applications.  
0 = 1x  
1 = 2x  
2 = 1.5x  
3 = 2.5x  
4-0  
CP_IDN  
R/W  
10h  
Set the base charge pump current for internal VCO in  
synthesizer mode operation. The total base charge pump  
current is equal to CP_IDN + CP_IUP. CP_IDN must be equal to  
CP_IUP.  
0 = Tri-state  
1 = 156.25 µA  
2 = 312.5 µA  
3 = 468.75 µA  
...  
31 = 3593.75 µA  
7.6.8 R40 Register (offset = 28h) [reset = 101Ch]  
7-14. R40 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
1
3
1
2
1
1
0
0
0
0
0
0
CP_IUP  
R/W-10h  
CP_GAIN  
R/W-0h  
R/W-0h  
R/W-1Ch  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-13. R40 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-13  
R/W  
0h  
Program 0h to this field.  
12-8  
CP_IUP  
R/W  
10h  
Set the base charge pump current for internal VCO in  
synthesizer mode operation. The total base charge pump  
current is equal to CP_IDN + CP_IUP. CP_IDN must be equal to  
CP_IUP.  
0 = Tri-state  
1 = 156.25 µA  
2 = 312.5 µA  
3 = 468.75 µA  
...  
31 = 3593.75 µA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-13. R40 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
7-6  
CP_GAIN  
R/W  
0h  
Set the multiplication factor to the base charge pump current for  
internal VCO in synthesizer mode operation. For example, if the  
gain here is 2x and if the total base charge pump current  
(CP_IDN + CP_IUP) is 2.5 mA, then the final charge pump  
current applied to the loop filter is 5 mA. The gain values are not  
precise. They are provided as a quick way to boost the total  
charge pump current for debug purposes or specific  
applications.  
0 = 1x  
1 = 2x  
2 = 1.5x  
3 = 2.5x  
5-0  
R/W  
1Ch  
Program 1Ch to this field.  
7.6.9 R39 Register (offset = 27h) [reset = 11F0h]  
7-15. R39 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
1
4
1
3
2
0
1
1
0
0
0
0
1
0
0
0
1
1
1
SDO_L  
D_SEL  
LD_EN  
R/W-11Fh  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
R/W-0h  
R/W-0h  
R/W-0h  
7-14. R39 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-4  
R/W  
11Fh  
Program 11Fh to this field.  
3
SDO_LD_SEL  
R/W  
0h  
Defines the MUXout pin function.  
0 = Register readback serial data output  
1 = Lock detect output  
2-1  
0
R/W  
R/W  
0h  
0h  
Program 1h to this field.  
LD_EN  
Enables lock detect function.  
0 = Disabled  
1 = Enabled  
7.6.10 R35 Register (offset = 23h) [reset = 647h]  
7-16. R35 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
MULT_WAIT  
OUTB OUTB OUTB  
UF_AU UF_TX UF_RX  
TOMU _TYPE _TYPE  
TE  
R/W-0h  
R/W-C8h  
R/W-1h R/W-1h R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-15. R35 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
R/W  
0h  
Program 0h to this field.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-15. R35 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
13-3  
MULT_WAIT  
R/W  
C8h  
A 20-µs settling time is required for MULT, if it is enabled. These  
bits set the correct settling time according to the OSCin  
frequency. For example, if OSCin frequency is 100 MHz, set  
these bits to 2000. No matter if MULT is enabled or not, the  
configured MULT settling time forms part of the total frequency  
switching time.  
0 = Do not use this setting  
1 = 1 OSCin clock cycle  
...  
2047 = 2047 OSCin clock cycles  
2
OUTBUF_AUTOMUTE  
R/W  
1h  
If this bit is set, the output buffers will be muted until PLL is  
locked. This bit applies to the following events: (a) device  
initialization (b) manually change VCO frequency, and (c) F1F2  
switching. However, if the PLL is unlocked afterward (for  
example, OSCin is removed), the output buffers will not be  
muted and will remain active.  
0 = Disabled  
1 = Enabled  
1
0
OUTBUF_TX_TYPE  
OUTBUF_RX_TYPE  
R/W  
R/W  
1h  
1h  
Sets the output buffer type of RFoutTx. If the buffer is open drain  
output, a pullup to VccIO is required. See RF Output Buffer Type  
for details.  
0 = Open drain  
1 = Push pull  
Sets the output buffer type of RFoutRx. If the buffer is open  
drain output, a pullup to VccIO is required. See RF Output Buffer  
Type for details.  
0 = Open drain  
1 = Push pull  
7.6.11 R34 Register (offset = 22h) [reset = 1000h]  
7-17. R34 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
IPBUF  
DIFF_  
TERM  
0
0
1
0
0
0
FSK_I2 FSK_I2 FSK_LEVEL  
S_FS_ S_CLK  
FSK_DEV_SEL  
FSK_M FSK_M  
ODE_ ODE_  
SEL0 SEL1  
POL  
_POL  
R/W-0h R/W-0h  
R/W-2h  
R/W-0h R/W-0h R/W-0h R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-16. R34 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
IPBUFDIFF_TERM  
R/W  
0h  
Enables independent 50 Ωinput termination on the OSCin Pin.  
0 = Disabled  
1 = Enabled  
14  
13-11  
10  
R/W  
R/W  
R/W  
R/W  
0h  
2h  
0h  
0h  
Program 0h to this field.  
Program 2h to this field.  
Program 0h to this field.  
Program 0h to this field.  
9
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-16. R34 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
8
FSK_I2S_FS_POL  
R/W  
0h  
Sets the polarity of the I2S Frame Sync input in FSK I2S mode.  
0 = Active HIGH  
1 = Active LOW  
7
FSK_I2S_CLK_POL  
FSK_LEVEL  
R/W  
R/W  
0h  
0h  
Sets the polarity of the I2S CLK input in FSK I2S mode.  
0 = Rising edge strobe  
1 = Falling edge strobe  
6-5  
Define the desired FSK level in FSK PIN mode and FSK SPI  
mode. When this bit is zero, FSK operation in these modes is  
disabled even if FSK_EN_Fx = 1.  
0 = Disabled  
1 = 2FSK  
2 = 4FSK  
3 = 8FSK  
4-2  
FSK_DEV_SEL  
R/W  
R/W  
R/W  
0h  
0h  
0h  
In FSK SPI mode, these bits select one of the FSK deviations as  
defined in registers R25-32 or R9-16.  
0 = FSK_DEV0_Fx  
1 = FSK_DEV1_Fx  
...  
7 = FSK_DEV7_Fx  
1
FSK_MODE_SEL0  
FSK_MODE_SEL1  
FSK_MODE_SEL0 and FSK_MODE_SEL1 define the FSK  
operation mode. FSK_MODE_SEL[1:0] =  
00 = FSK PIN mode  
01 = FSK SPI mode  
10 = FSK I2S mode  
11 = FSK SPI FAST mode  
0
Same as above.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.12 R33 Register (offset = 21h) [reset = 0h]  
7-18. R33 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV_SPI_FAST  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-17. R33 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
FSK_DEV_SPI_FAST  
R/W  
0h  
Define the desired frequency deviation in FSK SPI FAST mode.  
See Direct Digital FSK Modulation for details.  
7.6.13 R25 to R32 Register (offset = 19h to 20h) [reset = 0h]  
7-19. R25 to R32 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV0_F2 to FSK_DEV7_F2  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-18. R25 to R32 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
FSK_DEV0_F2 to FSK_DEV7_F2  
R/W  
0h  
Define the desired frequency deviation in FSK PIN mode and  
FSK SPI mode. See Direct Digital FSK Modulation for details.  
7.6.14 R24 Register (offset = 18h) [reset = 10h]  
7-20. R24 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
FSK_E  
N_F2  
EXTVCO_CHDIV_F2  
EXTVC  
O_SEL  
_F2  
OUTBUF_TX_PWR_F2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-19. R24 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
R/W  
0h  
Program 0h to this field.  
10  
FSK_EN_F2  
R/W  
0h  
Enables FSK operation in all FSK operation modes. When this  
bit is set, fractional denominator DEN should be zero. See Direct  
Digital FSK Modulation for details.  
0 = Disabled  
1 = Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-19. R24 Register Field Descriptions (continued)  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
9-6  
EXTVCO_CHDIV_F2  
R/W  
0h  
Set the value of the output channel divider, CHDIV3, when using  
external VCO in PLL mode.  
0 = Divide by 1  
1 = Reserved  
2 = Divide by 2  
3 = Divide by 3  
...  
10 = Divide by 10  
11-15 = Reserved  
5
EXTVCO_SEL_F2  
R/W  
R/W  
0h  
Selects synthesizer mode (internal VCO) or PLL mode (external  
VCO) operation.  
0 = Synthesizer mode  
1 = PLL mode  
4-0  
OUTBUF_TX_PWR_F2  
10h  
Set the output power at RFoutTx port. See RF Output Buffer  
Power Control for details.  
7.6.15 R23 Register (offset = 17h) [reset = 10A4h]  
7-21. R23 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
1
0
0
0
0
OUTBUF_RX_PWR_F2  
OUTB OUTB  
UF_TX UF_RX  
_EN_F _EN_F  
LF_R4_F2  
2
2
R/W-0h  
R/W-10h  
R/W-1h R/W-0h  
R/W-4h  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-20. R23 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-13  
R/W  
0h  
Program 0h to this field.  
12-8  
OUTBUF_RX_PWR_F2  
OUTBUF_TX_EN_F2  
R/W  
10h  
Set the output power at RFoutRx port. See RF Output Buffer  
Power Control for details.  
7
R/W  
1h  
Enables RFoutTx port.  
0 = Disabled  
1 = Enabled  
6
OUTBUF_RX_EN_F2  
R/W  
R/W  
0h  
4h  
Enables RFoutRx port.  
0 = Disabled  
1 = Enabled  
5-3  
Program 0h to this field.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-20. R23 Register Field Descriptions (continued)  
BIT  
FIELD  
LF_R4_F2  
TYPE  
RESET  
DESCRIPTION  
Set the resistor value for the 4th pole of the internal loop filter.  
2-0  
R/W  
4h  
The shunt capacitor of that pole is 100 pF.  
0 = Bypass  
1 = 3.2 kΩ  
2 = 1.6 kΩ  
3 = 1.1 kΩ  
4 = 800 Ω  
5 = 640 Ω  
6 = 533 Ω  
7 = 457 Ω  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.16 R22 Register (offset = 16h) [reset = 8584h]  
7-22. R22 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LF_R3_F2  
R/W-4h  
CHDIV2_F2  
R/W-1h  
CHDIV1_F2  
R/W-1h  
PFD_DELAY_F2  
R/W-4h  
MULT_F2  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-21. R22 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
Set the resistor value for the 3rd pole of the internal loop filter.  
15-13  
LF_R3_F2  
R/W  
4h  
The shunt capacitor of that pole is 50 pF.  
0 = Bypass  
1 = 3.2 kΩ  
2 = 1.6 kΩ  
3 = 1.1 kΩ  
4 = 800 Ω  
5 = 640 Ω  
6 = 533 Ω  
7 = 457 Ω  
12-10  
CHDIV2_F2  
R/W  
1h  
Set the value of the output channel divider, CHDIV2, when using  
internal VCO in synthesizer mode.  
0 = Divide by 1  
1 = Divide by 2  
2 = Divide by 4  
3 = Divide by 8  
4 = Divide by 16  
5 = Divide by 32  
6 = Divide by 64  
9-8  
CHDIV1_F2  
R/W  
1h  
Set the value of the output channel divider, CHDIV1, when using  
internal VCO in synthesizer mode.  
0 = Divide by 4  
1 = Divide by 5  
2 = Divide by 6  
3 = Divide by 7  
7-5  
4-0  
PFD_DELAY_F2  
MULT_F2  
R/W  
R/W  
4h  
4h  
Used to optimize spurs and phase noise. Suggested values are:  
Integer mode (NUM = 0): use PFD_DELAY 5  
Fractional mode with N-divider < 22: use PFD_DELAY 4  
Fractional mode with N-divider 22: use PFD_DELAY 3  
Set the MULT multiplier value. MULT value must be greater than  
Pre-divider value. See MULT Multiplier for details.  
0 = Reserved  
1 = Bypass  
2 = 2x  
...  
13 = 13x  
14-31 = Reserved  
7.6.17 R21 Register (offset = 15h) [reset = 101h]  
7-23. R21 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-23. R21 Register (continued)  
PLL_R_F2  
R/W-1h  
PLL_R_PRE_F2  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-22. R21 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-8  
PLL_R_F2  
R/W  
1h  
Set the OSCin buffer Post-divider value.  
7-0  
PLL_R_PRE_F2  
R/W  
1h  
Set the OSCin buffer Pre-divider value. This value must be  
smaller than MULT value.  
7.6.18 R20 Register (offset = 14h) [reset = 28h]  
7-24. R20 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
_PRE_  
F2  
FRAC_ORDER_F2  
PLL_N_F2  
R/W-0h  
R/W-0h  
R/W-28h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-23. R20 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15  
PLL_N_PRE_F2  
R/W  
0h  
Sets the Prescaler value.  
0 = Divide by 2  
1 = Divide by 4  
14-12  
FRAC_ORDER_F2  
R/W  
0h  
Select the order of the Delta Sigma modulator.  
0 = Integer mode  
1 = 1st order  
2 = 2nd order  
3 = 3rd order  
4-7 = 4th order  
11-0  
PLL_N_F2  
R/W  
28h  
Set the integer portion of the N-divider value. Maximum value is  
1023.  
7.6.19 R19 Register (offset = 13h) [reset = 0h]  
7-25. R19 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F2[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-24. R19 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
PLL_DEN_F2[15:0]  
R/W  
0h  
Set the LSB bits of the fractional denominator of the N-divider.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMX2571-EP  
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.20 R18 Register (offset = 12h) [reset = 0h]  
7-26. R18 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM_F2[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-25. R18 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
PLL_NUM_F2[15:0]  
R/W  
0h  
Set the LSB bits of the fractional numerator of the N-divider.  
7.6.21 R17 Register (offset = 11h) [reset = 0h]  
7-27. R17 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F2[23:16]  
R/W-0h  
PLL_NUM_F2[23:16]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-26. R17 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-8  
PLL_DEN_F2[23:16]  
R/W  
0h  
Set the MSB bits of the fractional denominator of the N-divider.  
Set the MSB bits of the fractional numerator of the N-divider.  
7-0  
PLL_NUM_F2[23:16]  
R/W  
0h  
7.6.22 R9 to R16 Register (offset = 9h to 10h) [reset = 0h]  
7-28. R9 to R16 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV0_F1 to FSK_DEV7_F1  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-27. R9 to R16 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
FSK_DEV0_F1 to FSK_DEV7_F1  
R/W  
0h  
See 7-18.  
7.6.23 R8 Register (offset = 8h) [reset = 10h]  
7-29. R8 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
FSK_E  
N_F1  
EXTVCO_CHDIV_F1  
EXTVC  
O_SEL  
_F1  
OUTBUF_TX_PWR_F1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-10h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7-28. R8 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-11  
R/W  
0h  
Program 0h to this field.  
See 7-19.  
10  
9-6  
5
FSK_EN_F1  
R/W  
R/W  
R/W  
R/W  
0h  
EXTVCO_CHDIV_F1  
EXTVCO_SEL_F1  
OUTBUF_TX_PWR_F1  
0h  
See 7-19.  
0h  
See 7-19.  
4-0  
10h  
See 7-19.  
7.6.24 R7 Register (offset = 7h) [reset = 10A4h]  
7-30. R7 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
0
2
1
0
0
0
0
OUTBUF_RX_PWR_F1  
OUTB OUTB  
UF_TX UF_RX  
_EN_F _EN_F  
LF_R4_F1  
1
1
R/W-0h  
R/W-10h  
R/W-1h R/W-0h  
R/W-4h  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-29. R7 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-13  
R/W  
0h  
Program 0h to this field.  
See 7-20.  
12-8  
7
OUTBUF_RX_PWR_F1  
OUTBUF_TX_EN_F1  
OUTBUF_RX_EN_F1  
R/W  
R/W  
R/W  
R/W  
R/W  
10h  
1h  
0h  
4h  
4h  
See 7-20.  
6
See 7-20.  
5-3  
2-0  
Program 0h to this field.  
See 7-20.  
LF_R4_F1  
7.6.25 R6 Register (offset = 6h) [reset = 8584h]  
7-31. R6 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LF_R3_F1  
R/W-4h  
CHDIV2_F1  
R/W-1h  
CHDIV1_F1  
R/W-1h  
PFD_DELAY_F1  
R/W-4h  
MULT_F1  
R/W-4h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-30. R6 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
See 7-21.  
See 7-21.  
See 7-21.  
See 7-21.  
See 7-21.  
15-13  
LF_R3_F1  
R/W  
4h  
12-10  
9-8  
CHDIV2_F1  
CHDIV1_F1  
PFD_DELAY_F1  
MULT_F1  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
4h  
4h  
7-5  
4-0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.26 R5 Register (offset = 5h) [reset = 101h]  
7-32. R5 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_R_F1  
R/W-1h  
PLL_R_PRE_F1  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-31. R5 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
See 7-22.  
See 7-22.  
15-8  
PLL_R_F1  
R/W  
1h  
7-0  
PLL_R_PRE_F1  
R/W  
1h  
7.6.27 R4 Register (offset = 4h) [reset = 28h]  
7-33. R4 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
_PRE_  
F1  
FRAC_ORDER_F1  
PLL_N_F1  
R/W-0h  
R/W-0h  
R/W-28h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-32. R4 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
See 7-23.  
See 7-23.  
15  
PLL_N_PRE_F1  
R/W  
0h  
14-12  
11-0  
FRAC_ORDER_F1  
PLL_N_F1  
R/W  
R/W  
0h  
28h  
See 7-23.  
7.6.28 R3 Register (offset = 3h) [reset = 0h]  
7-34. R3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F1[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-33. R3 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
PLL_DEN_F1[15:0]  
R/W  
0h  
See 7-24.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.29 R2 Register (offset = 2h) [reset = 0h]  
7-35. R2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM_F1[15:0]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-34. R2 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-0  
PLL_NUM_F1[15:0]  
R/W  
0h  
See 7-25.  
7.6.30 R1 Register (offset = 1h) [reset = 0h]  
7-36. R1 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_DEN_F1[23:16]  
R/W-0h  
PLL_NUM_F1[23:16]  
R/W-0h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-35. R1 Register Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
See 7-26.  
See 7-26.  
15-8  
PLL_DEN_F1[23:16]  
R/W  
0h  
7-0  
PLL_NUM_F1[23:16]  
R/W  
0h  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
7.6.31 R0 Register (offset = 0h) [reset = 3h]  
7-37. R0 Register  
15  
0
14  
0
13  
12  
11  
0
10  
0
9
8
7
6
5
0
4
0
3
0
2
0
1
1
0
RESET POWE  
F1F2_I  
NIT  
0
F1F2_ F1F2_  
MODE SEL  
FCAL_  
EN  
RDOW  
N
R/W-0h  
R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h R/W-0h  
R/W-1h  
R/W-1h  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7-36. R0 Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
15-14  
R/W  
0h  
Program 0h to this field.  
13  
RESET  
R/W  
0h  
0h  
Resets all the registers to the default values. This bit is self-clearing.  
0 = Normal operation  
1 = Reset  
12  
POWERDOWN  
R/W  
Powers down the device. When the device comes out of the powered down state,  
either by resuming this bit to zero or by pulling back CE pin HIGH (if it was powered  
down by CE pin), it is required that register R0 with FCAL_EN = 1 be programmed  
again to re-calibrate the device. A 100-µs wait-time is recommended before  
programming R0.  
0 = Normal operation  
1 = Power down  
11  
10  
9
R/W  
R/W  
R/W  
0h  
0h  
0h  
Program this field to 0h.  
Program this field to 0h.  
F1F2_INIT  
Toggling this bit re-calibrates F1F2 if F1, F2 are modified after calibration. This bit is  
not self-clear, so it is required to clear the bit value after use. See Register R0  
F1F2_INIT, F1F2_MODE Usage for details.  
0 = Clear bit value  
1 = Re-calibrate  
8
7
R/W  
R/W  
0h  
0h  
Program this field to 0h.  
F1F2_MODE  
Calibrates F1 and F2 during device initialization (initial power on programming).  
Even if this bit is not set, F1-F2 switching is still possible but the first switching time  
will not be optimized because either F1 or F2 will only be calibrated. If F1-F2  
switching is not required, set this bit to zero. See Register R0 F1F2_INIT,  
F1F2_MODE Usage for details.  
0 = Disable F1F2 calibration  
1 = Enable F1F2 calibration  
6
F1F2_SEL  
FCAL_EN  
R/W  
0h  
Selects F1 or F2 configuration registers.  
0 = F1 registers  
1 = F2 registers  
5-1  
0
R/W  
R/W  
1h  
1h  
Program 1h to this field.  
Activates all kinds of calibrations, suggest keep it enabled all the time. If it is  
desired that the R0 register be programmed without activating this calibration, then  
this bit can be set to zero.  
0 = Disabled  
1 = Enabled  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Direct Digital FSK Modulation  
In fractional mode, the finest delta frequency difference between two programmable output frequencies is equal  
to:  
f1 f2 = Δfmin = fPD × {[(N + 1) / DEN] (N / DEN)} = fPD / DEN  
(3)  
In other words, when the fractional numerator is incremented by 1 (one step), the output frequency will change  
by Δfmin. A two steps increment will therefore change the frequency by 2 × Δfmin  
.
In FSK operation, the instantaneous carrier frequency is kept changing among some pre-defined frequencies. In  
general, the instantaneous carrier frequency is defined as a certain frequency deviation from the nominal carrier  
frequency. The frequency deviation could be positive and negative.  
Nominal  
carrier  
frequency  
4FSK symbol: 11 10 00 01  
Instantaneous  
carrier  
frequency  
Frequency  
Negative  
swing  
Positive  
swing  
fDEV0  
8-2. Typical 4FSK Definition  
fDEV  
1
8-1. General FSK Definition  
The following equations define the number of steps required for the desired frequency deviation with respect to  
the nominal carrier frequency output at the RFoutTx or RFoutRx port.  
8-1. FSK Step Equations  
POLARITY  
SYNTHESIZER MODE  
PLL MODE  
fDEV * DEN CHDIV1 * CHDIV2  
*
fDEV * DEN  
Round  
Round  
CHDIV3  
*
POSITIVE SWING  
fPD  
Prescaler  
fPD  
(4)  
(5)  
(7)  
NEGATIVE SWING  
2's complement of Equation 4  
(6) 2's complement of Equation 5  
In FSK PIN mode and FSK SPI mode, register R25-32 and R9-16 are used to store the desired FSK frequency  
deviations in term of the number of step as defined in the above equations. The order of the registers, 0 to 7,  
depends on the application system. 8-2 shows a typical 4FSK definition. In this case, FSK_DEV0_Fx and  
FSK_DEV1_Fx shall be calculated using 方程4 or 方程5 while FSK_DEV2_Fx and FSK_DEV3_Fx shall be  
calculated using 方程6 or 方程7.  
For example, if FSK PIN mode is enabled in F1 to support 4FSK modulation, set  
FSK_MODE_SEL1 = 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMX2571-EP  
 
 
 
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
FSK_MODE_SEL0 = 0  
FSK_LEVEL = 2  
FSK_EN_F1 = 1  
8-2. FSK PIN Mode Example  
RAW FSK DATA STREAM INPUT  
EQUIVALENT SYMBOL INPUT  
REGISTER SELECTED  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV1_F1  
FSK_DEV0_F1  
...  
RF OUTPUT  
10  
11  
10  
11  
01  
00  
...  
Freq.  
FSK_D0  
FSK_D1  
FSK_DV  
Time  
FSK SPI mode assumes the user knows which symbol to send; user can directly write to register R34,  
FSK_DEV_SEL to select the desired frequency deviation.  
For example, to enable the device to support 4FSK modulation at F1 using FSK SPI mode, set  
FSK_MODE_SEL1 = 0  
FSK_MODE_SEL0 = 1  
FSK_LEVEL = 2  
FSK_EN_F1 = 1  
8-3. FSK SPI Mode Example  
DESIRED SYMBOL  
WRITE REGISTER FSK_DEV_SEL  
REGISTER SELECTED  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV2_F1  
FSK_DEV3_F1  
FSK_DEV1_F1  
FSK_DEV0_F1  
10  
11  
10  
11  
01  
00  
...  
2
3
2
3
1
0
...  
Both the FSK PIN mode and FSK SPI mode support up to 8 levels of FSK. To support an arbitrary-level FSK,  
use FSK SPI FAST mode or FSK I2S mode. Constructing pulse-shaping FSK modulation by over-sampling the  
FSK modulation waveform is one of the use cases of these modes.  
Analog-FM modulation can also be produced in these modes. For example, with a 1-kHz sine wave modulation  
signal with peak frequency deviation of ±2 kHz, the signal can be over-sampled, say 10 times. Each sample  
point corresponding to a scaled frequency deviation.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
Freq. dev.  
+2kHz  
t5 t6 t7 t8 t9  
Time  
t0 t1 t2 t3 t4  
-2kHz  
8-3. Over-Sampling Modulation Signal  
In FSK SPI FAST mode, write the desired FSK steps directly to register R33, FSK_DEV_SPI_FAST. To enable  
this mode, set  
FSK_MODE_SEL1 = 1  
FSK_MODE_SEL0 = 1  
FSK_EN_F1 = 1  
8-4. FSK SPI FAST Mode Example  
TIME  
FREQUENCY  
DEVIATION  
CORRESPONDING FSK  
STEPS(1)  
BINARY EQUIVALENT  
WRITE TO  
FSK_DEV_SPI_FAST  
t0  
t1  
t2  
618.034 Hz  
1618.034 Hz  
2000 Hz  
518  
1357  
1678  
0000 0010 0000 0110  
0000 0101 0100 1101  
0000 0110 1000 1110  
518  
1357  
1678  
t6  
64178  
1111 1010 1011 0010  
64178  
1618.034 Hz  
2000 Hz  
t7  
63857  
1111 1001 0111 0001  
63857  
(1) Synthesizer mode, fVCO = 4800 MHz, fOUT = 480 MHz, fPD = 100 MHz, Prescaler = 2, DEN = 224, Use 方程4 and 方程6 to  
calculate the step value.  
In FSK I2S mode, clock in the desired binary format FSK steps in the FSK_D1 pin.  
FSK_D1  
FSK_DV  
FSK_D0  
t0  
t1  
8-4. FSK I2S Mode Example  
To enable FSK I2S mode, set  
FSK_MODE_SEL1 = 1  
FSK_MODE_SEL0 = 0  
FSK_EN_F1 =1  
8.1.2 Frequency and Output Port Switching  
The F1F2_SEL bit controls the output switching.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.1.3 OSCin Configuration  
The OSCin only supports a single-ended clock. The impedance can be programmed as high impedance or 50 .  
8-5. OSCin Configuration  
8.1.4 Register R0 F1F2_INIT, F1F2_MODE Usage  
These register bits are used to define the calibration behavior. Correct setting is important to ensure that every  
F1-F2 switching time is optimized. 8-6 illustrates the usage of these register bits.  
Freq  
F2'  
F2  
FCAL_EN=1  
Change F1, F2  
F1F2_INIT=1  
F1F2_MODE=1  
F1F2_INIT=0  
F1F2_INIT=0  
F1  
F1'  
Time  
t0  
t1  
t2  
t3  
t4  
t5  
t6 t7  
t8 t9  
t10  
t11  
8-6. F1F2_INIT, F1F2_MODE Usage  
Before t0: Device initialization  
Power up the device.  
Write all registers to the device.  
Ensure FCAL_EN = 1 to enable calibration.  
Only the output frequency (F1 in this example) will be calibrated, F2 will not be calibrated.  
Set F1F2_INIT = 0. Although the setting of this bit is irrelevant and not important here but if F1F2_INIT =  
1, change it back to zero before attempting to change the frequency from F1 to F2.  
At t0: Locked to F1  
After initialization, both F1 and F2 are calibrated. The calibration data is stored in the internal memory.  
At t1: Switch to F2.  
Because FCAL_EN = 1, calibration will start over again when the output is switching from F1 to F2. F2  
calibration begins based on the last calibration data, which is the calibration data obtained at t0. If the  
environment (for example, temperature) does not change much, the new calibration data will be similar to the old  
data. As a result, the calibration time is minimal and therefore, the switching time will be short.  
At t2: Switch back to F1  
Again, F1 calibration starts over and begins with the last calibration data as obtained at t0. Calibration time is  
again very short, as is the switching time.  
At t3: Switch again to F2  
This time, the calibration begins with the calibration data obtained at t1, which is the last calibration data.  
At t4: Switch back to F1  
Calibration begins with the calibration data obtained at t2, which is the last calibration data.  
At t5: Set new F1, F2 frequency  
Write to the relevant registers to set the new F1 and F2 frequency (for example, change the N-divider values)  
Initiate calibration by rewriting register R0  
Set F1F2_INIT=1. Both F1' and F2' will be calibrated  
At t6: Locked to F1'  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
F1' and F2' calibration completed and their calibration data are ready.  
At t7: Release F1F2_INIT bit  
This bit has to be reset to zero or otherwise both F1' and F2' will be calibrated every time they are toggling.  
At t8: F1' calibration data is updated  
Since F1F2_INIT is located in register R0, when writing F1F2_INIT = 0 to the device, calibration is once again  
triggered. However, only F1' will be recalibrated, the calibration data of F2' remains unchanged.  
At t9: Switch to F2'  
F2' calibration begins with the calibration data obtained at t6, which is the last calibration data. Calibration time is  
again very short, as is the switching time.  
At t10: Switch back to F1'  
F1' calibration starts over and begins with the last calibration data as obtained at t8.  
At t11: Switch again to F2'  
The calibration begins with the calibration data obtained at t9, which is the last calibration data.  
As illustrated above, register F1F2_INIT must be used properly in order to ensure that every F1-F2 switching  
time is optimized.  
8.1.5 FastLock With External VCO  
Fastlock may be required in PLL mode where an external VCO with a narrow loop bandwidth is desired. The  
LMX2571-EP adopts a new FastLock approach to support the very fast switching time requirement in PLL mode.  
There are two control pins in the chip, FLout1 and FLout2. Each pin is used to control a SPST analog switch, S1  
and S2. The loop filter value with or without FastLock is the same, except that with FastLock, one more C2 and  
two SPST switches are needed.  
Ordinary 2nd  
order loop filter  
With FastLock  
control switches  
R2  
C2  
R2  
C2a=C2b=C2  
S1 S2  
C2b  
C2a  
8-7. FastLock With SPST Switches  
When LMX2571-EP is locked to F1, FLout1 will close the switch S1. When the LMX2571-EP is locked to F2, the  
user can program the F1F2_SEL bit in the R0 register to release the switch S1 while the FLout2 closes the S2.  
Although S1 is released, the charge stored in C2a remains unchanged. Thus, when the output is switched back  
to F1, the Vtune voltage is almost correct, no (or little) charging or discharging to C2a is required which speeds  
up the switching time. For example, if Vtune for F1 and F2 are 1 V and 2 V, respectively, without FastLock, when  
the switching frequency shifts from F1 to F2, C2 will have to be re-charged from 1 V to 2 V this is a big  
voltage jump. With FastLock, when S2 is closed, Vtune is almost equal to 2 V because C2b maintains the  
charge. Only a tiny voltage jump (re-charge) is required to make it reach the final Vtune voltage.  
8-8 and 8-9 compare the frequency switching time using different switching methods. In both cases, the  
loop bandwidth is 4 kHz while fPD is 28 MHz. 8-8 shows the switching time for a frequency jump from 430  
MHz to 480 MHz with SPST switches. Frequency switching is toggled by the F1F2_SEL bit. Switching time is  
approximately 1 ms. Frequency switching in 8-9 is done in the traditional way. That is, change the output  
frequency by writing to the relevant registers such as N-divider values. In this case, because fPD is very much  
bigger than the loop bandwidth, cycle slipping jeopardizes the switching time to more than 20 ms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-8. F1F2 Switching With SPST Switches  
8-9. Change F1 Frequency Through SPI  
Programming  
8.1.6 OSCin Slew Rate  
A phase-lock loop consists of a clean reference clock, a PLL, and a VCO. Each of these contributes to the total  
phase noise. The LMX2571-EP is a high-performance PLL with integrated VCO. Both PLL noise and VCO noise  
are very good. Typical PLL 1/f noise and noise floor are 124 dBc/Hz and 231 dBc/Hz, respectively. To get  
the best possible phase-noise performance from the device the quality of the reference clock is very important  
because it may add noise to the loop. First of all, the phase noise of the reference clock must be good so that  
the final performance of the system is not degraded. Furthermore, using reference clock with a rather high slew  
rate (such as a square wave) is highly preferred. Driving the device input with a lower slew rate clock will  
degrade the device phase noise.  
For a given frequency, a sine wave clock has the slowest slew rate, especially when the frequency is low. A  
CMOS clock or differential clock have much faster slew rates and are recommended. 8-10 shows a phase-  
noise comparison with different types of reference clocks. Output frequency is 480 MHz while the input clock  
frequency is 26 MHz. As one can see, there is a 5-dB difference in phase noise when using a clipped sine wave  
TCXO compared to a differential LVPECL clock. Note that the crystal option is not available in the LMX2571-EP,  
but is included in the LMX2571 for comparison purposes.  
-80  
Crystal  
TCXO  
LVPECL  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
103  
104  
105  
106  
107  
Offset /Hz  
8-10. Phase Noise vs. Input Clock  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.1.7 RF Output Buffer Power Control  
Registers OUTBUF_TX_PWR_Fx and OUTBUF_RX_PWR_Fx are used to set the output power at the RFoutTx  
and RFoutRx ports. 8-11 shows a typical output power vs. power control bit plot in synthesizer mode. VCO  
frequency was 4800 MHz, and channel dividers were set to produce the shown output frequencies.  
6
60  
58  
56  
54  
52  
50  
48  
46  
44  
fout=1200MHz  
fout=480MHz  
fout=150MHz  
3
Current, fout=480MHz  
0
-3  
-6  
-9  
-12  
-15  
-18  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
Power control bit  
8-11. Configurable RF Output Power  
8.1.8 RF Output Buffer Type  
Registers R35, OUTBUF_TX_TYPE, OUTBUF_RX_TYPE are used to configure the RF output buffer type  
between open drain and push-pull. Push-pull is easy to use; all that is required is a DC-blocking capacitor at the  
output. The output waveform is square wave and therefore, harmonics rich. Open-drain output provides an  
option to reduce the harmonics using an LC resonant pullup network at its output. 8-5 summarizes an  
example an open-drain vs. push-pull application.  
8-5. RF Output Buffer Type  
BUFFER TYPE  
OPEN-DRAIN  
PUSH-PULL  
Connection  
Diagram  
VccIO  
39nH  
100pF  
2.7pF  
RFoutTx  
RFoutTx  
100pF  
100pF  
Output Power  
470 MHz  
480 MHz  
2.8 dBm  
490 MHz  
2.8 dBm  
470 MHz  
0.1 dBm  
30.4 dBc  
11.9 dBc  
28.5 dBc  
15.6 dBc  
29.5 dBc  
480 MHz  
0 dBm  
490 MHz  
0.1 dBm  
fo  
2.7 dBm  
31 dBc  
2fo  
3fo  
4fo  
5fo  
6fo  
30.7 dBc  
17.9 dBc  
40.4 dBc  
17.8 dBc  
27.2 dBc  
30.5 dBc  
18.1 dBc  
41.6 dBc  
17.6 dBc  
28.5 dBc  
30.2 dBc  
12.1 dBc  
28.4 dBc  
15.6 dBc  
29.8 dBc  
30 dBc  
12.4 dBc  
28.1 dBc  
15.7 dBc  
29.3 dBc  
17.3 dBc  
39 dBc  
18.1 dBc  
27.6 dBc  
Clearly, with a proper LC pull up in open-drain architecture, the 3rd to 5th harmonics could be reduced.  
8.1.9 MULT Multiplier  
The main purpose of the multiplier, MULT, in the Rdivider is to push the in-band fractional spurs far away from  
the carrier such that the spurs could be filtered out by the loop filter. In a fractional engine, the fractional spurs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LMX2571-EP  
 
 
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
appear at a multiple of fPD × Nfrac. In cases where both fPD and Nfrac are small, the fractional spurs will appear  
very close to the carrier. These kinds of spurs are called in-band spurs.  
8-6. MULT Application Example  
USE CASE OSCin /M  
Hz  
PRE-DIVIDER  
MULT  
POST-DIVIDER fPD /MHz VCO /MH Ninteger  
z
Nfrac  
SPURS /  
MHz  
I
19.2  
19.2  
19.2  
1
1
1
1
1
5
1
1
4
19.2  
19.2  
24  
460.8  
461  
24  
24  
19  
0
0
0.2  
5
II  
0.0104167  
0.2083333  
III  
461  
In Case I, the VCO frequency is an integer multiple of the fPD, so Nfrac is zero and there are no spurs. However,  
in Case II, the spur appears at an offset of 200 kHz. If this spur cannot be reduced by other typical spur-  
reduction techniques such as dithering, user can enable the MULT to overcome this problem. If the MULT is  
enabled as depicted in Case III, the spurs can be pushed to an offset of 5 MHz. In this case, the MULT together  
with the Post-divider changes the phase detector to a little bit higher frequency. As a consequence, the spurs are  
pushed further away from the carrier and are reduced more by the loop filter.  
Another use case of MULT is to make higher phase-detector frequency. For example, if OSCin is 20 MHz, user  
can set MULT to 5 to make fPD go to 100 MHz. As a result, the N-divider value will be reduced by 5 times;  
therefore, the PLL phase noise is reduced. A wide loop bandwidth can then be used to reduce the VCO noise.  
Consequently, the synthesizer close-in phase noise would be very good.  
The MULT multiplier is an active device in nature, whenever it is enabled, it will add noise to the loop. For best  
phase noise performance, TI recommends setting the MULT not greater than 6.  
To use the MULT, beware of the restriction as indicated in the Electrical Characteristics table and 7-21.  
8.1.10 Integrated VCO  
The integrated VCO is composed of 3 VCO cores. The approximate frequency ranges for the three VCO cores  
with their gains is as follows:  
8-7. Approximate VCO Ranges and VCO Gain  
VCO CORE  
TYPICAL FREQUENCY RANGE (MHz)  
TYPICAL VCO GAIN (MHz/V)  
LOW  
4200  
4560  
4920  
HIGH  
4700  
5100  
5520  
LOW  
46  
MID  
52  
HIGH  
61  
VCOL  
VCOM  
VCOH  
50  
56  
65  
55  
63  
73  
8.2 Typical Applications  
8.2.1 Synthesizer Duplex Mode  
In this example, the internal VCO is being used. The PLL will be put in fractional mode to support 4FSK direct  
digital modulation using FSK PIN mode. Both frequency (F1, F2) switching as well as RF output port switching is  
toggled by the F1F2_SEL bit. MULT multiplier in the R-divider will be used to reduce spurs.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
3.3V  
3.3V  
3.3V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XO  
26MHz  
Vcc3p3  
OSCin  
VccIO  
VcpExt  
Bypass  
100pF  
RFoutTx  
100pF  
RFoutRx  
CPout  
LMX2571-EP  
VrefVCO  
VregVCO  
2.2µF  
680  
0.1µF  
390pF  
4.7nF  
8-12. Typical Synthesizer Duplex Mode Application Schematic  
8.2.1.1 Design Requirements  
OSCin frequency = 26 MHz, LVCMOS  
RFoutTx frequency = 902 MHz  
RFoutRx frequency = 928 MHz  
Frequency switching time 500 µs  
4FSK modulation on TX, baud rate = 20 kSPs  
Frequency deviation = ±10 kHz and ±30 kHz  
FSK error 1 %  
Spurs 72 dBc  
Lock detect is required to indicate lock status  
Output power < 1 dBm  
8.2.1.2 Detailed Design Procedure  
First of all, calculate all the frequencies in each functional block.  
OSCin  
26MHz  
Pre-div  
1
MULT  
4
Post-div  
1
PDF  
104MHz  
VCO  
4510MHz  
CHDIV1  
5
CHDIV2  
1
Output  
902MHz  
N
21.68269231  
Prescaler  
2
8-13. F1 Frequency Plan  
Assign F1 frequency to be 902 MHz. With CHDIV1 = 5 and CHDIV2 = 1, the total division is 5. As a result, the  
VCO frequency will be 902 × 5 = 4510 MHz, which is within the VCO tuning range.  
OSCin is 26 MHz, put Pre-divider = 1 to meet the MULT input frequency range requirement.  
To meet the maximum MULT output frequency requirement, possible MULT values are 3 to 5. Play around the  
allowable MULT values and Post-divider values to get the optimum phase noise and spurs performance.  
Assuming MULT = 4 and Post-divider = 1 returns the best performance, then fPD = 104 MHz.  
N-divider = 21.68269231, that means Ninteger = 21 while Nfrac = 0.68269231. To use the direct digital modulation  
feature, put fractional denominator, DEN = 0. The actual DEN value is, in fact, equal to 224 = 16777216. So the  
fractional numerator, NUM, is equal to Nfrac × DEN = 11453676.  
Use 方程式 4 and 方程式 6 to calculate the required FSK steps. For +10-kHz frequency deviation, the FSK step  
value is equal to [10000 × 16777216 / (104 × 106)] × (5 × 1 / 2) = 4033. For 10-kHz frequency deviation, the  
FSK step value is equal to 2's complement of 4033 = 61502. Similarly, the FSK step values for ±30-kHz  
frequency deviation are 12099 and 53436.  
All the required configuration values for F2, 928 MHz can be calculated in the similar fashion and are  
summarized as follows:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-8. Frequency Plan Summary  
CONFIGURATION PARAMETER  
F1 (902 MHz)  
F2 (928 MHz)  
Pre-divider  
MULT  
1
1
4
4
Post-divider  
PDF  
1
104 MHz  
4510 MHz  
21.68269231  
21  
1
104 MHz  
VCO  
4640 MHz  
N-divider  
Ninteger  
22.30769231  
22  
DEN  
0
0
NUM  
11453676  
5
5162220  
CHDIV1  
CHDIV2  
FSK_DEV0  
FSK_DEV1  
FSK_DEV2  
FSK_DEV3  
5
1
1
4033  
12099  
61502  
53436  
Assume here that the base charge pump current = 1250 µA, CP Gain = 1x and 3rd order Delta Sigma Modulator  
without dithering is adopted in both frequency sets. The register settings are summarized as follows:  
8-9. Register Settings Summary  
CONFIGURATION  
PARAMETERS  
REGISTER BIT  
COMMON SETTING  
F1 SPECIFIC SETTING  
F2 SPECIFIC SETTING  
VCO calibration  
FCAL_EN  
1 = Enabled  
Lock detect  
SDO_LE_SEL  
LD_EN  
1 = Lock detect output  
1 = Enabled  
0 = Disabled  
1 = 1x  
Dithering  
DITHERING  
Charge pump gain  
Base charge pump current  
CP_GAIN  
CP_IUP  
8 = 1250 µA  
8 = 1250 µA  
520 = 20 µs  
1 = Push pull  
1 = Push pull  
0 = Disabled  
1 = Enabled  
CP_IDN  
MULT settling time  
Output buffer type  
MULT_WAIT  
OUTBUF_RX_TYPE  
OUTBUF_TX_TYPE  
OUTBUF_AUTOMUTE  
F1F2_MODE  
PLL_R_PRE_F1  
PLL_R_PRE_F2  
MULT_F1  
Output buffer auto mute  
Enable F1 F2 initialization  
Pre-divider  
1
4
1
1
4
1
MULT multiplier  
Post-divider  
MULT_F2  
PLL_R_F1  
PLL_R_F2  
FRAC_ORDER_F1  
FRAC_ORDER_F2  
PFD_DELAY_F1  
PFD_DELAY_F2  
CHDIV1_F1  
3 = 3rd order  
ΔΣmodulator order  
PFD delay  
3 = 3rd order  
5 = 8 clock cycles  
1 = Divide by 5  
0 = Divide by 1  
5 = 8 clock cycles  
1 = Divide by 5  
0 = Divide by 1  
CHDIV1 divider  
CHDIV2 divider  
CHDIV1_F2  
CHDIV2_F1  
CHDIV2_F2  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-9. Register Settings Summary (continued)  
CONFIGURATION  
PARAMETERS  
REGISTER BIT  
COMMON SETTING  
F1 SPECIFIC SETTING  
F2 SPECIFIC SETTING  
Internal 3rd pole loop filter  
LF_R3_F1  
4 = 800 Ω  
LF_R3_F2  
4 = 800 Ω  
Internal 4th pole loop filter  
LF_R4_F1  
4 = 800 Ω  
LF_R4_F2  
4 = 800 Ω  
Output port selection  
Output power control  
FSK mode  
OUTBUF_TX_EN_F1  
OUTBUF_RX_EN_F2  
OUTBUF_TX_PWR_F1  
OUTBUF_RX_PWR_F2  
1 = TX port enabled  
6
1 = RX port enabled  
6
FSK_MODE_SEL1  
FSK_MODE_SEL0  
00 = FSK PIN mode  
2 = 4FSK  
FSK level  
FSK_LEVEL  
Enable FSK modulation  
FSK deviation at 00  
FSK deviation at 01  
FSK deviation at 10  
FSK deviation at 11  
Fractional denominator  
FSK_EN_F1  
1 = Enabled  
4033 = +10 kHz  
12099 = +30 kHz  
61502 = -10 kHz  
53436 = -30 kHz  
0
FSK_DEV0_F1  
FSK_DEV1_F1  
FSK_DEV2_F1  
FSK_DEV3_F1  
PLL_DEN_F1[23:16]  
PLL_DEN_F1[15:0]  
PLL_DEN_F2[23:16]  
PLL_DEN_F2[15:0]  
PLL_NUM_F1[23:16]  
PLL_NUM_F1[15:0]  
PLL_NUM_F2[23:16]  
PLL_NUM_F2[15:0]  
PLL_N_F1  
0
0
0
Fractional numerator  
174  
50412  
78  
50412  
Ninteger  
21  
PLL_N_F2  
22  
Prescaler  
PLL_N_PRE_F1  
PLL_N_PRE_F2  
0 = Divide by 2  
0 = Divide by 2  
8.2.1.3 Synthesizer Duplex Mode Application Curves  
8-14. F1 (TX) Phase Noise and Spurs  
8-15. F2 (RX) Phase Noise and Spurs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-16. F1 (TX) to F2 (RX) Switching  
8-17. F2 (RX) to F1 (TX) Switching  
8-18. F1 to F2 Switching Time  
8-19. F2 to F1 Switching Time  
.
8-20. 4FSK Modulation  
8-21. 4FSK Modulation Quality  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.2.2 PLL Duplex Mode  
In this example, the internal VCO is bypassed, and the device is used to lock to an external VCO. TIs dual  
SPST analog switch, TS5A21366 is used to facilitate FastLock between two frequencies.  
3.3V  
3.3V  
5V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XO  
16.8MHz  
Vcc3p3  
OSCin  
VccIO  
VcpExt  
Bypass  
100pF  
RFoutTx  
VCO  
100pF  
430-480MHz  
Fin  
LMX2571-EP  
10  
10  
CPoutExt  
100pF  
50  
VrefVCO  
VregVCO  
2.2µF  
10  
470nF 39nF 39nF  
0.1µF  
FLout1  
FLout2  
TS5A21366  
4.7µF  
4.7µF  
8-22. Typical PLL Duplex Mode Application Schematic  
8.2.2.1 Design Requirements  
OSCin frequency = 16.8 MHz, LVCMOS  
F1 frequency = 430 MHz  
F2 frequency = 480 MHz  
Frequency switching time 1.5 ms within 100-Hz frequency tolerance  
8.2.2.2 Detailed Design Procedure  
Again, we need to figure out all the frequencies in each functional block first.  
OSCin  
16.8MHz  
Pre-div  
1
MULT  
5
Post-div  
3
PDF  
28MHz  
VCO  
430MHz  
CHDIV3  
1
Output  
430MHz  
N
15.35714286  
8-23. Frequency Plan in PLL Duplex Mode  
Follow the previous example to determine all the necessary configurations. 8-10 is the summary in this  
example.  
8-10. PLL Duplex Mode Frequency Plan Summary  
CONFIGURATION PARAMETER  
F1 (430 MHz)  
F2 (480 MHz)  
Pre-divider  
MULT  
1
5
1
5
Post-divider  
PDF  
3
3
28 MHz  
430 MHz  
15.35714286  
15  
28 MHz  
480 MHz  
17.14285714  
17  
VCO  
N-divider  
Ninteger  
DEN  
1234567  
440917  
1234567  
176367  
NUM  
To enable external VCO operation, set the following bits:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8-11. PLL Duplex Mode Register Settings Summary  
CONFIGURATION PARAMETER  
REGISTER BITS  
SETTING  
Charge pump polarity  
EXTVCO_CP_POL  
0 = Positive  
1 = 1x  
External VCO charge pump gain  
Base charge pump current  
EXTVCO_CP_GAIN  
EXTVCO_CP_IUP  
8 = 1250 µA  
8 = 1250 µA  
1 = External VCO  
EXTVCO_CP_IDN  
Select PLL mode operation  
CHDIV3 divider  
EXTVCO_SEL_F1, EXTVCO_SEL_F2  
EXTVCO_CHDIV_F1, EXTVCO_CHDIV_F2 0 = Bypass  
Make sure that register R0, FCAL_EN is set so that FastLock is enabled.  
The loop bandwidth had been design to be around 4 kHz, while phase margin is about 40 degrees.  
8.2.2.3 PLL Duplex Mode Application Curves  
8-24. F1 to F2 Switching  
8-25. F2 to F1 Switching  
8-26. F1 to F2 Switching Time  
8-27. F2 to F1 Switching Time  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.2.3 Synthesizer/PLL Duplex Mode  
This example will demonstrate the device's capability in switching two frequencies using internal and external  
VCO. VCO switching is toggled by F1F2_SEL bit. Direct digital FSK modulation is enabled in TX using FSK I2S  
mode.  
3.3V  
3.3V  
5V  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XO  
19.2MHz  
Vcc3p3  
OSCin  
VccIO  
VcpExt  
Bypass  
100pF  
RFoutRx  
100pF  
100pF  
RFoutTx  
VCO  
430-480MHz  
LMX2571-EP  
Fin  
VrefVCO  
VregVCO  
10  
10  
100pF  
50  
2.2µF  
CPoutExt  
0.1µF  
10  
470nF 39nF 39nF  
4.7µF  
8-28. Typical Synthesizer/PLL Duplex Mode Application Schematic  
8.2.3.1 Design Requirements  
OSCin frequency = 19.2 MHz, LVCMOS  
RFoutRX frequency = 440 MHz, external VCO = F1  
RFoutTx frequency = 540 MHz, internal VCO = F2  
Frequency switching time 1.5 ms within 100-Hz frequency tolerance  
Arbitrary FSK modulation to simulate analog FM modulation (10 times and 20 times over-sampling rate)  
FM modulation frequency = 1 kHz  
Frequency deviation = ±2000 Hz  
Spurs 72 dBc  
8.2.3.2 Detailed Design Procedure  
Frequency plans in TX and RX paths are as follows:  
OSCin  
19.2MHz  
Pre-div  
1
MULT  
1
Post-div  
1
PDF  
19.2MHz  
VCO  
440MHz  
CHDIV3  
1
Output  
440MHz  
N
22.91666687  
OSCin  
19.2MHz  
Pre-div  
1
MULT  
5
Post-div  
1
PDF  
96MHz  
VCO  
5400MHz  
CHDIV1  
5
CHDIV2  
2
Output  
540MHz  
N
28.125  
Prescaler  
2
8-29. TX and RX Frequency Plans  
Follow the previous examples to determine all the necessary configurations. To enable FSK I2S mode, set  
FSK_MODE_SEL1=1  
FSK_MODE_SEL=0  
FSK_EN_F2=1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.2.3.3 Synthesizer/PLL Duplex Mode Application Curves  
8-30. External VCO to Internal VCO Switching  
8-31. Internal VCO to External VCO Switching  
8-32. External VCO to Internal VCO Switching  
8-33. Internal VCO to External VCO Switching  
Time  
Time  
8-34. Simulated FM Modulation (10 Times Over- 8-35. Simulated FM Modulation (20 Times Over-  
Sampling)  
Sampling)  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
8.3 Do's and Don'ts  
INCORRECT  
CORRECT  
VregVCO  
VregVCO  
100nF  
2.2µF  
VregVCO DECOUPLING  
VcpExt SUPPLY  
DAP PIN  
3.3V or 5V: Synthesizer mode  
5V: PLL mode  
VcpExt  
DAP  
VcpExt  
DAP  
8-36. Do's and Don'ts  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LMX2571-EP  
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
TI recommends placing a 100-nF capacitor close to each of the power supply pins. If fractional spurs are a large  
concern, using a ferrite bead to each of these power supply pins may reduce spurs to a small degree.  
VcpExt is the power supply pin for the 5-V charge pump. In PLL mode, the 5-V charge pump is active and a 5 V  
is required at VcpExt pin. In synthesizer mode, although the 5-V charge pump is not active, either a 3.3-V  
or 5-V supply is still needed at this pin.  
Because LMX2571-EP has integrated LDOs, the requirement to external power supply is relaxed. In addition to  
LDO, LMX2571-EP is able to operate with DC-DC converter. The switching noise from the DC-DC converter  
would not affect performance of the LMX2571-EP. 9-1 lists some of the suggested DC-DC converters.  
9-1. Recommended DC-DC Converters  
PART NUMBER  
TPS560200  
TPS62050  
TOPOLOGY  
Buck  
VIN  
VOUT  
IOUT  
SWITCHING FREQUENCY  
600 kHz  
4.5 V to 17 V  
2.7 V to 10 V  
3 V to 17 V  
4.5 V to 17 V  
2.5 V to 5.5 V  
0.8 V to 6.5 V  
0.7 V to 6 V  
0.9 V to 6 V  
0.76 V to 7 V  
2.5 V to 5.5 V  
500 mA  
Buck  
800 mA  
1 MHz  
TPS62160  
Buck  
1000 mA  
2000 mA  
500 mA to 1 A  
2.25 MHz  
TPS562200  
TPS63050  
Buck  
650 kHz  
Buck Boost  
2.5 MHz  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
See EVM instructions (SNAU182) for details. In general, the layout guidelines are similar to most other PLL  
devices. The followings are some guidelines specific to the device.  
It may be beneficial to separate main ground and OSCin ground, crosstalk spurs might be reduced.  
Don't route any traces that carry switching signal close to the charge pump traces and external VCO.  
When using FSK I2S mode on this device, take care to avoid coupling between the I2S clock and any of the  
PLL circuit.  
10.2 Layout Example  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LMX2571-EP  
 
 
 
LMX2571-EP  
ZHCSP40B OCTOBER 2021 REVISED JUNE 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
Texas Instruments has three main tools to assist with this product. The Clock Tree Architect assists as a solution  
finder, the PLLatinum Sim tool is used to design and simulate the loop filter (including filter design, bode plot,  
phase noise, spurs, and lock time), and the TICS Pro software is used to program the device. All these tools are  
available at www.ti.com.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, TS5A21366 0.75-ΩDual SPST Analog Switch With 1.8-V Compatible Input Logic data  
sheet  
Texas Instruments, TPS560200 4.5-V to 17-V Input, 500-mA Synchronous Step-Down SWIFT™ Converter  
data sheet  
Texas Instruments, TPS62050 800-mA Synchronous Step-Down Converter data sheet  
Texas Instruments, TPS62160 3-V to 17-V, 1-A Step-Down Converters With DCS-Control data sheet  
Texas Instruments, TPS562200 4.5-V to 17-V Input, 2-A Synchronous Step-Down Voltage Regulator in  
SOT-23 data sheet  
Texas Instruments, TPS63050 Tiny Single Inductor Buck Boost Converter data sheet  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
PLLatinumis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LMX2571-EP  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
250  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2571SRHHTEP  
V62/21613-01XE  
ACTIVE  
VQFN  
VQFN  
RHH  
36  
36  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
LMX2571  
Samples  
Samples  
EP  
ACTIVE  
RHH  
NIPDAU  
LMX2571  
EP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2023  
OTHER QUALIFIED VERSIONS OF LMX2571-EP :  
Catalog : LMX2571  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX2571SRHHTEP  
VQFN  
RHH  
36  
250  
180.0  
16.4  
6.3  
6.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
28-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RHH 36  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
LMX2571SRHHTEP  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHH 36  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225440/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHH0036G  
PLASTIC QUAD FLATPACK-NO LEAD  
6.1  
5.9  
A
B
PIN 1 INDEX AREA  
6.1  
5.9  
C
1.0  
0.8  
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.7  
4.5  
SQ  
2X 4  
(0.1) TYP  
10  
18  
32X 0.5  
9
19  
37  
SYMM  
2X  
4
27  
1
0.34  
0.14  
0.1  
0.05  
36X  
PIN 1 ID  
(OPTIONAL)  
C A B  
36  
28  
SYMM  
C
0.5  
0.3  
36X  
4226455/A 12/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHH0036G  
PLASTIC QUAD FLATPACK-NO LEAD  
(5.8)  
(SQ 4.6)  
28  
36  
36X (0.6)  
36X (0.24)  
1
27  
32X (0.5)  
SYMM  
37  
(5.8)  
(1.16)  
(0.89)  
9
19  
(R0.05) TYP  
18  
10  
(Ø 0.2)VIA  
TYP  
(1.16)  
(0.89)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 14X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
SOLDERMASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226455/A 12/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHH0036G  
PLASTIC QUAD FLATPACK-NO LEAD  
(5.8)  
16X (SQ 0.96)  
28  
36  
36X (0.6)  
36X (0.24)  
1
27  
32X (0.5)  
37  
(0.58)  
(5.8)  
SYMM  
(1.16)  
19  
9
(R0.05) TYP  
METAL TYP  
18  
10  
(0.58)  
SYMM  
(1.16)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED COVERAGE BY AREA  
SCALE: 14X  
4226455/A 12/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMX2572

6.4GHz 低功耗宽带射频合成器
TI

LMX2572LP

采用 FSK 调制的 2GHz 低功耗宽带射频合成器
TI

LMX2572LPRHAR

采用 FSK 调制的 2GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572LPRHAT

采用 FSK 调制的 2GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572RHAR

6.4GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572RHAT

6.4GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2575HVMX-12

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-15

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-5.0

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-ADJ

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575MX-12

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575MX-15

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI