LMZ21700 [TI]

采用 3.5mm × 3.5mm 封装的 3V 至 17V、0.65A 降压直流/直流电源模块;
LMZ21700
型号: LMZ21700
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 3.5mm × 3.5mm 封装的 3V 至 17V、0.65A 降压直流/直流电源模块

电源电路
文件: 总36页 (文件大小:1845K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
具有 17V 最大输入电压的 LMZ21700 650mA 微型模块  
1 特性  
2 应用  
1
集成电感  
3.3V5V 12V 输入电压的  
负载点转换  
微型 3.5mm × 3.5mm × 1.75mm 封装  
35 mm² Solution Size (Single Sided)  
–40°C 125°C 结温范围  
可调输出电压  
空间受限型 应用  
低压降稳压器 (LDO) 替代产品  
3 说明  
集成补偿  
LMZ21700 微型模块是易于使用的降压直流/直流解决  
方案,可在空间受限的应用中驱动高达 650mA 的 负  
载。仅需一个输入电容器、一个输出电容器、一个软启  
动电容器和两个电阻器即可完成基本操作。  
可调软启动功能  
启动至预偏置负载  
电源正常状态和使能引脚  
节能模式无缝转换  
输出电流高达 650 mA  
输入电压范围为 3V 17V  
输出电压范围为 0.9V 6V  
效率高达 95 %  
典型应用快速 链接:VOUT = 1.2 VVOUT = 1.8 V、  
VOUT = 2.5 VVOUT = 3.3 VVOUT = 5.0 V  
器件信息(1)  
器件型号  
LMZ21700  
封装  
µSIP (8)  
封装尺寸(标称值)  
1.5µA 关断电流  
3.50mm x 3.50mm  
17µA 静态电流  
使用 LMZ21700 并借助 WEBENCH® 电源设计器  
创建定制设计  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
空白  
空白  
空白  
空白  
简化原理图  
VIN = 12V 时的效率  
VIN  
VOUT  
100  
90  
80  
70  
60  
50  
40  
VIN  
EN  
VOUT  
PG  
LMZ21700  
C
IN  
C
OUT  
VOS  
SS  
R
R
C
FBT  
SS  
GND  
FB  
FBB  
30  
20  
10  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.5 V  
VOUT = 3.3 V  
VOUT = 5 V  
0
0.0001  
0.001  
0.01  
0.1  
1
Output Current (A)  
D023  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVS872  
 
 
 
 
 
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
目录  
8.1 Application Information............................................ 11  
8.2 Typical Application ................................................. 11  
8.3 Do's and Don'ts ...................................................... 24  
Power Supply Recommendations...................... 24  
9.1 Voltage Range ........................................................ 24  
9.2 Current Capability ................................................... 24  
9.3 Input Connection .................................................... 24  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Package Construction............................................... 9  
7.4 Feature Description................................................... 9  
7.5 Device Functional Modes........................................ 11  
Application and Implementation ........................ 11  
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 29  
11.1 器件支持 ............................................................... 29  
11.2 开发支持 ............................................................... 29  
11.3 接收文档更新通知 ................................................. 29  
11.4 社区资源................................................................ 29  
11.5 ....................................................................... 29  
11.6 静电放电警告......................................................... 29  
11.7 术语表 ................................................................... 29  
12 机械、封装和可订购信息....................................... 30  
12.1 Tape and Reel Information ................................... 30  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (November 2014) to Revision D  
Page  
删除了 Simple Switcher 品牌;添加了 TI 参考设计顶部导航图标、Webench 链接和 T&R ........................................... 1  
Changes from Revision B (October 2014) to Revision C  
Page  
已更改 将产品概述更改成了生产数据” ................................................................................................................................ 1  
Changed to Final Limits ......................................................................................................................................................... 5  
Changes from Revision A (October 2013) to Revision B  
Page  
已添加 添加了器件信息表和处理额定值表、特性 说明应用和实施布局器件和文档支持以及机械、封  
装和可订购信息,将一些曲线移到了应用曲线................................................................................................................. 1  
已将数据表更改为最新 TI 标准 ............................................................................................................................................... 1  
Changes from Original (August 2012) to Revision A  
Page  
已更改 说明............................................................................................................................................................................. 1  
2
Copyright © 2012–2018, Texas Instruments Incorporated  
 
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
5 Pin Configuration and Functions  
Figure 1. LMZ21700 in the SIL0008E Package  
SIL0008E  
8-Pin  
Top View  
TOP  
SS  
FB  
VIN  
EN  
1
2
3
4
8
7
6
5
PAD  
(GND)  
PAD  
(GND)  
PG  
VOS  
GND  
VOUT  
Table 1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SS  
NO.  
1
Soft-start pin. An external capacitor connected to this pin sets the internal voltage reference  
ramp time. It can be used for tracking and sequencing.  
I
I
FB  
2
Voltage feedback. Connect resistive voltage divider to this pin to set the output voltage.  
Output power good (High = VOUT ready, Low = VOUT below nominal regulation); open drain  
(requires pull-up resistor; goes low impedance when EN is low)  
PG  
3
O
Output Voltage. Connected to one terminal of the integrated inductor. Connect output filter  
capacitor between VOUT and PGND.  
VOUT  
4
O
GND  
VOS  
5
6
I
I
Ground for the power MOSFETs and gate-drive circuitry.  
Output voltage sense pin and connection for the control loop circuitry.  
Enable input (High = enabled, Low = disabled). Internal pull down resistor keeps logic level  
low if pin is left floating  
EN  
VIN  
PAD  
7
8
I
I
Supply voltage for control circuitry and power stage.  
Electrically connected to GND. Must be soldered to a ground copper plane to achieve  
appropriate power dissipation and mechanical reliability.  
Copyright © 2012–2018, Texas Instruments Incorporated  
3
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
VIN  
0.3  
20  
V
VIN +0.3 V  
w/ 20 V  
max  
EN, SS  
0.3  
0.3  
V
FB, PG, VOS  
7
V
PG sink current  
10  
mA  
°C  
°C  
Junction Temperature (TJ-MAX  
)
40  
125  
260  
Maximum Lead Temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
6.2 Handling Ratings  
MIN  
65  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM),  
2000  
2000  
per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM),  
500  
500  
per JEDEC specification JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
17  
UNIT  
Input Voltage Range  
3
0.9  
0
V
V
Output Voltage Range  
6.0  
Recommended Load Current  
Junction Temperature (TJ)  
650  
125  
mA  
°C  
40  
(1) Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits.  
For guaranteed specifications, see the Electrical Characteristics section.  
6.4 Thermal Information  
LMZ21700  
THERMAL METRIC(1)  
SIL0008E  
8 PINS  
42.6  
20.8  
9.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
ψJB  
9.3  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) Junction-to-ambient thermal resistance (θJA) is based on 4 layer board thermal measurements, performed under the conditions and  
guidelines set forth in the JEDEC standards JESD51-1 to JESD51-11. θJA varies with PCB copper area, power dissipation, and airflow.  
4
Copyright © 2012–2018, Texas Instruments Incorporated  
 
 
 
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
6.5 Electrical Characteristics(1)  
Limits apply over the recommended operating junction temperature (TJ) range of -40 °C to +125 °C, unless otherwise stated.  
Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25 °C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 12 V.  
PARAMETER  
SYSTEM PARAMETERS  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
IQ  
Operating quiescent current  
EN = high, IOUT= 0 mA, TJ = -40°C to  
85°C  
17  
17  
25  
28  
μA  
μA  
device not switching  
EN = high, IOUT= 0 mA, TJ = -40°C to  
125°C  
device not switching  
ISD  
Shutdown current  
EN = low, TJ = -40 °C to 85 °C  
EN = low, TJ = -40 °C to 125 °C  
1.5  
1.5  
4
5
μA  
μA  
VINUVLO  
Input under voltage lock out  
rising threshold  
2.8  
2.9  
3
V
V
VINUVLO-HYS  
Input under voltage lock out  
hysteresis  
0.125  
0.180  
0.260  
TSD  
Thermal shutdown  
Rising Threshold  
160  
30  
°C  
°C  
TSD-HYST  
CONTROL  
VIH, ENABLE  
VIL, ENABLE  
ILKG  
Thermal shutdown hysteresis  
Enable logic HIGH voltage  
Enable logic LOW voltage  
Input leakage current  
0.9  
V
V
0.3  
1
EN = VIN or GND  
0.01  
95 %  
90 %  
0.07  
1
μA  
VTH_PG  
Power Good threshold voltage  
Rising (% VOUT  
)
92 %  
87 %  
98 %  
93 %  
0.3  
Falling (% VOUT  
)
VOL_PG  
Power Good output low voltage  
Power Good leakage current  
Softstart Pin source current  
IPG = -2 mA  
V
ILKG_PG  
VPG = 1.8 V  
400  
2.8  
nA  
μA  
ISS  
2.2  
2.5  
POWER STAGE  
RDS(ON)  
High-Side MOSFET ON  
Resistance  
VIN 6 V  
VIN = 3 V  
VIN 6 V  
VIN = 3 V  
82  
120  
40  
mΩ  
mΩ  
Low-Side MOSFET ON  
Resistance  
50  
L
Integrated power inductor value  
2.2  
μH  
DCR  
Integrated power inductor DC  
resistance  
92  
mΩ  
ICL-HS  
ICL-LS  
ICL-DC  
OUTPUT  
VREF  
High-Side MOSFET Current Limit TA = 25 °C  
Low-Side MOSFET Current Limit TA = 25 °C  
1.2  
1.5  
0.9  
1.9  
A
A
A
Output (DC) current limit  
VOUT = 5.0 V, TA = 85 °C  
0.95  
Internal reference voltage  
0.7869  
-2.3 %  
0.803  
1
0.8191  
100  
V
IFB  
Feedback pin leakage current  
VFB = 0.8V  
nA  
VOUT  
Light load initial voltage accuracy Power save mode, COUT = 22 µF,  
TA= -40 °C to 85 °C, 1% FB  
Resistors  
2.8 %  
VOUT  
Load regulation  
VOUT = 3.3 V  
PWM mode operation  
0.05 %  
/ A  
(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation  
using Statistical Quality Control (SQC) methods. Limits are used to calculate National’s Average Outgoing Quality Level (AOQL).  
(2) Typical numbers are at 25°C and represent the most likely parametric norm.  
Copyright © 2012–2018, Texas Instruments Incorporated  
5
 
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics(1) (continued)  
Limits apply over the recommended operating junction temperature (TJ) range of -40 °C to +125 °C, unless otherwise stated.  
Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25 °C, and are provided for reference purposes only. Unless otherwise stated the following  
conditions apply: VIN = 12 V.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
VOUT  
Line regulation  
3 V VIN 17 V, VOUT = 3.3 V, IOUT  
= 650 mA  
0.02 %  
/ V  
PWM mode operation  
SYSTEM CHARACTERISTICS  
Full Load Efficiency  
Light Load Efficiency  
VOUT = 3.3 V, IOUT = 650 mA  
VOUT = 3.3 V, IOUT = 1 mA  
88 %  
72 %  
η
6.6 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 12 V, TA = 25 °C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2-LAYER 70 µm (2 oz) Cu  
4-LAYER 70 µm (2 oz) Cu  
VIN = 3.3 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0
5
10  
15  
20  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Copper Area (cm2)  
Load Current (A)  
D012  
005  
VOUT = 1.2 V  
TA = 85 ºC  
Figure 2. Package Thermal Resistance vs. Board Copper  
Area, No Air Flow  
Figure 3. Power Dissipation  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 3.3 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 3.3 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.4  
0.3  
0.2  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Load Current (A)  
Load Current (A)  
D006  
D007  
VOUT = 1.8 V  
TA = 85 ºC  
VOUT = 2.5 V  
TA = 85 ºC  
Figure 4. Power Dissipation  
Figure 5. Power Dissipation  
6
Copyright © 2012–2018, Texas Instruments Incorporated  
 
 
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 12 V, TA = 25 °C  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Load Current (A)  
Load Current (A)  
D008  
D009  
VOUT = 3.3 V  
TA = 85 ºC  
VOUT = 5.0 V  
TA = 85 ºC  
Figure 6. Power Dissipation  
Figure 7. Power Dissipation  
6
4
IOUT = 0.2 A  
IOUT = 0.4 A  
IOUT = 0.65 A  
IOUT = 0.2 A  
IOUT = 0.4 A  
IOUT = 0.65 A  
3.8  
3.6  
3.4  
3.2  
3
5.5  
5
4.5  
4
2.8  
2.6  
2.4  
2.2  
2
3.5  
3
3
3.5  
4
4.5  
5
5.5  
6
3
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
Input Voltage (V)  
4
Input Voltage (V)  
D011  
D010  
VOUT = 5.0 V  
TA = 85 ºC  
VOUT = 3.3 V  
TA = 85 ºC  
Figure 8. Dropout  
Figure 9. Dropout  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
Peak Emissions  
Quasi Peak Limit  
Average Limit  
Evaluation Board  
EN 55022 Class B Limit  
EN 55022 Class A Limit  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
0.1  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
D002  
D001  
VIN= 12 V  
VOUT = 3.3 V  
IOUT = 650 mA  
VIN= 12 V  
Lf = 2.2 µH  
VOUT = 3.3 V  
Cf = 1.0 µF  
IOUT = 650 mA  
Figure 10. Radiated EMI on EVM  
Figure 11. Conducted EMI on EVM  
Copyright © 2012–2018, Texas Instruments Incorporated  
7
 
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMZ21700 SIMPLE SWITCHER® Nano Module is an easy-to-use step-down DC-DC solution capable of  
driving up to 650 mA load in space-constrained applications. Only an input capacitor, an output capacitor, a  
softstart capacitor, and two resistors are required for basic operation. The Nano Module comes in 8-pin DFN  
footprint package with an integrated inductor. The LMZ21700 architecture is based on DCS-Control™ (Direct  
Control with Seamless Transition into Power Save Mode). This architecture combines the fast transient response  
and stability of hysteretic type converters along with the accurate DC output regulation of voltage mode and  
current mode regulators.  
The LMZ21700 architecture uses Pulse Width Modulation (PWM) mode for medium and heavy load requirements  
and Power Save Mode (PSM) at light loads for high efficiency. In PWM mode the switching frequency is  
controlled over the input voltage range. The value depends on the output voltage setting and is typically reduced  
at low output voltages to achieve higher efficiency. In PSM the switching frequency decreases linearly with the  
load current. Since the architecture of the device supports both operation modes (PWM and PSM) in a single  
circuit building block, the transition between the modes of operation is seamless with minimal effect on the output  
voltage.  
7.2 Functional Block Diagram  
HIGH SIDE  
INDUCTOR  
SWITCH  
VIN  
VOUT  
2.2µH  
HIGH SIDE  
CURRENT  
LIMIT  
LDO  
BYPASS  
5V LDO  
UVLO  
HIGH SIDE DRIVER  
WITH INTERNAL BOOTSTRAP  
LOW SIDE  
DRIVER  
LOW SIDE  
SWITCH  
EN  
PG  
400k  
CONTROL LOGIC  
LOW SIDE  
CURRENT  
LIMIT  
ZERO  
CURRENT  
DETECT  
THERMAL  
SHUTDOWN  
SOFTSTART  
CURRENT AND  
TRACKING  
SS  
VOS  
DIRECT CONTROL  
&
COMPENSATION  
tON TIMER  
6.6V  
CLAMP  
25pF  
CFF  
+
-
-
FB  
GND  
+
COMPARATOR  
VREF  
+
-
ERROR  
AMPLIFIER  
8
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
7.3 Package Construction  
In order to achieve a small solution size the LMZ21700 Nano Module comes in an innovative MicroSiP™  
package. The construction consists of a synchronous buck converter IC embedded inside an FR-4 laminate  
substrate, with a power inductor mounted on top of the substrate material. See Figure 12 and Figure 13 below.  
The bottom (landing pads) of the package resemble a typical 8-pin DFN package. See the Mechanical drawings  
at the end of the datasheet for details on the recommended landing pattern and solder paste stencil information.  
Figure 12. LMZ21700 in the SIL0008E Package  
INDUCTOR  
FR-4 LAMINATE  
BOTTOM  
SUBSTRATE  
COPPER PATTERN  
EMBEDDED BUCK IC  
Figure 13. LMZ21700 Package Construction Cross Section  
(Illustration Only, Not to Scale)  
7.4 Feature Description  
7.4.1 Input Under Voltage Lockout  
The LMZ21700 features input under voltage lockout (UVLO) circuit. It monitors the input voltage level and  
prevents the device from switching the power MOSFETs if VIN is not high enough. The typical VIN UVLO rising  
threshold is 2.9 V with 180 mV of hysteresis.  
Copyright © 2012–2018, Texas Instruments Incorporated  
9
 
 
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
7.4.2 Enable Input (EN)  
The enable pin (EN) is weakly pulled down internally through a 400 kresistor to keep EN logic low when the  
pin is floating. The pull-down resistor is not connected when EN is set high. Once the voltage on the enable pin  
(EN) is set high the Nano Module will start operation. If EN is set low ( < 0.3 V ) the LMZ21700 will enter  
shutdown mode. The typical shutdown quiescent current is 1.5 μA.  
7.4.3 Softstart and Tracking Function (SS)  
When EN is set high for device operation the LMZ21700 will start switching after 50 μs delay and the output  
voltage will start rising. The VOUT rising slope is controlled by the external capacitor CSS connected to the  
softstart (SS) pin. The nano module has a 2.5 μA constant current source internally connected to the SS pin to  
program the softstart time TSS  
:
TSS = CSS x 1.25 V / 2.5 μA  
(1)  
The softstart capacitor voltage is reset to zero volts when EN is pulled low and when the thermal protection is  
active.  
If tracking function is desired, the SS pin can be used to track external voltage. If the applied external tracking  
voltage is between 100 mV and 1.2 V, the FB voltage will follow SS according to the following relationship:  
VFB = 0.64 x VSS  
(2)  
7.4.4 Power Good Function (PG)  
The LMZ21700 features a Power Good (PG) function which can be used for sequencing of multiple rails. The PG  
pin is an open-drain output and requires a pull-up resistor RPG to VOUT (or any other external voltage less than 7  
V). When the Nano Module is enabled and UVLO is satisfied, the power good function starts monitoring the  
output voltage. The PG pin is kept at logic low if the output has not reached the proper regulation voltage. Refer  
to the Electrical Characteristics table for the PG voltage thresholds. The PG pin can sink 2 mA of current which  
sets the minimum limit of the RPG resistance value:  
RPG-MIN= VPULL-UP / 2 mA  
(3)  
The PG pin goes low impedance if the device is disabled or the thermal protection is active.  
7.4.5 Output Voltage Setting  
The output voltage of the LMZ21700 is set by a resistive divider from VOUT to GND, connected to the feedback  
(FB) pin. The output voltage can be set between 0.9 V and 6 V. The voltage at the FB pin is regulated to 0.8 V.  
The recommended minimum divider current is 2 μA. This sets a maximum limit on the bottom feedback resistor  
RFBB. Its value should not exceed 400 k. The top feedback resistor RFBT can be calculated using the following  
formula:  
RFBT = RFBB x (VOUT/ 0.8 – 1)  
(4)  
7.4.6 Output Current Limit and Output Short Circuit Protection  
The LMZ21700 has integrated protection against heavy loads and output short circuit events. Both, the high-side  
FET and low-side FET have current monitoring circuitry. If the current limit threshold of the high-side FET is  
reached , the high-side FET will be turned off and the low-side FET will be turned on to ramp down the inductor  
current. Once the current through the low-side FET has decreased below a safe level, the high-side device will  
be allowed to turn on again. The actual DC output current depends on the input voltage, output voltage, and  
switching frequency. Refer to the Application Curves section for more information.  
7.4.7 Thermal Protection  
The nano module monitors its junction temperature (Tj) and shuts itself off if the it gets too hot. The thermal  
shutdown threshold for the junction is typically 160 °C. Both, high-side and low-side FETs are turned off until the  
junction temperature has decreased under the hysteresis level, typically 30 °C below the shutdown temperature.  
10  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
7.5 Device Functional Modes  
7.5.1 PWM Mode Operation  
The LMZ21700 operates in PWM mode when the output current is greater than half the inductor ripple current.  
The frequency variation in PWM mode is controlled and depends on the VIN and VOUT settings. Refer to the  
Application Curves section for switching frequency graphs for several typical output voltage settings. As the load  
current is decreased and the valley of the inductor current ripple reaches 0 A the device enters PSM operation to  
maintain high efficiency.  
7.5.2 PSM Operation  
Once the load current decreases and the valley of the inductor current reaches 0 A, the LMZ21700 will transition  
to Power Save Mode of operation. The device will remain in PSM as long as the inductor current is  
discontinuous. The switching frequency will decrease linearly with the load current. If VIN decreases to about  
15 % above VOUT the device will not enter PSM and will maintain output regulation in PWM mode.  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMZ21700 is a step down DC-to-DC converter. It is used to convert higher DC voltage to a regulated lower  
DC voltage with maximum load current of 650 mA. The following design procedure can be used to select  
components for the LMZ21700. Alternatively, the WEBENCH® software can be used to select from a large  
database of components, run electrical simulations, and optimize the design for specific performance. Please go  
to webench.ti.com to access the WEBENCH® tool.  
8.2 Typical Application  
For a quick start, the following component values can be used as a design starting point for several typical output  
voltage rails and 650 mA of output load current.  
VOUT  
VIN  
COMPONENT VALUES FOR VOUT=1.2V  
VIN  
EN  
VOUT  
PG  
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
R
PG  
OUT  
SS  
22µF  
LMZ21700  
C
IN  
3300pF  
41.2k  
82.5kꢀ  
10kꢀ  
C
OUT  
VOS  
SS  
R
R
FBT  
FBB  
PG  
C
FBT  
SS  
GND  
FB  
1%  
FBB  
1%  
Figure 14. Typical Applications Circuit  
Figure 15. External Component Values  
( VOUT = 1.2 V )  
Copyright © 2012–2018, Texas Instruments Incorporated  
11  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Typical Application (continued)  
COMPONENT VALUES FOR VOUT=1.8V  
COMPONENT VALUES FOR VOUT=2.5V  
C
C
C
R
R
R
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
OUT  
SS  
22µF  
OUT  
SS  
22µF  
3300pF  
147k  
118kꢀ  
10kꢀ  
3300pF  
357k  
169kꢀ  
10kꢀ  
FBT  
FBB  
PG  
FBT  
FBB  
PG  
1%  
1%  
1%  
1%  
Figure 16. External Component Values  
( VOUT = 1.8 V )  
Figure 17. External Component Values  
( VOUT = 2.5 V )  
COMPONENT VALUES FOR VOUT=3.3V  
COMPONENT VALUES FOR VOUT=5.0V  
C
C
C
R
R
R
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
OUT  
SS  
22µF  
OUT  
SS  
22µF  
3300pF  
1.21M  
383kꢀ  
10kꢀ  
3300pF  
232k  
44.2kꢀ  
10kꢀ  
FBT  
FBB  
PG  
FBT  
FBB  
PG  
1%  
1%  
1%  
1%  
Figure 18. External Component Values  
( VOUT = 3.3 V )  
Figure 19. External Component Values  
( VOUT = 5.0 V )  
8.2.1 Design Requirements  
The design procedure requires a few typical design parameters. See Table 2 below.  
Table 2. Design Parameters  
Design Parameter  
Input Voltage (VIN  
Output Voltage (VOUT  
Output Current (IOUT  
Softstart time (TSS  
Value  
)
Range from 3.0 V to 17 V  
Range from 0.9 V to 6 V  
Up to 650 mA  
)
)
)
Minimum of 0.5 ms recommended  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Capacitor (CIN)  
Low ESR multi-layer ceramic capacitors (MLCC) are recommended for the input capacitor of the LMZ21700.  
Using a 10 µF ceramic input capacitor in 0805 (2012 metric) case size with 25 V rating typically provides  
sufficient VIN bypass. Use of multiple capacitors can also be considered. Ceramic capacitors with X5R and X7R  
temperature characteristics are recommended. These provide an optimal balance between small size, cost,  
reliability, and performance for applications with limited space. The DC voltage bias characteristics of the  
capacitors must be considered when selecting the DC voltage rating and case size of these components. The  
effective capacitance of an MLCC is typically reduced by the DC voltage bias applied across its terminals.  
Selecting a part with larger capacitance, larger case size, or higher voltage rating can compensate for the  
capacitance loss due to the DC voltage bias effect. For example, a 10 µF, X7R, 25 V rated capacitor used under  
12 V DC bias may have approximately 8 µF effective capacitance in a 1210 (3225 metric) case size and about 6  
µF in a 1206 (3216 metric) case size. As another example, a 10 µF, X7R, 16 V rated capacitor in a 1210 (3225  
metric) case size used at 12 V DC bias may have approximately 5.5 µF effective capacitance. Check the  
capacitor specifications published by the manufacturer.  
12  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
 
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
8.2.2.2 Output Capacitor (COUT  
)
Similarly to the input capacitor, it is recommended to use low ESR multi-layer ceramic capacitors for COUT  
.
Ceramic capacitors with X5R and X7R temperature characteristics are recommended. Use 10 µF or larger value  
and consider the DC voltage bias characteristics of the capacitor when choosing the case size and voltage  
rating. For stability, the output capacitor should be in the 10 µF – 200 µF effective capacitance range.  
8.2.2.3 Softstart Capacitor (CSS  
)
The softstart capacitor is chosen according to the desired softstart time. As described in the Softstart and  
Tracking Function section the softstart time TSS = CSS x 1.25 V / 2.5 μA.  
A minimum CSS value of 1000 pF is required for monotonic VOUT ramp up.  
8.2.2.4 Power Good Resistor (RPG  
)
If the Power Good function is used, a pull up resistor RPG is necessary from the PG pin to an external pull-up  
voltage.  
The minimum RPG value is restricted by the pull down current capability of the internal pull down device.  
RPG-MIN = VPULL-UP / 2 mA  
(5)  
The maximum RPG value is based on the maximum PG leakage current and the minimum “logic high” level  
system requirements:  
RPG-MAX= (VPULL-UP – VLOGIC-HIGH) / ILKG_PG  
(6)  
8.2.2.5 Feedback Resistors (RFBB and RFBT  
)
The feedback resistors RFBB and RFBT set the desired output voltage. Choose RFBB less than 400 kand  
calculate the value for RFBT using the following formula:  
RFBT = RFBB x (VOUT/ 0.8 – 1)  
(7)  
Copyright © 2012–2018, Texas Instruments Incorporated  
13  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.2.3 Application Curves  
8.2.3.1 VOUT = 1.2 V  
VOUT  
VIN  
COMPONENT VALUES FOR VOUT=1.2V  
VIN  
EN  
VOUT  
PG  
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
R
PG  
OUT  
SS  
22µF  
LMZ21700  
C
IN  
3300pF  
41.2k  
82.5kꢀ  
10kꢀ  
C
OUT  
VOS  
SS  
R
R
FBT  
FBB  
PG  
C
FBT  
SS  
GND  
FB  
1%  
FBB  
1%  
Figure 20. Typical Applications Circuit  
Figure 21. External Component Values  
(VOUT = 1.2V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Load Current (A)  
C001  
D013  
Figure 23. Power Dissipation VOUT = 1.2V  
Figure 22. Efficiency VOUT = 1.2V  
ILOAD 500mA/Div  
PGOOD 1V/Div  
ILOAD 500mA/Div  
VOUT 20mV/Div AC  
1ms/Div  
VOUT 500mV/Div  
ENABLE 500mV/Div  
1ms/Div  
20MHz BW  
20MHz BW  
Figure 24. Load Transient VOUT = 1.2V  
Figure 25. Startup VOUT = 1.2V  
14  
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
COUT1 = 22F 10V 0805 X5R  
Taiyo Yuden MK212BJ226MG-T  
VOUT RIPPLE  
VOUT RIPPLE  
COUT = 22F 10V 0805 X5R  
WITH 500MHz SCOPE BANDWIDTH  
COUT2 = 3x1000pF 0805 NP0  
Johanson Dielectrics 500R15N102JV4T  
Taiyo Yuden MK212BJ226MG-T  
50mV/Div  
10mV/Div  
1µs/Div  
20MHz BW  
500MHz BW  
1µs/Div  
Figure 26. 20MHz Oscilloscope Bandwidth  
Output Voltage Ripple VOUT = 1.2V  
Figure 27. 500MHz Oscilloscope Bandwidth, 3x1000pF  
additional output capacitance  
Output Voltage Ripple and HF Noise VOUT = 1.2V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VOUT=1.2V  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C001  
C001  
Figure 28. Typical Switching Frequency at 650mA Load  
VOUT = 1.2V  
Figure 29. Typical Current Limit VOUT = 1.2V, TA = 85 °C  
1.206  
1.204  
1.202  
1.2  
0.7  
0.6  
0.5  
0.4  
0.3  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
1.198  
1.196  
1.194  
1.192  
1.19  
0.2  
VIN = 3.3 V  
VIN = 5 V  
VIN = 12 V  
VIN = 17 V  
0.1  
0.0  
60  
70  
80  
90  
100  
110  
120  
130  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Ambient Temperature (°C)  
C001  
D014  
Figure 31. Thermal Derating for θJA= 47 ºC/W, VOUT = 1.2V  
Figure 30. Line and Load Regulation VOUT = 1.2V  
Copyright © 2012–2018, Texas Instruments Incorporated  
15  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.2.3.2 VOUT = 1.8 V  
VOUT  
VIN  
COMPONENT VALUES FOR VOUT=1.8V  
VIN  
EN  
VOUT  
PG  
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
R
PG  
OUT  
SS  
22µF  
LMZ21700  
C
IN  
3300pF  
147k  
118kꢀ  
10kꢀ  
C
OUT  
VOS  
SS  
R
R
FBT  
FBB  
PG  
C
FBT  
SS  
GND  
FB  
1%  
FBB  
1%  
Figure 32. Typical Applications Circuit  
Figure 33. External Component Values  
(VOUT =1.8V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Load Current (A)  
C001  
D015  
Figure 35. Power Dissipation VOUT = 1.8 V  
Figure 34. Efficiency VOUT = 1.8 V  
ILOAD 500mA/Div  
PGOOD 1V/Div  
ILOAD 500mA/Div  
VOUT 1V/Div  
VOUT 20mV/Div AC  
ENABLE 500mV/Div  
1ms/Div  
20MHz BW  
1ms/Div  
20MHz BW  
Figure 37. Startup VOUT = 1.8 V  
Figure 36. Load Transient VOUT = 1.8 V  
16  
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
COUT1 = 22F 10V 0805 X5R  
Taiyo Yuden MK212BJ226MG-T  
VOUT RIPPLE  
VOUT RIPPLE  
COUT = 22F 10V 0805 X5R  
WITH 500MHz SCOPE BANDWIDTH  
COUT2 = 3x1000pF 0805 NP0  
Johanson Dielectrics 500R15N102JV4T  
Taiyo Yuden MK212BJ226MG-T  
10mV/Div  
50mV/Div  
1µs/Div  
20MHz BW  
500MHz BW  
1µs/Div  
Figure 38. 20MHz Oscilloscope Bandwidth  
Output Voltage Ripple VOUT = 1.8 V  
Figure 39. 500MHz Oscilloscope Bandwidth, 3x1000pF  
additional output capacitance  
Output Voltage Ripple and HF Noise VOUT = 1.8 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VOUT=1.8V  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C001  
C001  
Figure 40. Typical Switching Frequency at 650mA Load  
VOUT = 1.8 V  
Figure 41. Typical Current Limit VOUT = 1.8 V, TA = 85 °C  
1.81  
1.808  
1.806  
1.804  
1.802  
1.8  
0.7  
0.6  
0.5  
0.4  
0.3  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
1.798  
1.796  
1.794  
1.792  
1.79  
0.2  
VIN = 3.3 V  
VIN = 5 V  
VIN = 12 V  
VIN = 17 V  
0.1  
0.0  
60  
70  
80  
90  
100  
110  
120  
130  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Ambient Temperature (°C)  
C001  
D016  
Figure 43. Thermal Derating for θJA=47ºC/W, VOUT = 1.8 V  
Figure 42. Line and Load Regulation VOUT = 1.8 V  
Copyright © 2012–2018, Texas Instruments Incorporated  
17  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.2.3.3 VOUT = 2.5 V  
VOUT  
VIN  
COMPONENT VALUES FOR VOUT=2.5V  
VIN  
EN  
VOUT  
PG  
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
R
PG  
OUT  
SS  
22µF  
LMZ21700  
C
IN  
3300pF  
357k  
169kꢀ  
10kꢀ  
C
OUT  
VOS  
SS  
R
R
FBT  
FBB  
PG  
C
FBT  
SS  
GND  
FB  
1%  
FBB  
1%  
Figure 44. Typical Applications Circuit  
Figure 45. External Component Values  
(VOUT = 2.5 V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Load Current (A)  
C001  
D017  
Figure 47. Power Dissipation VOUT = 2.5 V  
Figure 46. Efficiency VOUT = 2.5 V  
ILOAD 500mA/Div  
PGOOD 2V/Div  
ILOAD 500mA/Div  
VOUT 1V/Div  
VOUT 20mV/Div AC  
ENABLE 500mV/Div  
1ms/Div  
20MHz BW  
1ms/Div  
20MHz BW  
Figure 49. Startup VOUT = 2.5 V  
Figure 48. Load Transient VOUT = 2.5 V  
18  
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
COUT1 = 22F 10V 0805 X5R  
Taiyo Yuden MK212BJ226MG-T  
VOUT RIPPLE  
VOUT RIPPLE  
COUT = 22F 10V 0805 X5R  
WITH 500MHz SCOPE BANDWIDTH  
COUT2 = 3x1000pF 0805 NP0  
Johanson Dielectrics 500R15N102JV4T  
Taiyo Yuden MK212BJ226MG-T  
10mV/Div  
50mV/Div  
1µs/Div  
20MHz BW  
500MHz BW  
1µs/Div  
Figure 50. 20MHz Oscilloscope Bandwidth  
Output Voltage Ripple VOUT = 2.5 V  
Figure 51. 500MHz Oscilloscope Bandwidth, 3x1000pF  
additional output capacitance  
Output Voltage Ripple and HF Noise VOUT = 2.5 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VOUT=2.5V  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C001  
C001  
Figure 52. Typical Switching Frequency at 650mA Load  
VOUT = 2.5 V  
Figure 53. Typical Current Limit VOUT = 2.5 V, TA = 85 °C  
2.5  
0.7  
0.6  
0.5  
0.4  
0.3  
VIN = 3 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
2.498  
2.496  
2.494  
2.492  
2.49  
2.488  
2.486  
2.484  
2.482  
2.48  
0.2  
VIN = 5 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.1  
0.0  
60  
70  
80  
90  
100  
110  
120  
130  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Ambient Temperature (°C)  
C001  
D018  
Figure 55. Thermal Derating for θJA=47ºC/W, VOUT = 2.5 V  
Figure 54. Line and Load Regulation VOUT = 2.5 V  
Copyright © 2012–2018, Texas Instruments Incorporated  
19  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.2.3.4 VOUT = 3.3 V  
VOUT  
VIN  
COMPONENT VALUES FOR VOUT=3.3V  
VIN  
EN  
VOUT  
PG  
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
R
PG  
OUT  
SS  
22µF  
LMZ21700  
C
IN  
3300pF  
1.21M  
383kꢀ  
10kꢀ  
C
OUT  
VOS  
SS  
R
R
FBT  
FBB  
PG  
C
FBT  
SS  
GND  
FB  
1%  
FBB  
1%  
Figure 56. Typical Applications Circuit  
Figure 57. External Component Values  
(VOUT = 3.3V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Load Current (A)  
C001  
D019  
Figure 59. Power Dissipation VOUT = 3.3 V  
Figure 58. Efficiency VOUT = 3.3 V  
ILOAD 500mA/Div  
VOUT 1V/Div  
ILOAD 500mA/Div  
PGOOD 2V/Div  
VOUT 20mV/Div AC  
ENABLE 500mV/Div  
1ms/Div  
20MHz BW  
1ms/Div  
20MHz BW  
Figure 61. Startup VOUT = 3.3 V  
Figure 60. Load Transient VOUT = 3.3 V  
20  
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
COUT1 = 22F 10V 0805 X5R  
Taiyo Yuden MK212BJ226MG-T  
VOUT RIPPLE  
VOUT RIPPLE  
COUT = 22F 10V 0805 X5R  
WITH 500MHz SCOPE BANDWIDTH  
COUT2 = 3x1000pF 0805 NP0  
Johanson Dielectrics 500R15N102JV4T  
Taiyo Yuden MK212BJ226MG-T  
10mV/Div  
50mV/Div  
1µs/Div  
20MHz BW  
500MHz BW  
1µs/Div  
Figure 62. 20 MHz Oscilloscope Bandwidth  
Output Voltage Ripple VOUT = 3.3 V  
Figure 63. 500MHz Oscilloscope Bandwidth, 3x1000 pF  
additional output capacitance  
Output Voltage Ripple and HF Noise VOUT = 3.3 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VOUT=3.3V  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C001  
C001  
Figure 64. Typical Switching Frequency at 650mA Load  
VOUT = 3.3 V  
Figure 65. Typical Current Limit VOUT = 3.3 V, TA = 85 °C  
3.316  
3.314  
3.312  
3.31  
0.7  
0.6  
0.5  
0.4  
0.3  
VIN = 4.5 V  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
3.308  
3.306  
3.304  
3.302  
3.3  
0.2  
VIN = 5 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.1  
0.0  
60  
70  
80  
90  
100  
110  
120  
130  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Ambient Temperature (°C)  
C001  
D020  
Figure 67. Thermal Derating for θJA = 47ºC/W, VOUT = 3.3 V  
Figure 66. Line and Load Regulation VOUT = 3.3 V  
Copyright © 2012–2018, Texas Instruments Incorporated  
21  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.2.3.5 VOUT = 5.0 V  
VOUT  
VIN  
COMPONENT VALUES FOR VOUT=5.0V  
VIN  
EN  
VOUT  
PG  
C
C
C
R
R
R
IN  
22µF  
25V  
10V  
10V  
1%  
X7R or X5R  
X7R or X5R  
X7R or X5R  
R
PG  
OUT  
SS  
22µF  
LMZ21700  
C
IN  
3300pF  
232k  
44.2kꢀ  
10kꢀ  
C
OUT  
VOS  
SS  
R
R
FBT  
FBB  
PG  
C
FBT  
SS  
GND  
FB  
1%  
FBB  
1%  
Figure 68. Typical Applications Circuit  
Figure 69. External Component Values  
(VOUT = 5.0V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Load Current (A)  
C001  
D021  
Figure 71. Power Dissipation VOUT = 5.0 V  
Figure 70. Efficiency VOUT = 5.0 V  
ILOAD 500mA/Div  
VOUT 2V/Div  
ILOAD 500mA/Div  
PGOOD 5V/Div  
VOUT 20mV/Div AC  
ENABLE 500mV/Div  
1ms/Div  
20MHz BW  
1ms/Div  
20MHz BW  
Figure 73. Startup VOUT = 5.0 V  
Figure 72. Load Transient VOUT = 5.0 V  
22  
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
COUT1 = 22F 10V 0805 X5R  
Taiyo Yuden MK212BJ226MG-T  
VOUT RIPPLE  
VOUT RIPPLE  
COUT = 22F 10V 0805 X5R  
WITH 500MHz SCOPE BANDWIDTH  
COUT2 = 3x1000pF 0805 NP0  
Johanson Dielectrics 500R15N102JV4T  
Taiyo Yuden MK212BJ226MG-T  
10mV/Div  
50mV/Div  
1µs/Div  
20MHz BW  
500MHz BW  
1µs/Div  
Figure 74. 20 MHz Oscilloscope Bandwidth  
Output Voltage Ripple VOUT = 5.0 V  
Figure 75. 500 MHz Oscilloscope Bandwidth, 3x1000 pF  
additional output capacitance  
Output Voltage Ripple and HF Noise VOUT = 5.0 V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VOUT=5.0V  
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C001  
C001  
Figure 76. Typical Switching Frequency at 650 mA Load  
VOUT = 5.0 V  
Figure 77. Typical Current Limit VOUT = 5.0 V, TA = 85 °C  
5.04  
0.7  
0.6  
0.5  
0.4  
0.3  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
VIN = 17 V  
5.035  
5.03  
5.025  
5.02  
5.015  
5.01  
5.005  
5
0.2  
VIN = 9 V  
VIN = 12 V  
0.1  
VIN = 15 V  
VIN = 17 V  
4.995  
4.99  
0.0  
60  
70  
80  
90  
100  
110  
120  
130  
0.0001  
0.001  
0.01  
Load Current (A)  
0.1  
1
Ambient Temperature (°C)  
C001  
D022  
Figure 79. Thermal Derating for θJA = 47ºC/W, VOUT = 5.0 V  
Figure 78. Line and Load Regulation VOUT = 5.0 V  
Copyright © 2012–2018, Texas Instruments Incorporated  
23  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
8.3 Do's and Don'ts  
DO NOT exceed the Absolute Maximum Ratings.  
DO NOT exceed the Recommended Operating Conditions.  
DO NOT exceed the Handling Ratings.  
DO follow the Detailed Design Procedure.  
DO follow the PCB Layout Guidelines and Layout Example.  
DO follow the Power Supply Recommendations.  
DO visit the TI E2E Community Support Forum to have your questions answered and designs reviewed.  
9 Power Supply Recommendations  
9.1 Voltage Range  
The voltage of the input supply must not exceed the Absolute Maximum Ratings and the Recommended  
Operating Conditions of the LMZ21700.  
9.2 Current Capability  
The input supply must be able to supply the required input current to the LMZ21700 converter. The required  
input current depends on the application's minimum required input voltage (VIN-MIN), the required output power  
(VOUT x IOUT-MAX), and the converter efficiency (η).  
IIN = VOUT x IOUT-MAX / (VIN-MIN x η)  
For example, for a design with 10 V minimum input voltage, 5 V output, and 0.5 A maximum load, considering  
90 % conversion efficiency, the required input current is 0.278 A.  
9.3 Input Connection  
Long input connection cables can cause issues with the normal operation of any buck converter.  
9.3.1 Voltage Drops  
Using long input wires to connect the supply to the input of any converter adds impedance in series with the  
input supply. This impedance can cause a voltage drop at the VIN pin of the converter when the output of the  
converter is loaded. If the input voltage is near the minimum operating voltage, this added voltage drop can  
cause the converter to drop out or reset. If long wires are used during testing, it is recommended to add some  
bulk (i.e. electrolytic) capacitance at the input of the converter.  
9.3.2 Stability  
The added inductance of long input cables together with the ceramic (and low ESR) input capacitor can result in  
an under damped RLC network at the input of the Buck converter. This can cause oscillations on the input and  
instability. If long wires are used, it is recommended to add some electrolytic capacitance in parallel with the  
ceramic input capacitor. The electrolytic capacitor's ESR will improve the damping.  
Use an electrolytic capacitor with CELECTROLYTIC 4 x CCERAMIC and ESRELECTROLYTIC ≈ √ (LCABLE / CCERAMIC  
)
For example, two cables (one for VIN and one for GND), each 1 meter (~ 3 ft) long with ~1.0 mm diameter (18  
AWG), placed 1 cm (~0.4 in) apart will form a rectangular loop resulting in about 1.2 µH of inductance. The  
inductance in this example can be decreased to almost half if the input wires are twisted. Based on a 22 µF  
ceramic input capacitor, the recommended parallel CELECTROLYTIC is 88 µF. Using a 100 µF capacitor will be  
sufficient. The recommended ESRELECTROLYTIC0.23 Ω or larger, based on about 1.2 µH of inductance and 22  
µF of ceramic input capacitance.  
See application note SNVA489C for more details on input filter design.  
24  
Copyright © 2012–2018, Texas Instruments Incorporated  
 
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
10 Layout  
10.1 Layout Guidelines  
The PCB layout is critical for the proper operation of any DC-DC switching converter. Although using modules  
can simplify the PCB layout process, care should still be taken to minimize the inductance in the high di/dt loops  
and to protect sensitive nodes. The following guidelines should be followed when designing a board layout with  
the LMZ21700:  
10.1.1 Minimize the High di/dt Loop Area  
The input capacitor, the VIN terminal, and the GND terminal of the LMZ21700 form a high di/dt loop. Place the  
input capacitor as close as possible to the VIN and GND terminals of the module IC. This minimizes the area of  
the high di/dt loop and results in lower inductance in the switching current path. Lower inductance in the  
switching current path translates to lower voltage spikes on the internal switch node and lower noise on the  
output voltage. Make the copper traces between the input capacitor and the VIN and GND terminals wide and  
short for better current handling and minimized parasitic inductance.  
10.1.2 Protect the Sensitive Nodes in the Circuit  
The feedback node is a sensitive circuit which can pick up noise. Make the feedback node as small as possible.  
This can be achieved by placing the feedback divider as close as possible to the IC. Use thin traces to the  
feedback pin in order to minimize the parasitic capacitance to other nodes. The feedback network carries very  
small current and thick traces are not necessary. Another sensitive node to protect is the VOS pin. Use a thin  
and short trace from the VOUT terminal of the output capacitor to the VOS pin. The VOS pin is right next to the  
GND terminal. For very noisy systems, a small (0402 or 0201) 0.1 µF capacitor can be placed from VOS to GND  
to filter high frequency noise on the VOS line.  
10.1.3 Provide Thermal Path and Shielding  
Using the available layers in the PCB can help provide additional shielding and improved thermal performance.  
Large unbroken GND copper areas provide good thermal and return current paths. Flood unused PCB area with  
GND copper. Use thermal vias to connect the GND copper between layers.  
The required board area for proper thermal dissipation can be estimated using the power dissipation curves for  
the desired output voltage and the package thermal resistance vs. board area curve. Refer to the power  
dissipation graphs in the Typical Characteristics section. Using the power dissipation (PDISS) for the designed  
input and output voltage and the max operating ambient temperature TA for the application, estimate the required  
thermal resistance RθJA with the following expression.  
RθJA - REQUIRED(125 ºC - TA) / PDISS  
(8)  
Then use Figure 80 to estimate the board copper area required to achieve the calculated thermal resistance.  
100  
2-LAYER 70 µm (2 oz) Cu  
4-LAYER 70 µm (2 oz) Cu  
90  
80  
70  
60  
50  
40  
30  
20  
0
5
10  
15  
20  
Copper Area (cm2)  
D012  
Figure 80. Package Thermal Resistance vs. Board Copper Area, No Air Flow  
Copyright © 2012–2018, Texas Instruments Incorporated  
25  
 
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Layout Guidelines (continued)  
For example, for a design with 17 V input and 5 V output and 0.65 A load the power dissipation according to  
Figure 7 is 0.43 W.  
For 85 °C ambient temperature, the RθJA-REQUIRED is (125 °C - 85 °C) / 0.43 W, or 93 °C/W. Looking at  
Figure 80 the minimum copper area required to achieve this thermal resistance with a 4-layer board and 70 µm  
(2 oz) copper is approximately 1 cm².  
10.2 Layout Example  
The following example is for a 4-layer board. Layers 2 and 4 provide additional shielding and thermal path. If a 2-  
layer board is used, apply the Layer 1 and Layer 3 copper patterns for the top and bottom layers, respectively.  
26  
Copyright © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
Layout Example (continued)  
PLACE THE INPUT CAPACITOR AS CLOSE  
AS POSSIBLE TO THE MODULE VIN AND  
GND PINS  
GND VIAS TO MINIMIZE INDUCTANCE IN  
THE di/dt LOOP  
VIN EN VOS GND  
GND  
VOUT VOUT  
LAYER 1  
SS FB PG  
PLACE THE FEEDBACK DIVIDER AS CLOSE  
AS POSSIBLE TO THE MODULE TO KEEP  
THE FB NODE SMALL  
LAYER 2  
LAYER 3  
UNBROKEN GND PLANE FOR THERMAL  
PERFORMANCE AND SHIELDING  
ENABLE CONNECTION  
VOS CONNECTION t KEEP AWAY FROM  
NOISE SOURCES  
CONNECTION TO THE SOFTSTART  
CAPACITOR  
POWER GOOD FLAG CONNECTION  
UNBROKEN GND PLANE FOR THERMAL  
PERFORMANCE AND SHIELDING  
LAYER 4  
Figure 81. Layout example  
Copyright © 2012–2018, Texas Instruments Incorporated  
27  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
Layout Example (continued)  
10.2.1 High Density Layout Example for Space Constrained Applications  
10.2.1.1 35 mm² Solution Size (Single Sided)  
The following layout example uses 0805 case size components for the input and output capacitors and 0402  
case size components for the rest of the passives.  
LAYER 1  
LAYER 2  
SS  
FB  
VIN  
EN  
VIN  
PG  
VOS  
GND  
GND  
VOUT  
GND  
VOUT GND  
LAYER 3  
LAYER 4  
VOS  
VOUT  
Figure 82. 35mm² Solution Size (Single Sided)  
28  
版权 © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
11 器件和文档支持  
11.1 器件支持  
如需问题解答和设计检查,请访问德州仪器 (TI) E2E 社区支持论坛。  
11.2 开发支持  
11.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 LMZ21700 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
DCS-Control, MicroSiP, E2E are trademarks of Texas Instruments.  
WEBENCH, SIMPLE SWITCHER are registered trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2012–2018, Texas Instruments Incorporated  
29  
LMZ21700  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
12.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMZ21700SILR  
LMZ21700SILT  
uSiP  
uSiP  
SIL  
SIL  
8
8
3000  
250  
330.0  
178.0  
12.4  
13.2  
3.75  
3.75  
3.75  
3.75  
2.2  
2.2  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
30  
版权 © 2012–2018, Texas Instruments Incorporated  
LMZ21700  
www.ti.com.cn  
ZHCSD73D AUGUST 2012REVISED AUGUST 2018  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
58.0  
LMZ21700SILR  
LMZ21700SILT  
uSiP  
uSiP  
SIL  
SIL  
8
8
383.0  
223.0  
353.0  
194.0  
35.0  
版权 © 2012–2018, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZ21700SILR  
LMZ21700SILT  
ACTIVE  
uSiP  
uSiP  
SIL  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
7485  
1700 7485 D9  
Samples  
Samples  
ACTIVE  
SIL  
NIAU  
7485  
1700 7485 D9  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZ21700SILR  
uSiP  
SIL  
8
3000  
330.0  
12.4  
3.75  
3.75  
2.2  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
uSiP SIL  
SPQ  
Length (mm) Width (mm) Height (mm)  
383.0 353.0 58.0  
LMZ21700SILR  
8
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY