LMZ20501 [TI]

2.7V 至 5.5V、1A 高密度微型模块;
LMZ20501
型号: LMZ20501
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7V 至 5.5V、1A 高密度微型模块

文件: 总36页 (文件大小:2477K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMZ20501  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
LMZ20501 1A 纳米模块  
1 特性  
3 说明  
• 集成电感器  
• 微3.5mm × 3.5mm × 1.75mm 封装  
• 最大负载电流1A  
• 输入电压范围2.7 V 5.5V  
• 可调输出电压范围0.8V 3.6V  
• 温度范围内的反馈容差±1%  
• 关断模式下静态电流2.4µA最大值)  
3MHz PWM 开关频率  
-40°C 125°C 的结温范围  
• 电源正常状态标志功能  
• 引脚可选开关模式  
• 内部补偿和软启动  
• 电流限制、热关断UVLO 保护  
• 使LMZ20501 并借WEBENCH® Power  
Designer 创建定制设计方案  
LMZ20501 纳米模块稳压器是一款易于使用的同步降  
压直流/直流转换器能够从最高 5.5V 的输入电压驱动  
高达 1A 的负载电流以极小的解决方案尺寸提供优异  
的效率和输出精度。这种创新型封装将稳压器和电感器  
包含在 3.5mm × 3.5mm × 1.75mm 的小体积中节省  
了布板空间以及电容器选型所需的时间和开销。  
LMZ20501 仅需要五个外部组件其引脚设计可实现  
简单、最优的 PCB 布局。该器件使用很少数量的外部  
元件和 TI WEBENCH® 设计工具提供一个易于使用  
的完整设计。TI WEBENCH 工具包含诸如外部元件  
计算、电气模拟和 WebTherm® 等特性。有关焊接信  
请参SNOA401。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
LMZ20501  
USIP (8)  
3.50mm × 3.50mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
负载点调节  
空间受限型应用  
100  
3V  
EN  
VOUT  
VOUT  
90  
4.2V  
VIN  
VIN  
5V  
RFBT  
80  
LMZ20501  
CFF  
CIN  
70  
60  
50  
40  
30  
20  
10  
0
FB  
GND MODE  
PG  
COUT  
RFBB  
简化版原理图  
0.01  
0.1  
Output Current (A)  
1
10  
C003  
VOUT = 1.8V 时自动模式下的典型效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVS874  
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
Table of Contents  
8.1 Application Information............................................. 16  
8.2 Typical Application.................................................... 16  
8.3 Do's and Don'ts.........................................................23  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Example...................................................... 25  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 接收文档更新通知................................................... 28  
11.4 支持资源..................................................................28  
11.5 Trademarks............................................................. 28  
11.6 Electrostatic Discharge Caution..............................28  
11.7 术语表..................................................................... 28  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 System Characteristics............................................... 6  
6.7 Typical Characteristics................................................8  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
7.4 Device Functional Modes..........................................13  
8 Application and Implementation..................................16  
Information.................................................................... 29  
12.1 Tape and Reel Information......................................29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (August 2018) to Revision E (September 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Updated 7-3 title...........................................................................................................................................10  
Changes from Revision C (April 2015) to Revision D (August 2018)  
Page  
• 删除Simple Switcher 品牌添加WEBENCH 链接....................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
5 Pin Configuration and Functions  
1
2
8
7
PG  
VIN  
NC  
EN  
3
4
6
5
MODE  
GND  
VOUT  
FB  
5-1. 8-Pins USIP Package (SIL) (Top View)  
5-1. Pin Functions  
PIN  
NUMBER  
TYPE(1)  
DESCRIPTION  
NAME  
PG  
O
Power-good flag; open drain. Connect to logic supply through a resistor. High = power good; low =  
power bad. If not used, leave unconnected.  
1
2
EN  
I
Enable input. High = On, Low = Off. A valid input voltage, on pin 8, must be present before EN is  
asserted. Do not float.  
3
4
5
6
7
MODE  
FB  
I
I
Mode selection input. High = forced PWM. Low = AUTO mode with PFM at light load. Do not float.  
Feedback input to controller. Connect to output through feedback divider.  
VOUT  
GND  
NC  
P
G
Regulated output voltage. Connect to COUT.  
Ground for all circuitry. Reference point for all voltages  
This pin must be left floating. Do not connect to ground or any other node.  
VIN  
P
Input supply to regulator. Connect to input capacitor(s) as close as possible to the VIN pin and GND  
pin of the module.  
8
EP  
G
EP  
Ground and heat-sink connection. See 10.1 for more information.  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
Under the recommended operating junction temperature range of 40°C to 125°C (unless otherwise noted) (1)  
MIN  
0.2  
0.2  
0.2  
MAX  
UNIT  
VIN to GND  
6
V
EN, MODE, FB, PG, to GND(2)  
VOUT to GND(2)  
VIN+0.2  
VIN+0.2  
150  
Junction temperature  
°C  
°C  
Peak soldering reflow temperature for Pb(3)  
Peak soldering reflow temperature for No-Pb(3)  
Storage temperature range  
240  
260  
150  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The absolute maximum voltage on this pin must not exceed 6 V with respect to ground. Do not allow the voltage on the output pin to  
exceed the voltage on the input pin by more than 0.2 V.  
(3) For soldering information, please refer to the following document: SNOA401.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
±500  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Under the recommended operating junction temperature range of -40°C to 125°C (unless otherwise noted) (1)  
MIN  
2.7  
0.8  
0
NOM  
MAX  
UNIT  
Input voltage  
5.5  
3.6  
3.6  
1
V
V
Output voltage programming  
Output voltage range (2)  
Load current  
V
0
A
Power good flag current  
Junction temperature  
0
4
mA  
°C  
-40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Under no conditions should the output voltage be allowed to fall below zero volts.  
6.4 Thermal Information  
LMZ20501  
THERMAL METRIC(1)  
USIP (SIL)  
8 PINS  
42.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
20.8  
9.4  
1.5  
ψJT  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
 
 
 
 
 
 
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
LMZ20501  
THERMAL METRIC(1)  
USIP (SIL)  
8 PINS  
9.3  
UNIT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
ψJB  
RθJC(bot)  
1.8  
(1) The values given in this table are only valid for comparison with other packages and can not be used for design purposes. For design  
information please see the 8.2.1.5 section. For more information about traditional and new thermal metrics, see the Semiconductor  
and IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature range of 40°C to 125°C, unless otherwise noted.  
Minimum and maximum limits are verified through test, design, or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 3.6 V  
PARAMETER  
TEST CONDITIONS  
MIN (1)  
TYP  
MAX(1)  
UNIT  
VFB  
Feedback voltage  
VIN = 3.6 V  
0.594  
0.6  
0.606  
V
IQ_AUTO  
Operating quiescent current in AUTO mode, VFB = 0.8 V  
AUTO mode  
72  
90  
µA  
µA  
IQ_PWM  
IQ_off  
Operating quiescent current in PWM mode, VFB = 0.8 V  
forced PWM mode  
490  
620  
Shutdown quiescent current(2) VIN = 3.6 V, VEN = 0.0 V  
0.7  
1.0  
2.5  
2.3  
1.5  
2.4  
µA  
V
VIN = 5.5 V, VEN = 0.0 V  
VUVLO  
Input supply undervoltage  
lockout thresholds  
Rising  
Falling  
VIH  
VEN  
High level input voltage  
Low level input voltage  
High level input voltage  
Low level input voltage  
Peak switch current limit(3)  
Internal oscillator frequency  
Minimum switch on time(5)  
Soft-start time(5)  
1.4  
1.2  
V
VIL  
0.4  
0.4  
3.2  
VMODE  
VIH  
V
VIL  
I LIM  
Fosc  
TON  
Tss  
1.3  
2.5  
1.7  
3.0  
50  
A
MHz  
ns  
800  
µs  
RPG  
Power-good flag pulldown  
Rdson  
40  
70  
92%  
110  
VPG1  
VPG2  
VPG3  
VPG4  
TSD  
Power good flag, undervoltage % of feedback voltage, rising  
trip(4)  
Power good flag, undervoltage % of feedback voltage, falling  
trip(4)  
88%  
Power good flag, overvoltage % of feedback voltage, rising  
trip(4)  
112%  
Power good flag, overvoltage % of feedback voltage, falling  
trip(4)  
108%  
159  
15  
Thermal shutdown(5)  
Rising threshold  
°C  
°C  
Thermal shutdown  
hysteresis(5)  
(1) MIN and MAX limits are 100% production tested at 25°C. Limits over the operating temperature range are verified through correlation  
using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
(2) Shutdown current includes leakage current of the switching transistors.  
(3) This is the peak switch current limit measured with a slow current ramp. Due to inherent delays in the current limit comparator, the  
peak current limit measured at 3MHz will be larger.  
(4) See 7.3.6 for explanation of voltage levels.  
(5) This parameter is not tested in production.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMZ20501  
 
 
 
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
6.6 System Characteristics  
The following specifications apply to the circuit found in 8-1 with the appropriate modifications from 8-1. These  
parameters are not tested in production and represent typical performance only. Unless otherwise stated the following  
conditions apply: TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT = 1.2 V,  
0.14%  
VIN = 5 V, IOUT = 0 A to 1 A, PWM  
VOUT = 1.8 V  
Load  
Percent output voltage change  
0.15%  
0.11%  
0.16%  
0.12%  
0.1%  
3.3  
Regulation for the given load current change VIN = 5 V, IOUT = 0 A to 1 A, PWM  
VOUT = 3.3 V  
VIN = 5 V, IOUT = 0 A to 1 A, PWM  
VOUT = 1.2 V  
IOUT = 1 A, VIN = 3 V to 5 V, PWM  
Percent output voltage change  
for the given change in input  
voltage  
Line  
Regulation  
VOUT = 1.8 V  
IOUT = 1 A, VIN = 3 V to 5 V, PWM  
VOUT = 3.3 V  
IOUT = 1 A,VIN = 4 V to 5 V, PWM  
VOUT = 1.2 V  
IOUT = 1 A, VIN = 5 V, PWM  
VOUT = 1.8 V  
IOUT = 1 A, VIN = 5 V, PWM  
VR-PWM  
Output voltage ripple in PWM  
Output voltage ripple in PFM  
3.3  
mV pk-pk  
mV pk-pk  
VOUT = 3.3V  
IOUT= 1 A, VIN = 5 V, PWM  
4.2  
VOUT = 1.2V  
IOUT= 1 mA, VIN = 3 V, PFM  
22  
VOUT = 1.8 V  
IOUT= 1 mA, VIN=3 V, PFM  
VR-PFM  
22  
VOUT = 3.3 V  
IOUT = 1 mA, VIN = 5 V, PFM  
40  
VOUT = 1.2 V  
VIN = 5 V, IOUT = 0 A to 1 A, Tr = Tf = 2 µs,  
PWM  
±60  
±50  
±60  
25  
Output voltage deviation from  
nominal due to a load current  
step  
VOUT = 1.8 V  
VIN = 5 V, IOUT = 0 A to 1 A, Tr = Tf = 2 µs,  
PWM  
Load  
Transient  
mV  
VOUT = 3.3 V  
VIN = 5 V, IOUT = 0 A to 1 A, Tr = Tf = 2 µs,  
PWM  
VOUT = 1.2V  
IOUT = 1 A, VIN = 3 V to 5 V, Tr = Tf = 50 µs,  
PWM  
VOUT = 1.8 V  
IOUT = 1 A, VIN = 3 V to 5 V, Tr = Tf = 50 µs,  
PWM  
Line  
Transient  
Output voltage deviation due to  
an input voltage step  
30  
mV pk-pk  
VOUT = 3.3 V  
IOUT = 1 A, VIN = 4 V to 5 V, Tr = Tf = 50 µs,  
PWM  
20  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
The following specifications apply to the circuit found in 8-1 with the appropriate modifications from 8-1. These  
parameters are not tested in production and represent typical performance only. Unless otherwise stated the following  
conditions apply: TA = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT = 1.2 V  
VIN = 3 V  
87%  
VOUT = 1.8 V  
VIN = 3 V  
Peak efficiency  
91%  
94%  
83%  
87%  
93%  
VOUT = 3.3 V  
VIN = 4.2 V  
η
VOUT = 1.2 V  
VIN = 3 V, IOUT = 1 A  
VOUT = 1.8 V  
VIN = 3 V, IOUT = 1 A  
Full load efficiency  
VOUT = 3.3 V  
VIN = 4.2 V, IOUT = 1 A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMZ20501  
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
6.7 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 3.6 V, TA = 25°C.  
1.82  
1.81  
1.8  
3.2  
3.15  
3.1  
Iout = 0 A  
Iout = 1 A  
-40°C  
27°C  
90°C  
3.05  
3
2.95  
2.9  
1.79  
1.78  
1.77  
1.76  
2.85  
2.8  
2.75  
2.7  
2.65  
2.6  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
2
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
6
D001  
D002  
VIN = 3.6 V  
PWM Mode  
VOUT = 1.8 V  
VIN = 3.6 V  
IOUT = 0 A  
PWM Mode  
6-1. Typical Output Voltage vs Temperature  
6-2. Switching Frequency in PWM Mode  
1
1
Rising  
Falling  
Rising  
Falling  
0.9  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.8  
0.7  
0.6  
0.5  
0.4  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D003  
D004  
VIN = 3.6 V  
VIN = 3.6 V  
6-3. EN Input Thresholds  
6-4. MODE Input Thresholds  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.6  
0.55  
0.5  
-40°C  
27°C  
90°C  
0.45  
0.4  
-40°C  
27°C  
90°C  
0.35  
0.3  
2
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
6
D005  
D006  
VFB = 0.8 V  
AUTO Mode  
VFB = 0.8 V  
PWM Mode  
6-5. Non-Switching Input Current in AUTO Mode 6-6. Non-Switching Input Current in PWM Mode  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
7 Detailed Description  
7.1 Overview  
The LMZ20501 nano module is a voltage mode buck regulator with an integrated inductor. Input voltage  
feedforward is used to compensate for loop gain variation with input voltage. Two operating modes allow the  
user to tailor the regulator to their specific requirements. In forced PWM mode, the regulator operates as a full  
synchronous device with a 3 MHz (typical) switching frequency and very low output voltage ripple. In AUTO  
mode, the regulator moves into PFM when the load current drops below the mode change threshold (see 节  
8.2.2). In PFM, the device regulates the output voltage between wider ripple limits than in PWM. This results in  
much smaller supply current than in PWM, at light loads, and high efficiency. A simplified block diagram is shown  
in 7.2.  
7.2 Functional Block Diagram  
7.3 Feature Description  
7.3.1 Nano Scale Package  
The LMZ20501 incorporates world class package technology to provide a 1-A power supply with a total volume  
of only 21 mm3 (excluding external components). All that is required for a complete power supply is the addition  
of feedback resistors to set the output voltage and the input and output filter capacitors. 7-1 and 7-2 show  
the LMZ20501 package. The regulator die is embedded into a PCB substrate while the power inductor is  
mounted on top. Vias and copper clad are used to make the connections to the die, inductor, and the external  
components. This package is MSL3-compliant.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMZ20501  
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
7-1. Package Photo  
INDUCTOR  
EMBEDDED  
REGULATOR  
DIE  
SUBSTRATE  
PCB  
Copper Clad  
Via  
7-2. Package Side View Drawing  
7.3.2 Internal Synchronous Rectifier  
The LMZ20501 uses an internal NMOS FET as a synchronous rectifier to minimize switch voltage drop and  
increase efficiency. The NMOS is designed to conduct through its body diode during switch dead time. This dead  
time is imposed to prevent supply current "shoot-through".  
7.3.3 Current Limit Protection  
The LMZ20501 incorporates cycle-by-cycle peak current limit on both the high- and low-side MOSFETs. This  
feature limits the output current in case the output is overloaded. During the overload, the peak inductor current  
is limited to that value found in 6.5 under the heading of "ILIM".  
In addition to current limit, a short circuit protection mode is also implemented. When the feedback voltage is  
brought down to less than 300 mV, but greater than 150 mV, by a short circuit, the synchronous rectifier is turned  
off. This provides more voltage across the inductor to help maintain the required volt-second balance. If a  
"harder" short brings the feedback voltage to below 150 mV, the current limit and switching frequency are both  
reduced to approximately one half of the nominal values. In addition, when the current limit is tripped, the device  
stops switching for approximately 85 µs. At the end of the time-out, switching resumes and the cycle repeats  
until the short is removed.  
The effect of both overload and short circuit protection can be seen in 7-3. This graph demonstrates that the  
device will supply slightly more than 1 A to the load when in overload and much less current during fold-back  
mode. This is typical behavior for any regulator with this type of current limit protection.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Output Current (A)  
C001  
7-3. Typical Current Limit Profile VIN = 5 V, VOUT = 3.3 V  
7.3.4 Start-Up  
Start-up and shutdown of the LMZ20501 is controlled by the EN input. The characteristics of this input are found  
in 6.5. A valid input voltage must be present on VIN before the enable control is asserted. The maximum  
voltage on the EN pin is 5.5 V or VIN, whichever is smaller. Do not allow this input to float.  
The LMZ20501 features a current limit based soft start that prevents large inrush currents and output overshoots  
as the regulator is starting up. The peak inductor current is stepped-up in a staircase fashion during the soft start  
period. A typical start-up event is shown in 7-4:  
EN  
Output Voltage  
2V/div  
PG  
Input Current  
0.5A/div  
500µs/div  
7-4. Typical Start-Up Waveforms, VIN = 5 V, VOUT = 3.3 V, IOUT = 1 A  
7.3.5 Dropout Behavior  
When the input voltage is close to the output voltage, the regulator will operate at very large duty cycles. Normal  
time delays of the internal circuits prevents the attainment of controlled duty cycles near 100%. In this condition,  
the LMZ20501 will skip switching cycles to maintain regulation with the highest possible input-to-output ratio.  
Some increase in output voltage ripple can appear as the regulator skips cycles. As the input voltage gets closer  
to the output voltage, the regulator will eventually reach 100% duty cycle, with the high side switch turned on.  
The output will then follow the input voltage minus the drop across the high-side switch and inductor resistance.  
7-5 and 7-6 show typical dropout behavior for output voltages of 2.5 V and 3.3 V.  
Since the internal gate drive levels of the LMZ20501 are dependent on input voltage, the Rdson of the power  
FETs will increase at low input voltages. This will result in degraded efficiency at input voltages below  
approximately 2.9 V. Also, combinations of low input voltage and high output voltage increase the effective  
switch duty cycle, which can result in increased output voltage ripple.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
0A  
0.5A  
1A  
2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
Input Voltage (V)  
C009  
7-5. Typical Dropout Behavior, VOUT = 2.5 V  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
0A  
2.2  
2.0  
0.5A  
1A  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
Input Voltage (V)  
C008  
7-6. Typical Dropout Behavior, VOUT = 3.3 V  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
7.3.6 Power Good Flag Function  
The operation of the power good flag function is described in the diagram shown in 7-7.  
VOUT  
PG3 = 112%  
PG4 = 108%  
PG1 = 92%  
PG2 = 88%  
PGOOD  
High = Good  
Low = Bad  
7-7. Typical Power Good-Flag Operation  
This output consists of an open-drain NMOS with an Rdson of approximately 70 Ω. When used, the power-good  
flag should be connected to a logic supply through a pullup resistor. It can also be pulled up to either VIN or VOUT  
through an appropriate resistor, as desired. If this function is not needed, the PG output should be left floating.  
The current through this flag pin should be limited to less than 4 mA. A pullup resistor of greater than or equal to  
1.5 kΩ will satisfy this requirement. When the EN input is pulled low, the PG flag output will also be forced low,  
assuming a valid input voltage is present at the VIN pin.  
7.3.7 Thermal Shutdown  
The LMZ20501 incorporates a thermal shutdown feature to protect the device from excessive die temperatures.  
The device will stop switching when the internal die temperature reaches about 159°C. Switching will resume  
when the die temperature drops to about 144°C.  
7.4 Device Functional Modes  
Please refer to 7-1 and the following paragraphs for a detailed description of the functional modes of the  
LMZ20501. These modes are controlled by the MODE input as shown in 7-1. The maximum voltage on the  
MODE pin is 5.5 V or VIN, whichever is smaller. This input must not be allowed to float.  
7-1. Mode Selection  
MODE PIN VOLTAGE  
OPERATION  
Forced PWM: The regulator operates in constant frequency, PWM mode for all loads from  
no-load to full load; no diode emulation is used.  
> 1.2 V  
AUTO Mode: The regulator operates in constant frequency mode for loads greater than the  
mode change threshold. For loads less than the mode change threshold, the regulator  
operates in PFM with diode emulation.  
< 0.4 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMZ20501  
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
7.4.1 PWM Operation  
In forced PWM mode, the converter operates as a constant frequency voltage mode regulator with input voltage  
feedforward. This provides excellent line and load regulation and low output voltage ripple. This operation is  
maintained, even at no-load, by allowing the inductor current to reverse its normal direction. While in PWM  
mode, the output voltage is regulated by switching at a constant frequency and modulating the duty cycle to  
control the power to the load. This mode trades off reduced light load efficiency for low output voltage ripple and  
constant switching frequency. In this mode, a negative current limit of approximately 750 mA is imposed to  
prevent damage to the regulator power FETs.  
7.4.2 PFM Operation  
When in AUTO mode and at light loads, the device enters PFM. The regulator estimates the load current by  
measuring both the high-side and low-side switch currents. This estimate is only approximate, and the exact load  
current threshold, to trigger PFM, can vary greatly with input and output voltage. 8.2.2 shows mode change  
thresholds for several typical operating points. When the regulator detects this threshold, the reference voltage is  
increased by approximately 10 mV. This causes the output voltage to rise to meet the new regulation point.  
When this point is reached, the converter stops switching and much of the internal circuitry is shut off, while the  
reference is returned to the PWM value. This saves supply current while the output voltage naturally starts to fall  
under the influence of the load current. When the output voltage reaches the PWM regulation point, switching is  
again started and the reference voltage is again increased by approximately 10 mV, starting the next cycle.  
Typical waveforms are shown in 7-8.  
Switch Voltage  
2V/div  
Output Voltage  
50mV/div  
20µs/div  
7-8. Typical PFM Mode Waveforms: VIN = 3.6 V, VOUT = 1.8 V, IOUT = 10 mA  
90  
88  
86  
84  
82  
80  
78  
76  
74  
VOUT = 1.8 V  
VOUT = 3.3 V  
72  
70  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
D007  
7-9. Typical No Load Input Supply Current  
The actual output voltage ripple will depend on the feedback divider ratio and on the delay in the PFM  
comparator. The frequency of the PFM "bursts" will depend on the input voltage, output voltage, load, and output  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
capacitor. Within each "burst", the device switches at 3 MHz (typical). If the load current increases above the  
threshold, normal PWM operation is resumed. This mode provides high light load efficiency by reducing the  
amount of supply current required to regulate the output at small load currents. This mode trades off very good  
light load efficiency for larger output voltage ripple and variable switching frequency. An example of the typical  
input supply current while regulating with no load is shown in 7-9.  
Because of normal part-to-part variation, the LMZ20501 may not switch into PFM mode at high input voltages.  
This can be seen with output voltages of approximately 1.2 V and below, and at input voltages of approximately  
4.2 V and above.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMZ20501  
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LMZ20501 is a step down DC-to-DC regulator. It is typically used to convert a higher DC voltage to a lower  
DC voltage with a maximum output current of 1 A. The following design procedure can be used to select  
components for the LMZ20501. Alternately, the WEBENCH design tool may be used to generate a complete  
design. WEBENCH utilizes an iterative design procedure and has access to a comprehensive database of  
components. This allows the tool to create an optimized design and allows the user to experiment with various  
design options.  
8.2 Typical Application  
8-1 shows the minimum required application circuit for a 1.8-V output. 8-2 shows a full featured application  
circuit. Please refer to 8-1 and 8-2 during the following design procedures.  
EN  
VOUT  
1.8V @ 1A  
VOUT  
VIN  
2.7V to 5.5V  
VIN  
LMZ20501  
CFF  
16pF  
RFBT  
80.6k  
40.2kΩ  
CIN  
2x10µF  
COUT  
10µF  
GND MODE PG  
FB  
RFBB  
8-1. LMZ20501 Typical Application VOUT = 1.8 V  
VIN  
2.7V to 5.5V  
2x10µF  
100k  
CIN  
VIN  
RESET  
PG  
VOUT  
VOUT  
µC  
I/O  
I/O  
MODE  
EN  
1.8V @ 1A  
LMZ20501  
CFF  
16pF  
RFBT  
80.6kΩ  
40.2kΩ  
COUT  
10µF  
GND  
FB  
RFBB  
8-2. LMZ20501 Full Featured Application  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
8.2.1 Detailed Design Procedure  
Please refer to 8-1 while following the detailed design procedure. This procedure applies to both 8-1 and to  
8-2. Also, the Application Curves apply to both schematics.  
8-1. Recommended Component Values  
VOUT (V)  
0.8  
COUT (µF)  
EFFECTIVE COUT (µF)(2)  
CFF (pF)  
CIN (µF)(1)  
2 x 10  
2 x 10  
2 x 10  
2 x 10  
2 x 10  
2 x 10  
EFFECTIVE CIN (µF)(2)  
RFBB (kΩ) RFBT (kΩ)  
121  
30.1  
40.2  
47.5  
53.2  
53.2  
40.2  
30.1  
80.6  
150  
237  
267  
2 x 10  
10  
18 µF  
8.8 µF  
8.4 µF  
7.8 µF  
7.1 µF  
6.8 µF  
39  
14  
14  
14  
14  
14  
14  
1.2  
20  
1.8  
10  
16  
2.5  
10  
12  
3.3  
10  
82  
3.6  
10  
82  
(1) CIN = COUT = 10 µF, 16 V, 0805, X7R, Samsung CL21B106KOQNNNE. COUT measured at VOUT; CIN measured at 3.3 V.  
(2) The effective value takes into account the capacitor voltage coefficient.  
8.2.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZ20501 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2 Setting The Output Voltage  
The LMZ20501 regulates its feedback voltage to 0.6 V (typical). A feedback divider, shown in 8-1, is used to  
set the desired output voltage. 方程1 can be used to select RFBB  
.
0.6  
RFBB  
=
RFBT  
(
VOUT - 0.6  
)
(1)  
For the best results, RFBT should be chosen between 30 kΩ and 300 kΩ. See 8-1 for recommended values  
for typical output voltages.  
8.2.1.3 Output and Feedforward Capacitors  
The LMZ20501 is designed to work with low-ESR ceramic capacitors. The effective value of these capacitors is  
defined as the actual capacitance under voltage bias and temperature. All ceramic capacitors have large voltage  
coefficients, in addition to normal tolerances and temperature coefficients. Under D.C. bias, the capacitance  
value drops considerably. Larger case sizes, higher voltage capacitors, or both are better in this regard. To help  
mitigate these effects, multiple small capacitors can be used in parallel to bring the minimum effective  
capacitance up to the desired value. This can also ease the RMS current requirements on a single capacitor.  
Typically, 10-V, X5R, 0805 capacitors are adequate for the output, while 16-V capacitors can be used on the  
input. Some recommended component values are provided in 8-1. Also, shown are the measured values of  
effective input and output capacitance for the given capacitor. If smaller values of output capacitance are used,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMZ20501  
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
CFF must be adjusted to give good phase margin. In any case, load transient response will be compromised with  
lower values of output capacitance. Values much lower than those found in 8-1 should be avoided.  
In practice, the output capacitor and CFF are adjusted for the best transient response and highest loop phase  
margin. Load transient testing and Bode plots are the best way to validate any given design. The Optimizing  
Transient Response of Internally Compensated DC-DC Converters Application Report should prove helpful when  
optimizing the feedforward capacitor. Also, the AN-1889 How to Measure the Loop Transfer Function of Power  
Supplies Application Report details a simple method of creating a Bode plot with basic laboratory equipment.  
The values of CFF found in 8-1 provide a good starting point.  
A careful study of the temperature and bias voltage variation of any candidate ceramic capacitor should be made  
in order to make sure that the minimum values of effective capacitance are provided. The best way to obtain an  
optimum design is to use the Texas Instruments WEBENCH tool.  
The maximum value of total output capacitance should be limited to between 100 µF and 200 µF. Large values  
of output capacitance can prevent the regulator from starting-up correctly and adversely affect the loop stability.  
If values in the range given above, or larger, are to be used, then a careful study of start-up at full load and loop  
stability must be performed.  
8.2.1.4 Input Capacitors  
The ceramic input capacitors provide a low impedance source to the regulator in addition to supplying ripple  
current and isolating switching noise from other circuits. An effective value of at least 14 µF is normally sufficient  
for the input capacitor. If the main input capacitor or capacitors cannot be placed close to the module, then a  
small 10 nF to 100 nF capacitor should be placed directly at the module across the supply and ground pins.  
Many times, it is desirable to use an electrolytic capacitor on the input, in parallel with the ceramics. This is  
especially true if long leads/traces are used to connect the input supply to the regulator. The moderate ESR of  
this capacitor can help damp any ringing on the input supply caused by long power leads. This method can also  
help to reduce voltage spikes that can exceed the maximum input voltage rating of the LMZ20501. The use of  
this additional capacitor will also help with voltage dips caused by input supplies with unusually high impedance.  
Most of the switching current passes through the input ceramic capacitor or capacitors. The approximate RMS  
value of this current can be calculated with 方程式 2 and should be checked against the manufactures maximum  
ratings.  
IOUT  
IRMS  
ö
2
(2)  
8.2.1.5 Maximum Ambient Temperature  
As with any power conversion device, the LMZ20501 will dissipate internal power while operating. The effect of  
this power dissipation is to raise the internal temperature of the converter above ambient. The internal die  
temperature is a function of the ambient temperature, the power loss, and the effective thermal resistance RθJA  
of the device and PCB combination. The maximum internal die temperature for the LMZ20501 is 125°C, thus  
establishing a limit on the maximum device power dissipation and, therefore, load current at high ambient  
temperatures. 方程3 shows the relationships between the important parameters.  
(
TJ -TA  
RJA  
)
1
IOUT  
=
(
1-  
)
VOUT  
(3)  
It is easy to see that larger ambient temperatures and larger values of RθJA will reduce the maximum available  
output current. As stated in the Semiconductor and IC Package Thermal Metrics Application Report, the values  
given in the Thermal Information table are not valid for design purposes and must not be used to estimate the  
thermal performance of the application. The values reported in that table were measured under a specific set of  
conditions that never obtain in an actual application. The effective RθJA is a critical parameter and depends on  
many factors such as the following:  
Power dissipation  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
Air temperature  
PCB area  
Copper heatsink area  
Air flow  
Adjacent component placement  
The resources found in 11-1 can be used as a guide to estimate the RθJA for a given application environment.  
A typical example of RθJA versus copper board area is shown in 8-3. The copper area in this graph is that for  
each layer; the inner layers are 1 oz (35µm). An RθJA of 44°C/W is the approximate value for the LMZ20501  
evaluation board. The efficiency found in 方程式 3, η, should be taken at the elevated ambient temperature. For  
the LMZ20501, the efficiency is approximately two to three percent lower at high temperatures. Therefore, a  
slightly lower value than the typical efficiency can be used in the calculation. In this way, 方程3 can be used to  
estimate the maximum output current for a given ambient, or to estimate the maximum ambient for a given load  
current.  
A typical curve of maximum load current versus ambient temperature is shown in 8-4. This graph assumes a  
RθJA of 44°C/W and an input voltage of 5 V.  
100  
2-LAYER 70 µm (2 oz) Cu  
4-LAYER 70 µm (2 oz) Cu  
90  
80  
70  
60  
50  
40  
30  
20  
0
5
10  
Copper Area (cm2)  
15  
20  
D012  
8-3. RθJA Versus Copper Board Area  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2V  
0.2  
1.8V  
3.3V  
0.0  
40  
50  
60  
70  
80  
90 100 110 120 130 140  
Ambient Temperature (C)  
C001  
8-4. Maximum Output Current Versus Ambient Temperature, RθJA = 44°C/W, VIN = 5 V  
8.2.1.6 Options  
The circuit in 8-2 highlights the use of the features of the LMZ20501. The PG output is open drain, and  
requires a pullup resistor to a logic supply that is commensurate with the system logic voltage levels. If a reset  
function is not needed, the PG pin should be left open. The EN and MODE inputs are digital inputs, requiring  
only simple logic levels for proper operation. If the system does not need to control these features, the inputs  
should be connected to either VIN or GND, as appropriate. See 7.3 for details.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
8.2.2 Application Curves  
The following specifications apply to the circuit found in 8-1 or 8-2 with the appropriate modifications from 8-1.  
These parameters are not tested and represent typical performance only. Unless otherwise stated the following  
conditions apply: TA = 25°C.  
100  
3V  
90  
4.2V  
5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
Output Voltage  
50mV/div  
Output Current  
0.5A/div  
0.01  
0.1  
Output Current (A)  
1
10  
20µs/div  
C003  
VOUT = 1.8 V  
VIN = 4.2 V  
VOUT = 1.8 V  
8-6. Load Transient In PWM  
8-5. Efficiency  
1.812  
1.807  
1.802  
1.797  
1.792  
3V  
4.2V  
5V  
Output Voltage  
50mV/div  
Output Current  
0.5A/div  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
Output Current (A)  
20µs/div  
C002  
VOUT = 1.8 V  
VIN = 4.2 V  
VOUT = 1.8 V  
8-8. Load Transient In AUTO Mode  
8-7. Regulation, AUTO Mode  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
EN  
PWM  
Output Voltage  
1V/div  
PFM  
PG  
Input Current  
0.2A/div  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
C002  
Input Voltage (V)  
500µs/div  
VOUT = 1.8 V  
VOUT = 1.8 V  
VIN = 5 V  
IOUT = 1 A  
8-9. AUTO Mode Thresholds  
8-10. Start-Up  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
3V  
4.2V  
5V  
Output Voltage  
50mV/div  
Output Current  
0.5A/div  
0.01  
0.1  
Output Current (A)  
1
10  
20µs/div  
C004  
VOUT = 1.2 V  
VIN = 4.2 V  
VOUT = 1.2 V  
8-12. Load Transients In PWM  
8-11. Efficiency  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
1.198  
1.197  
1.196  
1.195  
3V  
4.2V  
5V  
Output Voltage  
50mV/div  
Output Current  
0.5A/div  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
20µs/div  
Output Current (A)  
C005  
VOUT = 1.2 V  
VIN = 4.2 V  
VOUT = 1.2 V  
8-14. Load Transients In AUTO Mode  
8-13. Regulation, AUTO Mode  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
EN  
Output Voltage  
1V/div  
PG  
PWM  
Input Current  
0.2A/div  
PFM  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
500µs/div  
Input Voltage (V)  
C002  
VOUT = 1.2 V  
VIN = 5 V  
IOUT = 1 A  
VOUT = 1.2 V  
8-16. Start-Up  
8-15. AUTO Mode Thresholds  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMZ20501  
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
4.2V  
5V  
Output Voltage  
50mV/div  
Output Current  
0.5A/div  
0.01  
0.1  
Output Current (A)  
1
10  
50µs/div  
C006  
VOUT = 3.3 V  
VIN = 5 V  
VOUT = 3.3 V  
8-18. Load Transients In PWM Mode  
8-17. Efficiency  
3.270  
4.2V  
5V  
3.265  
3.260  
3.255  
3.250  
3.245  
3.240  
3.235  
3.230  
Output Voltage  
50mV/div  
Output Current  
0.5A/div  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
50µs/div  
Output Current (A)  
C007  
VOUT = 3.3 V  
VIN = 5 V  
VOUT = 3.3 V  
8-20. Load Transients In AUTO Mode  
8-19. Regulation, AUTO Mode  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
EN  
PWM  
Output Voltage  
2V/div  
PFM  
PG  
Input Current  
0.5A/div  
3.5  
4.0  
4.5  
5.0  
5.5  
C009  
Input Voltage (V)  
500µs/div  
VOUT = 3.3 V  
VOUT = 3.3 V  
VIN = 5 V  
IOUT = 1 A  
8-21. AUTO Mode Thresholds  
8-22. Start-Up  
space  
space  
space  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMZ20501  
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
8.3 Do's and Don'ts  
Don't: Exceed the Absolute Maximum Ratings.  
Don't: Exceed the ESD Ratings.  
Don't: Exceed the Recommended Operating Conditions.  
Don't: Allow the EN or MODE input to float.  
Don't: Allow the voltage on the EN or MODE input to exceed the voltage on the VIN pin.  
Don't: Allow the output voltage to exceed the input voltage.  
Don't: Use the thermal data given in the Thermal Information table to design your application.  
Do: Follow all of the guidelines and suggestions found in this data sheet before committing your design to  
production. TI Application Engineers are ready to help critique your design and PCB layout to help make your  
project a success.  
Do: Refer to the helpful documents found in 11-1 and 11-2  
.
9 Power Supply Recommendations  
The characteristics of the input supply must be compatible with the Absolute Maximum Ratings and  
Recommended Operating Conditions found in this data sheet. In addition, the input supply must be capable of  
delivering the required input current to the loaded regulator. The average input current can be estimated with 方  
4  
VOUT IOUT  
IIN =  
V  
IN  
(4)  
If the regulator is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse  
effect on the operation of the regulator. The parasitic inductance, in combination with the low ESR ceramic input  
capacitors, can form an under-damped resonant circuit. This circuit can cause overvoltage transients at the VIN  
pin, each time the input supply is cycled on and off. The parasitic resistance will cause the voltage at the VIN pin  
to dip when the load on the regulator is switched on, or exhibits a transient. If the regulator is operating close to  
the minimum input voltage, this dip can cause the device to shutdown, reset, or both. The best way to solve  
these kinds of issues is to reduce the distance from the input supply to the regulator, use an aluminum or  
tantalum input capacitor in parallel with the ceramics, or both. The moderate ESR of these types of capacitors  
will help to damp the input resonant circuit and reduce any voltage overshoots. A value in the range of 20 µF to  
100 µF is usually sufficient to provide input damping and help to hold the input voltage steady during large load  
transients.  
Sometimes, for other system considerations, an input filter is used in front of the regulator module. This can lead  
to instability, as well as some of the effects mentioned above, unless it is designed carefully. The following user  
guide provides helpful suggestions when designing an input filter for any switching regulator: AN-2162 Simple  
Success With Conducted EMI From DC-DC Converters Application Report.  
In some cases, a Transient Voltage Suppressor (TVS) is used on the input of regulators. One class of this device  
has a "snap-back" V-I characteristic (thyristor type). The use of a device with this type of characteristic is not  
recommend. When the TVS "fires", the clamping voltage drops to a very low value. If this holding voltage is less  
than the output voltage of the regulator, the output capacitors will be discharged through the regulator back to  
the input. This uncontrolled current flow could damage the regulator.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMZ20501  
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
10 Layout  
10.1 Layout Guidelines  
The PCB layout of any DC-DC converter is critical to the optimal performance of the design. Bad PCB layout can  
disrupt the operation of an otherwise good schematic design. Even if the converter regulates correctly, bad PCB  
layout can mean the difference between a robust design and one that cannot be mass produced. Furthermore,  
the EMI performance of the regulator is dependent on the PCB layout, to a great extent. In a buck converter, the  
most critical PCB feature is the loop formed by the input capacitor and the module ground, as shown in 10-1.  
This loop carries fast transient currents that can cause large transient voltages when reacting with the trace  
inductance. These unwanted transient voltages will disrupt the proper operation of the converter. Because of  
this, the traces in this loop should be wide and short, and the loop area as small as possible to reduce the  
parasitic inductance. 10-2 shows a recommended layout for the critical components of the LMZ20501; the top  
side metal is shown in red. This PCB layout is a good guide for any specific application. The following important  
guidelines should also be followed:  
1. Place the input capacitor CIN as close as possible to the VIN and GND terminals. VIN (pin 8) and GND  
(pin 6) are on the same side of the module, simplifying the input capacitor placement.  
2. Place the feedback divider as close as possible to the FB pin on the module. The divider and CFF  
should be close to the module, while the length of the trace from VOUT to the divider can be somewhat  
longer. However, this latter trace should not be routed near any noise sources that can capacitively couple to  
the FB input.  
3. Connect the EP pad to the GND plane. This pad acts as a heat-sink connection and a ground connection  
for the module. It must be solidly connected to a ground plane. The integrity of this connection has a direct  
bearing on the effective RθJA  
.
4. Provide enough PCB area for proper heat-sinking. As stated in 8.2.1.5, enough copper area must be  
used to provide a low RθJA, commensurate with the maximum load current and ambient temperature. The  
top and bottom PCB layers should be made with two ounce copper; and no less than one ounce.  
5. The resources in 11-2 provide additional important guidelines.  
VIN  
CIN  
GND  
10-1. Current Loops With Fast Transient Currents  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
10.2 Layout Example  
TOP  
VIEW  
VIN  
CIN  
GND  
EP  
COUT  
VOUT  
RFBT  
RFBB  
CFF  
Top Trace  
Bottom Trace  
10-2. Example PCB Layout  
10.2.1 Soldering Information  
Proper operation of the LMZ20501 requires that it be correctly soldered to the PCB. This is especially true  
regarding the EP. This pad acts as a quiet ground reference for the device and a heatsink connection. Use the  
following recommendations when utilizing machine placement of the device:  
Dimension of area for pickup: 2 mm × 2.5 mm  
Use a nozzle size of less than 1.3 mm in diameter, so that the head does not touch the outer area of the  
package.  
Use a soft tip pick-and-place head.  
Add 0.05 mm to the component thickness so that the device will be released 0.05 mm into the solder paste  
without putting pressure or splashing the solder paste.  
Slow the pick arm when picking the part from the tape and reel carrier and when depositing the device on the  
board.  
If the machine releases the component by force, use the minimum force and no more than 3 N.  
For PCBs with surface mount components on both sides, it is suggested to put the LMZ20501 on the top  
side. In case the application requires bottom side placement, a re-flow fixture can be required to protect the  
module during the second reflow.  
In addition, please follow the important guidelines found in the AN-1187 Leadless Leadframe Package (LLP)  
Application Report. The curves in 10-3 and 10-4 show typical soldering temperature profiles.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
10-3. Typical Re-flow Profile Eutectic (63sn/37pb) Solder Paste  
10-4. Typical Re-flow Profile Lead-Free (Sca305 Or Sac405) Solder Paste  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.1.2 Development Support  
11.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZ20501 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
11-1. Resources For Estimating RθJA  
TITLE  
LINK  
AN-2020 Thermal Design By Insight, Not  
SNVA419  
Hindsight  
AN-2026 The Effect of PCB Design on the  
Thermal Performance of SIMPLE  
SWITCHER Power Modules  
SNVA424  
AN-1520 A Guide to Board Layout for Best  
Thermal Resistance for Exposed Packages  
SNVA183  
SNOA401  
SPRA953  
AN-1187 Leadless Lead-frame Package  
(LLP)  
SPRA953B Semiconductor and IC Package  
Thermal Metrics  
11-2. PCB Layout Resources  
TITLE  
LINK  
AN-1149 Layout Guidelines for Switching  
SNVA021  
Power Supplies  
AN-1229 SIMPLE SWITCHER PCB Layout  
SNVA054  
SLUP230  
Guidelines  
Constructing Your Power Supply- Layout  
Considerations  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMZ20501  
 
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® and WebTherm® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMZ20501  
 
 
 
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
12.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMZ20501SILR  
LMZ20501SILT  
uSiP  
uSiP  
SIL  
SIL  
8
8
3000  
250  
330.0  
178.0  
12.4  
13.2  
3.75  
3.75  
3.75  
3.75  
2.2  
2.2  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMZ20501  
 
 
LMZ20501  
www.ti.com.cn  
ZHCSDN1E AUGUST 2012 REVISED SEPTEMBER 2021  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
uSiP  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
58.0  
LMZ20501SILR  
LMZ20501SILT  
SIL  
SIL  
8
8
383.0  
223.0  
353.0  
194.0  
uSiP  
35.0  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMZ20501  
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZ20501SILR  
LMZ20501SILT  
ACTIVE  
ACTIVE  
uSiP  
uSiP  
SIL  
SIL  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
1501 7543 EB  
1501 7543 EB  
Samples  
Samples  
NIAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZ20501SILR  
uSiP  
SIL  
8
3000  
330.0  
12.4  
3.75  
3.75  
2.2  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
uSiP SIL  
SPQ  
Length (mm) Width (mm) Height (mm)  
383.0 353.0 58.0  
LMZ20501SILR  
8
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY